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Abstract—In recent years, the rise of location-based service
applications such as cashier-less shopping, mobile advertisement
targeting, and geo-based augmented reality (AR) has been re-
markable. These applications offer convenient and interactive
experiences by utilizing indoor localization technology. One
popular research area in indoor localization is passive finger-
printing localization based on Channel State Information (CSI),
which uses general-purpose Wi-Fi platforms and “unconscious
cooperative sensing” to achieve device-free localization. However,
existing studies face challenges related to inadequate fingerprint
richness, limited distinguishability, and inconsistent fingerprint
features in real-world dynamic environments. To address these
challenges, we prpose MFFLoc in this paper. MFFLoc extracts
and processes amplitude and phase information from CSI in a
2D manner. It then fuses the amplitude and phase information
using multimodal fusion representation, resulting in rich and
distinguishable fused fingerprint features. This approach allows
MFFLoc to achieve satisfactory accuracy with just one commu-
nication link, reducing deployment costs. To overcome the issue
of inconsistent fingerprint features in dynamic environments,
MFFLoc proposes an unsupervised domain adaptation method.
It employs a dual-flow structure, with one flow operating in
the source domain and the other in the target domain. The
adaptation layer, with correlated weights, remains unshared
between the two flows. Meta-learning is also used to automatically
determine the most suitable adaptation layer. Through extensive
6-day experiments conducted in a dynamic indoor environment,
MFFLoc showcases superior performance compared to state-of-
the-art systems. It demonstrates higher localization accuracy and
robustness, making it a promising solution for indoor localization
applications.

Index Terms—Channel State Information (CSI), Device-free
Passive Indoor Localization, Fingerprinting, Unsupervised Do-
main Adaptation.

I. INTRODUCTION

IN recent years, as society advances and technology rapidly
evolves, there’s a growing demand for safe, intelligent in-

door environments. Real-time indoor localization and sensing,
combined with smart technology, can enhance personalized
services, automation, safety, and comfort [1]. Indoor people
location awareness technology is now essential, shaping work,
personal life, and new industries. Wi-Fi-based Device-free
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Passive Localization (WDFL) detects and locates targets by
analyzing Wi-Fi signal changes, offering cost-effective, wide-
reaching applications without needing specific devices [2]–[4].
While Received Signal Strength (RSS) is widely available and
adaptable, it lacks precision due to multipath fading and device
diversity, hindering its effectiveness in cost, granularity, and
accuracy for localization [5]–[8].

The release of the IEEE 802.11n standard has facilitated
the accessibility of Channel State Information (CSI) [9]. CSI
offers fine-grained signal data, with each set encompassing
amplitude and phase details of individual Orthogonal Fre-
quency Division Multiplexing (OFDM) subcarriers [10]. In
contrast to RSS, CSI presents a more comprehensive portrayal
of the wireless environment, enabling effective characteri-
zation of multipath propagation in indoor wireless signals
and the sensitive detection of multipath signal variations.
Consequently, CSI holds the potential to significantly enhance
wireless sensing sensitivity, extend operational range, and
augment overall reliability [11], [12]. In recent times, CSI-
based device-free passive localization has garnered promi-
nence as one of the most practical and convenient approaches
for addressing indoor personnel localization and sensing chal-
lenges. It mainly can be classified into two main categories:
radio signal propagation model-based solutions [13]–[15], and
fingerprint-based solutions [16]–[22]. Radio signal model-
based solutions employ statistical models to estimate a user’s
location using CSI measurements, eliminating the need for
fingerprint databases and reducing site surveys. However,
accurate modeling is challenging due to theoretical limits
and indoor multipath interference. In contrast, fingerprint-
based solutions passively detect a target’s presence through
WiFi propagation changes, offering flexibility and ease of
deployment without pre-measuring AP locations. The CSI-
based device-free passive fingerprinting localization technique
is recognized for its accuracy and feasibility, gaining inter-
est in academia and industry. Nonetheless, it still confronts
numerous challenges in practical applications.

Challenge 1: Many existing CSI-based device-free passive
fingerprinting localization systems struggle to attain high
localization accuracy in dynamic environments and are un-
suitable for large-scale deployment, thereby limiting their
scalability. These systems often rely on amplitude or phase
information extracted from CSI measurement samples as fin-
gerprint features, typically employing simple preprocessing
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or phase calibration. Unfortunately, they frequently overlook
the correlations between multiple CSI measurement samples
over time and across multiple channels, resulting in the loss
of valuable channel-related information. Consequently, CSI-
based location fingerprint features lack richness, necessitat-
ing the deployment of numerous Monitor Points (MPs) and
Wireless Access Points (APs) to achieve a specific level of
positioning accuracy. This substantial increase in deployment
and maintenance costs significantly hinders the widespread
adoption of device-free passive localization technology for
indoor applications.

Challenge 2: Many existing CSI-based device-free pas-
sive fingerprinting localization systems neglect the dynamic
nature of fingerprint features. These systems often assume
that acquired CSI location fingerprints remain valid for an
extended period, an assumption that doesn’t hold in practical
applications. Furthermore, post-deployment, the process of as-
sociating new data (i.e., correlating newly recorded WiFi CSI
readings with location) can be cumbersome and occasionally
infeasible, compromising system robustness and adaptability
to changing environments. While some research focuses on dy-
namic fingerprint localization techniques to mitigate the need
for manual recalibration, they still face challenges, including
high algorithm complexity, manual intervention requirements,
and the inability to simultaneously handle various time scales,
etc. To address these challenges, in this paper, we introduce
MFFALoc, a novel CSI-based device-free passive fingerprint-
ing localization system. For Challenge 1, MFFALoc employs
multi-feature fusion, leveraging a single transmitter-receiver
device (monitoring point) for cost-effective communication. It
analyzes the multi-antenna CSI measurements, utilizes tech-
niques like wavelet domain denoising, and generates a high-
resolution fused fingerprint feature matrix by merging ampli-
tude and phase time-frequency feature matrices. For Challenge
2, MFFALoc incorporates model domain adaptation. It treats
the original environment as the source domain and the changed
environment as the unlabeled target domain. Dual-flow pro-
cessing is adopted for source and target data, with controlled
weight differences between corresponding layers. MFFALoc
uses Maximum Mean Discrepancy (MMD) to measure the
dissimilarity between source and target representations at the
output layer, allowing the localization model to adapt to
environmental changes with updated, unlabeled data.

It is also worth noticng that MFFALoc is different from
our previous work LTLoc [23]. While LTLoc can identify
domain-invariant features using meta-learning and small la-
beled datasets after environmental changes, it relies solely
on independent single CSI features, neglecting the correlation
among CSI samples over time. Additionally, the labeling pro-
cess for new data is labor-intensive and sometimes unfeasible
in practical applications. In contrast, MFFALoc takes a distinct
approach by incorporating both amplitude and phase informa-
tion from multi-channel CSI measurements to construct the
multi-antenna time-frequency feature matrix. It then fuses this
matrix with the phase time-frequency feature matrix to create
the final feature fingerprint. By preserving correlation infor-
mation across multi-channel and time domains, MFFALoc
enhances the richness of CSI location fingerprint features.

Moreover, MFFALoc achieves domain adaptation using un-
tagged data through an explicit analog domain offset within its
dual-flow structure. This approach enables MFFALoc to adapt
to unforeseen environmental changes autonomously, while
maintaining satisfactory localization accuracy.

In summary, the main contribution of this paper can be
described as follows:

1) MFFALoc employs techniques like wavelet domain de-
noising (WDD) to eliminate background features and
environmental noise, enhancing target location features
and generating multi-antenna time-frequency feature
matrices. It uses a feature fusion framework to com-
bine the multi-antenna amplitude-time frequency feature
matrix with the phase-time frequency feature matrix,
resulting in high-resolution fused fingerprint features
that enhance localization accuracy and quality.

2) MFFALoc includes unsupervised domain adaptation,
ideal for real-world deployments. It utilizes a dual-flow
structure where the first flow processes source domain
data, and the second handles target domain data. While
layers in each flow may have distinct weights, con-
straints prevent significant divergence. MFFALoc em-
ploys the Maximum Mean Discrepancy (MMD) metric
to measure the dissimilarity between source and target
representations at the output layer, effectively capturing
the relationship between the domains. Consequently,
the localization model adapts to environmental changes
using updated unlabeled data.

3) We conducted comprehensive testing of MFFALoc
through six days of real-world trials in a congested in-
door dynamic setting. The results demonstrate that MF-
FALoc exhibits a low deployment overhead and achieves
consistent and satisfactory localization accuracy in dy-
namic scenarios, using just a pair of transceivers.

The remainder of this paper is structured as follows. Section
II provides an overview of the existing literature, examining
relevant works in the field. In Section III, we present prelim-
inary aspects of CSI and discuss the inherent inconsistency
problem associated with WiFi fingerprinting. Moving forward,
Section IV outlines the system design and introduces key
definitions, while also presenting detailed information about
the functional modules. In Section V, we conduct real-world
experiments to assess the effectiveness of MFFALoc in various
environmental conditions. Finally, in Section VI, we conclude
this paper and explore potential future directions.

II. RELATED WORKS

In this section, we present a comprehensive review of the
state-of-the-art in device-free passive indoor localization. We
focus on discussing the most relevant works to our research,
specifically the CSI-based Device-free Passive Fingerprinting
Localization and Dynamic Fingerprint Localization. These
works provide valuable insights and serve as the foundation
for our proposed methodology in this study.

A. CSI-based Device-free Passive Fingerprinting Localization
As previously mentioned, CSI-based Device-free Passive

Fingerprinting Localization technology stands as the most
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prevalent Wi-Fi positioning method, representing a promi-
nent trend in the field, with many researchers carrying out
research on it. Liu et al. [16] introduced a device-free indoor
localization method using CSI and a visibility map algorithm
with finite penetrability levels. Their approach involved mod-
eling frequency correlation between subcarriers, constructing a
complex network based on CSI, and using network topology
to analyze relationships among subcarriers. They employed
support vector regression (SVR) for indoor localization in
various environments. Wei et al. [17] implemented a phase
calibration method to mitigate phase shifts caused by im-
perfect synchronization and used a structural similarity-based
enhancement method to extend datasets and obtain additional
fingerprint feature information, enhancing localization accu-
racy. Han et al. [18] developed a defense method using
Convolutional Neural Networks (CNN) to counter device-free
localization attacks. They transformed the localization problem
into an image classification problem and employed CNN for
anomaly detection, enhancing system robustness and security.
Zhang et al. [19] introduced the Integrated Multicore Extreme
Learning Machine (ELM) to optimize spatio-temporal CSI
information for improved localization accuracy in complex
indoor environments. Yan et al. [20] presented a novel method
for constructing radio images based on CSI, using amplitude
measurements along with temporal, spatial, and frequency
domain information to enhance fingerprint features. Zhang et
al. [21] devised an integrated hierarchical framework, the Data
and Knowledge Twin-Driven Large-Scale Device-free Local-
ization (DFL) framework. It addresses complex surveillance
region partitioning and employs a class-specific cost-adjusted
limit learning machine classifier to improve localization. Wang
et al. [22] introduced CiFi, a method that estimates the Angle
of Arrival (AoA) using phase data from CSI. The estimated
AoA image serves as input for an offline deep CNN, enabling
network weight training.

The aforementioned research studies have undoubtedly
made substantial contributions to CSI-based device-free pas-
sive fingerprinting localization techniques. However, they still
fail to effectively address the issue of fingerprint inconsistency.
This limitation can significantly hamper performance when
dealing with dynamic environments, and it also leads to
elevated deployment costs due to the necessity of additional
transmitting and receiving devices.

B. Dynamic Fingerprint Localization

A fundamental assumption in device-free passive finger-
printing localization is that the training data distribution aligns
with testing conditions, allowing for direct application of
offline databases over time. However, real-world environments
change, challenging this assumption. This dynamic finger-
printing issue has prompted research on reducing manual
database updates. The researchers first thought of calibration-
free schemes that combat dynamic fingerprint changes without
manual intervention. Zou et al. [24] used a custom base
station to collect tagged Received Signal Strength (RSS)
measurements and applied Gaussian process regression for
calibration-free localization. Wu et al. [25] reduced RSS

fingerprint uncertainty by analyzing spatial gradients across
multiple locations, enhancing localization reliability. Guo et
al. [26] introduced the concept of fingerprint quality to assess
candidate location reliability and prioritized the highest-quality
location. However, these schemes depend on dedicated devices
and knowledge of base station or access point locations,
limiting their applicability in device-free passive localization
scenarios and posing scalability challenges.

Subsequently, the researchers endeavored to construct and
update the offline database by leveraging user-contributed
fingerprints, i.e., Crowdsourcing shcemes. Rai et al. [27] used
smartphone inertial sensors for a PDR-assisted crowdsourcing
approach. Jung et al. [28] proposed an optimization scheme
relying on untagged crowdsourced fingerprints to estimate
positions. Zhao et al. [29] used multi-dimensional scaling to
transform raw RSS data into a spatial representation for a
comprehensive fingerprint database. Wan et al. [30] introduced
a self-calibrating indoor positioning framework combining Wi-
Fi ranging, crowdsourced fingerprinting, and low-cost sen-
sors, achieving accurate multi-source fusion. However, these
schemes require manual user device intervention, making
them unsuitable for device-free passive localization. Privacy
concerns also arise as user-provided samples may disclose
sensitive location information, limiting their applicability in
privacy-sensitive scenarios.

Clearly, neither calibration-free nor crowdsourcing schemes
find applicability in the domain of device-free passive posi-
tioning due to the aforementioned drawbacks. Consequently,
researchers have shifted their focus to calibration-reduction
schemes and have done numerous relevant studies. For ex-
ample, Chen et al. [31] introduced Fidora, a WiFi-based
system addressing fingerprint inconsistency challenges through
domain adaptation and clustering. Li et al. [32] proposed a
dynamic fingerprint adaptation framework, requiring minimal
human intervention for indoor localization. Chen et al. [33]
presented a few-sample migration learning system, reducing
data collection and labeling costs while achieving accurate
localization. Chen and Chang [34] used Generative Adver-
sarial Networks (GANs) to augment their dataset. Khatab et
al. [35] trained autoencoders with unlabeled data to update
the fingerprint database. Zhou et al. [36] introduced the
AdapLoc method, employing domain adaptation and semantic
alignment to reduce recalibration needs while maintaining
accuracy. However, these efforts often involve complex feature
homogeneity handling, requiring training of feature spaces
or encoders before localization, adding complexity to the
algorithms. Moreover, they may struggle with addressing chal-
lenges across different time scales effectively.

In summary, due to the rapid advancement of wireless com-
munication technology and the widespread adoption of mobile
smart devices, CSI-based device-free passive fingerprinting
localization technology has emerged as a prominent solution
among indoor localization field. It is considered a viable
approach to meet current universal requirements. However,
challenges, as outlined in Section I, persist for CSI-based
device-free passive fingerprint localization techniques, partic-
ularly in the areas of fingerprint characterization, fingerprint
inconsistency and deployment consumption.
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III. PRELIMINARIES

A. Channel State Information

Wi-Fi signals utilizing the IEEE 802.11n communication
protocol employ OFDM modulation. OFDM serves as a
technique for encoding digital data onto multiple carriers at
varying frequencies, and it has gained extensive adoption in
wireless communications. This method partitions the channel
into several orthogonal sub-channels, converting the high-
speed data stream into a low-speed parallel data stream at
the transmitter. Subsequently, it modulates the corresponding
sub-channel for transmission. Upon reception, the signal is
demodulated at the receiver and restored to its original data
form. Recent advcances in wireless communications have
facilitated the acquisition of a sampled version of the Channel
Frequency Response (CFR) from a readily available commer-
cial off-the-shelf (COTS) Wi-Fi Network Interface Card (NIC).
The extracted sampled CFR is commonly represented as a
sequence of complex numbers, containing information about
the amplitude and phase of individual subcarriers:

H(fi) = ||H(fi)||e∠H(fi) (1)

where H(fi) is a CFR sample of the ith subcarrier, with
||H(fi)|| and ∠H(fi) denote its amplitude and phase re-
sponse, respectively. CFRs sampled at different subcarriers are
generally treated as one CSI sample, which can be expressed
as H = {H(fi) | i ∈ [1, N ]}, where N is the total number of
subcarriers.

It is noteworthy that the CSI data varies depending on
the specific tool utilized. Two commonly used tools are the
Intel 5300 NIC CSI Tool [9] and the Atheros CSI tool
[37]. The Intel 5300 NIC CSI Tool is designed around the
Intel WiFi Wireless Link 5300 802.11n MIMO radio, incor-
porating modified firmware and open-source Linux wireless
drivers. This tool leverages the capabilities of the IWL5300
to provide 802.11n CSI with 30 subcarrier groups. A CSI
record generated by this tool is represented as an M × 30
matrix, where M denotes the number of transmit and receive
antenna pairs. The Atheros CSI tool, on the other hand, is an
open-source 802.11n measurement and experimentation tool.
It enables the extraction of detailed Physical Layer (PHY)
wireless communication information from Atheros WiFi NICs,
encompassing CSI, received packet payload, and other relevant
data (such as timestamp, RSSI per antenna, data rate, etc.).
The tool is theoretically compatible with all types of Atheros
802.11n WiFi chipsets. The CSI record is represented as an
M × 56 matrix when operating with 20 MHz subcarriers and
an M × 144 matrix when operating with 40 MHz subcarriers.
Here, M represents the number of transmit and receive antenna
pairs. In this study, we employed the Intel 5300 NIC CSI
Tool for CSI data collection. The setup consisted of one
transmitting antenna and three receiving antennas. As a result,
the CSI sample matrix for a single packet is represented
as a 1 × 3 × 30 matrix, taking into account the number
of transmitting antennas, receiving antennas, and subcarrier
groups.

When the target is located within the localization area, it
influences the propagation of the radio signal, resulting in

phenomena like diffraction and refraction. These alterations
subsequently cause changes in the CSI. Our previous studies
[38], [39] have confirmed that both the amplitude and phase
information obtained from CSI exhibit variations depending
on the target’s location. Based on this fact, the CSI-based
device-free passive fingerprinting localization solutions extract
the amplitude and phase information from CSI, which are used
as fingerprint features after certain processing, and predicts the
target’s location by comparing the fingerprint features derived
from recent CSI measurements with previously collected fin-
gerprints through the matching algorithm, as depicted in Fig. 1
. These solutions generally involve two distinct phases: offline
and online. In the offline phase, CSI measurements are col-
lected while the target is located at a known position within the
localization area. Then, the fingerprint features are extracted
from the recorded CSI readings, and these features, along
with their corresponding known locations, are consolidated to
establish a fingerprint database. Moving to the online phase,
a matching algorithm is employed to compare the fingerprint
features extrcted from the current CSI measurements obtained
from unknown locations with the fingerprint features stored in
the fingerprint database. The algorithm determines the closest
match between the current fingerprint features and the existing
fingerprints, ultimately returning the predicted position of the
user.

Offline Phase

CSI Fingerprint Database

Online  Phase

Matching Algorithm

(xe,ye)

Location estimation

CSI measurements of 
unknown location Pre-processing Feature Extraction

CSI measurements of 
known location Pre-processing Feature Extraction

Access Point

Monitor Device

Training points

Access Point

Monitor Device

Unknown Location

Fig. 1. Illustration of CSI-based Device-free passive fingerprinting localiza-
tion solutions.

B. CSI Fingerprint Inconsistency Problem

Previous studies conducted [23], [38], [39] have provided
evidence that CSI fingerprints exhibit sensitivity not only to
the presence and location of the target but also to variations
in the surrounding physical environment. Even if the target
remains in a stationary position, the CSI fingerprints can still
undergo variations over time, which are primarily attributed
to changes in the surrounding environment, such as Open and
close doors, move tables and chairs, and other environmental
conditions. In this paper, we refer to this problem as WiFi
fingerprint inconsistency. At the first blush, it may appear that
the solution to this problem is straightforward. One possible
approach would be to gather a large number of fingerprints
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and utilize them to train a system capable of encompassing all
possible fingerprint variations. Indeed, collecting an exhaustive
set of fingerprints at a (sub)metre resolution to account for
all possible environmental changes is a daunting and time-
consuming task. The sheer number of potential variations in
the wireless environment makes it impractical and resource-
intensive to collect and include every single fingerprint in the
database. Another plausible approach involves marking new
CSI fingerprints whenever there is a change in the environment
and utilizing these marked data to update or retrain the
deployed localization system. However, this approach also
presents challenges. To mark data for environmental changes,
it is necessary to first confirm that a change has indeed
occurred. This process can be cumbersome and impractical
to implement in real-world scenarios. Additionally, marking
new CSI fingerprints requires manual entry or collection of
real position information from auxiliary systems, which can
ntroduce further difficulties such as ensuring the accuracy
and fidelity of the position information, as well as addressing
synchronization issues between different systems. Therefore,
while this approach may seem reasonable in theory, its prac-
tical implementation poses significant difficulties.

IV. MFFALOC DESIGN OVERVIEW

To overcome the above challenges, in this section, we pro-
pose the MFFALoc system, and elaborate on the system design
and implementation. The system overview is represented with
an illustration in Fig. 2.

CSI Collection

Localization Area

Amplitude 
Sanitization

Parameter Training

Test CSI Collection

Estimated Locations

Unlabeled CSI Collection

Data Pre-processing

Unsupervised Domain Adaptation

Phase
Sanitization

Amplitude-
only matrix

Phase-only 
matrix

Multimodel Fusion 
Representation

Data 
Pre-

proce
ssing

Convolutiaonal Neural 
Network (LcNet)

Adaptive Environment Changes

Data Pre-processing

Fig. 2. Overview of the MFFALoc system.

It can be seen, the MFFALoc system comprises a singular
router (AP), a receiver equipped with an Intel NIC 5300 board.
These components collectively establish a solitary communi-
cation link, forming the deployment of a minimal localization
system. The key implementation factor of the system lies in the
comprehensive utilization of signal reflections from multiple
antennas on the receiver, which facilitates a more profound
understanding of channel fluctuations caused by objects within
the sensing area. Specifically, it performs in-depth analysis
of the amplitude and phase information extracted from the

multi-antenna CSI measurements, applies wavelet domain de-
noising (WDD) and other processing techniques to eliminate
background features and environmental noise, emphasizes the
target location features, and generates the multi-antenna time-
frequency amplitude feature matrix and multi-antenna time-
frequency phase feature matrix, respectively. Subsequently, it
fuse the above two matrices through a multimodel fusion rep-
resentation framework to convert the potential spatial features
within them into a feature map in the spatial domain ultimately
yielding high-resolution fused fingerprint features. Finally, it
is correlated with known locations and utilized to train the
localization model, which in MFFALoc refers to a CNN
model. Another crucial factor in the implementation of the
MFFALoc system is the utilization of an unsupervised domain
adaptation algorithm to solve the fingerprint inconsistency
problem so that it can automatically adapt to environmental
changes, ultimately achieving high granularity and robust
indoor device-free passive localization.

A. Data Pre-processing

1) Amplitude and Phase Sanitization: Affected by the
complex multipath environment indoors, the raw CSI mea-
surements contain anomalous samples with multipath super-
position and noise effects, which can affect the training of
the localization model and lead to significant degradation of
the localization performance. Hence, it becomes imperative to
preprocess the acquired CSI data. Specifically, the amplitude
data extracted from the CSI measurements undergo denoising
firstly. While ordinary filters can eliminate some noise, they
tend to compromise signal integrity. Therefore, in order to ad-
dress this issue effectively, Wavelet Domain Denoising (WDD)
is employed in the MFFALoc system for processing the
collected CSI amplitude. Upon wavelet transformation of the
signal, the resulting wavelet coefficients encapsulate crucial
information. By selecting an appropriate threshold, wavelet
coefficients exceeding the threshold are deemed as signal and
retained, while those below the threshold are regarded as noise
and eliminated by setting them to zero for denoising purposes.
Although wavelet domain denoising can be largely considered
as a form of low-pass filtering, it surpasses traditional low-
pass filtering by effectively preserving the characteristics of
the denoised signal [40]. It is evident that wavelet domain
denoising is essentially a fusion of feature extraction and low-
pass filtering, as illustrated in Fig. 3.After the noise-containing
signal is input, it undergoes another round of low-pass filtering
in the feature extraction stage. The processed signal is then
reconstructed with the feature signal to obtain the final result.
The noisy signal can be represented as equation 2:

S(k) = f(k) + ε·e(k) (2)

where S(k) denotes the noisy signal, f(k) is the useful signal
we want, e(k) denotes the noise, and ε· denotes standard
deviation of the noise cofficient.

Subsequently, we proceed to process the raw phase data
extracted from the CSI measurements. Due to the lack of
time synchronization, the raw phase information may contain
random errors and environmental noise. As a result, it cannot

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3339797

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Noisy Signal

Feature Extraction

Low Pass Filter

Signal Reconstruction

Fig. 3. Illustration of Wavelet Domain Denoising (WWD).

accurately describe the corresponding position information and
is therefore unuseable. We need to calibrate the raw phases
using the phase calibration algorithm proposed in [41] to
obtain stable and usable calibrated phase data. The calbrated
phase can be expressed as equation 3 below:

φ̂i =
∼
φi − kmi − b =

∼
φi −

∼
φ30 −

∼
φ1

m30 −m1
mi −

1

30

30∑
j=1

∼
φj (3)

where φ̂ is a calibrated phase sample we want,
∼
φ is a raw

phase sample, i, j are the subcarrier number, k, b are the
slope and variance of the linear transformation, mi is the
index of subcarrier (see Table 7 − 25f on page 50 of IEEE
802.11n − 2009 standard [42]). The instability of the phase
data is effectively reduced by the linear transformation and the
raw phase data is converted into analysable calibrated phase
data.

After the above processing, the denoised amplitude and
the calibrated phase information can better describe the infor-
mation of each training location and improve the fingerprint
richness.

2) Multimodel Fusion Representation: After the amplitude
and phase Sanitization, they are used to construct the multi-
antenna time-frequency amplitude feature matrix and multi-
antenna time-frequency phase feature matrix. This construc-
tion aims to preserve their correlation not only in terms
of timing but also across multiple channels. The raw CSI
data are complex values of 30 subcarrier frequencies and
transmitted between 1 transmitter antenna and 3 receiver
antennas (as described in Section III-A above), and the multi-
antenna amplitude and phase time-frequency feature matrices
constructed by combining 30 consecutive amplitued and phase
samples at the 30 subcarrier frequencies are a 3 × 30 × 30
amplitude tensor and a 3×30×30 phase tensor. These tensors
have 3 channels just like images, which are facilitate the
subsequent processing of the multimodal fusion representation
model. To enhance the learned representations and capitalize

on the complementary and redundant nature of the amplitude
and phase features, we employ pixel-level multimodal fusion.
This multimodal fusion representation combines multi-antenna
time-frequency amplitude feature matrices and multi-antenna
time-frequency phase feature matrices of a common training
point. The objective is to leverage the multi-feature informa-
tion contained in the CSI, thereby obtaining the final high-
resolution fused fingerprint feature representations. It enables
us to make optimal use of the available CSI data and exploit
the synergistic benefits of integrating both amplitude and phase
features. This comprehensive process is illustrated in Fig. 4,
providing a detailed explanation and visualization for better
understanding.

The fusion process commences by extracting potential CSI
space features through two separate encoders. One encoder
processes the amplitude tensor, while the other manages the
phase tensor. Both tensors possess dimensions of 3× 30× 30
(3 receiving antennas, 30 consecutive samples, 30 subcar-
rier frequencies). The amplitude and phase tensors undergo
expansion and are individually subjected to Multiple Layer
Perceptrons (MLPs) to acquire their respective CSI poten-
tial space features. The one-dimensional features from these
encoding branches merge and enter another MLP for fea-
ture fusion. Subsequently, these CSI potential space features
undergo transformation into a spatial domain feature map.
The fused one-dimensional features reshape into a 24 × 24
two-dimensional feature map. Spatial information extraction
involves two convolutional blocks with a kernel size of 9× 9,
a stride of 1, and no padding, yielding a more compressed
feature map with spatial dimensions of 6 × 6. To match
the input dimensions commonly used in CNN networks,
considering computational complexity and feature richness,
four inverse convolutional layers with a kernel size of 6× 6,
a stride of 1, and no padding, are employed to upsample
the low-dimensional encoded feature maps to dimensions of
3×30×30. This prepares them for input into the localization
CNN model, ultimately producing the desired high-resolution
fused fingerprint features.

B. Localization Model Structure

In the MFFALoc system, the localization task is treated as
a regression task. The objective is to train the parameters of
a CNN network using the high-resolution fused fingerprints
obtained from the training points, along with their correspond-
ing coordinates. The aim is to enable accurate prediction of
the target location when provided with an unknown location
fingerprint. This regression-based approach allows the CNN
network to learn the spatial relationships and patterns present
in the high-resolution fused fingerprints, enabling accurate
localization predictions.

Fig. 5 depicts the architecture of LC-Net, the CNN utilized
for localization in our MFFALoc. The LC-Net primarily com-
prises three Convolutional (Conv) blocks. Each Conv block
is composed of convolutional layers followed by LeakyReLU
activation layers. These Conv blocks play a crucial role in
extracting relevant features from the input data by apply-
ing convolutional operations and incorporating non-linearity
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Fig. 4. Multimodal Fusion Representation Process. Two encoders extract the features from the amplitude and phase in the CSI domain. Then the features
are fused and reshaped before going through an encoder-decoder network. The output is a 3× 30× 30 feature map in the image domain.

through the LeakyReLU activation function. The combination
of these Conv blocks enables LC-Net to learn and capture
meaningful spatial patterns and relationships within the fused
fingerprints, facilitating accurate localization predictions. Fol-
lowing the execution of a series of Conv blocks, LC-Net
employs two fully connected layers to obtain the position
coordinates. It is important to highlight that our LC-Net does
not incorporate pooling operations. The decision to exclude
pooling operations stems from the fact that each pixel in
the obtained high-resolution fused fingerprint features contains
detailed positional information. Applying pooling operations
would potentially blur or distort these fine-grained positional
features. Moreover, pooling operations are downsampling,
which can result in the loss of valuable information [43]. By
omitting pooling operations, LC-Net preserves the intricate
positional details within the fused fingerprints, allowing for
more precise localization. This design choice ensures that
the network can leverage the full potential of the positional
features present in the high-resolution fused fingerprints.

In the LC-Net, the fully connected layers are Gaussian
distribution initialization (std = 0.005), bias are constant
initialization (0.1). During training, the learning rate is ini-
tialized to 0.0001, the batch size N is 25, the training epochs

Conv Block (64)

Conv Block (128)

Conv Block (256)

FC‐128

High‐Resolution Fused 
FingerprintsInput

Output ˆ ˆ（x,y）

Conv Block (n)

Convolutional Layer
Kernel Size: 3x3

Stride: 1
Padding: 1
LeakyReLU

Fig. 5. The architecture of LC-Net.

Nepochs = 100, the Optimization is SGD and the loss fuction
is the MSELoss (Mean Square Error Loss), which can be
expressed as:

l =
1

N

N∑
n=1

(xn − x̂n)
2
, (4)

where xn and x̂n are the label and output of the LC-Net,
respectively.

C. Unsupervised Domain Adaptation

Once the LC-Net is trained with the fingerprint database,
it establishes a mapping relationship between the fingerprint
features and coordinates at each training point. Changes in
the fingerprint features can significantly degrade the model’s
localization performance. However, the knowledge relevant
to the task can still be extracted from the feature space of
its middle-hidden layer. Therefore, the core concept of the
MFFALoc system is to ensure that the deep network adapts to
the localization task when the fingerprints change. The weights
should be correlated but different for each of the two networks,
one for the localization task before the fingerprint change and
the other after. Essentially, this represents a domain adaptation
problem within the field of transfer learning. Consequently,
we can selectively share the parameters of the corresponding
layers in the CNN model through the unlabeled data after
fingerprints changed, which not only reduces the training
complexity but also improves the transfer results compared
to other similar approaches.

To achieve our objective, we propose a novel unsupervised
domain adaptation method that incorporates a dual-flow struc-
ture, as illustrated in Fig. 6. One flow operates on the source-
domain training set, referred to as the Fingerprint Database,
while the other is applied to the target-domain training set,
consisting of unlabeled samples. Both networks are trained
jointly. We introduce meta-networks for transfer learning,
which serve the purpose of automatically determining the
source layers of the source model that are valuable and perti-
nent for learning the target task. While allowing the weights of
the relevant layers to differ between the two networks, we also
aim to ensure that they do not diverge excessively. Moreover,
we leverage the Maximum Mean Discrepancy (MMD) [44]
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Fig. 6. Our dual-flow structure in the unsupervised domain adaptation method.

between the representations of the corresponding layers be-
tween two networks to enable us to reach the fact that, the two
domains are related, despite their differences. In this context,
we refrain from employing a domain classifier [45] despite
its potential for superior results. This decision is motivated
by the hard practical challenge of obtaining accurate domain
labels, particularly those indicating environmental changes.
MFFALoc relies solely on unlabeled data, devoid of class
labels and domain labels, enabling MFFALoc to effectively
handle unpredictable environmental changes without human
intervention.

Let XS =
{
XS

i

}NS

i=1
and XT =

{
XT

i

}NT

i=1
denote the

datasets from the source and target domains, respectively,
Y S =

{
ySi

}NS

i=1
denote the source domain labels. Additionally,

we use ΘS =
{
θSi

}
and ΘT =

{
θTi

}
to indicate the weights

and bias parameters of all layers in the source and target
networks.

1) Weights Regularization: Although we allow the weights
of the relevant layers to differ between the two networks, we
also want to prevent them from being too far apart in advance.
This reflects the fact that the source and target domains are
correlated, and prevents overfitting in the target flow when
only a few samples are available. Therefore, we design a
weight regularize rw that represents the distance between the
weights of two flows in a given layer. We can apply it directly
to the difference between these weights, so it can be written
as:

rw
(
θSj , θ

T
j

)
=

∥∥θSj − θTj
∥∥2
2
, j ∈ Ω (5)

where rw denotes the loss between the corresponding layers
of two flows, and it works only on the set Ω of layers whose
parameters are not shared. However, it does not take into
account the different ranges of means and values in the two
types of data, which affects the representation differences.

To better represent this difference and introduce more flexi-
bility, we propose to take into account the linear transformation
between the weights. Then, we set our regularize as the
exponential form, and write as:

rw
(
θSj , θ

T
j

)
= exp(

∥∥ajθSj + bj − θTj
∥∥2)− 1, j ∈ Ω (6)

aj and bj are hyperparameters of each layer j ∈ Ω and learned
with all other network parameters during training.

In the domain adaptation task at hand, it is important to note
that not all layer pairs of the source model may contribute
significantly to learning the target task. To prioritize the
utilization of useful layer pairs, we employ a weighted feature
matching loss. This loss function enables us to emphasize
specific layer pairs based on their relevance to the target task,
the regularization can be expressed as:

Lw =
∑
Ω

λjrw(θ
S
j , θ

T
j ), j ∈ Ω (7)

where λj ≥ 0 is the weight of transfer layer i with∑
Ω

λi = 1, i ∈ Ω. As the significance of the layers to be

transferred can vary for each sample, we introduce a dynamic
way by setting the layer weight as a function. Specifically,
we utilize the softmax output of a small meta-network, which
takes the characteristics of the source model as input:

λ = {λi} = giϕ(θ
S
i ), i ∈ Ω (8)

where ϕ are the parameters of meta-network.
2) Domain Discrepancy: In addition to constraining the

difference in weights of the corresponding layers in the two
flows, we need to learn a domain-invariant final representation,
which is the feature before the output layer. In this way, we can
try to ensure that the estimated coordinates of the final output
are as similar as possible in both flows. Our goal is to minimize
the distance between the representations of the source and
target domain by minimizing the Maximum Mean Discrepancy
(MMD). It is one of the most widely used loss functions
in Domain Adaptation and is primarily used to measure
the distance between two different but related distributions.
By mapping each sample to a Reproducing Kernel Hilbert
Space (RKHS) and calculating the distance between the two
means, the difference between the higher-order moments of
the distributions is obtained and its maximum value is used
as the distance measure of the two distributions. In our case,
let wS

i = f(ΘT , xS
i ) and wT

i = f(ΘT , xT
i ) be the feature

representations of the last layer in the source and target
streams, respectively. Then, the squared MMD can be written
as:

MMD2(Φ, S, T ) =

∥∥∥∥∥∥ 1

NS

NS∑
i=1

φ(wS
i )−

1

NT

NT∑
i=1

φ(wT
i )

∥∥∥∥∥∥
2

H

(9)

where φ(·) is the mapping function. Simplifying Eq. (4) and
replacing the inner product using the standard RBF kernel
k(u, v) = e−∥u−v∥2/σ, σ = 1, finally obtain the rewriting
squared MMD, and thus our domain discrepancy regulariza-
tion is:

LD = rd(Θ
S ,ΘT |XS , XT ) =

∑
i,i′

k(wS
i , w

S
i′)

NS ∗NS
−

2
∑
i,j

k(wS
i , w

T
j )

NS ∗NT
+

∑
j,j′

k(wT
j , w

T
j′)

NT ∗NT

(10)
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Finally, we can obtain a total loss function L to train the
parameters ΘS and ΘT of the source and target flow, and it
can be expressed as:{

ΘS
∗ ,Θ

T
∗
}
← argminΘS ,ΘTL (11)

L = LS + LW + LD (12)

where LS is the standard MSE losses of the source flow.
In order to learn the target flow model parameters, we

first initialize the weights of the target flow using the source
weights trained in the offline training stage. Specifically, the
parameters aj and bj for each layer j ∈ Ω are initialized to
aj = 1 and bj = 0, representing a constant transformation.
These parameters are then learned jointly via backpropagation
with the target flow network. The meta-networks consist of 1-
layer fully-connected networks, specifically designed for each
layer pair between the source and target network. They take the
intermediate features of the i-th layer of the source network
as input and aim to learn the corresponding λi as outputs.
To ensure the validity of λi, softmax functions are employed,
satisfying the constraint

∑
Ω λi = 1, i ∈ Ω. Subsequently, all

parameters of both flows are optimized jointly by minimizing
the loss defined in Eqs. (11), (12) via backpropagation using
Adam with a learning rate of 0.001. Considering that our
meta-network has a limited influence on L, primarily through
the regularization term LW , therefore, updating ϕ using the
gradient ∇θL can be challenging. To overcome this limitation,
we suggest the following training scheme:

1) Minimize LW by updating ΘS ,ΘT once.
2) Minimize LD by updating ΘS ,ΘT once.
3) Calculate L and minimize it by updating ϕ.
Algorithm 1 shows the specific process of the training

programme for the two-stream structure.

Algorithm 1 Dual-flow Structure Training Process
Require: Training set: The fingerprint database DT , The

unlabelled test set DS , The set Ω of layers whose parameters
are not shared, Learning rate η.
Initialize hyperparameters aj and bj for each layer j ∈ Ω
to 1 and 0, respectively.
repeat

Random choose a batch BS ⊂ DS and another batch
BT ⊂ DT both with quantity B, and input them into
the dual-flow structure ΘS for BS , and ΘT for BT ,
respectively.
Update θS by using∇θS

1
B

∑
(x,y)∈BS ,BT

Lw

(
θS |x, y, ϕ

)
Update θT by using∇θT

1
B

∑
(x,y)∈BS ,BT

Lw

(
θT |x, y, ϕ

)
Update aj and bj by using
∇aj ,bj

1
B

∑
(x,y)∈BS ,BT

Lw

(
θT |x, y, ϕ

)
Update θS by using∇θS

1
B

∑
(x,y)∈BS ,BT

LD

(
θS |x, y, ϕ

)
Update θT by using∇θT

1
B

∑
(x,y)∈BS ,BT

LD

(
θT |x, y, ϕ

)
Update ϕ by using∇ϕ

1
B

∑
(x,y)∈BS ,BT

L
(
ϕ|x, y, θS , θT

)
until done

V. PERFORMANCE AND EVALUATION

This section presents the experimental settings and method-
ology employed in this study, followed by a detailed discussion

on the performance evaluation and analysis of the proposed
MFFALoc system. Furthermore, we implemented a prototype
of the MFFALoc system using commercial WiFi devices
and conducted extensive experiments in a dynamic indoor
environment. To ensure thorough evaluation, we continuously
assessed the localization performance for a period exceeding
6 days.

A. Experiment Evaluation
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Fig. 7. Layout of the meeting room for training/test positions

1) Environment Devices and Data Collection: For evaluat-
ing the MFFALoc system, we utilized a TP-LINK WR841N
router as a transmitter to continuously transmit wireless sig-
nals, while a laptop running Ubuntu 14.04 OS and equipped
with an Intel 5300 NIC served as the receiver for capturing raw
CSI measurements. The experiments were conducted in a typi-
cal conference room, which served as the indoor environment.
This scenario was consistent with our previous work [29]. The
conference room had a total area of 120 m2 and featured a
large conference table at the center, surrounded by stools and
cabinets. In this setup, we evenly distributed 56 training points
(RPs) and 20 test points (TPs) throughout the open space, as
depicted in Fig. 7. To collect the CSI information, we used
CSI Tools to continuously capture CSI measurements while
the target was positioned at each training point. The TP-LINK
router transmitted data at a rate of 100 packets per second,
utilizing a single antenna. On the other hand, the Intel 5300
NIC had three receive antennas, each capable of capturing 30
subcarriers. Consequently, it was possible to obtain 30×3 CSI
measurements per packet. During the data collection phase, we
gathered approximately 15000 CSI measurements, equivalent
to 150 seconds of CSI information per training point and
1500 CSI measurements, equivalent to 15 seconds of CSI
information per test point. During the data acquisition process,
the volunteer had the freedom to move naturally, engaging in
actions such as turning, stretching, and crossing arms, as long
as they remained at one of the designated training or testing
points. The hardware processing speed limited the transmit
rate to 100 packets per second. Due to hardware limitations,
it is important to note that attempting to transmit data at higher
rates may result in packets capturing fewer than 30 subcarriers
of CSI measurements. Upon conversion into high-resolution
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fingerprint features, we obtained 500 fingerprint matrices for
each training point and 50 fingerprint matrices for each test
point.

2) Environment Changes: To investigate the impact of
environmental changes, we conducted a 6-day experiment. On
the first day, we collected CSI measurements from all training
and test points according to the aforementioned data collec-
tion setup. Subsequently, we intentionally introduced various
common daily environmental changes, including actions such
as opening and closing doors, repositioning chairs, and even
moving cabinets. These changes were implemented as part of
the normal usage of the conference room, and we collected
CSI measurements from all test points accordingly. It is
crucial to emphasize that we did not label these environmental
changes. Therefore, all the collected data, including the CSI
measurements, lack both class labels and domain labels.

To comprehensively assess the performance of our MFFLoc
system in real-world scenarios, we conducted numerous per-
formance evaluation tests on its design. The training dataset
employed for each experiment, the target-domain unlabelled
training dataset utilized for the unsupervised domain adapta-
tion approach, and the corresponding test dataset are meticu-
lously presented and described in detail at the outset of each
subsection.

B. Comparative Evaluated Systems

To avoid be mixing apples and oranges, we exclusively
evaluated device-free passive fingerprinting localization sys-
tems that do not require any labels. In order to provide a fair
comparison with state-of-the-art work, we made appropriate
modifications to some of the existing systems.

1) MFFALoc is our system proposed in this work.
2) Fidora [31] is the latest work that builds upon exist-

ing methods utilizing unsupervised domain adaptation
structures. It incorporates both a data enhancer and a
domain-adaptive classifier, enabling it to adapt to new
data samples and consider variations in user body size.
To ensure a fair comparison, we adjusted the final output
position of Fidora from classification to regression,
aligning it with the same approach used in MFFALoc.

3) MSDFL [38] is a notable example of existing fingerprint
update methods. It does not rely on class labels or
domain labels as input. Instead, it utilizes an empty
localization region as an indication of a domain change.
Once an empty room state is detected, all subsequent
data collected is automatically labeled with the new
domain label. To update the CSI fingerprint database,
MSDFL employs a polynomial mapping function.

4) CiFi [22] is a representative example of a CNN-based
localization system. It leverages the phase data from CSI
to estimate the Angle of Arrival (AoA)of wireless sig-
nals. The estimated AoA image is subsequently utilized
as input to an offline deep CNN, where the network
weights are trained. To ensure a fair performance com-
parison, we employ the same CNN architecture with
the MFFALoc. CiFi serves as a benchmark to evaluate
and compare the performance of various techniques

in processing and addressing the challenges posed by
fingerprint variations.

C. Localization Performance Evaluation and Discussion

To assess the effectiveness of the proposed system in
terms of robust localization under daily environmental vari-
ations, we conducted thorough evaluations of the localization
performance of MFFALoc and other comparative systems.
Additionally, we evaluated the robustness of MFFALoc un-
der various indoor environment variations. Through extensive
experimentation and analysis, MFFALoc has demonstrated
superior performance compared to state-of-the-art works in
predicting target locations, particularly in complex indoor
scenarios. The detailed performance analysis of the MFFALoc
system is provided below.

1) Overall Performance Evaluation: Initially, we evaluate
the performance of the proposed MFFALoc system using the
CSI measurements collected from all the test points over a
period of 6 days. In this experiment, we utilized the Channel
State Information (CSI) measurements of the training points
collected on the first day as the source domain training data.
Additionally, the CSI measurements of the test points collected
over the course of the six days were employed as the target
domain unlabelled training data in the domain adaptation
method, as well as the test data. The ratio between the target
domain training data and test data was 3:7 respectively.
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Fig. 8. The Mean Localization Error for each system

Fig . 8 illustrates the mean localization error for each system
using the CSI measurements collected from all the test points
over a period of 6 days. The MFFALoc system achieves
the mean localization error of 1.21m under various indoor
environmental variations. This represents an significantly im-
provement of 21.9% and 43.7% in accuracy compared to the
mean localization errors of 1.55m for Fidora and 2.15m for
MSDFL, respectively. And the CiFi system struggles to handle
numerous environmental changes, resulting in the worst mean
localization error of 2.65m.

Fig . 9 presents the cumulative distribution functions (CDFs)
of the location estimation errors, which represent the bias be-
tween the localization result and the ground truth. It is evident
from the plot that the 90th percentile localization accuracy
of MFFALoc is approximately 2.1m, which is 19.2% higher
than Fidora’s 90th percentile accuracy of around 2.6m, and
40% higher than MSDFL’s 90th percentile accuracy of 3.5m.
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Furthermore, the max localization error of the MFFALoc
system is also much lower than other systems.

The localization results of the MFFALoc system can be
attributed to the following key factors:

1) Data Preprocessing: The MFFALoc system utilizes a
data preprocessing method that combines both amplitude
and phase information from CSI. This approach allows
for the generation of high-resolution fused fingerprint
features, enhancing the richness and separability of the
fingerprints. In contrast, both MSDFL and Fidora only
utilize the amplitude information of CSI, limiting the
information available for localization.

2) Regression Model: In the current experiment, MFFALoc
employs a regression model to establish the relationship
between the fingerprint features and the position coor-
dinates for estimating the target position. On the other
hand, MSDFL and Fidora utilize a classification model
for target position estimation at the initial stage of their
designs. The regression model used in MFFALoc offers
flexibility and adaptability in estimating target locations
when the test and training points are not identical.

3) Unsupervised Domain Adaptation: The unsupervised do-
main adaptation method employed by MFFALoc incor-
porates explicit simulation of domain offsets through a
dual-stream structure and a meta-learning network. This
approach reduces training complexity and enhances the
migration effect compared to other similar methods. By
effectively adapting the localization model to changes
in fingerprint features, MFFALoc achieves improved
knowledge transfer-assisted localization.

2) Short-term Performance Evaluation: To assess the ro-
bustness of the MFFALoc system under varying indoor en-
vironmental dynamics, we conducted an investigation using
CSI data from test points at different times on six consecutive
days: day one, day two, day three, day four, day five, and
day six. Specifically, in this experiment, we utilize the CSI
measurements obtained from all training points on the initial
day as the source domain training data. Simultaneously, the
CSI measurements from the test points, collected each day,
serve as both the target domain unlabeled training data and
the test data for the domain adaptation method. This allocation
is established in a 3:7 ratio, respectively. For short-term
localization performance comparison, we evaluate the location

errors of the MFFALoc system in Fig. 10.
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Upon analyzing the results, we observe that when the envi-
ronment remains unchanged on the first day, and the fingerprint
features of the training points and test points still belong to
the same distribution, the mean localization error of MFFALoc
is 0.77m. This represents an improvement of approximately
25.2% compared to Fidora’s 1.03m, about 53.9% compared to
MSDFL’s 1.67m, and about 36.9% compared to CiFi’s 1.22m.
In the subsequent days when the indoor environment under-
goes changes, MFFALoc, Fidora, and MSDFL achieve mean
localization errors of approximately 1.2m, 1.5m, and 2.1m,
respectively. This indicates a relatively stable performance for
these systems. However, CiFi exhibits a rapid decline to about
2.7m in localization accuracy due to its inability to handle
changes in fingerprint features effectively. These experimental
results can verify that the MFFALoc system obtains better
localization performance with the robustness of short-term
environmental changes.

D. Impact Analysis

1) Impact of Data Pre-processing on System Performance:
To assess the efficacy of the data pre-processing in the MF-
FALoc system, we carried out an evaluation of the system’s
localization performance using solely amplitude information
and solely phase information, respectively. This assessment
was conducted independently of the multimodal fusion rep-
resentation. In this experiment, we utilized the Channel State
Information (CSI) measurements of the training points col-
lected on the first day as the source domain training data.
Additionally, the CSI measurements of the test points collected
over the course of the six days were employed as the target
domain unlabelled training data in the domain adaptation
method, as well as the test data. The ratio between the target
domain training data and test data was 3:7 respectively. Fig.
11 illustrates the overall localization performance of the MF-
FALoc system under different pre-processing schemes, namely
the 50th percentile, 90th percentile, and mean localization
accuracies.

Upon examination, it is evident that the MFFALoc system,
when using a pure amplitude data preprocessing scheme,
exhibits an average positioning error of 1.49m, which is rela-
tively coarser compared to the other schemes. It also demon-
strates 50th percentile and 90th percentile accuracies of 1.5m
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Fig. 11. Overall Localization Performance with Different Pre-processing
Schemes

and 2.43m, respectively, which are the lowest among the three
schemes. This result may be attributed to the fact that while the
amlitude does provide information about the target’s position,
the calibrated phase is more sensitive to the location, as con-
firmed in our previous work [39]. Consequently, the MFFALoc
system employs a pure phase data preprocessing scheme,
resulting in an average positioning error of 1.49m, with 50th
percentile and 90th percentile accuracies of 1.4m and 2.38m,
respectively, slightly higher than the amplitude-only scheme.
The comprehensive version of MFFALoc achieves the best
performance, with a mean localization error of 1.21m and 50th
percentile and 90th percentile accuracies of 1.2m and 2.1m,
respectively. These results strongly validate the effectiveness
of our data pre-processing approach in addressing Challenge
1 by combining temporal and spatial information from both
amplitude and phase, thereby generating fused fingerprint
features with enhanced richness and separability.

2) Impact of Localization Model Structure on System Per-
formance: Since we utilize a deep convolutional neural net-
work as the localization model, its structure has a significant
impact on the performance of the MFFALoc system. There-
fore, we designed five convolutional deep neural networks
with different structures to study their effects on the system
performance, and their respective structures are shown in Table
I below. Given that the primary objective of the localization
model is to accurately locate the same distribution in both
training and test data, we employ the CSI measurements
obtained from all training points on the initial day as the
training data. Correspondingly, the CSI measurements from all
test points collected on the first day are used as the test data
in this experiment. We started from the most basic A structure
and gradually replaced the large 5 × 5 convolutional kernels
with small 3 × 3 convolutional kernels and increased the
number of channels per convolutional layer, use the leakyRelu
activation function, and remove the pooling layer, as illustrated
in Table I.

Fig. 12 presents the mean localization error of the MFFALoc
system when employing five different structural localization
models on the first day. This analysis was conducted when
the CSI fingerprint features of both the training and test
points remained unchanged. It can be seen that the localization
performance of the MFFALoc system gradually increases

TABLE I
DIFFERENT LOCALIZATION MODEL STRUCTURE

ConvNet Configuration
A B C D E

Input layer (3× 30× 30)
Conv5-32 Conv3-32 Conv3-32 Conv3-32 Conv3-64
Conv5-64 Conv5-64 Conv3-64 Conv3-64 Conv3-128

Conv5-128 Conv5-128 Conv5-128 Conv3-128 Conv3-256
FC-120

Output layer

A B C D E
Different Structures
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Fig. 12. Mean Localization Errors with Different CNN Structure

from structure A to structure E, and the MFFALoc system
utilizing the localization model with structure E has the best
performance and the most stable localization error. Therefore,
we set the positioning model architecture to structure E, which
is the most suitable architecture for the MFFALoc system.

3) Impact of Unsupervised Domain Adaptation Scheme on
System Performance: While we have partially validated the
effectiveness of our unsupervised domain adaptation scheme
in the previous comparative analysis of system performance,
we sought to conduct additional ablation experiments. These
experiments aimed to provide further assessment of the ef-
fectiveness of the unsupervised domain adaptation scheme
implemented in the MFFALoc system. In this experiment, we
utilized the Channel State Information (CSI) measurements
of the training points collected on the first day as the source
domain training data. Additionally, the CSI measurements of
the test points collected over the course of the six days were
employed as the target domain unlabelled training data in the
domain adaptation method, as well as the test data. The ratio
between the target domain training data and test data was 3:7
respectively. Fig. 13 presents the overall localization perfor-
mance, comparing the MFFALoc system with and without the
unsupervised domain adaptation scheme.

The MFFALoc system without the unsupervised domain
adaptation scheme demonstrated an average localization error
of 2.11 m, a 50th percentile accuracy of 2.09 m, and a 90th
percentile accuracy of 3.26 m. This represents a noteworthy
reduction in localization error and performance compared
to the full-fledged MFFALoc system. This outcome can be
attributed to the utilization of all 6 days of test data, which
exacerbates the fingerprint inconsistency issue, as discussed in
Challenge 2. These findings provide strong validation for the
effectiveness of the proposed unsupervised domain adaptation
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scheme in addressing Challenge 2. It can achieve satisfactory
localization accuracy without the need for any human inter-
vention, even without the need to be aware of the presence of
fingerprint inconsistencies due to environmental changes.

4) Impact of Wavelet and Threshold Selection on System
Performance in Wavelet Domain Denoising: To assess the
influence of wavelet and threshold selection in wavelet do-
main denoising on the MFFALoc system’s performance, we
conducted an evaluation using various commonly employed
wavelets and threshold coefficients. Given that their impact
on system performance remains consistent across fingerprint
variations, in this experiment, we utilized the Channel State
Information (CSI) measurements from the training points
collected on the first day as the training data and the CSI
from the test points as the test data. The selection of wavelets
and thresholds was easily implemented using the PyWavelets
Python third-party extension library. Table II presents the
average localization error of the MFFALoc system for different
combinations of wavelet and threshold coefficients used in the
Wavelet Domain Denoising (WDD) process.

TABLE II
THE MEAN LOCALIZATION ERRORS OF MFFALOC SYSTEM WITH

DIFFERENT COMBINATIONS OF WAVELET AND THRESHOLD
COEFFICIENTS

Threshold coefficients
Wavelets VisuShrink SureShrink HeurSure MinMax

Harr 0.81 0.83 0.82 0.80
Daubechies(db3) 0.78 0.79 0.81 0.77
Symlets(sym2) 0.78 0.80 0.82 0.79
Coiflets(coif3) 0.84 0.82 0.79 0.81

From Table II, it is easy to see that for different combina-
tions of wavelet and threshold coefficients, the localisation per-
formance of the MFFALoc system is extremely close to each
other, and basically the difference is not very large. This may
be due to the fact that the wavelet domain denoising is only
the first step of our data preprocessing, and in the subsequent
multimodal fusion characterisation module, the amplitude and
phase data of the CSI are fused to characterise the fingerprints,
and more discriminative fingerprint features are obtained. And
this transformational fusion reduces the impact of wavelet
domain denoising on the system performance. Of course, in
practice, we still chose the combination of the Daubechies

Wavelet base, which obtains the lowest average error, and the
minimum-maximum threshold coefficients to be applied in the
Wavelet Domain Denoising (WDD) process.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced MFFALoc, a CSI-based multi-
feature fusion adaptive device-free passive fingerprinting lo-
calization system that enables ubiquitous (sub)meter-level lo-
cation information of device-free users with minimal hard-
ware deployment requirements. MFFALoc addresses several
challenges such as poor fingerprint richness, identifiability,
and inconsistency of fingerprint features across different en-
vironments. It achieves this through a multimodal feature
fusion representation and an unsupervised domain adaptor
with a two-flow structure. Through extensive experiments,
we demonstrated that MFFALoc surpasses existing techniques
when dealing with unknown environmental variations. It not
only provides sub-meter localization resolution with signifi-
cantly improved accuracy but also exhibits robust performance
under daily environmental variations. For future research, we
aim to explore the following directions:

1) Developing a more automated method for collecting
fingerprints of training points to reduce user effort and
enhance the ease of use of fingerprint-based systems.

2) Addressing the challenge of serving multiple users
simultaneously within the same region of interest in
device-free passive localization systems. This can be
achieved through deep fusion of multiple sensing an-
chors/modalities and multi-label learning approaches.

3) Exploring advanced machine learning tools such as
Generative Adversarial Networks (GANs) for data aug-
mentation and other domain adaptive and style-shifting
algorithms customized for indoor localization scenarios.
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