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Abstract—For the successful engagement of users with incom-
ing interventions, the delivery of Just-In-Time (or opportune mo-
ment—OM) interventions is of the utmost importance. This can
be accomplished with a machine learning model that utilizes user
context data. Smartwatch and smartphone interactions further
open the space for further improvement by considering the user’s
state and environmental information. In this work, a novel feature
engineering approach for predicting smartphone user receptivity
to Just-In-Time (JIT) interventions is proposed. Proposed ap-
proach utilizes rich information from user-smartphone interac-
tions and smartwatch sensor data to extract contextually filtered
features. The superiority of the proposed feature engineering
method is demonstrated by developing a machine learning model
that predicts a participant’s receptivity prior to administering
an Experience Sampling Method (ESM) questionnaire. The
proposed approach is evaluated using the KEmoPhone dataset,
which contains 3,334 ESM answers collected over the course
of one week from 73 participants. To reduce the bias that
may result in selecting specific classifier, multiple classifiers are
tested and their average ROC-AUC metrics are compared. The
results show that the proposed feature engineering method - CFF
improves the prediction performance, achieving an ROC-AUC of
56.5% as opposed to 54.7% obtained using conventional features
(statistical moments of time series over an 80 min window).
Such superior performance is consistent across multiple machine
learning classification algorithms. Full research code will be
released in jupyter notebooks for facilitating the research in
the domain at https://github.com/Jumabek/receptivity upon the
publication of this research work.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

MOBILE health (mHealth) and digital therapeutics
(DTx) research have opened up unique potentials of

smartphone-based digital health interventions in inducing fa-
vorable behavioral changes in response to diverse needs, such
as smoking, alcohol disorders, physical inactivity and depres-
sion [1]–[3]. The ultimate objective is to combine accurate
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sensing with appropriate DTx therapies to improve the quality
of life for a specific population subgroup (e.g., increasing
physical activity in sedentary people). Although, there is large
body of research [4]–[7] that is intended to examine and
measure the (causal) effect of health interventions, this is not
the topic of this study.

To properly engage consumers, it is essential to accurately
predict the delivery timing of DTx interventions [8], [9]. This
necessitates that an intervention design should incorporate a
component for identifying opportune moments (OMs) for a
specific intervention. However, the architecture of the OM
detector component can differ according to the type of DTx.
The opportune time (i.e., OM) for stress-relieving DTx could
occur when the person is stressed. Similarly, for DTx that aims
to increase physical activity, an OM might be described as the
time when a user is able or feels compelled to carry out the
proposed interventions (e.g., taking a walk to a hall). This can
depict the moment after the user has completed a task or has
been inactive for an extended period of time.

Significant research has been undertaken in the realm of
ubiquitous computing for the modeling of a similar phe-
nomenon: user interruptibility. Inference based on context
sensing and machine learning (ML) has been proposed in
a number of research [10], [11]. In general, interruptibility
quantifies how opportune it is to interrupt a person [12].
Similarly, receptivity to health interventions, as defined by
Nahum-Shani et al., is a person’s ability to receive, process,
and utilize the support (intervention) provided [13]. One
approach to conceptualize receptivity involves encompassing
the combination of interruptibility (willingness to receive an
intervention), engagement (receive the intervention), and a
person’s subjective perception of the intervention provided
(process and use the intervention) [14]. Receptivity can also
be defined in multiple stages as proposed by Choi et al. [15].
Authors defined receptivity as stages which define if user has
perceived the interruption, if he has perceived then next stage
is if user is available for the intervention, finally if user is
available then his receptivity can be gauged based on whether
he decides to adhere to health intervention.

Fig. 1 depicts an overview of the receptivity prediction
pipeline in this work, from data collection to receptivity pre-
diction prior to intervention. Note that creating a forecast based
on previously collected data allowed us to evaluate how well a
user’s receptivity state might be anticipated using the proposed
ML-based receptivity prediction pipeline, which resulted in
improved engagement with the DTx intervention An overview
of this research can be seen in Fig. 2. First, collected sensor

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3331715

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

Fig. 1: Receptivity prediction pipeline.

data from the K-EmoPhone dataset is prepared. Then EDA is
performed to understand and cleanse data. Then the dataset
is split into two sets: 1) for mining association rules; 2)
for extracting contextually-filtered features (CFFs). Research
findings of this study contribute to the comprehension of the
following research questions:

• RQ-1: Can ML techniques be applied effectively to
enhance users’ receptivity to health interventions? To
answer this, we use the KEmoPhone dataset and evaluate
whether machine learning plus user context data can pro-
duce more accurate predictions than a random baseline.

• RQ-2: Is it possible to enhance ML-based receptivity
prediction models by feature engineering alone? Here, the
effectiveness of the proposed feature engineering method
is evaluated.

Our contributions can be summarized as follows:

• Novel Feature Engineering Approach: a novel feature
engineering method called Contextually Filtered Features
(CFFs) is proposed for predicting user receptivity to
Just-In-Time (JIT) interventions. This approach leverages
rich information from user-smartphone interactions and
smartwatch sensor data to extract features that capture
contextual information relevant to receptivity.

• Context Mining for Feature Extraction: The process of
context mining is incorporated into the proposed feature
engineering methodology. By mining association rules
from subwindow features, potentially valuable contexts
for feature extraction is identified, allowing us to extract
more meaningful features for predicting user receptivity.

• Evaluation and Comparison: The performance of the pro-
posed method is evaluated using the KEmoPhone dataset,
which contains a large number of Experience Sampling
Method (ESM) answers collected from participants over
a one-week period. The performance of the proposed
approach is compared against to conventional feature
extraction methods and demonstrates its superiority in
predicting user receptivity to JIT interventions.

II. RELATED WORK

In the realm of ubiquitous computing, the topic of inter-
ruptibility has been intensively investigated. Table I provides
a summary of past research on interruptibility and receptivity
to health intervention. The offered overview comprises the
purpose of a certain research project, binning criteria for
outcome variables, classification results together with their
corresponding metrics, and a random baseline. Researchers
utilized a variety of evaluation variables, including accuracy,
precision/recall, and the F1 score. The table also includes
the evaluation metric scores of the proposed approach for
comparison. It is noteworthy to mention that, although the
proposed approach obtains a higher F1 score (56%) compared
to other studies (11.2%, 30%, 36%), direct comparison is
hard as the data, ground-truth and its binning strategy differs
for each study. In addition, the baseline procedures used
to evaluate cases where there is no intelligent model are
explained.

One of the earliest studies on user interruptibility detection
was conducted by Fogarty et al. [16]. The authors used
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Fig. 2: Research Overview

external sensors in an office environment to predict the in-
terruptibility of an office worker. The goal was to develop an
application that helped incoming visitors identify if an office
worker was interruptible. Poppinga et al. [17] developed a
decision tree-based model to predict if it is the opportune
moment(OM) for interrupting mobile users with notifications.
Using contexts such as the time of day, location, and posture
of the device, they obtained an accuracy of 77.85%, whereas a
random model that only predicted the majority label (non-OM)
produced an accuracy of 77.08%.

Pevojic et al. [10] studied the identification and utilization
of OMs. They demonstrated that interruptions delivered via
the proposed intelligent InterruptMe library resulted in better
user satisfaction and shorter response times. The authors
attempted to gauge OMs from different perspectives, such as
reaction presence (if the user did not overlook the notification)
and sentiment (how obtrusive the interruption was from the
user’s perspective). The following were used as a data source
for feature engineering: time, accelerometer, location, social
setting, physical activity, and the subject’s emotions (obtained
through an experience sampling method (ESM)).

Choy et al. [18] explored the effect of the window size
from which features are extracted on the performance of an
ML model for predicting interruptibility (i.e., interrupting a
smartphone user). They discovered that instead of simply
looking at the immediate past (15 minutes) or current features,
looking back at the entire day produced features with richer
representations and achieved 91% accuracy on the KAIST
dataset when using the naive Bayes classification algorithm.

Instead of merely predicting user interruptibility in response

to notifications, Pielot et al. [11] attempted to model the
engagement of a smartphone user with the suggested content
(notification). In other words, a user is considered engaged
if he or she not only opens the notification but engages
with it (e.g., clicks the links, and plays the suggested game).
The data sources used for communication activities were as
follows: context (e.g., being at home), demographics, phone
status (e.g., phone unlocked), and use patterns (e.g., watching
a game or surfing the Internet). The XGBoost classifiers built
on engineered features achieved a recall (conversion) of 7.1%.
Although this performance metric appears small, it is 66.6%
better than the baseline recall (conversion rate) of 4.3%.

Compared with prior studies that predicted the interruptibil-
ity of users for smartphone notifications, OM prediction for
health intervention is slightly different since the target health
activity triggered by the health intervention is known and can
be measured. Sarker et al. [19] predicted OMs for just-in-
time (JIT) health interventions for smoking cessation study. In
addition to the available sensor features, such as location and
stress, the authors used the ESM responses of a user as inputs
to the ML model. The ML model demonstrated promising
performance as opposed to random baseline results in terms of
accuracy (74.7% vs. 50%). The authors defined a moment to be
available (opportune) for JIT interventions if the user answered
with a small response delay, whereas a non-available moment
would be implied by a larger response delay. In a similar study,
to gauge receptivity, Kunzler et al. defined several metrics,
such as the just-in-time response health chatbot, response de-
lay, and engagement in conversation. The primary metric was
the just-in-time response, which is a binary metric that defines
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whether a user responds to an incoming chatbot’s—Ally’s
message within 10 min. The authors additionally investigated
the association between different factors and the defined recep-
tivity metrics. These factors included intrinsic characteristics
(age, gender and personality) and contextual factors (day/time,
phone battery, phone interaction, and physical activity). With
contextual factors as features, the ML model achieved an F1
score of 40% for Android users, whereas the random baseline
score was 27%. A follow-up study conducted by Mishra et
al. [20] deployed the chatbot Ally+ in a natural environment
where interventions are sent to users only if the ML model
identified the moment as OM. Results revealed that the ML
model led to a 40% improvement in receptivity compared
with the control (baseline) model. Their static support vector
machine (SVM) model was trained before deployment, and it
achieved an average F1 score of 36%, a score comparable to
the 25% F1 score in the baseline scenario. A significant dif-
ference between the study and those reported in the literature
lies in the fact that this research focused on improving the
model’s performance with novel feature engineering, namely
contextually filtered features (CFFs). In other words, this
research is not proposing another machine learning classifier
or algorithm. Instead, a novel way to engineer more richer
feature representation which can improve the performance of
any classification methods is proposed. In this regard, the
model is also constrained to use only sensor and user–phone
interaction features to investigate the effect of novel feature
engineering. In other words, features such as age, gender,
personality scores, time of the day, weekend, or weekday were
not considered. With the inclusion of these features, further
improvement in performance is expected as explored in [21].
However, this is beyond the scope of this study.

III. RESEARCH DESIGN

A. Receptivity to Just-In-Time Health Interventions

In this study, we used the K-EmoPhone dataset to explore
aformentioned research questions. Note that this dataset con-
tains a questionnaire gauging a subject’s emotion and stress
level on a seven-point Likert scale. There are total of seven
questions (Q1: Valence; Q2: Arousal; Q3: Attention level; Q4:
Stress level; Q5: Emotion duration; Q6: Task disturbance level;
Q7: Emotion change). Additional information on the seven-
item questionnaire, such as the exact text and range of answers,
is presented in Table II.

We can assume that the cognitive load arising from an-
swering a seven-item ESM questionnaire is approximately
equal to a just-in-time (JIT) interventions (e.g., taking a short
walk or taking a deep breath). In other words, receptivity
to ESM intervention can be used as a proxy for receptivity
to JIT interventions. Using ESM questionnaires as subjective
ground truth on interruptibility was done in prior research [16].
Subsequently, as for subjective (e.g., self-reported) receptivity
measurement, we used one of the ESM questionnaires, Q6:
task disturbance level. The level of disturbance tells how
opportune the moment of intervention was. In other words,
the disturbance level shows the momentary receptivity when
the user responds to the ESM questionnaire. This is because

the ground-truth ESM answers are designed to capture a user’s
state with respect to the response time.

B. Data Collection
1) Collection Procedure: The data in the K-EmoPhone [22]

dataset were collected from 79 participants who used Android
phones over the course of one week. The participants were
educated through a session explaining details pertaining to
the data collection and equipment. Furthermore, they provided
institutional review board-signed consent forms to partici-
pate in the data collection. Each participant was provided
with an MS Band 2 wearable device for the collection of
biosignals, which are widely used in emotion- and stress-
related research. Such biosignals include the electrocardio-
gram, galvanic skin response, plethysmography, and human
skin temperature. Smartphones were used to collect usage data,
such as location tracking, physical activities, and how people
use smartphone apps. The participants were asked to answer
the questionnaires every 45 minutes during their working hours
from 10 a.m. to 10 p.m. The questionnaire included seven
items, as shown in the following table.

2) Smartphone & Smartwatch Collected Sensor Data: In
the data collection process, both Android smartphones and MS
Band 2 smartwatches were used. Implementation of a special-
purpose software on Android phones enabled the collection
of sensor data reflecting various parameters like mobility, net-
work traffic, social interactions, application usage, and device
state. The MS Band 2 smartwatch data was collected in sync
with ESM schedules, owing to battery limitations. The data
collection software used three sampling methods - periodic,
adaptive, and event-based, for the sensor data. The periodic
method utilized a pre-set sampling rate, while the adaptive
method adjusted the sampling rate depending on device OS
policies. The event-based approach recorded sensor readings
only when changes were detected. Through this, sensor data
from smartphones and smartwatches are stored locally and
uploaded to the database server every hour.

Smartphone data included the network connection history,
network data usage, call and text message histories, application
usage, installed applications, ringer mode changes, power-
saving mode changes, charging state, media creation, battery
status, physical activity, location data, wifi data, and more.
Each data point was collected with various methods such as
event-based or adaptive sampling. Smartwatch data included
information like the wearer’s acceleration, number of steps
taken, distance walked, ambient brightness, exposure to ultra-
violet radiation, heart rate, skin temperature, caloric burn rate,
electrodermal activity, etc. The data was collected at various
rates depending on specific measures. The data collection
was thorough, capturing various aspects of user behavior and
physical states, which provides a comprehensive overview of
user receptivity.

IV. EXPLORATORY DATA ANALYSIS

We conduct Exploratory Data Analysis (EDA) to under-
stand, interpret, correct, and clean the data where necessary.
Additionally, the correlation between response delay and self-
reported receptivity (et al. disturbance) is investigated.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3331715

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

TABLE I: Overview of relevant studies in the literature on interruptibility and receptivity.

Authors Year n: # participants
m: # responses Ground-truth/binning Classification results Random Baseline

Metric Perfor-
mance Strategy Perfor-

mance

Fogarty et al [16] 2004 n = 10
m = 975 Liker five scale/highly non-interruptible vs. rest Accuracy 79.5 Most frequent 70.1

Poppinga et al [17] 2014 n = 79
m = 6,581 Whether a user will answer the questionaire/binary Accuracy 77.85 Most frequent 77.08

Pevojic et al [10] 2014 n = 20
m = 2,334

Reaction presence/binary Precision/
Recall

64 / 41 Stratified 39 / 38
Reaction sentiment 46 / 10 27 / 26

Choy et al [18] 2016 n = 25
m = 4,103 Binary self-report on interruptibility/binary Accuracy 92 NA ∼50

Pielot et al [11] 2017 n = 337
m = 78,930

Whether users are engaged with
the recommended content/binary F1 score 11.2 Most frequent 8.2

Sarker et al [19] 2014 n = 30
m = 360

Response delay/
two extremes slow and quick answers Accuracy 74.7 Most frequent 50

Kunzler et al [14] 2019 n = 189
m = 13,942

Whether a user responds to
the chatbot within 10 min/binary F1 score 30 Stratified 20

Mishra et al [20] 2021 n = 83
m = NA

Whether a user responds to
the chatbot within 10 min/binary F1 score 36 Most frequent 25

The proposed app. 2023 n = 73
m = 3334

Likert-seven scale disturbance/
OM (-3, -2, -1, 0) vs. non-OM (+1, +2, +3) F1 score 56 Most frequent/

Stratified 38/48

TABLE II: K-EmoPhone ESM Questionnaire content.

Item Question Range Measurement

1 My emotion right before taking this survey was very negative (-3)–very positive (+3) Valence
2 very calm (-3)–very excited (+3) Arousal

3 My attention level right before taking
this survey could be rated as very bored (-3)–very engaged (+3) Attention level

4 My stress level right before taking this survey was not stressed at all (-3)–very stressed (+3) Stress level

5 My emotion regarding answering the above has
not changed in the recent min. 5, 10, 15, 20, 30, 60 min, or “I am not sure” Emotion duration

6 Answering this survey disturbed my current activity entirely disagree (-3)–entirely agree (+3) Task disturbance level

7 Change in your emotions while answering this survey? I felt more negative (-3)–I felt more positive (+3) Emotion change

1) Cleaning: Unreliable and/or noisy data were filtered
stepwise using the criteria listed in Table III. The table
indicates that after the cleaning process, 73 participants were
retained, who collectively provided 3,334 ESM responses.
Some ESMs had a corrupted (invalid) timestamp, and some
had duplicates. Additionally, we found out that the data
collected from four participants was unsuitable for use, as
participants had zero variance in their responses all the time
and some had no associated sensor data.

2) Visualization: Notably, during data collection, users
sometimes did not respond to the ESM questionnaires. The
number of missing answers varied across the participants.
Fig. 8 visualizes the collected self-reports for three different
campaigns. Each campaign corresponds to different participant
groups where data is collected on different dates. Each row
in the subfigure corresponds to one participant, and each dot
corresponds to the answer on the ESM questionnaire.

3) Binning outcome variable: The distribution of self-
reported user disturbances is illustrated in Fig. 3. As explained

TABLE III: Cleaning ground truth (ESM answers)

Step Description #participants #responses

Original data 79 3715

Exclude ESMs outside campaign period 79 3592

Exclude ESMs without sensor data 77 3543

Exclude ESMs with currupted ts 77 3537

After excluding duplicate data 77 3426

After excluding participants with
zero variance in their responses 74 3401

After excluding participants
with most sensor sources missing 73 3334

in Table II, the responses varied between -3 (least disturbed,
i.e., not receptive at all) and +3 (most disturbed, i.e., most
receptive). The figure indicates that the most common response
was zero (neutral). Note that for the application of JIT in-
terventions, it would be logical to consider neutral cases as
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Fig. 3: Distribution of self reported disturbance in Likert-seven
scale.

receptive. Therefore, we considered the disturbance reports of
-3, -2, -1, and 0 as receptive cases and the remaining as non-
receptive. The distribution after binning the outcome variable
is presented in Fig. 4. It is noteworthy that the distribution of
binary receptivity can be changed by modifying the binning
threshold. For instance, the neutral disturbance level (zero
Likert scale in Fig. 4) can be considered both receptive and
non-receptive.

4) Correlation between the Response Delay and Perceived
Disturbance: In previous studies, in the absence of self-
reported disturbances, a response delay was used as an ob-
jective measure of user receptivity. Sarker et al. [19] defined
availability as the state of an individual wherein they were
capable of engaging in an incoming unplanned activity. Subse-
quently, the inferred moment is receptive if the response delay
was small enough (e.g. 10 min). Kunzler et al. [14] defined
receptivity as the state of an individual wherein they responded
to an incoming JIT health intervention within 10 minutes. Note
that KEmoPhone includes both the response delay and self-
reported receptivity (i.e.,, disturbance); therefore, existence of
a relationship between them could be visualized and examined.
Fig. 9 presents a visualization of this correlation, wherein
each row represents one disturbance level on the Likert-seven
scale. The observations imply that the relationship between the
response delay and the self-reported disturbance is extremely
weak, with a Pearson correlation coefficient of -0.03. Perhaps
relationship is not a linear but a more complex function.
Therefore, we plotted the disturbance in log scale in Fig. 5.

V. METHODOLOGY

Notably, the key factor for the successful prediction of user
receptivity to incoming health interventions is the engineering
of good features. Feature engineering is important yet mostly
overlooked process for improving the performance of machine
learning-based models [23]. This study developed a novel
feature engineering method that exploits the co-occurrence
of sensor values to extract good features. This was achieved
using the concept of Contextually Filtered Features (CFF)s

Fig. 4: Distribution of receptivity (binned disturbance).

Fig. 5: Correlation between the response delay and self-
reported disturbance on Log scale.

first introduced by Xu et al. [24] for depression detection.
In this section, first, a brief overview of the main components
such as the different kinds of features and underlying concepts
are explained. Next, detailed explanation of the proposed
methodology for feature extraction is provided. First, three
types of feature-extraction approaches are explained in detail.
Subsequently, the rationale behind window size selection is
explained, followed by the proposed feature-selection pipeline
and proposed context mining procedure.

A high-level explanation of two conventional feature en-
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gineering approaches and CFFs is depicted in Fig. 6. Con-
ventionally features are extracted from time series (e.g., the
temperature of the phone battery) over a given time window
(e.g., 80 min) using statistical moments, such as the mean,
standard deviation, and kurtosis. Here, we refer to such
features as temporal features (TFs) (first row in the figure)
which is the most common feature-extraction approach. For a
depression detection studies, another commonly used feature
engineering approach is called aggregated features (AFs) [24],
[25], wherein a feature was computed for each day (or epoch
of the day), and such features were aggregated across all days
(or epochs). Aggregated features are obtained from (sub) TFs.
In other words, aggregation computes the mean and standard
deviation of the TFs. Unlike depression studies, the time
windows in this study are much shorter as user receptivity can
change with higher frequency than an individual’s depressive
state. Therefore, instead of epochs, we introduce the concept
of subwindows (20min) as shown in the second row of the
figure. Finally, the third and fourth rows in the figure depict
the manner in which we obtain CFFs. Intuitively, CFF attempts
to mine more specific features where values of different
sensors co-occur together. In other words, such co-occurrence
windows may provide valuable information that can more
accurately describe outcome variables.

A. Data Split

In order to extract CFFs, a context (i.e., co-occuring sensor
values) should be mined via the Association Rule Mining
algorithm. However, if the dataset on which rules are mined is
the same as the dataset on which the ML model is evaluated,
the evaluation is said to be biased. This is because the results
become optimistically biased due to overfitted models. To
prevent bias in results, the dataset was divided into Rule-
GenerateSet (1,677 interventions from 36 participants) and
TrainEvalSet (1,657 interventions from 37 participants). This
made sure that the rules found in RuleGenerateSet didn’t
depend on TrainEvalSet, which was used to train and evaluate
the performance of the ML models and the features they used.

B. Temporal Window Features

TFs are statistical moments extracted from time-series data.
Temporal window features included the median, min, max,
entropy, variance, skewness, kurtosis, the absolute sum of
changes, lag features, linear trend, and time-series complexity
features. They were extracted from an 80-minute temporal
window, which corresponded to the time right before user
intervention. Therefore, we refer to them as TFs. In Fig. 6,
the median heart rate is a TF, from which the heart rate is
extracted. We have extracted a range of Temporal Features
(TFs) from each timeseries sensor data stream, including infor-
mation related to the median, statistical extremities (minimum
and maximum), binned entropy, and variance of the dataset,
among other features. These features are computed for each
designated time window within the dataset. A detailed list of
these temporal features, along with their respective descrip-
tions, is provided in Table IV. Crucially, the research design
does not make any prior assumptions about which sensor

data or temporal features might prove beneficial for predicting
user receptivity to Just-In-Time (JIT) interventions. Rather,
approach used in this work is to systematically consider all
available sensor data streams and extract a comprehensive
set of temporal features from each. To determine which of
these features might be most informative for predicting user
receptivity, we employ a Feature Selection pipeline, as de-
scribed in a later section. This method allows us to leverage the
greatest amount of information present in the dataset, whilst
also tailoring feature selection to the unique characteristics of
each dataset.

C. Subwindows and Aggregated Features

For a depression detection study by Xu et al. [24], AFs were
used, wherein a feature was computed for each day (or epoch
of the day), and such features were then aggregated across
all days (and epochs) with the mean and standard deviation.
Unlike the foregoing study, the outcome variable considered
in this study was user receptivity, which can change within a
day. As will be explained later in this section, we extracted
the AFs from a considerably smaller window. Particularly, a
window size of 80 minutes with four subwindows was selected
empirically. The first four subwindow features (subfeatures),
each 20 minutes long, were extracted for each ESM. In total,
this covered 80 minutes of the entire temporal window before
intervention. Second, to obtain the AFs, the mean and standard
deviation of each of the four subwindows were computed.
Thus, the purpose of the subfeatures was to compute the AFs.
Subsequently, the subfeatures were also used to compute the
CFFs. The subfeatures had 389 dimensions. This resulted in
778-dimensional AFs (because each sub-feature was aggre-
gated by the mean and standard deviation).

D. Contextually Filtered Features

The first row in Fig. 6 indicates the time-series features
extracted over a given time window. The second row in
the figure depicts the AFs. Here, the AFs attempt to model
the trends followed by the features by dividing the (entire)
temporal window into multiple subwindows and aggregating
the subwindow features with the mean and standard deviation.
A CFF is a sophisticated version of an AF, wherein only
specified (i.e., qualified) subwindows participate in aggrega-
tion. In other words, not all subwindows (there are a total
of four subwindows, as shown in the figure) are used during
aggregation. Instead, only subwindows with qualified contexts
are used. The context in the figure is the semantic location
of the user’s workplace. Therefore, the median heart rate
feature was computed only when the participant had a certain
context (location = “workplace”, as shown in the figure). We
determined the candidate context for computing a given feature
using co-occurrence relationships. For instance, if the value
of “feature A” was always low when the value of “feature B”
was high, this relationship could be exploited during feature
engineering. Hence, when extracting through the aggregation
of four subwindow features for featureA, we only consider
the subwindows that had a high value for “feature B”. We
termed the process of identifying such relationships “context
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Fig. 6: Types of features. The first and second rows depict conventional Temporal Feature(TF)s and Aggregated Features which
was recently popularized. Note that an AF is computed by aggregating (i.e., averaging and computing the standard deviation)
its subfeatures (can be also considered as sub TFs). Contextually Filtered Feature(CFF)s are similar to AFs, except that they
do not consider all the subwindow features during aggregation. The parts to be aggregated are decided based on whether the
time window meets pre-determined context criteria for extracting the given feature. Here, the context for heart rate variability
is the user being in the workplace.

TABLE IV: List of Extracted Temporal Features and their descriptions.

Feature Description

MED Median of the data points in the given time window
MIN Minimum value within the data points
MAX Maximum value within the data points
BEP Binned Entropy of the data points computed over 10 bins
AVG Mean (average) of the data points
VAR Variance of the data points with degrees of freedom=1
SKW Skewness of the data points (biased=False)
KUR Kurtosis of the data points (biased=False)
ASC Absolute sum of the differences between consecutive data points

MAXLAG Lag at maximum autocorrelation of data points
MAXLAGVAL Maximum value of Autocorrelation of data points

MINLAG Lag at minimum autocorrelation of data points
MINLAGVAL Minimum value of Autocorrelation of data points

LTS Slope of the Linear Regression of data points
LTI Intercept Of the Linear Regression of data points
CID Time-series complexity measure accounting for the variability in amplitude and frequency over time.

Calcualted as the root mean square of power differences between normalized data points

mining,” and this will be described in the Context Mining
section.

The core idea of the proposed feature engineering approach
involves leveraging sensor feature co-occurrence. Therefore,
unlike Xui et al. [24], we did not use label (outcome variable)
information to mine the rules. Instead, rules were mined solely
using sensor and user–phone interaction data. The authors
exploited label information (outcome variable, /ie, depressed

vs. non-depressed) also for rule selection. In other words,
they selected the rules that distinguished the two categories
(depressed vs. not depressed). Rule selection metric is much
simpler and allows for easy replication of the experiments.
In addition, the design for CFF extraction allows to increase
the number of data points used for the rule-mining process.
For instance, if we were to exploit labels, we would be
constrained to using only 1,677 transactions, which correspond
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to the ESM responses collected from 36 participants (i.e.,
RuleGenerateSplit). The advantage of using the proposed
approach is that it allows us to increase the number of
data points by exploiting all windows for which sensor and
phone–user interaction data are collected. Because data were
collected for 7 days between 10 a.m. and 10 p.m., we obtained
numtransactions = 36 ∗ 7 ∗ 12 ∗ 60/20 = 9072 transactions.
Here, 36 is the number of people who are taking part, and 20
is the number of minutes for the subwindow.

The second important contribution of this study is the
proposal of a simple rule-selection algorithm based on lift.
This algorithm is different from the complex rule-selection
algorithm proposed by Xu et al. [24], which uses multiple
criteria and sums their votes using manually selected weights.
Additional details on the same will be provided in the Context
Mining section.

E. Window Size Selection

To reduce the number of missing features, the size of the
temporal window must be sufficiently large. Simultaneously,
the temporal window should be sufficiently small so that
subsequent ESMs have the minimum possible temporal over-
lap. Because the expected time interval between subsequent
ESMs was 45 min, we determined that the complete temporal
window would be approximately around 90 min. As stated,
AFs are computed from multiple subwindows that span a
given window size. However, the number of subwindows
required for the AFs is an unknown quantity. Therefore, we
examined multiple values for the number of subwindows,
and the percentage of missing values was calculated for each
combination. To identify this difficult trade-off, the simplest
approach involves evaluating the predictive performance of the
features for each window size. This is done by building an
ML classifier for each of the resulting feature spaces. Another
heuristic for choosing the window size was the number of
missing values for each combination.

Table V depicts the percentage of missing features for a
given window size and number of subwindows. Note that we
considered potential window sizes of 40, 80, and 160 min
(color-coded in the figure). Moreover, we evaluated 2, 4, and 8
as the number of subwindows for each given temporal window.
The figure presents features that are missing in at least 20% of
the cases. It can be observed that more features appear to be
missing when the number of subwindows is eight. However,
no noticeable difference can be noted when the number of
subwindows is two or four (first and second subfigures). Thus,
we selected four as the number of subwindows (second subfig-
ure). Following this, we selected a complete window size of 80
minutes because it proved to be better than a window size of
40 minutes and comparable to a window size of 160 minutes;
moreover, it was close to first heuristic of 90 minutes. The
table indicates that eight subwindows with a window size of 80
minutes produce 16.81% of the features that are mostly (more
than 20% of the time) missing. Furthermore, this number is
close to 14.39%; therefore, we chose four subwindows to
prevent bias toward CFFs. In other words, if we had more
subwindows, the CFFs would most likely perform better than

TABLE V: Percentage of missing features if given window
size and number of subwindow combinations were to be
chosen.

number of
subwindows window size percent of missing features

more than 20% of the time

2 40 13.60

2 80 10.57

2 160 8.99

4 40 16.17

4 80 14.39

4 160 11.84

8 40 18.49

8 80 16.81

8 160 15.97

TABLE VI: Performance of Logistic Regression classifier on
combination of window sizes settings. Aggregated features are
used.

Num. of
sub-

windows

Full
window

size
Accuracy Balanced

accuracy F1 score ROC-AUC

2 40 64.1 62.6 0.621 0.663

2 80 64.6 62.3 0.621 0.670

2 160 63.6 61.2 0.608 0.660

4 40 61.2 59.5 0.589 0.634

4 80 63.9 62.9 0.622 0.676

4 160 63.9 61.9 0.614 0.672

8 40 61.5 60.0 0.593 0.623

8 80 62.5 60.8 0.603 0.644

8 160 64.1 62.3 0.615 0.673

the TFs and AFs, owing to the CFF’s capability of computing
features based on fine-grained context. We also noted the
performance of AFs for different window and subwindow
combinations. Additionally, a logistic regression classifier is
fitted for each combination, and performance is compared. As
can be observed from Table VI, the selected combination of
four subwindows and a complete window size of 80 minutes
provided the highest area under the curve (ROC-AUC) score of
0.676. Interestingly, when the subwindow size was 10 minutes
or smaller, the ROC-AUC score dropped significantly to 0.623.

F. Feature Selection

We followed bottom-up feature engineering, wherein there
is no prior belief regarding the use of specific features for
predicting the outcome variable, receptivity. Initially, we con-
sidered all types of features as potentially useful and analyzed
them. However, considering all the potential features for ML
models is known to lead to the curse of dimensionality,
where the data become sparser in a high-dimensional space.
In addition, an increase in the number of features leads to
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TABLE VII: Summary of feature selection steps.

Removal step Remaining number of features

Original AFs 778

Elimination of zero variance features 770

Elimination of mostly missing features 754

Elimination of pairwise correlations 416

Lasso 113

overfitted learning models while adding significant storage
and data analytics costs [26]. Furthermore, study requires a
lower feature dimensionality to prevent an increasing number
of frequent itemsets and rules while mining associations
for CFFs. Notably, dimensionality reduction techniques can
address this issue and improve the performance of the learning
algorithms. These techniques can be grouped into feature
extraction (e.g., PCA) and feature selection (e.g., LASSO).
In this paper, we employ feature-selection approaches that
preserve interpretability (i.e., original definition of the se-
lected feature). The field of feature selection is vast and
can constitute a separate research topic. Here we provide
a brief outline and refer the readers to relevant studies for
details [26]. For supervised classification problems, feature
selection can be divided into three primary categories. Among
these, the most computationally efficient family involves filter-
based approaches. Such approaches use data characteristics,
pairwise correlation, variance, and correlation with the target
variable to filter unwanted features. It is noteworthy that
filter-based feature selection uses ground-truth information
from the dataset. Since proposed pipeline uses a separate
RuleGenerateSet for selecting features that is independent of
MLTrainEvalSet (data set for ML model evaluation), we could
safely employ filter-based feature selection in the analysis.
Feature selection pipeline below is performed on AFs extracted
for RuleGenerateSet.

1) Feature Selection pipeline: Given the nature of selected
dataset, a single-feature selection technique was deemed in-
adequate. Therefore, we devised the pipeline: Table VII lists
the steps involved in the feature-selection pipeline. Notably,
of the 778 AFs, 121 were selected.
Elimination of Low Variance Features. As can be expected,
features with zero variance do not offer any useful information
to the classification algorithm; however, they can increase the
complexity of the learning process. Therefore, we eliminated
such features. Furthermore, we used a threshold of 1e-07
instead of an exact zero variance.
Elimination of Mostly Missing Features. As depicted in Fig.
7, certain features are more frequently missing than others. We
particularly eliminated a feature if it was missing for more
than 20% of the time. The rationale for such elimination was
the following: when features are missing most of the time,
imputing them may increase the noise to signal ratio. In total,
16 features were removed that were found to be missing more
than 20% of the time.
Elimination of Pairwise Correlations. Even after previous
steps in the pipeline, several of the features were correlated
with each other. Notably, a high correlation between features

Fig. 7: Percentage of Missing Cases

A and B implies that feature A already carries the information
provided by feature B. Therefore, in such cases, we retained
only one feature to reduce dimensionality without losing infor-
mation. To decide which of the correlated features should be
retained, we exploited the correlation of the features with the
target variable. In particular, features with a higher correlation
with the target variable were retained. Herein, we considered
features to be pairwise correlated if they exceeded a correlation
tolerance threshold of 0.8. Consequently, 416 features were
retained after selection.
Logistic Regression using Lasso. The next step was to
fit a logistic regression model with L1 regularization (i.e.,
lasso). This regularization forced the less predictive features
to have an almost zero coefficient. Consequently, features
with zero coefficients in the logistic regression classifier were
eliminated. The figure indicates that only 113 of the 416
features had nonzero coefficients. Therefore, 113 features were
retained after elimination.

G. Context Mining

In the field of ubiquitious computing, context can imply
smartphone user’s contextual information which could be user-
centric and device-centric [2], [27], [28]. In this section, we
explain how we identified useful context for extracting the
given feature. In other words, idea of CFF is to extract features
from specific time intervals where desired context is met.
Hence, to obtain the CFFs, first, a method to contextualize
the feature extraction process had to be devised. We adapted
the approach that was originally proposed for depression
detection, which had a window size of 4 months. Note that
the key difference between the study and that conducted by
Xu et al. [24] lies in the manner in which we mined and
selected the rules. Instead of ranking rules that differentiated
the outcome variable, we mined the rules to seek frequently co-
occurring sensor values. Another important difference is that
window sizes are drastically different. Where Xu et al. used
four months, we use an 80-minute window size. Similarly,
for subwindow size, we use 20 minutes as opposed to an
epoch (3 hours). The sensor values recorded in each 20-minute
window served as a single basket for the association rule
mining algorithm.

Association rules were mined from symbolic or categorical
data. Hence, for rule mining, we simply quantized numeric
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features(sliding window features) as low, medium, and high
at the participant level. Features that did not have variance
over 20 minute window were excluded from rule mining as
they are not meaningful. It is noteworthy to mention that to
prevent the bias in evaluation, context mining was performed
(all procedures in this section) using only the RuleGenerateSet
split of the K-EmoPhone data as explained in Data Split.

1) Mapping Subfeatures to Temporal Features: As shown
in feature selection section 113 AFs were selected. However,
to mine the association rules, normal (temporal) features were
used. Therefore, the 113 AFs (mean and standard deviation
of the TFs) were mapped to the original TFs. Upon mapping,
113 AFs were reduced to 97 TFs.

2) Sliding Window Features as ARM transactions: To mine
the association rules, first, the sliding subfeatures were ex-
tracted and processed. These features were independent of
the outcome variables and were extracted every 20 minutes
(subwindow size) during the data collection period. This
collection resulted in 9,072 entries for the RuleGenerateSet.
Upon feature extraction, the missing values were imputed with
the mean values of the participant for a given feature. It’s
important to note that we didn’t make any assumptions about
sensor data before figuring out the sliding window features.

3) Mining Association Rules: Association rule mining
(ARM) is a widely used technique for the identification of
associations in basket analysis, transactions, etc. The sliding
window features for 9,072 records were recoded as low,
medium, and high to be used as transactions in ARM. We
mined the association rules that implied co-occurrence be-
tween the features. This co-occurrence could then later be used
to pair feature–context relationships. To mine the association
rules, we used the MLExtend library [29]. In the following,
we explain the details of two main steps of rule mining: (1)
generation of frequent item sets and (2) generation of the
association rules.
Mining Frequent Patterns. The mining of frequent patterns
involves specifying a minimum level of support (number of
occurrences for the item sets to be considered frequent).
However, no clear guideline has been stipulated regarding this
value in the literature. While generating frequent itemsets, we
used a minimum support threshold of 0.3. This ensured that the
found item sets were together at least 30% of the time. Due to
its faster mining speed, the FP-Growth algorithm was selected
for frequent item mining. We constrained the maximum length
of the frequent item sets to be five. Consequently, 1,946,843
frequent item sets were mined. In the second step, association
rules were mined from the frequent item sets.
Mining Associations. In the next step, we extracted the rules
from the given item sets. In total, 51,911,740 rules were mined
with a minimum confidence threshold of 0.2. Among them, we
retained 9,297,565 rules, which had only one feature as a rule
consequence. This is because CFF-extraction method required
the result side of the rule to have only one thing (i.e., a binned
feature).

4) Rule Selection: Owing to the large number of rules,
extracting CFFs for all the rules significantly increases the
dimensionality and computation. This makes the learning of
a classifier impractical. Furthermore, the majority of these

features exhibit high pairwise correlations owing to the nature
of the rule-mining algorithm. To address this problem, we
propose using lift as a rule selection metric.
Rule Interestingness Measure. To determine whether a rule
was interesting, we used lift as a metric. Notably, lift is a
simple correlation measure, which can be described as follows:
The occurrence of item A is independent of the occurrence of
item B if P (A,B) = P (A)P (B); otherwise, item A and item
B are dependent and correlated as events [30]. This definition
can easily be extended to more than two itemsets. The lift
between the occurrences of A and B can be computed using
equation 1:

L(A,B) =
P (A ∪B)

P (A)P (B)
(1)

Consequently, the metric lift indicates if the occurrence
of an antecedent (LHS) can predict the occurrence of a
consequent (RHS). For contextual filtering, a feature (the RHS
of the rule) conditioned upon the LHS of the rule’s occurrence,
the lift is a natural rule-selection measure.

VI. EXPERIMENTAL SETTINGS (IMPLEMENTATION
DETAILS)

In this stage, we prepare the environment, methods, and
metrics that are needed for the experiments in the next section.

A. Classifiers

For predicting user receptivity with ML, we used many off-
the-shelf classifiers, including state-of-the-art gradient boost-
ing algorithms such as CatBoost [31]. However, to reduce
the scope, sometimes a single classifier—a logistic regres-
sion—was used as a de facto classifier. We selected this
classifier owing to its simplicity and computational efficiency.
Later in this section, we benchmark other classifiers to assess
the generalization of the findings of this work.

B. Evaluation

1) Cross Validation: For the ESM responses of the partici-
pants, each participant provided multiple observations. There-
fore, three possible approaches could be adopted for evaluating
the model with cross validation (CV). These included the
following: (1) leave one subject out of CV—each participant’s
data are evaluated separately; (2) KFold CV—data are split
into K folds, and each fold is evaluated (subject information
is ignored); and (3) Group KFold CV—all data are split into K
folds, and each fold is evaluated (subject data do not overlap
across folds). Similar to [20], we adopted the third option and
split the data into five folds, where participant data could only
be in one of the folds.

2) Evaluation Metrics: Notably, the commonly used met-
rics in interruptibility and user receptivity studies are the F1
score, precision, and recall. We follow the studies that are
closely related to ours [11], [14], [20] based on Table I and
those that use the F1 score as a primary metric. The F1 score
is calculated using equation X.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(2)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3331715

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12

In binary classification problems, three main approaches can
be adopted to compute the F1 score: (1) computing the F1
score only for the positive (receptive) class, (2) computing
the F1 scores for both receptive and non-receptive classes and
averaging them, and (3) computing the F1 scores for each
sample and averaging them. These approaches are referred to
as binary, macro, and micro averaging, respectively, in the
scikit-learn community. The evaluation metrics should reflect
this because the detection of both OMs and non-OMs is
considered important. So, we calculated out the F1 scores for
both classes and took the average. This gave us the macro-
averaged F1 score, which takes into account that it’s important
to find both receptive and non-receptive cases.

Another important metric in binary classification is the
ROC-AUC. The ROC-AUC is preferred over other confusion
matrix-based metrics, such as the accuracy or F1 score,
because it evaluates the classifier’s discriminative power at
multiple cutoff thresholds. So, in this work, the ROC-AUC
metric was used to choose the model, and the F1 score was
used to compare it to other methods that have been written
about.

C. Baseline Random Strategy

In this study, we used intelligent ML models that em-
ployed context features for detecting the opportune nature
of a moment (i.e.user is receptive). To evaluate the improve-
ment achieved using these ML models, we, however, needed
a baseline random strategy (i.e.dummy classifier) that did
not use any input but provided random predictions using
a specified strategy. We followed the terminology of the
scikit-learn ML community [32] to assess the performance of
the random baseline strategy for binary classification. More
specifically, dummy classification has the options listed below.
For additional information on baseline random classification
strategies, we refer readers to [32].

• most frequent: the predict method always returns the most
frequent class label in the observed y argument passed to
fit.

• prior: the predict method always returns the most fre-
quent class label in the observed y argument passed to fit
(similar to most frequent).

• stratified: the predict proba method randomly samples
one-hot vectors from a multinomial distribution parame-
terized by empirical class prior probabilities. The predict
method returns the class label with a probability of
one in the one-hot vector of predict proba. Therefore,
each sampled row for both methods is independent and
identically distributed.

• uniform: generates predictions uniformly but in a random
manner from the list of unique classes observed in y, i.e.,
each class has an equal probability.

• constant: always predicts a constant label provided by the
user. This is useful for metrics that evaluate non-majority
classes.

In line with the literature, for comparison with ML models,
we selected the most frequent strategy as the random baseline
strategy. However, we acknowledge that this setting may be

sensitive to class distributions. In other words, depending on
the binning threshold used, the resulting binary class distri-
bution can change. This, in turn, can lead to a change in the
baseline results for those who use the most frequent strategy.
However, this can be addressed by employing a stratified
random strategy that considers class imbalance. Therefore, we
report the baseline results obtained based on both strategies.

D. Operating System Environment

The system used for this study is running on Ubuntu 22.04
as the operating system. The specific characteristics of the
OS, including the number of CPU cores, RAM capacity, and
SSD storage, are essential factors that influence the system’s
performance during data processing and computation.

CPU Cores: The system is equipped with a total of 24 CPU
cores, which allows for parallel processing and multitasking,
enabling efficient handling of complex computations.

RAM Capacity: The system is equipped with 64 GB of
RAM (Random Access Memory), a crucial resource for storing
data that is currently being used by the system. The large
RAM capacity enables the system to handle sizable datasets
and memory-intensive tasks efficiently.

Operating System Version: The system is running on
Ubuntu 22.04, a popular and widely used Linux distribution
known for its stability, security, and extensive software sup-
port.

SSD Storage: The system is equipped with a 1 Terabyte
(1TB) Solid State Drive (SSD). SSDs provide faster data ac-
cess and read/write speeds compared to traditional mechanical
hard drives, contributing to quicker system boot times and
improved overall performance. These OS characteristics play
a vital role in ensuring a smooth and efficient computing
environment for conducting data analysis, running machine
learning algorithms, and processing large-scale datasets effec-
tively.

VII. RESULTS AND ANALYSIS

Note that the experiments discussed in this section are
intended to answer the aforementioned research questions.
Here, the MLTrainEvalSet was used for all experiments.
We compared the performance of the three different feature
extraction approaches. In Section V, we described the process
of obtaining such features, below we briefly highlight their
differences.

• TFs: The first approach extracts TFs for a given window
(e.g., 80 min). This is the most commonly used approach
for sensor data [18].

• AFs: The second approach obtains the AFs, which rep-
resent the aggregation (mean and standard deviation)
of subwindow features. The window with a size of 80
minutes has multiple subwindows (4 x 20 minutes).
This approach is previously widely used in depression
detection problems [24].

• CFFs: The third approach is similar to that of the AFs
but considers only specific parts of the subwindows for
aggregation. A subwindow is considered for aggregation
only if it meets a certain condition (i.e. context). As
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TABLE VIII: Effect of feature engineering on logistic regres-
sion classifier performance.

Feature type Feature dimension AUC F1 score

Contextually Filtered F. 400 0.581 0.531

Aggregated F. 186 0.554 0.518

Temporal(full) F 93 0.562 0.533

Baseline (most frequent) N/A 0.5 0.38

TABLE IX: Effect of feature engineering on off-the-shelf
classifiers. The numbers indicate the ROC-AUC metric values
of the classifier on the test set.

Classifier TFs AFs CFFs

AdaBoost 0.539 0.537 0.544
CatBoost 0.574 0.561 0.582
DecisionTree 0.505 0.525 0.532
Gaussian Naive Bayes 0.546 0.555 0.587
GaussianProcess 0.521 0.527 0.565
LogisticRegression 0.562 0.554 0.581
Multi-layer Perceptron 0.550 0.539 0.572
QuadraticDiscriminantAnalysis 0.546 0.550 0.530
RandomForest 0.560 0.566 0.580
SVM 0.564 0.566 0.575
Avg. of all classifiers 0.547 0.548 0.565

explained in detail in Section V, context is obtained via
association rule mining. For the given feature, certain
value (one of low, middle, high) of another feature(s)
is(are) considered as a context. Such context determina-
tion criteria is not necessarily related to user receptivity.
Instead, it finds the co-occurrence of multiple features
(sensors) via association rule mining and assume those
cases capture a different aspect of the user which was
not captured by TFs and AFs.

A. Effect of Feature Engineering on Classification Perfor-
mance

We compared three types of feature extraction approaches
and their effects on the ML model’s performance. In particular,
comparisons included the performance of the classifier under
different feature extraction settings, feature dimensionality,
and performance of the classifier on the test set (i.e., ROC-
AUC). A significant difference was noted between the ROC-
AUC and F1 score metrics. The F1 score was evaluated on
a single cutoff threshold, whereas the ROC-AUC considered
all possible thresholds for evaluation. Consequently, the ROC-
AUC was considered a more reliable metric. However, for
ease of interpretation, we also included the F1 score. The
results indicated that the CFF provides promising results.
Note that the results displayed in Table VIII are only used
for the logistic regression classifier. Because we used default
hyperparameters, these results could be biased. Therefore, to
confirm the effectiveness of the CFF, we experimented with
multiple classifiers, as shown in Table IX. Results show that
for all but the RF classifier, CF features are outperforming
other kinds of features.

TABLE X: Benchmarking multiple classifiers on a combined
set of features.

Classifier Accuracy Balanced
accuracy F1 score AUC

AdaBoost 52.2 49.5 0.484 0.520
CatBoost 59.0 54.1 0.518 0.577
DecisionTree 50.6 49.2 0.485 0.492
Gaussian Naive Bayes 56.9 56.7 0.549 0.587
GaussianProcess 55.2 53.7 0.528 0.522
LogisticRegression 57.8 54.4 0.534 0.579
Multi-layer Perceptron 54.9 52.0 0.516 0.541
QDA 58.0 49.8 0.432 0.498
RandomForest 58.4 54.2 0.523 0.580
SVM 58.4 54.8 0.527 0.593

B. Benchmarking Common ML Classifiers on Combined Fea-
ture Set

As presented in Tables VIII and IX, the CFFs resulted in
the best performance. Further, we examined the performance
of the combined features, which include the TF, AF, and CFF.
The resulting dimensionality of the features was 400+ 186+
93 = 679.

The results for 11 commonly used classifiers are listed in
Table X. The performance measures include several confusion
matrix-based metrics, such as accuracy, balanced accuracy
(to account for data imbalance), and F1 score. The results
additionally include the ROC-AUC as a more exhaustive
performance metric that considers multiple cutoff thresholds
for positive and negative predictive values. It is noteworthy
that the results correspond to the default parameter settings
of each classification algorithm without any hyperparame-
ter fine-tuning. An evaluation of the results with a focus
on the ROC-AUC suggests that the SVM, RandomForest,
GaussianNaiveBayes classifiers provided the best results. The
decision tree classifier produced an ROC-AUC score of 0.492,
which is extremely close to that of a random guess. We posit
that this can be attributed to the overfitting nature of the
decision tree classifier. It is noteworhty that it is possible to
do feature selection after combining three types of features.
For simplicity, it is not done in this work.

C. Complexity Analysis of the Proposed Method

The complexity of the proposed method for predicting user
receptivity to health interventions can be analyzed in both the
model preparation/training phase and the evaluation phase. In
the model preparation phase, the computational requirements
primarily depend on feature extraction and model training. The
extraction of temporal features and aggregated features can be
performed relatively quickly, with a time complexity that is
linear with respect to the dataset size. The major bottleneck
in the extraction of contextually filtered features is the rule
mining procedure. However, this is an offline process and is
performed only once.

During the evaluation phase, the computational complex-
ity primarily depends on the feature extraction process and
the prediction model’s requirements. The feature extraction
involves extracting temporal features, aggregated features, and
contextually filtered features. Table XI provides the timing
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information for the feature extraction process, specifically for
the extraction of the 95-dimensional temporal features. It is
important to note that the times provided for the extraction of
temporal features also apply to the computation of aggregated
and contextually filtered features, as they are derived from the
temporal features extracted for subwindows. This feature ex-
traction complexity enables the development of the prediction
models and their evaluation in real-time deployment scenarios.

TABLE XI: Timings and Feature Dimensions for Feature
Extraction in Evaluation Phase

Feature Type Extraction Time Dimensions

Temporal Features 13 min 93
Aggregated Features 13 min + 59.5 ms 186
Contextually Filtered Features 13 min + 2.27 sec 400

D. Discussion

1) RQ1: Can ML techniques be applied effectively to en-
hance receptivity to health interventions?: The results dis-
played in Table VIII reveal that all three types of features per-
formed better than the random baseline strategy (ROC-AUC of
50%). This implies that receptivity to DTx interventions can
be increased by employing contextual factors, such as sensor
data and user–phone interactions.

2) RQ2: Can we improve the performance of the ML
model with better feature engineering?: The results displayed
in Tables VIII, IX, and X reveal the significant impact of
engineering features on the ML model’s performance. This
effect is retained even when the choice of the ML model
changes, as indicated in Table IX. This implies that in addition
to tuning the hyperparameters of classification algorithms, an
additional approach for improving the predictive power of
receptivity prediction should involve the engineering of more
powerful features with rich representations.

3) Limitations of the Proposed Method and Future Direc-
tions: A key strength of the proposed receptivity prediction
model lies in its use of contextually filtered features (CFFs)
which offer a comparatively richer representation. However,
acquiring such features can be more intricate compared to
other conventional temporal features (TFs). Despite this, we
believe that the complexity of obtaining CFFs is a minor, if
not negligible, constraint in light of the benefits offered by
their robust representation. Even though the inclusion of CFFs
introduces additional steps thereby increasing complexity, this
process is confined to the offline phase where rules for con-
textually filtering the process are identified. In the deployment
(or online) phase, the complexity involved in extracting CFFs
aligns closely with common procedures for TF or aggregated
feature (AF) extraction. The topic of association-rule mining
is an extensively investigated area. The findings underscore
the superior potential of CFFs in predicting user receptivity.
Nevertheless, there is a multitude of options for rule selection
that could enhance the performance of CFFs even further. As
such, an intriguing avenue for future research might focus
on optimizing rule-selection methods. For instance, during the

investigation, we discerned that the parameters of rule mining
significantly influenced the final performance of CFF-based
machine learning models.

Another promising research path could involve direct min-
ing of association rules from raw data sources, as opposed
to mining from preprocessed TFs extracted over a 20-minute
(sub) windows. The rationale for this is that organizing raw
data into bins can make the data more insightful. For example,
it might be more effective to categorize heart rate sensor
readings as low, median, and high, rather than labeling time-
series complex features as such. Moreover, these rules tend to
be more meaningful and interpretable.

Furthermore, fine-tuning the model’s hyperparameters
presents substantial opportunities for enhancing the perfor-
mance of the machine learning model.

VIII. CONCLUSION

This study demonstrated the effect of feature engineering
on the receptivity prediction performance of an ML model.
In other words, the results revealed that the same ML model
could perform better when richer features were engineered
(average ROC-AUC of 0.565 vs. 0.547 for CFFs and TFs).
This was achieved based on the proposed CFF-extraction
approach. Although locating useful features that can identify
a subject’s receptivity is often complicated, we achieved the
same using a novel automated feature engineering approach.

REFERENCES

[1] U. Lee, G. Jung, E. Ma, J. S. Kim, H. Kim, H. Lee, J. Alikhanov, Y. Noh,
and H. Kim, “Toward data-driven digital therapeutics analytics: Litera-
ture review and research directions,” arXiv preprint arXiv:2205.01851,
2022.

[2] M. N. Burns, M. Begale, J. Duffecy, D. Gergle, C. J. Karr, E. Gi-
angrande, and D. C. Mohr, “Harnessing context sensing to develop
a mobile intervention for depression,” Journal of medical Internet
research, vol. 13, no. 3, p. e1838, 2011.

[3] B. Y. Laing, C. M. Mangione, C.-H. Tseng, M. Leng, E. Vaisberg,
M. Mahida, M. Bholat, E. Glazier, D. E. Morisky, and D. S. Bell, “Ef-
fectiveness of a smartphone application for weight loss compared with
usual care in overweight primary care patients: a randomized, controlled
trial,” Annals of internal medicine, vol. 161, no. 10 Supplement, pp. S5–
S12, 2014.

[4] P. Klasnja, E. B. Hekler, S. Shiffman, A. Boruvka, D. Almirall,
A. Tewari, and S. A. Murphy, “Microrandomized trials: An experimental
design for developing just-in-time adaptive interventions.” Health Psy-
chology, vol. 34, no. S, p. 1220, 2015.

[5] J. Linardon, P. Cuijpers, P. Carlbring, M. Messer, and M. Fuller-
Tyszkiewicz, “The efficacy of app-supported smartphone interventions
for mental health problems: A meta-analysis of randomized controlled
trials,” World Psychiatry, vol. 18, no. 3, pp. 325–336, 2019.

[6] L. M. Collins and K. C. Kugler, “Optimization of behavioral, biobe-
havioral, and biomedical interventions,” Cham: Springer International
Publishing, vol. 10, no. 1007, pp. 978–973, 2018.

[7] O. Inan, P. Tenaerts, S. Prindiville, H. Reynolds, D. Dizon, K. Cooper-
Arnold, M. Turakhia, M. Pletcher, K. Preston, H. Krumholz et al.,
“Digitizing clinical trials,” NPJ digital medicine, vol. 3, no. 1, pp. 1–7,
2020.

[8] P. Liao, W. Dempsey, H. Sarker, S. M. Hossain, M. Al’Absi, P. Klasnja,
and S. Murphy, “Just-in-time but not too much: Determining treatment
timing in mobile health,” Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, vol. 2, no. 4, pp. 1–21, 2018.

[9] P. Liao, K. Greenewald, P. Klasnja, and S. Murphy, “Personalized
heartsteps: A reinforcement learning algorithm for optimizing physical
activity,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 4, no. 1, pp. 1–22, 2020.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3331715

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



15

[10] V. Pejovic and M. Musolesi, “Interruptme: designing intelligent prompt-
ing mechanisms for pervasive applications,” in Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2014, pp. 897–908.

[11] M. Pielot, B. Cardoso, K. Katevas, J. Serrà, A. Matic, and N. Oliver, “Be-
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(a)

(b)

(c)

Fig. 8: Self-reported questionnaire collection timeline over 7 days. The X-axis depicts the timeline for data collection, and the
Y-axis presents the participant ID. Subfigures a,b,c correspond to different data collections campains that started in April 30,
May 7 and May 15.
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Fig. 9: Correlation between the response delay and self-
reported disturbance.
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