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Abstract—Modern human activity recognition (HAR) systems
are designed using large amounts of experimental data. So far,
real-data-driven or experimental-based HAR systems using Wi-
Fi or radar systems have shown considerable results. However,
the acquisition of large, clean, and labeled training datasets
remains a crucial impediment to the progress of experimental-
based HAR systems. Therefore, in this paper, a paradigm shift
from the experimental to a fully simulation-based design of HAR
systems is proposed in the context of radar sensing. An end-
to-end simulation framework is proposed as a proof-of-concept
that can simulate realistic millimeter-wave radar signatures for
synthesized human motion. We designed a human motion syn-
thesis tool that emulates different types of human activities and
generates the spatial trajectories accordingly. These trajectories
are processed by a geometric model with respect to user-defined
antenna configurations. Considering the long- and short-time
stationarity of wireless channels, we synthesize the raw in-phase
and quadrature data and process the data to simulate the radar
signatures for emulated human activities. Finally, a simulated and
a real HAR dataset were used to train and test a simulation-based
HAR system, respectively, which gave an average (maximum)
classification accuracy of 94% (98.4%). The main advantage of
the proposed simulation framework is that the training effort for
radar-based classifiers, e.g., gesture recognition systems, can be
minimized drastically.

Index Terms—Data augmentation, data generation, deep learn-
ing, human activity recognition (HAR), micro-Doppler analysis,
Mixamo animation, motion synthesis, multiclass classification,
radar simulation.

I. INTRODUCTION

A. Background

W ITHIN the domain of radio frequency (RF) sensing,
an important and continuously evolving research area

is human activity recognition (HAR), where the classifica-
tion performance greatly depends on the quality, impartiality,
and comprehensiveness of experimental data. Such merits of
empirical data are hard to come by, especially when dealing
with real humans as subjects. Over the years, researchers have
endeavoured to classify different types of human activities
using several sensing modalities, such as vision [1], [2],
wearable [3]–[5], and RF sensors [6]–[10].

Various sensor types have been employed in HAR systems,
each with distinct advantages and limitations [11]. Vision
sensors, driven by advanced computer vision methods, have
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shown significant success in HAR [1]. However, they are
vulnerable to lighting conditions and privacy concerns, unlike
RF sensors. Wearable sensors [4], though effective, face criti-
cism due to their fragility, intrusiveness, and reliance on user
care. The need for continuous wear renders them impractical,
particularly for elderly and ill individuals. Hence, RF sensors,
particularly millimeter wave (mm-wave) radars, have garnered
growing interest despite the challenges and complexities they
entail [12].

In this research, we primarily focus on developing a human
activity classification system using mm-wave radar technology.
The collection of radar micro-Doppler signatures correspond-
ing to real human subjects is a time-consuming, expensive,
and laborious task. The recorded radar dataset usually has a
narrow scope because of its validity for a particular scenario
and fixed radar parameters. To create diverse training datasets
for radar-based HAR systems, a simulation-based approach
becomes a compelling and viable alternative.

We design a fully simulation-based HAR system that
exclusively relies on simulated radar data for training and
validation. Unlike conventional methods, we avoid the use
of real radar micro-Doppler signatures during these stages.
Instead, experimental measurements from a real mm-wave
radar system are solely employed for testing, showcasing our
simulation-based HAR system’s real-world performance. To
ensure accurate radar system modeling and realistic radar
micro-Doppler signature simulation, we adopt scatterer-level
signal modeling (see Sect. VI). This proof-of-concept ap-
proach facilitates the generation of diverse simulated radar
micro-Doppler signatures, thereby providing essential training
data for simulation-based HAR systems.

B. Our Approach

In this paper, we present an end-to-end simulation frame-
work for HAR using frequency-modulated continuous wave
(FMCW) radar systems. First, we design a human motion
synthesis tool using the Unity software [13] from Unity Soft-
ware Inc. that emulates different types of human activities and
accordingly generates the three-dimensional (3D) trajectories
for the virtual markers placed on a humanoid character. The 3D
marker trajectories are processed by a geometric model (see
Sect. V) with respect to a user-defined antenna configuration.
Taking into account the long- and short-time stationarity
properties of wireless channels and using our radar signal
synthesizer, we simulate the raw in-phase and quadrature (IQ)
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components. Finally, the radar micro-Doppler signatures or,
equivalently, the time-variant (TV) radial velocity distributions
are generated for several types of emulated human activities.

Our proposed simulation-based framework offers several
advantages over experimental-based designs, such as flexibility
to simulate radar datasets with specific distributions or target
motion characteristics, ability to augment training data, cost-
effectiveness, and mitigation of legal and privacy issues. With
the proposed simulation framework, we can augment human
motion data at a motion-synthesis layer, e.g., by varying an
avatar’s size and speed. The proposed simulation framework
gives control over several radar parameters as well, thus it
enables us to generate different types of training datasets corre-
sponding to different radar-operating conditions and different
applications. Above all, the proposed simulation framework
drastically minimize the overall training effort of radar-based
HAR systems.

Note that our simulation-based framework, basically de-
signed for HAR, has versatile applications across various
domains, including gesture recognition [14], sports [15],
autonomous vehicles [16], social robotics [17], and smart
homes [18]. In this research, our validation process involves
real experiments covering five human activities, highlighting
the effectiveness of our proof-of-concept. The core strength of
this simulation-based framework, however, lies in its innova-
tive capability to translate motion capture (MoCap) data into
radar data (see Sect. IV and Sect. VI), making it adaptable
to a wide array of real-world scenarios. The availability of
extensive online MoCap data repositories like Mixamo [19],
covering domains such as sports, multimedia, healthcare,
and more, further enhances the framework’s applicability.
With our proposed framework, these repositories can be used
to simulate radar signatures for a multitude of real-world
scenarios. For instance, in healthcare, we demonstrate the
framework’s capability for fall detection, providing a tangible
example of its real-world utility. In sports, our solution can
be extended to simulate radar signatures for activities such as
running, swimming, and various exercises, thereby enhancing
its practicality.

Changes in radar configurations in practical applications,
driven by shifts in operational requirements, technological
advancements, and emerging applications, necessitate the gen-
eration of new datasets. For emerging radar-based classifiers,
the need to simulate new datasets is inevitable as it aligns
with the dynamic nature of radar sensors. This constraint
is common to all radar-based classifiers, whether realized
using simulation or experimental data. Our simulation-based
framework stands out for its efficient and rapid generation
of diverse datasets for new or modified radar configurations,
presenting a more resource-efficient alternative compared to
the classifiers based on experimental data. The ability to
swiftly and easily adapt to varied radar configurations stands
as a distinctive strength of our proposed framework.

C. Contributions

The multiple contributions of this research can be summa-
rized as follows:

1) We propose a novel end-to-end simulation framework
to avoid the need of real radar data for training. By
using the proposed simulation framework, large quanti-
ties of realistic synthetic radar data are generated for
human gross motor activities. It is worth noting that
the proposed simulation framework is also useful for
many other radar-based classifiers, for instance, gesture
recognition systems.

2) We leverage a geometrical 3D indoor channel model
(see Sect. V) to simulate TV radial distances from the
spatial trajectories of an avatar with 21 non-stationary
virtual markers. By employing the proposed approach,
we emulate and diversify various human activities by
varying parameters such as location, speed, acceleration,
deceleration, and avatar’s height. Our unique simula-
tion framework offers the flexibility to augment data
at the motion-synthesis layer, enabling the generation
of diverse and customizable datasets for training HAR
systems.

3) We simulate high-fidelity radar signatures, namely TV
range distribution, TV radial velocity distribution, and
TV mean velocity for the emulated human activities. By
computing the dynamic time warping (DTW) distance
metric [20], it is shown that the simulated radar sig-
natures closely resemble the radar signatures measured
in reality. This shows the effectiveness of our simulation
framework, which can simulate realistic radar signatures
for adults and children alike, and can even be extended
to simulate realistic radar data for animals, vehicles and
airplanes.

4) For the radar-signal synthesis, we expound the long- and
short-time stationarity properties of the indoor wireless
channel (see Sect. VI). The short-time stationarity as-
sumption is quite advantageous because it significantly
simplifies the synthesis of the radar signal.

5) Through our proposed approach, we establish a novel
simulated HAR dataset to train our simulation-based
HAR system, which was developed by using a deep
convolutional neural network (DCNN). This dataset
comprises simulated radar signatures computed from
emulated human activities. To demonstrate the practical
relevance of our simulation-based HAR system, we
tested its performance on unseen data acquired with
a real mm-wave FMCW radar system involving real
persons. The mean (maximum) classification accuracy
of the fully simulation-based HAR system was 94%
(98.4%). The classification performance of the proposed
simulation-based HAR system over the experimental
dataset demonstrates the utility and efficacy of our
proposed end-to-end simulation framework.

D. Paper Organization

The paper is structured as follows. Section II presents the
related work, and Section III gives an overview of conventional
and the simulation-based HAR systems. Our human motion
synthesis module is elucidated in Section IV. Section V
details the 3D geometrical model. The synthesis of realistic
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radar data is explained in Section VI. Section VII describes
the processing of the radar data. The design, training, and
testing of the simulation-based HAR system is detailed in
Section VIII. Finally, Section IX draws the conclusions.

II. RELATED WORK

Recently, the availability of commercial mm-wave sensors
has led to the development of numerous human-centric re-
search areas. For instance, many studies have been conducted
on radar-based HAR systems [21]–[23], sign language [24]
and gesture [25], [26] recognition systems. So far, most of
the studies have focused on HAR systems that are realized
by utilizing the scarcely available recorded radar data [27].
In [27], for instance, the HAR classifier was based on a long
short-term memory (LSTM) neural network and was trained
on manually labeled 3D point cloud data. The authors of [28]
addressed the problem of HAR in multi-angle scenarios by
exploiting measured characteristics of a mm-wave radar, such
as received power, range, Doppler frequencies, azimuth, and
elevation. Another problem with experimental data collected
with radar systems is the reusability of the data. Generally,
the recorded data of the radar system is not reusable due to its
fixed operating parameters and antenna configurations. When
the operating conditions of the radar system are fixed, the few-
shot learning scheme [29] is useful to enhance the capability
of the already trained HAR system.

To address the lack of real radar data, some studies have
suggested to use data augmentation techniques. For instance,
the authors of [30] proposed a data augmentation technique
based on a generative adversarial network (GAN) to create
diverse micro-Doppler signatures for human activities. Apart
from GANs, a self-supervised HAR approach has been re-
cently proposed to tackle the issue of limited labeled data [31].
The authors of [32] presented a technique called supervised
few-shot adversarial domain adaptation for HAR. This ap-
proach addresses the challenge of having a limited amount of
radar training data available for a particular scenario. More-
over, the authors of [33] proposed a rotational shift method to
augment radar point cloud data. Recently, a two-stage domain
adaptation scheme was presented in [34] to address the lack of
training data for radar-based HAR systems. For data augmen-
tation, they used a GAN-based domain-translation network
to translate the simulated spectrograms into measurement-like
spectrograms with the help of small measurement datasets.
Even with this data augmentation technique, it is not possible
to completely get rid of the tedious data collection process
that requires real radar datasets and real human subjects.

The lack of publicly available real radar datasets, the
limited reusability of radar data, and the resource-intensive
data collection are the main factors driving us to pursue fully
simulation-based HAR system development. So far, only a
handful of studies have been carried out in this direction.
To model the intricate details of human motion, high-fidelity
MoCap systems are preferred to eventually reanimate more
realistic and complex human motion [35]. In [36], the authors
formulated Doppler modulations and established equations for
micro-Doppler effects caused by various micro motions such

as vibration, rotation, tumbling, and coning. They validated
these formulations through simulation studies. A simulation
tool has been developed recently called SimHumalator, which
simulates the target echoes for passive Wi-Fi radar (PWR)
scenarios [37]. The authors of [38] developed a simulation
tool that characterizes the near-field radar cross-section of a
walking person in the K-band, but the approach is not suitable
to model the finer details of human motion.

III. SYSTEM OVERVIEW

In the following, let us first describe the basic building
blocks of a conventional HAR system, which is employed
solely to evaluate the proposed simulation-based HAR system.

A. A Conventional HAR System

The building blocks of a conventional (experimental-based)
HAR system are depicted in Fig. 1(a). For each human activity,
the mm-wave radar system produces real raw IQ data. The IQ
data is subsequently processed by the radar signal process-
ing module to generate the real micro-Doppler signature or,
equivalently, the TV radial velocity distribution capturing the
characteristics of a human activity (see Sect. VII). The TV
radial velocity distributions of the recorded human activities
are stored in files and represent the real radar dataset, as shown
in Fig. 1(a). Generally, the real radar data samples are used to
train the experimental-based HAR classifier. Subsequently, a
portion of the real radar data is used to test the performance of
experimental-based HAR classifier, as shown in Fig. 2. In this
research, we are mainly interested in devising a simulation-
based HAR system that matches the performance of state-
of-the-art HAR systems. Thus, we will only use the entire
recorded dataset from our conventional HAR system to test our
proposed simulation-based HAR system, as shown in Fig. 2.
An overview of the proposed simulation-based HAR system
is presented in the following subsection.

B. Proposed Simulation-Based HAR System

Conventionally recorded training datasets may not be
reusable as they are only valid for specific radar parameters
and a specific antenna configurations. A revision or redesign of
even a single radar parameter may render the training dataset
useless, e.g., the redesign of the radar system using a different
pulse repetition interval (PRI). Therefore, a pragmatic alterna-
tive is proposed in this paper to overcome the aforementioned
issues associated with the acquisition of large training datasets.
We propose a fully simulation-based approach, as shown in
Fig. 1(b), to develop a real-world HAR system. For training the
HAR classifier, our simulation-based approach enables easy
generation of a large amount of training data without involving
real human subjects and a real radar system, which makes the
simulation-based approach very feasible and pragmatic.

The overall view of the proposed simulation-based approach
is shown in Fig. 1(b). We start with six types of basic anima-
tions: standing still, falling, walking in two steps, standing up,
sitting down, and picking up an object. Based on these six
basic animations, we synthesize five different types of human
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Fig. 1. (a) Design of conventional HAR systems that require real human subjects and a real radar system for training. (b) Design of the proposed simulation-
based HAR system that only needs the simulated radar dataset for training.
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Fig. 2. Testing of the conventional (experimental-based) and the proposed simulation-based HAR systems on unseen real radar data samples.

activities: Falling on the floor, walking forward with more
than two steps, standing up from a chair, sitting down on a
chair, and picking up an object from the ground. The first
3D simulations block in Fig. 1(b), implemented in the Unity
software [13], synthesizes the human motion in the 3D space
and generates the corresponding TV 3D trajectories of moving
body segments, such as head, arms, legs, hands, and chest
(see Sect. IV-C). Subsequently, the geometrical 3D indoor
channel model converts the TV 3D trajectories into the TV
radial distances with respect to the positions of the transmitter
and receiver antennas of the radar system (see Sect. V). For
the TV radial distances and a set of scatterers’ weights (see
Sect. VI), our radar data synthesizer in Fig. 1(b) simulates the
raw IQ data in the slow- and fast-time domains. Note that the
virtual markers in our simulation framework are analogous to
the real scatterers on the human body segments, which scatter
the electromagnetic energy to the receive antenna of the radar
system (see Sect. IV-C). Finally, the radar signal processing
block of our simulation framework generates the simulated
range distribution, the simulated radial velocity distribution,
and the simulated mean velocity for a synthesized human
activity.

In this study, we refrain from using simulated range distribu-

tions for HAR due to their limited intelligibility resulting from
the radar systems’ restricted range resolution. Additionally, we
solely use the mean velocity for comparison, not for HAR, as it
contains less information about scatterers’ velocity compared
to the radial velocity distribution. This is detailed in Sect. VII
and evident from Figs. 6–8 as well. The simulated radial
velocity distributions corresponding to the synthesized human
activities are stored in a simulated radar dataset. We have
developed our simulation-based HAR system by training it
using only the examples from our simulated radar dataset as
depicted in Fig. 1(b). The simulation-based HAR system was
designed by using a DCNN approach. In order to demonstrate
the practical significance of our simulation-based HAR system,
we need to test its performance on unseen data collected
by a real radar system and real human subjects. Therefore,
we recorded real human activities (falling, walking, picking,
standing and sitting) in front of a mm-wave radar system to
create a real radar dataset, which is used to test our simulation-
based HAR system, as shown in Fig. 2. It is noteworthy that
the raw IQ data of the real and simulated radar are similar in
structure. Therefore, we used the same radar signal processing
block to process the real and simulated raw IQ data.

The proposed simulation framework emulates five distinct

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3344179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXXXX 2023 5

human activities and generates corresponding simulated radial
velocity distributions for moving body segments. The simu-
lated radar signatures (radial velocity distributions) are used
to train the DCNN-based HAR classifier (see Fig. 1(b)). Real
mm-wave radar signatures are used to test the simulation-based
HAR system as shown in Fig. 2. The details of the individual
components of the proposed simulation-based HAR system are
explained in the following sections.

IV. HUMAN MOTION SYNTHESIS

In this section, we elucidate the first component of our
simulation framework, which is the synthesis of the human
activities for our simulation-based HAR system.

A. Basic Humanoid Animations

To synthesize realistic human activities, we use a pre-rigged
3D humanoid character and six types of basic humanoid
animations from a well-known source called Mixamo [19].
It is a royalty-free library from Adobe Inc. offering countless
realistic humanoid animations, which have been created with
the help of professional actors and real-world MoCap sys-
tems [39]. We used the following animations from the Mixamo
online library: idle, walking, falling, standing, picking, and
sitting. In the idle animation, the avatar stands still in a natural
upright posture, which causes a negligible in-place motion
of all body segments. The walking animation consists of
two steps in a forward direction on a flat floor. The falling
animation portrays the avatar imitating a heart attack and
collapsing abruptly to the ground. In the standing animation,
the avatar gradually rises from a sitting position, while in the
picking animation, it retrieves an object from the ground. In
the sitting animation, the avatar is first in the idle upright
position and then sits down on a chair.

We imported the six basic animations into the Unity soft-
ware using the Filmbox (FBX) file format with a frame rate
of 60 frames per second (fps). While importing an animation
from the Mixamo’s online library, a keyframe reduction pa-
rameter must be configured to optimize the animation data.
We have refrained from applying keyframe reduction to the
animation data, as this could in some cases alter or degrade
the animation itself. In fact, we used linear interpolation in
the Unity software to upscale the frame rate of the animations
from 60 fps to 2000 fps to emulate and match the radar’s pulse
repetition frequency (PRF).

B. Unity Animation System

Among other things, the Unity animation system estimates
the spatial positions of the avatar’s body segments between
frames by performing an interpolation operation. While shape-
preserving interpolation methods, such as spline interpolation,
can offer more accurate representations of the motion data,
they often come with higher computational costs. In the
context of our framework, where we aim to synthesize motion
data at a high frame rate of 2000 fps, computational efficiency
is an important consideration. Linear interpolation provides
a computationally efficient solution while still preserving the

general shape and trajectory of the motion. Moreover, it is
important to keep the animation frame rate fr equal to the
real radar’s PRF, because the PRF samples the motion of an
object and thereby dictates the maximum measurable radial
velocity vmax according to vmax = PRF · λ/4, where λ is the
wavelength of the radar transmit signal. Analogously, in our
simulation framework, the frame rate fr dictates the maximum
synthesizable radial velocity v′max according to v′max = frλ/4.
Any motion of the avatar with a radial velocity component
greater than the maximum synthesizable radial velocity v′max
reverts to a lower velocity, just as in a real radar system.
The Unity animation system is, by and large, quite versatile
in supporting a wide range of animation techniques, e.g.,
procedural, MoCap and keyframe animations.

We use the Unity’s animation state controller to enable the
transition of the avatar between the six basic animation states.
To synthesize a realistic human walking activity, we first need
to switch between the basic idle and walking animations to
merely start and end the overall walking activity. In addition,
we need to gradually increase and decrease the walking speed
during the transition periods of the emulated activity. These
natural and smooth transitions with gradual acceleration and
deceleration are provided by a special type of state in the
Unity’s animation state machine called the blend tree.

Note that we do not have any animation data for the
transition periods. This gap is filled by blend trees. When
emulating a human walking activity and transitioning between
idle and walking animation, the blend tree state dynamically
creates new animation data in the 3D space in real time by
aptly varying the avatar limbs to different degrees. With the
help of blend trees, we can thus seamlessly transition from
(to) idling animation to (from) walking animation with varying
speeds while blending the two animations during the transition
period. The human falling, standing, sitting, and picking
activities are synthesized straightforwardly by combining the
idle animation with the respective falling, standing, sitting, and
picking animations.

C. 3D Trajectories and Data Augmentation

We have synthesized five realistic human activities in the
Unity software. In this subsection, we will explain how to
capture the 3D trajectories of the synthesized motion for the
five types of human activities. First, we need to place several
virtual markers on different body segments of the avatar, as
shown in Fig. 3. These virtual markers are simulated point
scatterers that resemble real scatterers on a human body.

In order to thoroughly capture the movements of the avatar,
we placed a total of 21 virtual markers on different segments
of the avatar body, which are represented by numbered stars in
Fig. 3. The body segments associated with the virtual markers
in Fig. 3 are listed in the ascending order: upper head, lower
head, neck, right shoulder, left shoulder, right arm, left arm,
upper spine, spine, lower spine, right forearm, left forearm,
hips, right upper leg, left upper leg, right hand, left hand, right
leg, left leg, right foot, and left foot. We need to spatially
track the virtual markers and record the corresponding TV
3D trajectories of the virtual markers for the synthesized
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Fig. 3. Emulated propagation scenario composed of a radar system and a moving avatar with 21 non-stationary virtual markers.

human activities. For instance, for a walking activity consisting
of three steps in a forward direction, we can visualize the
progression of the TV 3D trajectories associated with the 21
virtual markers, as represented by the colored curves in Fig. 3.
With the ability to synthesize the human activities and the
corresponding 3D trajectories, we have created a dataset of
diverse human activities that is used to train the simulation-
based HAR classifier.

The synthesized human activities can be augmented and
diversified in the Unity software by varying the emulation
parameters such as the avatar’s location, speed, acceleration,
and deceleration. Thus, for each type of human activity, ten
additional activity samples were generated by varying the
above emulation parameters. For example, for the synthesized
walking activities, random accelerations (decelerations) were
assumed during the transition from the idling (walking) state
to the walking (idling) state. For the five types of human
activities, a total of fifty activity samples were generated in
the Unity software. The TV 3D trajectories were recorded for
the synthesized human activity samples. Subsequently, the TV
3D trajectories were exported to MATLAB for further data
augmentation and processing. Using the geometrical 3D indoor
channel model, which is detailed in the following section,
we simulated eight slightly different radar antenna positions
by moving virtually the transmitter and receiver antennas
laterally for data augmentation. We also scaled the weights
of the scatterers (see Fig. 1(b) and Sect. VI-A) to vary the
power levels of the simulated radar signatures for further data
augmentation.

V. GEOMETRICAL 3D INDOOR CHANNEL MODEL

In this section, we formulate a geometrical 3D indoor chan-
nel model corresponding to an indoor propagation scenario
equipped with a radar system. Analogous to the real 3D
indoor propagation scenario, the emulated indoor environment
is shown in Fig. 3. The emulated (real) propagation scenario is
composed of a moving avatar (human) with L non-stationary
virtual markers (scatterers), where the lth virtual marker

(scatterer) is denoted by S(l) and l = 1, 2, . . . ,L. In our
simulation framework, the total number of virtual markers is
L = 21. The geometrical channel model is used to compute the
TV radial distances between the L virtual markers (scatterers)
and the radar transmit and receive antennas. In the simulation
framework, the radar antennas can be placed freely as per the
designer’s requirements. Note that the antenna configuration
greatly affects the simulated radar signatures. So, we can easily
optimize the transmit and receive antenna positions with the
help of the proposed simulation framework. For this research,
the transmit and receive antennas of the radar system are
placed in a monostatic configuration.

The radar transmit antenna ATx and receive an-
tenna ARx are respectively placed at fixed positions CTx =
[xTx , yTx , zTx ]⊤ and CRx = [xRx , yRx , zRx ]⊤, where [·]⊤
represents the vector transpose operation. In Fig. 3, Cl(t) =
[xl(t), yl(t), zl(t)]

⊤ is the TV 3D trajectory of the lth scatterer,
dTx

l (t) denotes the TV distance between the lth scatterer and
the transmitter antenna ATx , and dRx

l (t) denotes the TV dis-
tance between the lth scatterer and the receiver antenna ARx .
Let

∥∥·∥∥ represents the Euclidean norm, then the TV distances
dTx

l (t) and dRx

l (t) can be expressed as [40]

dTx

l (t) =
∥∥Cl(t)− CTx

∥∥ (1)

and
dRx

l (t) =
∥∥Cl(t)− CRx

∥∥ (2)

respectively. For the lth non-stationary virtual marker (scat-
terer), the TV radial distance dl(t) can be obtained as

dl(t) =
1

2

[
dTx

l (t) + dRx

l (t)
]
. (3)

It is evident from (1)–(3) that the geometrical channel model
maps the 3D trajectory Cl(t) to the TV radial distance dl(t)
for a particular antenna configuration {CTx , CRx}. For the
monostatic configuration, we have CTx = CRx , and thus
dl(t) = dTx

l (t) = dRx

l (t). In the context of radar sensing, the
TV radial distance dl(t) characterizes the synthesized motion
of the lth virtual marker (scatterer), which is used to simulate
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the radar raw IQ data in the fast- and slow-time domain as
explained in the next section.

For all L virtual markers of the synthesized falling, walking,
picking, standing and sitting activities, we used the geometri-
cal channel model to simulate the TV radial distances dl(t),
as shown in Fig. 4. As the L virtual markers are spatially dis-
tributed on the avatar’s body segments, they have distinct TV
radial distances, which are represented by the colored curves in
Fig. 4. In the simulated falling activity of Fig. 4, some virtual
markers exhibit more variations than others because the virtual
markers on the lower body segments are less mobile than the
virtual markers on the upper body segments. The simulated
walking activity in Fig. 4 exhibits its periodic nature and it
consists of three walking steps. Compared to the falling and
walking activities, the radial distances of the virtual markers
do not vary as much in the simulated standing, sitting, and
picking activities.

VI. RADAR DATA SYNTHESIS

One of the main modules of our simulation framework
is the radar data synthesis module, which simulates realistic
raw IQ data by emulating an FMCW radar system. The
simulated raw IQ data depends entirely on the TV radial
distances dl(t) of all L virtual markers (scatterers) and their
respective weights which are modeled in Sect. VI-A. In the
following subsections, we elucidate the synthesis of the radar
baseband signal called beat signal and explore the relevant
stationary and non-stationary aspects of the indoor wireless
channel.

A. Beat Signal Synthesis

The FMCW radar system periodically emits RF pulses,
where the intra-pulse modulation is a linear chirp [41] wave-
form c(t′), where t′ denotes the fast-time domain [42]. These
RF pulses, also called the transmitted chirp signals c(t′), are
reflected to the radar receiver by several scatterers in the
environment. In this paper, we only consider and model the
non-stationary scatterers because the stationary scatterers do
not cause any Doppler shift and can therefore easily be filtered
out in the radar signal preprocessing unit [43]. Furthermore,
we assume that the L scatterers are stationary in the fast time t′

and non-stationary in the slow time t as explained in the
following subsection. From the lth non-stationary scatterer, a
copy of the transmitted chirp waveform c(t′) is received with
the TV propagation delay τ (l)(t), which is proportional to the
TV range (radial distance) of the lth scatterer dl(t) according
to τ (l)(t) = 2dl(t)/c0, where c0 denotes the speed of light.
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Fig. 4. Simulated TV radial distances dl(t) of 21 virtual markers for the five
activities.

In FMCW radar systems, the quadrature mixture module
downconverts the received passband signal and produces the
complex baseband signal, also known as the composite beat
signal sb(t′, t) [42]. The raw IQ data from the FMCW radar
system is the digitized version of the composite beat sig-
nal sb(t

′, t). In FMCW radar systems, the analog to digital
converter (ADC) samples the composite beat signal sb(t

′, t)
in fast time t′ with the sampling interval Ts. For the radar’s
coherent processing interval (CPI), in which the phase of the
scatterers is preserved [44], the discrete fast-time samples are
arranged in the fast- and slow-time domain to form the raw
IQ data matrix D, i.e.,

D =


sb(0, 0) sb(Ts, 0) . . .

sb(0, Tsw) sb(Ts, Tsw) . . .
...

...
...

sb(0, (Nc − 1)Tsw) sb(Ts, (Nc − 1)Tsw) . . .

sb(Tsw − Ts, 0)
sb(Tsw − Ts, Tsw)

...
sb(Tsw − Ts, (Nc − 1)Tsw)


(4)

where Tsw is the chirp duration and Nc is the number of chirps
in the CPI of the radar system.

Now we want to model the composite beat signal sb(t′, t),
so that we can synthesize the raw IQ data of the FMCW
radar system. Let s(l)b (t′, t) be the beat signal corresponding
to the lth virtual marker, then the received composite beat
signal sb(t′, t) can be expressed as [42]

sb(t
′, t) =

L∑
l=1

s
(l)
b (t′, t). (5)

Note that in (5), the composite beat signal sb(t
′, t) is com-

posed of L distinct beat signals s
(l)
b (t′, t) corresponding to

L virtual markers. In particular, for the lth virtual marker,
the beat signal s

(l)
b (t′, t) is fully characterized by its TV

path gain a(l)(t), beat frequency f
(l)
b (t), phase ϕ(l)(t), and

propagation delay τ (l)(t) according to

s
(l)
b (t′, t) =

∞∑
n=0

a(l)(t) exp
[
j
(
2πf

(l)
b (t)t′ + ϕ(l)(t)

)]
×

δ(t− τ (l)(t)− Tn)
(6)

where Tn is the discrete slow time that relates to the chirp du-
ration Tsw by Tn = nTsw for n = 0, 1, . . . . The function δ(·)
in (6) represents the Dirac delta function.

For the lth virtual marker, the syntheses of the TV beat
frequency f

(l)
b (t), phase ϕ(l)(t), and propagation delay τ (l)(t)

in (6) are solely determined by the TV radial distance dl(t).
Also, the lth TV path gain a(l)(t) is inversely proportional to
the lth TV radial distance dl(t). The beat frequency f

(l)
b (t) as-

sociated with the lth virtual marker can be modeled according
to

f
(l)
b (t) =

2dl(t)γ

c0
(7)
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where γ is the slope of the chirp waveform c(t′). The
phase ϕ(l)(t) of the lth virtual marker is related to the radial
distance dl(t) according to

ϕ(l)(t) =
4πdl(t)

λ
. (8)

Recall that the lth propagation delay component τ (l)(t) in (6)
can be obtained as τ (l)(t) = 2dl(t)/c0. Thus, the synthesis of
the lth beat signal s

(l)
b (t′, t) in (6) is mainly determined by

the lth TV radial distance dl(t).
We use the TV path gain a(l)(t) in (6) to model and simulate

the amount of energy reflected back to the radar receiver from
the lth scatterer (virtual marker). Thus, in the synthesis of the
lth beat signal s(l)b (t′, t), the TV path gain a(l)(t) simulates the
power or strength of the lth virtual marker. In this research,
for the sake of simplicity, we have used L = 21 time-invariant
path gains, i.e., a(l)(t) = a(l). For the five types of simulated
human activities, we have accordingly used five sets of path
gains to synthesize the composite beat signal sb(t′, t) in (5).
The body surface area [45] and the real TV radar signatures
(see Sect. VII) helped us adjust the path gains of the L virtual
markers corresponding to the five types of simulated human
activities. Note that multiple sets of path gains can be used
to simulate multiple radar signatures for a single simulated
human activity.

B. Long- and Short-Time Stationarity of the Channel

In this subsection, we explain the long- and short-time sta-
tionarity of the indoor wireless channel. Since the transmitter
and receiver antennas are spatially fixed, the non-stationarity of
the wireless channel is due to the motion of a human subject.
For fixed antennas, the wireless channel is non-stationary due
to the motion of the scatterers. We assume that the channel is
long-time non-stationary or, equivalently, non-stationary over
the slow time t. But in the fast time t′, we assume that
the channel is stationary over the limited duration of a chirp
waveform Tsw. This assumption simplifies the synthesis of the
radar beat signal. In the following, we will see that the short-
time stationarity of the channel basically comes down to the
radar’s range resolution denoted as dres, which is related to the
radar’s bandwidth B according to dres = c0/2B.

In the radar signal processing module (see Sect. VII), we
first apply the fast Fourier transform (FFT) to each row of
the raw data matrix D, called the range FFT. The frequency
resolution fres of the range FFT is equal to the inverse of
the observation interval Tsw, i.e., fres = 1/Tsw [46]. For a
row of the raw data matrix D and a slow-time instant t0,
the range FFT computes the spectrum containing the beat fre-
quencies f

(l)
b (t0) corresponding to dl(t0) for l = 1, 2, . . . ,L.

To resolve the spectral components corresponding to the L
scatterers (virtual markers), the scatterers (virtual markers)
must be at least fres apart in the spectrum or, equivalently,
dres apart in the range (see (7)).

Let ∆dl and ∆f
(l)
b denote the overall change in the lth

radial distance dl(t) and beat frequency f
(l)
b (t), respectively,

over one chirp duration Tsw. Then, a small change in the lth
radial distance ∆dl results in a small change in the lth beat

frequency ∆f
(l)
b according to (7). In practice, these changes

are insignificant over the chirp duration Tsw and are not
discernible in the spectrum of (5), such that ∆dl ≪ dres

and ∆f
(l)
b ≪ fres, especially for indoor channels. Thus,

the lth beat frequency f
(l)
b (t0) is assumed to be constant

at the slow-time instant t0 and over the fast-time duration
t0 < t′ < t0 + Tsw. Therefore, the wireless channel is
assumed to be short-time stationary, which makes the synthesis
of the discrete beat signals s

(l)
b (t′, t0 + Tn) fairly simple for

n = 0, 1, . . . and l = 1, 2, . . . ,L. For instance, for the lth
radial distance dl(t0), the real and imaginary components of
the lth beat signal s(l)b (t′, t0) in (6) can be digitally synthesized
as simple tone signals with fixed frequency f

(l)
b (t0) and

phase ϕ(l)(t0).

VII. RADAR SIGNAL PROCESSING

This section describes the radar signal processing module
of Fig. 1, which can be used to process either the simulated or
the real raw IQ data. First, the FFT operation is performed on
the rows of the raw data matrix D (see (4)) to obtain the beat
frequency function Sb(fb, t), which can be expressed as [47]

Sb(fb, t) =

Tsw∫
0

sb(t
′, t)e−j2πfbt

′
dt′ (9)

where fb denotes the beat frequency. Subsequently, the short-
time Fourier transform (STFT) of the beat frequency func-
tion Sb(fb, t) is carried out over the slow-time domain t to
acquire the beat- and Doppler-frequency function X(fb, f, t)
[42], which is given as

X(fb, f, t) =

∞∫
−∞

Sb(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′ (10)

where f and t′′ represent the Doppler frequency and running
time, respectively. The function Wr(·) in (10) represents a
rectangular window function spanning over the slow-time
duration of 64Tsw.

Note that in (10), the beat- and Doppler-frequency func-
tion X(fb, f, t) can be integrated with respect to the Doppler
frequency f (beat frequency fb) to acquire the TV beat-
frequency (micro-Doppler) signature. Thus, the expressions for
the TV beat-frequency signature S′(fb, t) and the TV micro-
Doppler signature S(f, t) are given as

S′(fb, t) =
∣∣∣ PRF∫
0

X(fb, f, t)df
∣∣∣2 (11)

and

S(f, t) =
∣∣∣ fb,max∫

0

X(fb, f, t)dfb

∣∣∣2 (12)

respectively, where fb,max is the maximum beat frequency. By
using the TV beat-frequency signature S′(fb, t) in (11), we
can express the TV range distribution p′(r, t) as

p′(r, t) =
S′
(

2γ
c0
r, t

)
∫∞
−∞ S′

(
2γ
c0
r, t

)
dr

. (13)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3344179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXXXX 2023 9

The symbol r in (13) denotes the radar range, which is related
to the beat frequency fb by r = c0fb/(2γ).

Similarly, the TV radial velocity distribution p(v, t) can be
expressed as [42]

p(v, t) =
S
(

2f0
c0

v, t
)

∫∞
−∞ S

(
2f0
c0

v, t
)
dv

(14)

where v is the radial velocity and f0 is the carrier frequency,
which are related to the Doppler frequency f according to
v = c0f/(2f0). Finally, the TV mean radial velocity v̄(t) can
be obtained as

v̄(t) =

∞∫
−∞

vp(v, t)dv. (15)

The TV mean radial velocity v̄(t) in (15) encapsulates the
dominant characteristics of the TV radial velocity distribu-
tion p(v, t) [42]. It provides a measure of the average radial
velocity of all body segments at time t. Recall that the
scatterers found on the human body segments reflect the
electromagnetic energy back to the radar system. When a
human body (avatar) moves, each scatterer (virtual marker)
follows a spatially distinct trajectory and thus has a distinct
TV radial velocity component with respect to the radar system.
The TV radial velocity components corresponding to the
scatterers (virtual markers) appear in the TV radial velocity
distribution p(v, t). Similarly, the TV range components of
all the scatterers (virtual markers) appear in the TV range
distribution p′(r, t).

For the real radar data, the TV range distribution p′(r, t) is
not very intelligible due to the limited range resolution dres
of the radar system. Therefore, the real TV range distri-
bution p′(r, t) is usually not used for HAR. However, as
an example, we show in Fig. 5 the simulated TV range
distribution p′(r, t) with a range resolution dres of 75 mm
for the simulated fall, walk, stand, sit and pick activities. We
also show the simulated (real) TV radial velocity distribu-
tions p(v, t) for these five types of simulated (real) activities
in Fig. 6 (Fig. 7). We can clearly see the striking similarities
between the simulated and the real TV radial velocity distri-
butions p(v, t) in Fig. 6 and Fig. 7, respectively. It is worth
noting that we will use the images of the simulated (real) TV
radial velocity distributions p(v, t) to train (test) the proposed
simulation-based HAR system (see Sect. VIII). Finally, for the
five types of simulated and real activities, the TV mean radial
velocities v̄(t) are shown in Fig. 8(a) and 8(b), respectively.
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Fig. 5. Simulated TV range distributions p′(r, t) for the emulated human
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The similarities between the simulated and real radar results
in Figs. 6, 7, 8(a), and 8(b) demonstrate the quality of
the data generated by the proposed simulation framework.
Furthermore, to quantify the similarity between the simulated
and real radar signatures, we employ the DTW algorithm [20].
This DTW distance metric measures the resemblance between
TV mean radial velocities v̄(t) of simulated and real human
activities (see Fig. 8). The normalized DTW distances, pre-
sented in Table I, indicate the efficacy of our simulation-
based approach in capturing the kinematic characteristics of
various human activities. Notably, for all the activities, the
DTW distance metric is minimized when comparing a given
simulated activity to its corresponding real counterpart. For
instance, for the walking activity, the DTW distance of 0.07
between the simulated and real TV mean radial velocities v̄(t)
highlights the precise simulation of the walking pattern. This
trend persists across all simulated activities, affirming the
fidelity of our simulation framework in accurately simulating
real-world radar signatures. Note that the DTW distance be-
tween certain activities, such as sitting and picking, is smaller.
This is due to their closely aligned patterns, thereby making
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TABLE I
THE DTW DISTANCES BETWEEN THE SIMULATED AND REAL TV MEAN

RADIAL VELOCITIES v̄(t).

Activity type Real
fall walk stand sit pick

Si
m

ul
at

ed

fall 0.03 0.36 0.18 0.26 0.20

walk 0.49 0.07 0.55 0.36 0.34

stand 0.07 0.26 0.01 0.10 0.05

sit 0.13 0.08 0.16 0.05 0.07

pick 0.08 0.19 0.04 0.03 0.01

them relatively challenging to classify.

VIII. SIMULATION-BASED HAR SYSTEM: REALIZATION
AND TESTING

In this section, we first explain how we realized the pro-
posed HAR system using a DCNN-based multiclass classifier
and how we trained it using only the simulated HAR dataset.
A range of variations of the DCNN classifier is systematically
analyzed through model ablations, facilitating the process of
model analysis and selection. Subsequently, we demonstrate
the performance of our trained simulation-based HAR classi-
fier on the unseen real radar data using the best DCNN model.

A. Supervised Learning Using Simulated HAR Dataset

First and foremost, we need a simulated HAR dataset for
training purposes. To create the simulated HAR dataset, we
first synthesized the human motion using the Unity software
as described in Section IV. The position, speed, acceleration,
and deceleration parameters were randomly varied in the Unity
software to synthesize ten unique activity samples for each
of the five activity types: falling, walking, standing, sitting,
and picking. Subsequently, the spatial trajectories of these fifty
activity samples were imported into MATLAB for further data
augmentation. For each activity sample, eight slightly different
radar positions {CTx , CRx} and three different power levels
were simulated in MATLAB. Low, medium, and high power
levels were simulated by scaling the L weights a(l)(t) of the
scatterers. In conclusion, the simulated HAR dataset consists
of five types of human activities, ten different emulations
of each activity type, eight radar positions, and three power
levels. Thus, the total number of simulated TV radial velocity
distributions p(v, t) was 1200 in our simulated HAR dataset,
which was used to train the DCNN-based HAR classifier.

The simulated TV radial velocity distributions p(v, t) (see
Fig. 6) were transformed into images of dimension 224 ×
224 × 3. Thus, for each image, the number of pixels in the
horizontal and vertical dimensions are 224 and the number of
color channels are 3 (red, green and blue). These 1200 images
serve as input feature maps to the DCNN-based HAR classifier
as shown in Fig. 9. The four convolutional layers of the DCNN
classifier in Fig. 9 contain 32, 64, 128, and 256 filter channels,
respectively, which extract features from the simulated TV
radial velocity distribution p(v, t). Each filter in a convolu-
tional layer is a two-dimensional (2D) trainable kernel with the
dimension kd equal to 6× 6 pixels. Note that, for the DCNN
classifier shown in Fig. 9, the network complexity (depth of

hidden layers), kernel dimension kd, max-pool layers, learning
rate lr, and other hyperparameters were determined through
systematic analysis of a range of model variations. Further
details are provided in the subsequent subsections.

To train the weights of the kernels, the L2 regularization
technique was adopted to overcome the potential issue of
overfitting [48]. The stride parameter was set to 1 in the
DCNN, so that the feature-extraction filters stepped by one
pixel. We employed the rectified linear unit (ReLU) function
to alleviate the problem of vanishing gradients [49]. In Fig. 9,
the convolutional layers are followed by the max-pool layers
of the order 2 × 2. The purpose of the max-pool layers is to
reduce the redundancies by downsampling the output of the
convolutional layers by a factor of 2. The features extracted
by the multiple layers of the convolutional filters are flattened
prior to the multilayer perceptron (MLP) layers (see Fig. 9).

In the DCNN, the feature vector of dimension 50176× 1 is
obtained from the input TV radial velocity distribution p(v, t).
Then, the feature vector undergoes three MLP layers of dimen-
sions 256, 128 and 32 with a dropout rate of 30%, as shown
in Fig. 9. The dropout layers mitigate the problems related to
overfitting and generalizability of the network [50]. Finally,
the softmax layer of order 5×1 was employed to compute
the probabilities corresponding to the five types of human
activities. For the training and validation of our simulation-
based HAR classifier, we used our simulation dataset with
a training–validation split ratio of 80 : 20. To optimize the
weights and biases of our simulation-based HAR system in
Fig. 9, we adopted the adaptive moment estimation (Adam)
optimizer [51] and the human activity samples from our sim-
ulated dataset. The decay factors β1, β2, and the parameter ϵ
of the Adam optimizer were set to 0.9, 0.999, and 10−8,
respectively, and the batch size was set to 32.

B. Real Data Collection and Model Variations

To test our proposed simulation-based HAR system, we
used real human activities recorded by Ancortek’s mm-wave
FMCW radar system. During the measurement campaign,
the operating parameters such as the carrier frequency fc,
bandwidth BW, chirp duration Tsw, and PRF of the mm-wave
radar system were set to 24.125 GHz, 250 MHz, 500 µs,

Fig. 9. Design of our DCNN-based HAR classifier that uses the simulated
(real) HAR dataset for its training (testing).
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and 2 kHz, respectively. Note that the same values were
chosen in the radar simulation model. The antennas of the
real and simulated radar systems were chosen to be placed in
a monostatic configuration.

We conducted in-depth experiments with Ancortek’s mm-
wave radar system in an indoor propagation scenario to
compose the real radar-based HAR dataset consisting of five
types of human activities, namely falling, walking, picking,
sitting, and picking. Five male adults and one female adult
repeatedly performed the human activities in the presence
of various indoor objects. The mm-wave radar’s IQ data
corresponding to the real human activities were processed by
the radar signal processing module to generate the TV radial
velocity distributions p(v, t). Note that the human activities
were recorded for more than 5 seconds, but the actual duration
of the activities was mostly 3 seconds (see Fig. 7). The total
number of radar signatures in the real radar dataset is 306.

For our simulation-based HAR system, we systematically
explored various DCNN network configurations, detailed in
Table II. Utilizing simulated and real radar signatures, we
respectively trained and tested the DCNN classifiers with
varying depths and complexities of the convolutional neu-
ral network (CNN) and MLP layers. Models 4, 5, and 6
demonstrated mean accuracies exceeding 86% with standard
deviations (SDs) of less than 5% (see Table II). It’s important
to highlight that other DCNN models with lower and higher
complexities displayed suboptimal performance, as indicated
by the mean test accuracies in Table II. Subsequently, we
systematically determined optimal hyperparameters, including
kernel dimension kd and learning rate lr, for Models 4–
6. Among these, Model 6 emerged as the most promising
classifier, achieving the average (maximum) accuracy of 94%
(98.4%) with optimized hyperparameters. The average per-
centage accuracies of Model 6 across different kernel dimen-
sions kd and learning rates lr are depicted through the curves
in Fig. 10(a) and the heatmap in Fig. 10(b).

C. Testing of the Simulation-Based HAR System Employing
Model 6

The train–test (or simulation–real) data split ratio was
80 : 20. From the real radar-based HAR dataset, the 306
TV radial velocity distributions p(v, t) corresponding to the

TABLE II
MEAN CLASSIFICATION ACCURACIES OF THE DCNN MODELS.

Model CNN layers MLP
layers

Trainable
parameters

Mean accuracy
± SD (%)

0 [16, 32] [32, 16] 3, 232, 117 80.5± 7.5
1 [16, 32, 48] [48, 16] 1, 882, 805 81.9± 5.7
2 [16, 16, 32, 32, 48,

48]
[48, 32, 16] 658, 485 77.4± 16.5

3 [32, 48, 64, 80] [128, 64, 32] 2, 371, 557 85.3± 4.7
4 [32, 64, 72, 80] [256, 128, 32] 4, 502, 205 87± 3.3
5 [32, 64, 96, 128] [256, 128, 32] 7, 201, 029 86.2± 4.7
6 [32, 64, 128, 256] [256, 128, 32] 14, 434, 725 86.7± 4.8
7 [48, 128, 256, 512] [256, 128, 32] 31, 853, 109 47.3± 31.1
8 [48, 128, 512, 512] [256, 128] 37, 747, 957 66.4± 30.8
9 [48, 128, 256, 256,

512, 512]
[256, 128, 64] 43, 654, 645 19.7± 5.5

real human subjects were used to test our trained simulation-
based HAR system. The confusion matrix presented in Fig. 11
shows the performance of our simulation-based HAR system
(see Fig. 9), specifically focusing on the trained model with
the maximum performance. The x- and y-axis of the confusion
matrix correspond to the predicted and true class of a human
activity, respectively. Thus, the first five diagonal elements
of the confusion matrix represent the number of correct
classifications. The number of misclassifications is represented
by the off-diagonal elements in the first five rows and columns
of the confusion matrix. For example, a “walking” activity was
misclassified as a “falling” activity, as shown in the second
row of the first column. Fig. 11 also shows that four “sitting”
activities were misclassified as “picking” activities as indicated
by the fourth row of the fifth column. In the confusion matrix,
the precision and recall quantities [52] are shown by the green
color in the last row and last column, respectively. The worst
precision and recall values are 95.9% and 92.3%, respectively.
Most importantly, the overall classification accuracy of our
simulation-based HAR system is 98.4% as shown by the white
entry in Fig. 11.

Note that the classification accuracy of our simulation-
based HAR system is similar to today’s real or experimental-
based HAR systems [21], [53], [54]. However, the proposed
simulation-based approach is quite unique in that it effortlessly
generates a large amount of high-quality simulation data for
training purposes. In the context of radar-based HAR, it is
difficult to claim the superiority of one method or system
over another as these systems are designed to address different
constraints and resolve distinct problems. Nevertheless, in
Table III, we have reported the performance of various state-
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Fig. 10. Model 6 performance analysis: (a) the mean accuracy curves and
(b) mean accuracy heatmap for kernel dimensions kd and learning rates lr .
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Fig. 11. Confusion matrix of the simulation-based HAR classifier with a
classification accuracy of 98.4% on real data.

of-the-art HAR systems using classification accuracy as the
base metric.

The joint domain and semantic transfer learning (JDS-
TL) [8] approach employed semi-supervised transfer learning
(TL) and domain adaptation on partially labeled radar data
to achieve an accuracy of 87.6%, as shown in Table III.
Utilizing a hybrid architecture of CNNs and recurrent neural
networks (RNNs) for spatial-temporal pattern extraction, the
hybrid CNN-RNN [55] approach achieved a classification
accuracy of 90.8% in recognizing human activities. Through
a combination of convolutional auto encoder (CAE)-based
unsupervised feature learning and multi-view data fusion, the
CNN-LSTM method in [56] achieved an accuracy of 92%.
The few-shot adversarial domain adaptation (FS-ADA) [32]
method learned a common feature space from existing and
new datasets, yielding a 91.6% accuracy in radar-based HAR
despite limited training data. The aforementioned state-of-
the-art HAR systems relied on experimental-based training
datasets, as outlined in Table III. Now, let’s turn our attention
to HAR systems trained with either partially (GAN-based)
simulated datasets or fully simulated datasets.

To tackle kinematic inconsistencies associated with GAN-
based data synthesis, the multibranch generative adversarial
network (MBGAN) system in [57] employed physics-aware
GAN-based techniques to synthesize micro-Doppler signa-
tures, achieving 89.2% classification accuracy. For dataset aug-
mentation, [58] employed a Wasserstein refined generative ad-
versarial network with gradient penalty (WRGAN-GP) to gen-
erate synthetic micro-Doppler spectrograms. Vid2Doppler [59]
employed cross-domain translation to generate synthetic
Doppler signatures from videos, achieving an accuracy of
81.4% through entirely simulated training data. In contrast,
our proposed simulation-based framework translated MoCap
data into radar data via channel modeling, achieving a mean
(maximum) accuracy of 94% (98.4%) using entirely simulated
training data.

In this section, we have explained the design of the proposed
simulation-based HAR system. It is worth noting that the
proposed simulation framework of Fig. 1(b) can be easily
extended to other mm-wave radar-based application areas,
such as gesture classification. The only difference would be
to animate different types of gestures in the Unity software,

while the rest of the modules of Fig. 1(b) would remain the
same.

IX. CONCLUSION

The development of the modern radar-based HAR systems
is mostly hindered by the scarce, unbalanced and partial
datasets, because the acquisition of real radar data is not an
easy task, especially for real human subjects. Therefore, in
this paper, we alleviated the problems related to data scarcity
for radar-based HAR classifiers. As a proof-of-concept, we
presented an end-to-end simulation framework that synthesizes
human motion and simulates the realistic mm-wave FMCW
radar signatures. By generating large amounts of high-quality
synthetic data, the proposed simulation framework signifi-
cantly decreases the overall training effort of radar-based HAR
systems. We used the synthetic and real data to train and test
the HAR system, respectively. The proposed simulation-based
HAR system demonstrated a classification accuracy of 98.4%
on the unseen real radar data. Since the proposed end-to-end
simulation framework reduces the involvement of real human
subjects, it is crucial to improve the capabilities of future radar-
based HAR classifiers.

In addition, the proposed simulation framework provides
control over numerous radar and target parameters, such
as avatar speed, acceleration, deceleration, height, position,
motion type, radar antenna configuration, frequency, PRF,
and bandwidth. This allows us to generate different types
of radar datasets corresponding to different radar-operating
conditions and different applications. Additionally, the pro-
posed framework enables us to augment the data at the motion
synthesis layer. Thus, at the base motion synthesis layer, the
target motion characteristics can be randomized to generate
impartial, unbiased or balanced datasets that can be used to
train radar-based classifiers.

In the proposed simulation framework, the scatterer-level
modelling of the radar signal opens up new avenues of
research for the radar-based classifiers. For instance, different
optimization techniques can be explored to further improve
the quality of the simulated radar signal and ultimately the
simulated radar signatures. Furthermore, the work presented in
this paper can be extended to classify other types of everyday
human activities. The proposed approach can also be used
to actualize other mm-wave radar-based classifiers, such as
gesture recognition. We anticipate that the proposed end-to-
end simulation framework will empower future radar-based
classifiers with enhanced capabilities. We plan to extend the
proposed simulation framework to multiple-input multiple-
output radar systems incorporating multi-directional HAR.
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