
1

Incentive-Vacation Queueing for Edge Crowd
Computing

Sherif B. Azmy, Student Member, IEEE, Nizar Zorba, Senior Member, IEEE,
and Hossam S. Hassanein, Fellow, IEEE

Abstract—Edge Computing aims to push services closer to end-
users, greatly enhancing latency and scale. Yet, there’s untapped
potential beyond the network’s last mile, on the extreme edge.
Extreme Edge Computing (XEC) is a computing paradigm that
exploits computational resources in the end-user’s immediate
vicinity. Edge Crowd Computing (ECC) is an orchestrated sharing
economy model within XEC that uses idle resources on user-owned
devices for service provision, compensating owners. We analyze
an orchestrated ECC where devices rent resources in exchange
for incentives. Our Incentive-Vacation Queueing (IVQ) model
associates performance with incentive payments using vacation
queueing, considering the multi-tenancy of devices through a
server vacation dependent on incentives received. In this paper, we
offer a framework for analyzing any sharing economy system that
can be modeled using IVQ. We discuss the relationship between
incentives and vacations on performance, namely the incentive-
vacation or IVQ function. We examine two families of IVQ func-
tions that can be adjusted to benefit either the orchestrator or the
worker and introduce a performance metric for such preference.
We derive analytical expressions for system performance that
consider the random nature of worker devices’ availability due
to fluctuating incentives. The IVQ model explores commodifying
user-owned resources in an ECC system, presenting a general
approach for performance analysis in such environments.

Index Terms—Incentive; Vacation; Queueing; Extreme Edge
Computing; Performance Analysis.

I. INTRODUCTION

CLOUD Computing has emerged as a fundamental com-
ponent in contemporary trade and service exchanges [1].

Its expansion is marked by three notable trends: (i) the swift
progress of the Internet of Things (IoT) and explosion in num-
ber of its devices [2]; (ii) the need for advanced applications,
such as VR/AR; and (iii) the imperative of ensuring security
and privacy. This growth may soon surpass the centralized
cloud and its backhaul network’s capacity [3]. To address this,
Fog and Edge Computing have been introduced to decentralize
and meet demand by bringing services closer to users [4].
Nonetheless, the capabilities of idle, powerful consumer devices
like PCs, smart devices, wearables, vehicles, and appliances
are underutilized [5], [6]. These devices have evolved from
specialized hardware to versatile computing tools [3].

Sherif B. Azmy is with the Department of Electrical and Computer En-
gineering, Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail:
sherif.azmy@queensu.ca).

Nizar Zorba is with the College of Engineering, Qatar University, Doha,
Qatar (e-mail: nizarz@qu.edu.qa).

Hossam S. Hassanein is with the School of Computing, Queen’s University,
Kingston, ON K7L 3N6, Canada (e-mail: hossam@cs.queensu.ca).

User devices have the potential to create an underutilized tier
of edge computing, which we term eXtreme Edge Computing
(XEC). This involves processing done exclusively on user
devices, characterized by their proximity to end-users and
modest processing power [7]. XEC harnesses collective idle
computational resources across numerous devices rather than
relying on singular device capabilities [8]. This has become
possible due to nascent technologies such as unikernels and
microcontainers [9], [10]. While inherently decentralized, XEC
can also adopt a semi-decentralized architecture. Edge Crowd
Computing (ECC) represents this semi-decentralized model,
where service providers distribute their offerings through third-
party devices within the user’s vicinity, paralleling the service
provision models of companies like Uber or Airbnb [11].

ECCs present a notable use case in game streaming services
over wireless networks. For low-capability devices like smart-
phones, the service provider uses edge servers for streaming
sophisticated games, aiming to reduce latency and enhance
the user experience. Mobility-related connectivity issues, for
instance, on a train, may disrupt service access, preventing
enjoyment of the game [12]. Although mobile devices can store
the game, they often lack the necessary processing power and
battery life to run it effectively. To counter unreliable connec-
tions, the service provider might transfer game assets directly
to the user’s device, which temporarily coordinates gameplay
by utilizing nearby devices, such as those of fellow passengers,
by sharing the game’s workload [13]. These ’worker’ devices
would receive compensation from the service provider. While
not yet viable with current technology, this model is foreseen
with the advent of 6G and D2D URLLC advancements in XEC
and ECC frameworks [14], [15].

Edge Cloud Computing (ECC) is promising but comes with
unique challenges. This study tackles two main concerns: (i) the
need for user-owned devices to perform reliably despite being
multi-tenant, and (ii) the diversity in usage, connection, and
capabilities among these devices. Deploying ECC on personal
devices is complex, primarily due to their and their owners’
unpredictable reliability, often linked to the owners’ behavior.
Similar to Mobile Crowd Sensing (MCS), which leverages
incentives to manage participant engagement [16], we argue
that such strategies can be adapted for computational tasks
in ECC. However, while MCS rewards are for human input,
ECC incentives compensate for any device performance dips
when sharing computational tasks. Thus, incentives are crucial

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

in ECC for converting computational resources into tradable
assets [11].

Several studies have explored Edge Computing frameworks
where there is an interaction between customers and service
providers. Kitzerow et al. [17] tackled the issue of mutual self-
interest—workers wanting maximum reward for least effort and
customers wanting maximum service for least payment—by
introducing a validation entity to ensure job execution fidelity
by re-evaluating job samples. Additionally, [18] presents a
macroeconomic analysis based on a double auction model, fo-
cusing on enhancing social welfare considerations that align the
objectives of both service providers and customers. Similarly,
[19] proposes a dynamic pricing strategy in a sharing economy
context to improve social welfare. Although social welfare is
an important overarching metric, it is essential to acknowl-
edge the diverse array of more immediate system performance
indicators, such as latency and throughput, especially given
the variable and delay-sensitive nature of Edge Computing
environments [20].

XEC and ECC systems are emerging technologies that have
not been extensively explored in existing research. The un-
tapped computational resources of advanced edge devices are
now more accessible, thanks to advancements in virtualization,
software-defined networking, and containerization [9], [12],
[21], [22]. These technologies enhance network adaptability and
autonomous organization, facilitating seamless computational
handover from user devices to proximal devices [23]. The
efficacy of new semi-decentralized XEC systems, like ECC,
remains unquantified. Performance largely depends on workers’
profit motives. Deployers of ECC orchestrators can gain from
understanding the correlation between incentives and perfor-
mance. This insight is crucial for reducing recruitment costs
and maximizing profits while delivering services on time and
to customer satisfaction. Therefore, investigating the incentives-
performance relationship is imperative.

This study examines ECC systems with orchestrator over-
sight, where incentives mitigate uncertainty. We introduce the
Incentive-Vacation Queueing (IVQ) framework, a queueing-
theory method, to evaluate how incentives influence a worker’s
output. IVQ focuses on multi-tenant worker devices adopting a
vacation scheme, whereby the device attends to its owner’s re-
quirements post ECC service. We assess our model via vacation
queueing theory, specifically the M/G/1 queue with restricted
pure vacations, noting that incentives, being stochastic, alter
vacation lengths. The paper’s contributions are:

1) We propose the Incentive-Vacation Queueing model with
an incentive-vacation function, investigate the impact of
its convexity on the system’s preference of workers and
orchestrator, and the performance of workers in the sys-
tem.

2) We formulate a general form of a variable preference
incentive-vacation function and propose two incentive-
vacation function families, the log-family and the rational-
family. Furthermore, we provide a general framework
for analyzing systems in which incentives can impact

performance.
3) We derive closed-form expressions for performance in an

ECC system as well as propose two sharing economy-
based performance metrics: revenue per job and revenue
per second.

4) We investigate the impact of incentives distributed by the
orchestrator on the worker’s performance.

The structure of this document is as follows: Section II
presents a synopsis of extreme edge systems and outlines the
system architecture; Section III explores vacation queueing,
its connection to incentives, and introduces the IVQ model,
examining the effects of their convex relationship on the
system. Section IV analyzes the decision-making process of the
orchestrator concerning worker incentives within IVQ systems.
Section V interprets the analytical results through a numerical
illustration. Section VI discusses practical implications of im-
plementing the IVQ model. The paper concludes in Section VII
with a summary and prospects for subsequent research.

II. EXTREME EDGE SYSTEM OVERVIEW

XEC is laden with heterogeneity and uncertainty because it
relies on user-owned infrastructure that suffers from numerous
sources of uncertainty [24], [25]. Efficient utilization of XEC
infrastructure involves taming with uncertainty and constraining
it so that the system’s behavior can be predicted. However, the
nature of user-owned devices is sporadic as they are used by
their owners. Thus an XEC system should seek to utilize the
idle resources abundant on these user-owned devices in spite of
their owner’s access to them. A service can be deployed on such
devices that are present in the end-user’s immediate vicinity to
ultimately provide timely service to other customers. While this
is possible in theory, achieving reliable service provision is a
challenge of XEC. In this section, we describe an Edge Crowd
Computing system, an instance of XEC, in which the service
provider’s orchestrator recruits user-owned devices, or workers,
to provide service to customers. The worker devices agree to
provide their resources as infrastructure for the service provider,
an ECC orchestrator, in exchange for an incentive payment.
Figure 1 illustrates an orchestrated ECC system, comprised of
three main entities:

• Customer devices: these are the client devices that request
and use the services provided by the ECC service provider.

Customers ECC Workers

ECC Orchestrator

Customers submit
job requests to
ECC orchestrator

ECC Orchestrator
recruits worker

devices

ECC Workers provide service

Fig. 1. Edge Crowd Computing System

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

Customer Orchestrator Worker

Task Request

Recruit Worker

Initiate Connection

Task Instructions

Completed Task

Acknowledgement

Incentive

Fig. 2. Operation of an ECC System: customers request service from the
orchestrator that would recruit workers for service provision.

• Worker devices: these are user-owned devices that rent
their idle computational resources to the ECC service
provider in exchange for an incentive.

• Orchestrator: the central component of the orchestrated
ECC system that coordinates the activities of the customer
and worker devices, to ensure that jobs are completed
efficiently. In addition, the orchestrator is also responsible
for providing incentives to the worker devices. In addition
to acting as a liaison between customers and workers, the
orchestrator also tracks the performance of workers and
their profitability to avoid unexpected worker churning.

Figure 2 illustrates the operation of an orchestrated ECC
system. First, the customer submits a job request to the nearest
orchestrator. The orchestrator can also be a latent component
that is available on the customer device itself and activated
when the service provider is out of reach. The orchestrator
then recruits a worker to perform this job. After receiving
the job request from the orchestrator, the worker and the
customer directly connect to each other so that the detailed
job instructions are transmitted (or required assets). Finally, the
worker services the job and returns it to the customer device
which acknowledges its completion. Upon acknowledgement,
the orchestrator processes the incentive payment to the worker
device.

This system can be viewed as a server farm [26] in which
the ECC orchestrator represents a scheduler with a queue in
which customers’ jobs – with attached job incentives – arrive,
and are then distributed to the ECC workers as illustrated in
Figure 3.

Generally, customer service requests can be modelled into an
orchestrator arrival rate, λorch, which is split by the orchestrator
according to some scheduling mechanism into worker arrival

Fig. 3. ECC Job Distribution Model: the orchestrator distributes jobs to multi-
tenant workers.

rates λorch =
∑K

i=1 λi, assuming a total of K workers. Nev-
ertheless, these workers are not entirely dedicated to servicing
the edge, since they are also user devices, making them multi-
tenant devices that provide service for more than one entity. In
this case, workers serve both the XEC system (in exchange for
an incentive) in addition to their owners. As an example, the
owner of a personal computer can rent its idle computational
resources to the XEC orchestrator in addition to using the
same device for themselves. Therefore, worker devices need to
manage their resources in a manner that allows them to serve
both the XEC system and its owner. Such scenario is of great
importance for current and future trends of infrastructure-less
sharing economy-based companies, such as Uber, Airbnb, etc.
This paper presents methods of modeling and improving such
systems.

In this paper, we investigate performance from the perspec-
tive of an individual worker. We model the service time spent
on serving the owner’s jobs as a vacation whose duration is
dictated by the amount of incentive the worker receives. In the
following section, we will briefly overview vacation queueing
prior to introducing the proposed IVQ model. Table I lists the
notations used throughout this paper.

III. MODELLING OF INCENTIVE-VACATION QUEUEING:
WORKER PERSPECTIVE

In an ECC system, the availability of worker devices and
their resources is heavily influenced by the users’ behaviour.
This spontaneity introduces a degree of uncertainty in the avail-
ability of those resources. However, the uncertainty stemming
from the user’s behaviour can be mitigated by the use of
incentives that target the human user.

In this section, we employ vacation queueing to abstract the
user behaviour and the influence of stochastic incentives over
it. We give an overview of vacation queueing, and introduce the
IVQ model which, using vacation queueing, captures the impact
of incentives in an ECC system. We provide an analysis of the
system, the relationship between vacations and incentives, and
the performance of an orchestrator-based ECC system.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE I
NOTATIONS AND SYMBOLS

Symbol Description
V Vacation duration

µ = 1
S

Worker’s service rate
λ = 1

τ
Job arrival rate to worker’s queue

ρ, ρ̃ Server utilization, PVQ utilization
X Total Queue Incentive (TQI)

Vmin, Vmax Minimum and maximum vacations
Xmin, Xmax Minimum and maximum TQI

r(·) Vacation-Incentive (VI) function
rcvx(x) Convex VI Seed Function
rccv(x) Concave anti-convex VI Function
rlnr(x) Linear VI Function

α Orchestrator-Worker Preference Parameter
(·)+ Shorthand for max(0, ·)
β Logarithmic scale parameter

rlog(x, α, β) log-family of VI Functions
rrat(x, α) rational-family of VI Functions
rabs,cvx(x) Convex Corner Function
rabs,ccv(x) Concave Corner Function

V% Vacation proportion of service cycle
Qv Queue Length
Lv Number of jobs in the system
TQv Waiting time

R,Rmin, Rmax Per job revenue, minimal and maximal
λmin, λmax Minimal and maximal throughput

Qw Worker’s Queue
xi Job Incentive

A. Overview of Vacation Queueing

Vacation queueing is a type of queueing in which the server
becomes unavailable for a period of time called a vacation. Im-
plementing a vacation policy introduces a degree of flexibility
in the modeling of real systems as vacations abstract the server’s
other duties into a single random variable, V , that represents
the duration of a server vacation [27]–[29]. For example, single
server vacation queueing could be classified according to the
vacation policy. The vacation policy can be exhaustive or non-
exhaustive, with regards to whether the server starts its vacation
only after having finished the queue or not. There are different
types of vacation queues as well as to whether there is a
threshold (i.e., a specific number of vacations has occurred or
not), whether it is preemptive or not, or whether the service is
gated or not [28].

Fig. 4. General Vacation Model: service periods can be followed by vacation
periods.

Fig. 5. P-Limited Vacation Model: each service period must be followed by
a vacation period.

Figure 4 depicts the general vacation server’s activity over
time. If the type of vacation model allows consecutive ser-
vice with no vacation in between, then the service period is
the total period for which the server was busy. Similarly, if
consecutive vacations have no service in between (i.e., zero-
length vacation), then the vacation period is the total duration
of consecutive vacations. Generally, the service cycle spans
the service period and a single vacation. This is the case for
general vacation models [27]. In this work, we use a certain
type of vacation queueing, P-Limited Vacation Queueing (PVQ)
to model ECC workers in an extreme edge scenario.

B. P-Limited Vacation Queueing (PVQ)

P-Limited, or pure limited, Vacation Queueing is a type of
non-exhaustive vacation queueing in which the server takes a
vacation after each departure, limiting its service period to a
single job [27], [28]. If no jobs were queued for service at
a vacation completion instance, the server keeps repeating its
vacations until a job arrives. Figure 5 illustrates the server’s
activity over time in PVQ.

What makes PVQ interesting is its compatibility with multi-
tenancy as it would abstract the worker’s activities in the
vacation. The modeling of the vacation as a random variable (or
a function of a random variable) simplifies the complexity of
the worker’s non-XEC workload into the vacation duration V .
In addition, PVQ’s analysis is simple as it can be regarded as
a modification of the service time by introducing the length
of the vacation to it. In other words, an M/G/11 queue
changes to have a modified service time, becoming an M/G̃/1
queue, in which the modified service time, S̃, becomes a sum
of the M/G/1 service time, S, and the vacation time, V ,
i.e., S̃ = S + V which is possible due to the stochastic
decomposition property [28]. S̃ also represents the duration
of the PVQ service cycle. A consequence is that the stability
condition then becomes

ρ̃ = ρ+ λE[V] < 1 (1)

where λ is the arrival rate, ρ = λS is the M/G/1 server
utilization, ρ̃ is the PVQ server utilization, and E[V] is the
average vacation duration.

1An M/G/1 queue represents a system with Markovian (Poisson) arrivals, a
general service time distribution, and one server.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

Fig. 6. In IVQ, the impact of incentives is represented via vacation duration.

C. Incentive Vacation Queueing

IVQ is a form of PVQ in which vacation duration, V ,
is defined as a function of the total incentive, X , a worker
is receiving. This relationship is illustrated in Figure 6. The
incentive X is a random variable making V a function of
a random variable. By defining V as a function of X , V
inherits the randomness of X and becomes a random variable.
Depending on the incentive’s origin, X can be defined as the
sum of incentives to each of the jobs in a worker’s queue at
a time instant, thus looking at incentives coming directly from
the customers, or it can be defined as a set payment value
that the orchestrator chooses. In both cases, we name the IVQ
incentive variable, X , as the Total Queue Incentive (TQI). The
implications of both cases are covered in the following section
on the performance modeling of an IVQ system.

Incentives have varying forms; however, they can be cate-
gorized into two main categories: monetary and non-monetary
incentives. Unlike monetary incentives in which money is used
to incentivize, non-monetary incentives include rewards such
as recognition, badges, points, or discounts. Non-monetary
incentives also extend to include forms of incentive that stem
from an existing context such as a game (e.g., in-game rewards
or rank) or a community (e.g., contributions of a Google
Maps guide), or the gamification of an activity (e.g., gamified
focus timer) [30]. The design of incentives has various aspects
according to the context, such as the setting in which the ECC
system takes place, what audience comprises the worker devices
and their demographics, or even if it is a closed setting [31].

In IVQ, we define V as a function of the incentive r(X). The
choice of r(X) has to be chosen such that the system is stable
and the performance is achieved. The proper selection of r(X)
and its properties are of great effect on the IVQ as the vacation
is the abstraction of user behaviour. Aspects that extend beyond
just incentives can be captured by r(X). For example, r(X)
can be defined in terms that relate to worker’s trustworthiness,
benchmark capabilities, and reliability, and thus allow the study
of randomness stemming from these factors. However, in this
work, we isolate our analysis to only random behaviour stem-
ming from the presence of incentives. The vacation duration is
inversely proportional to the incentive, which requires r(X) to
be monotonically decreasing as more incentives cause shorter
vacations. In IVQ, the stability condition becomes

ρ̃ = ρ+ λE[V] = ρ+ λE[r(X)] < 1, (2)

or equivalently, it can be rewritten as

E[r(X)] <
1

λ
− 1

µ
, (3)

where µ = 1/S is the service rate.
Eq. 3 is useful as it shows that supV = 1/λ− 1/µ, i.e., the

least upper bound for the vacation is the difference between
the interarrival rate and the service time. This is mainly due to
the fact that under PVQ a queue is stable (i.e., not infinitely
growing) if and only if the service cycle as at least long as the
interarrival time. As such, the duration of the vacation, V is
either zero or approaches 1/λ− 1/µ, i.e., V ∈ [0, 1/λ− 1/µ).
Thus, the operation range of IVQ is dictated by either pegging
λ and µ or - as will be shown throughout this section - by
the choice of boundaries Vmin < V = r(X) < Vmax in the
design of r(X). In this work, we opt for the latter case, i.e.,
choosing a convenient Vmin and Vmax since the arrival rate λ is
controlled by the orchestrator in an orchestrated ECC setting,
given the worker’s µ, and since the choice of proper boundaries
would guarantee the queue stability. Thus, the choice of r(X)
has to respect r(Xmin) = Vmax and r(Xmax) = Vmin, i.e., X ∈
[Xmin, Xmax] 7→ V ∈ [Vmin, Vmax], to guarantee stability.

D. Convexity of r(X)

The choice of r(X) has significant implications on the be-
haviour of the system. Convexity, in particular, impacts whether
the system leans towards - or favors - the orchestrator or the
worker. To illustrate this, we look at the incentive-vacation
function, which is - as previously mentioned - monotonically
decreasing. As a consequence, the second derivative, r′′(x)
which gives us information about r(x)’s convexity (r(x) is
convex r′′(x) > 0, concave r′′(x) < 0, or linear r′′(x) = 0)
is also giving us information about how r(x) decreases. For
the worker, it is favorable if this quantity decreases as it would
imply that the worker is not losing much vacation (i.e., portion
of the cycle that goes to servicing the worker’s owner) per unit
incentive. On the other hand, it would be preferrable for the
orchestrator to have this quantity increasing, as it would mean
that they would be gaining more service per unit incentive. A
convex function, in that regard, is orchestrator-favoring, while
a concave function is worker-favoring, and in between a linear
function is one that treats both fairly. Figure 7 illustrates this
preference in the incentive-vacation function.

As a consequence, the choice of a worker’s incentive-
vacation function needs to take various factors into consid-
eration. For example, if the worker is new to the system
and not much information is available about them, both the
orchestrator and the worker can agree on a convex r(x) until
the worker proves their worth, and then move to a different
r(x) that decreases the worker’s vacation per unit incentive. In
the following subsection, we propose a general formulation of
r(x) as a incentive-vacation function whose convexity can be
tuned by a parameter, α.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

Fig. 7. The convexity of r(x) has an impact on the marginal value of vacations,
and thus the choice of IVQ function can be biased to favor one party over
another. The α is used to control the IVQ function’s preference.

E. Variable Convexity Incentive-Vacation Function

The objective of this subsection is to model a wide class of
incentive-vacation functions that exist in practice, and through
a tuning parameter, α, we can mathematically control the
convexity of the incentive-vacation function. Given a seed
convex function, rcvx(x) that starts at the point (Xmin, Vmax)
and ends on (Xmax, Vmin), we obtain a concave anti-convex
function, rccv(x) that starts and ends on the same points, but
decreases concavely over the interval [Xmin, Xmax]. In addi-
tion, we construct a linear function, rlnr(x), between the points,
and combine the three functions in a single α-parameterized
functions that allows choice of rcvx(x), rlnr(x), rccv(x) or a
convex combination of them.

The concave anti-convex of rcvx(x), rccv(x) can be obtained
by reversing the behaviour of the slope over the interval
[Xmin, Xmax], i.e.,

r′cvx(x) = r′ccv(Xmax +Xmin − x) (4)

which expresses the relation between the slope of rccv(x)
and rcvx(x). The function rccv(x) can then be obtained by
integrating both sides and substituting with the inverse of the
argument of r′ccv(x) to get:

rccv(x) = −rcvx(Xmax+Xmin−x)+Vmax+ rcvx(Xmax) (5)

where rccv(x) is the concave anti-convex function for any
rcvx(x). The linear function, rlnr(x) is defined as

rlnr(x) =
Vmin − Vmax

Xmax −Xmin
x+ Vmax

(
1− Xmin(Vmin − Vmax)

Vmax(Xmax −Xmin)

)
(6)

We then combine all three functions in an α-parametrized
convex combination:

r(x, α) = (−α)+rcvx(x) + (−|α|)+rlnr(x) + (α)+rccv(x) (7)

where (·)+ = max(0, ·), α ∈ [−1, 1], and the expression
becomes rcvx(x) for α = −1, rlnr(x) for α = 0, and rccv(x) for
α = 1. As a consequence of this definition, r(x, α) is convex
for α ∈ [−1, 0) and concave for α ∈ (0, 1].

The selection of the seed rcvx(x), thus, dictates the sort of
vacation function family that r(x, α) belongs to. To illustrate,
we shall derive two vacation families: the log-family and the
rational-family, that cover the modeling of different realistic
applications. For instance, Uber transportation is a high stakes
as customers directly interact with workers and an unfavorable
interaction would negatively impact Uber’s reputation. This is
due to the fact that user’s satisfaction can easily fall if the
minimum service is was poorly provided [32]. Such a service
would benefit from using a log incentive-vacation function as it
has a high degree of bias in preferring the orchestrator (Uber in
this case) to the worker (the driver) for low α. This preference
reverses for high α if the driver is a reputable and reliable
driver. On the other hand, the rational function could be useful
in a food delivery service such as Uber Eats which does not
often involve a prolonged interaction with the driver, and also
has a larger population of drivers to recruit than transportation.
Having a rational incentive-vacation function provides a fairer
relationship between vacations and incentives that does not
excessively bias the system towards neither the orchestrator nor
the worker.

It is important to note that both, the log and the rational fam-
ilies are two flexible examples that cover a wide range of func-
tions. An orchestrator can mix-and-match different rcvx(x)’s
with concave functions that are not anti-convex of rcvx(x). The
framework provided in this work is a general framework for the
analysis for any system in which an incentive-vacation function
r(x, α) is generated from a convex seed rcvx(x). The choice of
such function depends on the context of the service and the
goals of the orchestrator.

The log-family stems from the choice of r
(log)
cvx (x, β) =

logβ(Ax+B), whose parameters A and B can be found through
the initial conditions

− logβ(AXmin +B) = Vmax, − logβ(AXmax +B) = Vmin

(8)
to acquire

A = −βVmax − βVmin

Xmin −Xmax
, B =

β−VmaxXmax − β−VminXmin

Xmax −Xmin
(9)

that result in

r(log)cvx =

− logβ

(
β−Vmax−Vmin

(
βVmax(x−Xmin) + βVmin(Xmax − x)

)
Xmax −Xmin

)
(10)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Fig. 8. Log-family for variable α. The Log-family’s preference does not rely
only on α, but it also has an inherent bias towards one party.

Thus we obtain the concave anti-convex of r(log)cvx (x, β) as

r(log)ccv = Vmax + Vmin

+ logβ

(
β−Vmax−Vmin

(
βVmax(Xmax − x) + βVmin(x−Xmin)

)
Xmax −Xmin

)
(11)

Then, we could combine this with rlnr(x) to obtain

rlog(x, α, β) =

(−α)+r(log)cvx (x, β) + (1− |α|)+rlnr(x) + (α)+r(log)ccv (x, β).
(12)

Similarly, we can derive the rational-family of vacation
functions by taking

r(rat)
cvx (x) =

1

Cx+D

=
VmaxVmin (Xmin −Xmax)

(Vmin − Vmax)x−XmaxVmin + VmaxXmin

(13)

with the concave anti-convex of r(rat)
cvx (x) being

r(rat)
ccv (x) =

V 2
max (x−Xmax) + V 2

min (Xmin − x)

Vmax (x−Xmax) + Vmin (Xmin − x)
(14)

which gives us the rational-family:

rrat(x, α) =

(−α)+r(rat)
cvx (x) + (1− |α|)+rlnr(x) + (α)+r(rat)

ccv (x).
(15)

Both families have different behaviours with respect to how
the marginal value of vacation (i.e., vacation variation per unit
incentive) changes, and they correspond to different scenarios.
Figures 8 and 9 shows a plot of both incentive-vacation families
for an arbitrary choice of Xmin, Xmax, Vmin, Vmax and variable
α.

Fig. 9. Rational-family for different α. In comparison to Fig. 8, the rational
family is less obtuse, not having an inherent preference to either the orchestrator
or the worker and relying only on α.

F. Measuring r(x)’s Preference

The convexity of the function r(X) can give an indicator to
whether the incentive-vacation function prefers - or is biased
- towards the orchestrator or the worker: decreasing convex
implies bias towards the orchestrator while decreasing concave
leans towards the worker. While the second derivative of
r(X) gives a good indicator, it does not provide a common
ground for comparing different r(X)’s. In this subsection, we
describe a method to estimate any r(X)’s preference in terms
of two extreme r(X)’s: an extreme rabs,cvx(X) that favors the
orchestrator most, and an extreme rabs,ccv(X) that favors the
worker most, and through the help of the linear rlnr(X).

The second derivative, while it does not provide a solid
common ground for comparing how an r(X)’s preference to an-
other, but its sign provides a binary measure of that preference,
i.e., the r(X) is orchestrator-preferring if sgn(r′′(X)) = −1
and worker-preferring if sgn(r′′(X)) = +1. Our suggested
metric measures how much deviation is between rlnr(X) and
r(X). This can be captured by means of the signed area
enclosed between r(X) and rlnr(X), i.e.,

∫ Xmax

Xmin

(r(x)− rlnr(x)) dx =

∫ Xmax

Xmin

r(x) dx−
∫ Xmax

Xmin

rlnr(x) dx

= R(Xmax)−R(Xmin)−Rlnr(Xmax) +Rlnr(Xmin)

= R(Xmax)−R(Xmin)−
1

2
(Vmax + Vmin)(Xmax −Xmin)

(16)

where R(x) is the anti-derivative of r(x).

We now construct the two functions of maximal preference

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

to each the orchestrator and the worker:

rabs,cvx(x) =

Vmax x = Xmin

Vmin Xmax ≥ x > Xmin

0 otherwise
,

rabs,ccv(x) =

Vmin x = Xmax

Vmax Xmax > x ≥ Xmin

0 otherwise
.

(17)

Then, we measure the proportion of twice the area acquired
in Eq. 16 to Eq. 17, since the area between the rlnr(x) and
rcvx(x) is the same as rccv(x) due to rotational symmetry.
Thus, instead of taking the proportion of the area with respect
to the triangle bounded by either rabs,cvx(x) or rabs,ccv(x) and
rlnr(x), the same proportion can be directly acquired by taking
the proportion of the area bounded by rcvx(x) and rccv(x)
to the whole rectangle bounded by rabs,cvx(x) and rabs,ccv(x).
Therefore, our metric, γ becomes

γ = 2

∫Xmax

Xmin
(r(x)− rlnr(x)) dx∫Xmax

Xmin
(rabs,ccv(x)− rabs,cvx(x)) dx

= 2
R(Xmax)−R(Xmin)− 1

2 (Vmax + Vmin)(Xmax −Xmin)

(Vmax − Vmin)(Xmax −Xmin)
(18)

where (Vmax − Vmin)(Xmax − Xmin) is the area of the whole
rectangle whose diagonal is rlnr(x). As such, we have a
common ground for comparing the amount of preference a
vacation function r(x). This measurement technique is illus-
trated in Figure 10. For a specific incentive-vacation family, a
relationship between γ and α, γ = f(α) can be derived that
would allow comparing different families’ preference capacity.
Thus, γ is a performance metric that can estimate the parameter
α. This allows the performance analysis of the IVQ model
to extend beyond vacation queueing models to any model
involving incentives that is translatable to M/G̃/1 model. This
is possible due to the one-to-one isomorphism of the PVQ
model to a modified M/G/1, a M/G̃/1 queue. Vacations, in
that sense, are an abstraction of the dynamics of the model
that modify the service time. This versatility allows the IVQ to
be a powerful model for performance analysis in presence of
incentives.

IV. PERFORMANCE ANALYSIS

A. IVQ Performance Metrics

For IVQ in the context of ECC and XEC, there are a few
performance metrics that are of concern [28]. For this work,
we focus on the metrics that are related to the worker. In
general, we have six main parameters: the service time (or
equivalently service rate), S = 1/µ; the interarrival time (or
equivalently the arrival rate), τ = 1/λ; and the four parameters
deciding r(x), namely the minimum and maximum incentive,
Xmin, Xmax, and the minimum and maximum vacation duration
Vmin, Vmax. Knowledge of these six parameters along the first
and second moments of the vacation random variable, i.e.,

Fig. 10. Measuring Preference of an IVQ function: performance metric, γ, is
the ratio of the area encompassed by the rcvx(x) and rccv(x) to the enveloping
square.

E[V] = E[r(X)] and E[V 2] = E[(r(X))2] are sufficient to
characterize the performance metrics covered in this work. We
proceed to define the performance metrics in both the actual
vacation variable, V , and the vacation as a proportion of the
service cycle, V% = V/τ = λV . This allows us to express the
relationship between the service rate and the arrival rate as a
proportional relationship with a factor (1− V%), i.e.,

µ = λ

(
1

1− V%

)
.

The most fundamental metric is the average queue length
[27], [28] that we express as

E[Qv] = λ2S(1 + 2E[V]) +E[V 2]

2(1− ρ̃)
+ λ

E[V 2]

2E[V]

=
λS(λ+ 2E[V%]) +E[V

2
%]

2(1− ρ̃)
+
E[V 2

%]

2E[V%]
,

(19)

where ρ̃ = λ/µ+ λE[V] = λ/µ+E[V%] in Eq. 2.
The queue length can then be used to obtain the number of

jobs in the system by adding the current job being processed
whose service time is equivalent to PVQ server utilization ρ̃ =
(S +E[V])/τ , thus the average number of jobs in the system
becomes

E[Lv] = λ2S(1 + 2E[V]) +E[V 2]

2(1− ρ̃)
+ λ

E[V 2]

2E[V]
+ ρ̃

=
λS(λ+ 2E[V%]) +E[V

2
%]

2(1− ρ̃)
+
E[V 2

%]

2E[V%]
+ ρ̃

= E[Qv] + ρ̃.

(20)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Consequently, the mean waiting time can also be obtained
via the product of the interarrival time (which is the same as
the length of the PVQ service cycle) and the queue length,

E[TQv
] = λ

S(1 + 2E[V]) +E[V 2]

2(1− ρ̃)
+
E[V 2]

2E[V]

=
S(λ+ 2E[V%]) + τE[V 2

%]

2(1− ρ̃)
+

τE[V 2
%]

2E[V%]

=
E[Qv]

λ
=
E[Lv]− ρ̃

λ
.

(21)

It is important to note that while the mean waiting time cap-
tures the job-related latency, it does not capture the customer-
worker-orchestrator end-to-end latency.

The queue length can also be used to obtain the mean
worker’s per-job revenue, R, as

E[R] =
E[X]

E[Qv]
. (22)

Per-job revenue is an important metric from the worker’s
perspective as it allows the worker to assess the profitability of
joining the ECC system. It is of concern for the orchestrator
to ensure that workers would be available for recruitment, and
thus allow the persistence of service provision.

The parameters of r(x), i.e., [Xmin, Xmax] 7→ [Vmin, Vmax]
allow us to identify the maximum and minimum throughput,
respectively:

λmax =
1

Vmin + S
=

1

r(Xmax) + S
,

λmin =
1

Vmax + S
=

1

r(Xmin) + S
,

(23)

which in turn is used to formulate the maximal and minimal
revenue per unit time as

Rmax =
2Xmax (λmaxVmin − Sλmax + 1)

λ2
max (2SVmin + S)

=
2Xmax (V%,min − Sλmax + 1)

λmax (2SV%,min + Sλmax)
,

(24)

and

Rmin =
2Xmin (λminVmax − Sλmin + 1)

λ2
min (2SVmax + S)

=
2Xmin (V%,max − Sλmin + 1)

λmin (2SV%,max + Sλmin)
.

(25)

It should be clear from Eqs. 24 and 25 that the minimal
and maximal revenue are directly impacted by the choice
of parameters Xmin and Vmax. Having information about the
revenue allows the worker to evaluate the benefit of remaining
in the ECC or to change to another ECC. It is also of concern
for the orchestrator to ensure that workers do not churn and that
they would not be able to provide the service, or to prepare in
advance to allocate dedicated edge and fog resources.

B. Impact of Incentive Origin in ECC

In the IVQ model, customers pay orchestrators, who then
compensate workers. Workers can receive incentives through:
1) Orchestrator-determined rates, 2) Orchestrator-mediated
matchmaking with commission, or 3) Direct payment from
customers in a decentralized manner (if an orchestrating entity
is completely absent, this would be a decentralized XEC
scenario). From the perspective of the worker, both the second
and third methods are equivalent, as the TQI can be cast as
X =

∑
i∈Qw

xi where Qw represents the worker’s queue, and
xi represents the incentive attached to the ith job in the queue.
It is evident that treating X on its own, as opposed to treating
it as a sum of xi’s leads to different conclusions in IVQ. For
readers interested in the latter case that arises in the second and
third methods, we provide a brief analysis in a previous work
[7].

The job incentive xi is attached by a customer to a job they
wants and passes the request to the orchestrator in the ECC.
The choice of incentive stems from the valuation of the job
and its completion as well as the market price. The market
price, influenced by factors like supply, demand, regulations,
and mechanisms, is unpredictable. These influences can be
captured using game-theoretic and stochastic models, yielding
a price often represented as a random variable with a general
distribution at equilibrium [33]. Yet, given any underlying pro-
cess, the orchestrator treats every customer equally. This aligns
with the principle of indifference [34], suggesting incentives’
distribution is uniform, i.e., xi ∼ Unif(xmin, xmax) for all
i ∈ Qw, where xmin and xmax represent the minimum and
maximum incentive attached to a job and Unif(a, b) represents a
uniform distribution over the interval (a, b). In fact, xi’s can be
represented in terms of the TQI by defining Xmin = |Qw|xmin
and Xmax = |Qw|xmax, where |Qw| is the number of the
incentive-contributing jobs in the worker’s queue. The same
argument extends to the orchestrator’s choice of incentives
for the workers, and as such X ∼ Unif(Xmin, Xmax) if we
assume that the set of workers the orchestrator is overseeing
have equivalent reputation, trust, and performance, i.e., the
orchestrator has no reason to differentiate one worker from
another. Without loss of generality, the performance analysis
in this work is applicable for any worker in the ECC system,
as such we proceed to analyze an orchestrator-origin (Uniform
TQI), i.e., X ∼ Unif(Xmin, Xmax).

C. Impact of Orchestrator Origin Incentives

In this subsection, we derive the first and second moments
for the Uniform TQI case for both the log-family of functions,
rlog(x, α), and the rational-family, rrat(x, α). We use the nota-
tion EΠ[·] to indicate expectation over the uniform distribution
for X , i.e., EΠ[y] =

∫∞
−∞ yfX,Π(x) dx where

fX,Π(x) =

1

Xmax −Xmin
, Xmin ≤ x ≤ Xmax

0, otherwise
(26)

indicates that X ∼ fX,Π(x) = Unif(Xmin, Xmax).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

1) Log Incentive-Vacation Family: For the log-family, i.e.,
r(x) = rlog(x, α), we now list the mathematically obtained
moments, starting with the first moment is formulated as

EΠ [Vlog(x, α)] =

(−α)+EΠ[rlog,cvx(x)] + (1− |α|)+EΠ[rlnr(x)]

+ (α)+EΠ[rlog,ccv(x)]

(27)

where the first moment for the convex component is

EΠ[rlog,cvx(x, β)] =
βVmax(Vmax − Vmin)

βVmin − βVmax
+ Vmax +

1

log(β)
,

(28)

the first moment of the linear component is

EΠ[rlnr(x)] =
Vmax + Vmin

2
, (29)

while the first moment of the decreasing anti-convex states as

EΠ[rlog,ccv(x, β)] =
βVmaxVmax − Vminβ

Vmin

βVmax − βVmin
− 1

log(β)
. (30)

We formulate the second moment for the log-family as

EΠ[V
2

log(x, α, β)] = ((α)+)2EΠ[rlog,ccv(x, β)
2]

+ 2((α)+)((1− |α|)+)EΠ[rlog,ccv(x, β)rlnr(x)]

+ ((−α)+)2EΠ[rlog,cvx(x, β)
2]

+ 2((−α)+)((1− |α|)+)EΠ[rlog,cvx(x, β)rlnr(x, α)]

+ ((1− |α|)+)2rlnr(x)
2

(31)

where the second moment for the log convex component is
obtained as

EΠ[r
2
log,cvx(x, β)] =

1

log2(β) (βVmax − βVmin)(
βVmax(Vmin log(β)(Vmin log(β) + 2) + 2)

− βVmin(Vmax log(β)(Vmax log(β) + 2) + 2)

) (32)

while the second moment of the linear component is

EΠ[r
2
lnr(x)] =

1

3

(
V 2

max + VmaxVmin + V 2
min

)
, (33)

and its correspondent second moment of the decreasing log
anti-convex is

EΠ[r
2
log,cvx(x, β)] =

1

log2(β) (βVmax − βVmin)(
βVmax(Vmin log(β)(Vmin log(β) + 2) + 2)

− βVmin(Vmax log(β)(Vmax log(β) + 2) + 2)

) (34)

In relation to the cross terms, the log concave-linear is obtained
as

EΠ[rlog,cvx(x, β)rlnr(x)] =
1

4 log(β) (βVmax − βVmin)
2(

− 4βVmax+Vmin
(
log(β)

(
V 2

max + V 2
min

)
+ Vmax + Vmin

)
+ β2Vmax(2Vmin log(β)(Vmax + Vmin) + 3Vmax + Vmin)

+ β2Vmin(2Vmax log(β)(Vmax + Vmin) + Vmax + 3Vmin)

)
,

(35)

and the log convex-linear cross term is

EΠ[rlog,cvx(x, β)rlnr(x)] =
1

4 log(β) (βVmax − βVmin)
2(

− 4βVmax+Vmin
(
log(β)

(
V 2

max + V 2
min

)
+ Vmax + Vmin

)
+ β2Vmax(2Vmin log(β)(Vmax + Vmin) + 3Vmax + Vmin)

+ β2Vmin(2Vmax log(β)(Vmax + Vmin) + Vmax + 3Vmin)

)
.

(36)

Upon inspecting Eqs. 28-36, we find that the terms con-
stituting EΠ[Vlog(x, α) are in terms of Vmin, Vmax, and the
scaling parameter β. Thus, the combination of these parameters,
especially Vmin and Vmax, greatly impacts the moments of the
vacation duration.

2) Rational Incentive-Vacation Family: For the rational-
family, i.e., r(x) = rrat(x, α), the first moment is of the form

EΠ[Vrat(x, α)] =

(−α)+EΠ[rrat,cvx(x)] + (1− |α|)+EΠ[rlnr(x)]

+ (α)+EΠ[rrat,ccv(x)]

(37)

where the first moment for the rational convex component is

EΠ[rrat,cvx(x)] =
VmaxVmin ln

(
Vmax
Vmin

)
Vmax − Vmin

, (38)

and first moment of the decreasing rational anti-convex is

EΠ[rrat,ccv(x)] =
VmaxVmin ln

(
Vmin
Vmax

)
Vmax − Vmin

+ Vmax + Vmin. (39)

The second moment for the rational-family is of the form

EΠ[V
2

rat(x, α)] = ((α)+)2EΠ[rrat,ccv(x)
2]

+ 2((α)+)((1− |α|)+)EΠ[rrat,ccv(x)rlnr(x)]

+ ((−α)+)2EΠ[rrat,cvx(x)
2]

+ 2((−α)+)((1− |α|)+)EΠ[rrat,cvx(x)rlnr(x)]

+ ((1− |α|)+)2rlnr(x)
2

(40)

where the second moment for the rational convex component
is

EΠ[r
2
rat,cvx(x)] = VmaxVmin, (41)

second moment of the decreasing rational anti-convex is

EΠ[r
2
rat,ccv(x)] = V 2

max + 3VmaxVmin

+
2VmaxVmin(Vmax + Vmin) ln

(
Vmin
Vmax

)
Vmax − Vmin

+ V 2
min,

(42)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

2 3 4 5 6 7 8 9 10
Minimum Incentive

0.60

0.65

0.70

0.75

0.80

0.85

0.90

PV
Q

 U
til

iz
at

io
n

PVQ Utilization

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Maximum Vacation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

PV
Q

 U
til

iz
at

io
n

PVQ Utilization

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

Fig. 11. Variations in PVQ Utilization with Incentive and Vacation Parameters:
(a) PVQ Utilization as a function of minimum incentive across different α
values. (b) PVQ Utilization as a function of the maximum incentive for different
α values. Lowering α favors the orchestrator and lowers the PVQ utilization,
showing how it varies with incentive and vacation parameters.

for the rational concave-linear cross term is

EΠ[rrat,ccv(x)rlnr(x)] =
1

2

(
V 2

max + V 2
min

)
, (43)

and the rational convex-linear cross term is

EΠ[rrat,cvx(x)rlnr(x)] =

VmaxVmin

(
Vmax + Vmin

Vmax − Vmin
ln

(
Vmax

Vmin

))
.

(44)

Similar to how the log-family moments are, the rational
family’s moments in Eqs. 37-44 depend on the choice of Vmin
and Vmax that form the bounds of the vacation duration.

With these closed-form expressions, the performance metrics
in the Uniform TQI are direct substitutions of the expressions.
The performance metrics, as a consequence, are directly im-
pacted by the values of Vmin and Vmax agreed upon by the work-
ers and the orchestrator, even after being filtered by r(x, α). The
choice of r(x, α) to be monotonically decreasing guarantees the
existence of an inverse function X = r−1(v, α) which allows
forming a bijection between vacations and incentives. This has
great impact on the tractability and convergence of both E[V]
and E[V 2].

V. RESULTS AND DISCUSSION

This section provides an analysis based on the closed-form
formulations obtained for an IVQ system. We look at three

2 3 4 5 6 7 8 9 10
Minimum Incentive

15

20

25

30

35

40

45

50

55

60

N
um

be
r o

f j
ob

s i
n

Sy
st

em

Number of Jobs in System

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Maximum Vacation

15

20

25

30

35

40

45

50

55

60

N
um

be
r o

f j
ob

s i
n

Sy
st

em

Number of Jobs in System

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

Fig. 12. Effect of incentives and vacations on the number of jobs in the
system: (a) Number of jobs processed as a function of minimum incentive
across different α values. (b) Number of jobs processed in relation to maximum
vacation across different α values, demonstrating how job quantity is influenced
by varying incentive and vacation parameters.

2 3 4 5 6 7 8 9 10
Minimum Incentive

0.1

0.2

0.3

0.4

0.5

0.6

R
ev

en
ue

 P
er

 Jo
b

Revenue Per Job

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Maximum Vacation

0.1

0.2

0.3

0.4

0.5

0.6

R
ev

en
ue

 P
er

 Jo
b

Revenue Per Job

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

Fig. 13. Relationship between incentives, vacations, and mean revenue per
job: (a) Mean revenue per job as a function of minimum incentive for various
α values. (b) Mean revenue per job versus maximum vacation for various α
values, showing the intersection point of vacation families and the differing
rates of revenue reduction across α values.

main performance metrics for IVQ and how they behave under
the log and rational vacation families. In particular, we look
at the PVQ utilization (Eq. 2), the mean number of jobs in
the system (Eq. 20), and the mean revenue per job (Eq. 22),
both the log case and the rational case. We also evaluate
the job satisfaction proportion with a delay threshold for a
single worker. Throughout this section, we vary the minimum
incentive and its corresponding maximum vacation parameter
as a percentage proportion of the service cycle and regard it for
different α. We analyze a scenario in which µ = 50, λ = 25,
Xmin = 2, Xmax = 10, V%,min = 0.1, and V%,max = 0.5.

In Figure 11, the same PVQ utilization is plotted twice,
once with different minimum incentive values on the x-axis,
and another for the corresponding maximum vacation, Vmax =
r(Xmin). We only look at α = {−1, 0, 1} for both families
(where α = 0 is the linear case which is the same for both
families) as these values of α cover the preference range
from orchestrator-favoring to worker-favoring. It can be seen in
Figure 11 that the PVQ utilization drops for higher incentives
(and equivalently, increases for higher vacations). This drop
is due to the fact that the PVQ utilization is the proportion
of both service time and vacation to the interarrival time (i.e.,
ρ̃ = (S + E[V])/τ). Thus, for a large interarrival time τ , the
PVQ utilization increases with longer vacations; otherwise, the
worker would remain idle for a duration τ − S (Eq. 3 written
in terms of τ and S). It can also be seen that increasing α

2 3 4 5 6 7 8 9 10
Minimum Incentive

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
t S

at
is

fie
d

Percent Satisfied (Delay Criteria)

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Maximum Vacation

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
t S

at
is

fie
d

Percent Satisfied (Delay Criteria)

Log =-1.0
Rat =-1.0
Linear =0.0
Log =1.0
Rat =1.0

Fig. 14. Impact of incentives and vacations on job satisfaction within delay
criteria: (a) Proportion of jobs meeting delay criteria versus minimum incentive
for different α values. (b) Proportion of jobs meeting delay criteria versus
maximum vacation for different α values. Results show the thresholds at which
job satisfaction is achieved for varying incentive and vacation parameters.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

causes the PVQ utilization curve to bend upwards. This is due
to the fact that having a low α penalizes vacations, thus favoring
the orchestrator and reducing the average PVQ utilization. This
reflects on changing the maximum vacation as well. However,
from the perspective of changing the maximum vacation it can
be seen that the log and the rational families behave similarly.
However, this is not the case when we look at it from the
perspective of changing the minimum incentive. In Figure 11,
we can observe the variation of each family by looking at the
difference between α = 1 and α = −1 curves and see that
the log-family, compared to the rational-family, has a more
conservative variation. In terms of incentive utilization, the log-
family performs better (lower curve) than the rational-family
for high α, and vice-versa for low α because of its convexity
not being as symmetric as the rational function’s since it has
less vacation per unit incentive for lower incentives, i.e., the
marginal cost of performance is cheaper at low incentives.

Figure 12 shows the number of jobs the worker processed
(queueing jobs and in-service). Increasing the incentives (de-
creasing the vacations) reduces the number of jobs in the system
significantly. However, for low α in both vacation families,
changing the incentives has a dampened impact for higher
incentives but is somehow significant for lower incentives.
This is because that for lower incentives a low α gives the
orchestrators less vacation for fewer incentives. While it seems
that using a lower α provides better performance, it is based on
the assumption that the workers would accept the jobs at a low
incentive. This is not always the case. From Figure 12, it may
seem that a higher α value causes poor performance, however
for high α, workers would be more willing to sacrifice vacations
for the sake of processing more jobs at the user’s inconvenience
to get a better profit, increasing their net service.

In Figure 13, we now look at the mean revenue per job.
Contrary to the observations from Figures 11 and 12 which
demonstrated better performance for lower α, it comes at a
higher average cost per job. For high α vacations, they come at
a lower cost to the orchestrator while giving the workers more
freedom in their vacations. Looking at the behaviour from the
perspective of the maximum vacation, we can see that longer
vacations reduce the revenue per job. The rate of reduction in
revenue, however, decreases for low α, and increases for high
α. Moreover, a point of intersection between different vacation
families can be seen when changing the maximum vacation.

To illustrate the usefulness of the metrics, we define the
maximum threshold for waiting time, a deadline, of 0.8 seconds
beyond which the job will expire and be dropped with no
reward. We provide a plot of the proportion of jobs for which
the delay criteria has been satisfied at different incentives and
vacations in Figure 14. It can be seen that for low incentives,
there is a proportion of jobs that remain unsatisfied until a
specified incentive beyond which (or equivalently, maximum
vacation prior to which) all jobs are completed within their
deadline. For low α, ensuring that all jobs are processed prior
to their deadline occurs at a low incentive (at an overall higher
incentive cost), while the high α jobs are satisfied at a high

incentive. Nevertheless, the system administrator can utilize the
closed-form results obtained to identify an optimal incentive
at which the target service level comprised of the different
performance metrics would be satisfied for a specific α.

VI. PRACTICAL CONSIDERATIONS

In practice, there are some considerations when using the
IVQ model. Namely, considerations regarding the choice of
vacation function and how they are priced.

A. Choice of r(X) and α

In an ECC system, the IVQ function can be thought of as a
contract between the orchestrator and the workers. Both entities
can negotiate both the choice of r(X) and α. For example,
an orchestrator whose service has a high cost of negative
experience can decide to use the log-family, with an initial
α = −1 for any worker it recruits. As the worker grows to
profit and deem the ECC system as a profitable system, and
as it - from the perspective of the orchestrator - becomes more
trustworthy and reliable, the value of α can then increase over
time. The value of initial α in the system can also be negotiated
by the worker in case it is not feasible for the worker to achieve
its profitability target. As such, the orchestrator’s choice of
r(X) is context-based. However, the space of admissible IVQ
functions can searched for an optimal r(X) if the context can
be properly modeled.

B. Human and Device Heterogeneity

There are a number of factors that influence the incentive-
vacation r(X), and they need to be crafted in a manner that
guarantees the system’s stability and performance, as mentioned
earlier. In the IVQ, we have focused on the influence of
incentives on the vacation as the main factor. However, we
briefly point to two other factors that impact the worker’s
vacation as well as overall availability. The first factor, which is
the biggest source of heterogeneity, is the worker’s behaviour.
People differ in how, when, and what they use their devices
for, which impacts how long a worker device is available for,
and how much resources are available. In IVQ, this translates
to how much vacation can a worker device take to address the
multi-tenancy. The second factor is heterogeneity inherent to
the devices themselves as they are of different capabilities. Both
factors can influence the choice of r(X) and even introduce
more variables and parameters to it. However, the Internet of
Behaviours (IoB) can allow proper characterization of worker
capabilities through the analysis of human behaviour [35].
While IoB focuses on human-centric applications, the impact
of IoB can extend to XEC applications.

C. Pricing of Incentives

As previously mentioned in subsection IV-B, the incentive
is related to the market price for computational tasks. One
way to regard an IVQ system is by looking at it as a set of
contracts: a contract between the customer and the orchestrator,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

and a contract between the orchestrator and the worker [36].
All parties in a contract seek an agreement in spite of their
different objectives. For the customer, that is the Service Level
Agreement (SLA). The SLA indirectly impacts the agreement
between the orchestrator and the worker, however workers can
be recruited to provide similar service to another customer.
As such, the risk present at the orchestrator-worker dynamic
can be transferred to the customer, ultimately influencing the
price. Techniques for drafting optimal contracts to maximize
the service level as well as the profit [37] are crucial for the
success of XEC systems.

VII. CONCLUSIONS

The rising demand for cloud services is predicted to surpass
the capacity of cloud computing. To cope with such demands,
paradigms like Edge and Fog computing have physically re-
located service provision closer to the customer. While this
proximity achieves better latency and reduces operational costs
and the burden on the backhaul network, it necessitates more
complex management. XEC represents a promising frontier in
which user-owned devices, rich with resources, can be exploited
for service provision, albeit at the cost of dealing with the
uncertainty and unreliability of these devices and their owners.
In this paper, we describe an orchestrator-based edge system
that rents multi-tenant devices from users to provide an edge
service, offering an incentive in return. To serve both the
extreme edge and their own users, we propose the IVQ model,
which utilizes the XEC worker as a server that takes a vacation
to perform tasks unrelated to the extreme edge, with the effect
of incentives reflected in the length of these vacations. We
model the behavior of systems through our IVQ model and
derive closed-form expressions that relate the performance of
such a P-Limited IVQ system with uniform incentives. It has
been clearly demonstrated that increasing incentives enhances
performance and reduces the sojourn time for jobs in the
system. The IVQ model is useful for analyzing extreme edge
systems where user-owned devices have the potential to become
a significant part of the infrastructure, particularly in systems
with an XEC orchestrator recruiting and distributing jobs to
XEC workers.

Furthermore, the principles underpinning our proposed
model are not confined to vacation queueing configurations
alone but are applicable to a wider array of service systems that
follow similar incentive-performance interplays. This indicates
that our findings have implications for a diverse set of contexts
where the strategic implementation of incentives is key to opti-
mizing operational outcomes, thereby offering a generalizable
approach to understanding and enhancing system performance.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20, and a grant from
Distributive, Ltd.

REFERENCES

[1] “Press Release: cloud will be the center-
piece of new digital experiences.” [Online]. Avail-
able: https://www.gartner.com/en/newsroom/press-releases/2021-11-10-
gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences

[2] H. Guo and J. Liu, “Collaborative Computation Offloading for Multiac-
cess Edge Computing Over Fiber–Wireless Networks,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526, 2018.

[3] D. Milojicic, “The Edge-to-Cloud Continuum,” Computer, vol. 53, no. 11,
pp. 16–25, 2020.

[4] H. Tabatabaee Malazi, S. R. Chaudhry et al., “Dynamic Service Place-
ment in Multi-Access Edge Computing: A Systematic Literature Review,”
IEEE Access, vol. 10, pp. 32 639–32 688, 2022.

[5] R. Meneguette, R. De Grande et al., “Vehicular Edge Computing:
Architecture, Resource Management, Security, and Challenges,” ACM
Computing Surveys (CSUR), vol. 55, no. 1, 2021.

[6] LF Edge, “The Home Edge Project,” 2020. [Online]. Available:
https://wiki.lfedge.org/display/HOME/Home+Edge+Project

[7] S. B. Azmy, N. Zorba, and H. S. Hassanein, “Incentive-Vacation Queueing
for Extreme Edge Computing Systems,” in IEEE International Conference
on Communications (ICC), 2023.

[8] E. Covi, E. Donati et al., “Adaptive Extreme Edge Computing for
Wearable Devices,” Frontiers in Neuroscience, vol. 15, 2021.

[9] N. El Ioini, A. El Majjodi et al., “Unikernels Motivations, Benefits and
Issues: A Multivocal Literature Review,” Proceedings of the 3rd Eclipse
Security, AI, Architecture and Modelling Conference on Cloud to Edge
Continuum, p. 39–48, 2023.

[10] A. J. Ferrer, J. M. Marques, and J. Jorba, “Ad-Hoc Edge Cloud: A
Framework for Dynamic Creation of Edge Computing Infrastructures,”
2019 28th International Conference on Computer Communication and
Networks (ICCCN), 2019.

[11] T. Cai, W. Chen et al., “Scalable On-Chain and Off-Chain Blockchain
for Sharing Economy in Large-Scale Wireless Networks,” IEEE Wireless
Communications, vol. 29, no. 3, pp. 32–38, 2022.

[12] A. J. Ferrer, Beyond Edge Computing - Swarm Computing and Ad-Hoc
Edge Clouds. Springer, 2023.

[13] S. Bhuyan, S. Zhao et al., “End-to-End Characterization of Game
Streaming Applications on Mobile Platforms,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 6, no. 1, 2022.

[14] C. Suraci, S. Pizzi et al., “MEC and D2D as Enabling Technologies for
a Secure and Lightweight 6G eHealth System,” IEEE Internet of Things
Journal, vol. 9, no. 13, pp. 11 524–11 532, 2022.

[15] B. Mao, F. Tang et al., “Optimizing Computation Offloading in Satellite-
UAV-Served 6G IoT: A Deep Learning Approach,” IEEE Network,
vol. 35, no. 4, pp. 102–108, 2021.

[16] S. B. Azmy, N. Zorba, and H. S. Hassanein, “Quality Estimation for
Scarce Scenarios Within Mobile Crowdsensing Systems,” IEEE Internet
of Things Journal, vol. 7, no. 11, pp. 10 955–10 968, 2020.

[17] C. Harth-Kitzerow and G. M. Garrido, “Verifying Outsourced Computa-
tion in an Edge Computing Marketplace,” arXiv:2203.12347, 2022.

[18] A. Zavodovski, S. Bayhan et al., “DeCloud: Truthful Decentralized
Double Auction for Edge Clouds,” IEEE International Conference on
Distributed Computing Systems (ICDCS), 2019.

[19] M. Siew, D. Cai et al., “A Sharing-Economy Inspired Pricing Mecha-
nism for Multi-Access Edge Computing,” IEEE Global Communications
Conference (GLOBECOM), 2020.

[20] Y. Zhu, B. Mao, and N. Kato, “A Dynamic Task Scheduling Strategy
for Multi-Access Edge Computing in IRS-Aided Vehicular Networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 4, pp.
1761–1771, 2022.

[21] B. Mao, F. Tang et al., “An Intelligent Route Computation Approach
Based on Real-Time Deep Learning Strategy for Software Defined
Communication Systems,” IEEE Transactions on Emerging Topics in
Computing, vol. 9, no. 3, pp. 1554–1565, 2021.

[22] S. Yazdani, N. Ramzan, and P. Olivier, “Enhancing Edge Computing
with Unikernels in 6G Networks,” 2023 IEEE 34th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 1–6, 2023.

[23] H. Guo and J. Liu, “UAV-Enhanced Intelligent Offloading for Internet of
Things at the Edge,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 4, pp. 2737–2746, 2020.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[24] I. M. Amer, S. M. A. Oteafy, S. A. Elsayed, and H. S. Hassanein, “QoS-
based Task Replication for Alleviating Uncertainty in Edge Computing,”
IEEE Global Communications Conference (GLOBECOM), 2022.

[25] N. Zorba and A. Perez-Neira, “Robust Power Allocation Schemes for
Multibeam Opportunistic Transmission Strategies Under Quality of Ser-
vice Constraints,” IEEE Journal on Selected Areas in Communications,
vol. 26, no. 6, pp. 1025–1034, 2008.

[26] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, 2013.

[27] H. Takagi, Queueing Analysis: Discrete-time systems. North-Holland,
1991.

[28] N. Tian and Z. G. Zhang, Vacation queueing models: theory and appli-
cations. Springer, 2006.

[29] L. Tadj and G. Choudhury, “Optimal design and control of queues,” TOP,
vol. 13, pp. 359–412, 2005.

[30] X. Zhang, Z. Yang et al., “Incentives for mobile crowd sensing: A survey,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 54–67,
2015.

[31] H. Vahdat-Nejad, E. Asani et al., “Context-aware computing for mobile
crowd sensing: A survey,” Future Generation Computer Systems, vol. 99,
pp. 321–332, 2019.

[32] R. Imran, M. Odeh et al., “Quality of Experience for Spatial Cognitive
Systems within Multiple Antenna Scenarios,” IEEE Transactions on
Wireless Communications, vol. 12, no. 8, pp. 4153–4161, 2013.

[33] M. J. Osborne and A. Rubinstein, Models in Microeconomic Theory.
Open Book Publishers, 2020.

[34] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge
University Press, 2003.

[35] J. Sun, W. Gan et al., “Internet of Behaviors: A Survey,” IEEE Internet
of Things Journal, vol. 10, no. 13, pp. 11 117–11 134, 2023.

[36] R. Zeng, C. Zeng et al., “Incentive Mechanisms in Federated Learning
and A Game-Theoretical Approach,” IEEE Network, vol. 36, no. 6, pp.
229–235, 2022.

[37] J. Chen, J. Farooq, and Q. Zhu, “QoS-Based Contract Design for Profit
Maximization in IoT-Enabled Data Markets,” IEEE Internet of Things
Journal, vol. 10, no. 11, pp. 10 080–10 094, 2015.

BIOGRAPHIES

Sherif B. Azmy (Student Member, IEEE) received
the B.Sc. degree in electrical engineering from Qatar
University, Doha, Qatar, in 2017, and the M.A.Sc.
degree in electrical and computer engineering from
Queen’s University, Kingston, ON, Canada, in 2020.
He is currently pursuing his Ph.D. in electrical and
computer engineering at the same institution. His
research interests include operations research, mobile
crowdsensing, the Internet of Things, modeling of ex-
treme edge computing and sharing economy systems.

Nizar Zorba (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering from JUST
University, Jordan, in 2002, and the Ph.D. degree
in signal processing for communications from UPC
Barcelona, Spain, in 2007. He is currently a Professor
with the Electrical Engineering Department, Qatar
University, Doha, Qatar. He has authored six interna-
tional patents, two books, contributed to seven book
chapters, and coauthored over 160 papers in peer-
reviewed journals and international conferences. He is
an Area Editor of the IEEE Communications Letters

and an Associate Editor of IEEE IoT Magazine and IEEE Transactions on
Cognitive Communications and Networking. He is also the Symposium Chair
of IEEE Globecom 2023 and IEEE ICC 2023. Dr. Zorba is a Former Chair of
the IEEE Communication Society Technical Committee on Communications
Systems Integration and Modeling.

Hossam S. Hassanein is a leading researcher in the
areas of broadband, wireless and mobile networks
architecture, protocols, control and performance eval-
uation. His record spans more than 600 publications in
journals, conferences and book chapters, in addition
to numerous keynotes and plenary talks in flagship
venues. In recognition of his significant contributions,
Hassanein has received several awards, including
the 2003 Ontario Champions of Innovations Award,
2016 IEEE Communications Society Communica-
tions Software Committee Technical Achievement

Award and the 2020 IEEE IoT, Ad Hoc, and Sensor Networks Committee
Technical Achievement and Recognition Award. He is also the recipient of
the 2015 Excellence in Graduate Students Supervision at Queen’s University.
Hassanein is the Former Chair of the IEEE Communication Society Technical
Committee on IoT, AdHoc, and Sensor Networks. He is a Fellow of the IEEE
and an IEEE Communications Society Distinguished Speaker.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3347442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

