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TDOA-based Indoor Localization via Linear Fusion
with Low-Rank Matrix Approximation
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Abstract—Target indoor localization has become an attractive
research topic due to its importance in location-based applica-
tions in wireless networks for sensing, controlling, and commu-
nicating. In TDOA-based localization models, timestamp packets
must be exchanged between anchor nodes and target nodes.
Timestamp measurements are susceptible to random transmis-
sion delays and packet loss in indoor environments, resulting
in inaccurate positioning accuracy. In this paper, we propose a
linear fusion indoor localization scheme based on TDOA with
low-rank approximation to improve target localization accuracy
and robustness. In an asynchronous localization model, we first
formulate the indoor localization problem from incomplete and
noisy timestamp measurements as a low-rank matrix completion
problem. Furthermore, the proposed linear fusion algorithm is
used to further optimize the localization accuracy by weighting
multiple localization rounds. Simulation and experimental results
indicate that the proposed method is more effective than the
existing methods in the presence of packet loss and random
delays.

Index Terms—Localization, time-difference-of-arrival (TDOA),
matrix completion, linear fusion.

I. INTRODUCTION

Target localization has emerged as a promising solution to
communicate, sense, and control robotic systems, especially
in industrial settings with advancements in wireless technol-
ogy [1], [2]. It is essential for the proper operation of such
applications to have precise target location information. With
its global coverage, the Global Positioning System (GPS)
is an excellent localization system for outdoor applications.
As a result of multipath fading and signal attenuation, GPS
is not an appropriate solution for indoor applications. The
majority of Internet of Things (IoT) scenarios occur within an
indoor environment, and these IoT technologies can be used
to enhance indoor location awareness in a variety of ways [3],
[4]. In recent years, ultra-wideband (UWB) technology has
been proposed as a technique for indoor localization. Models
using UWB have low power consumption, high data transfer
rates, and nanosecond timestamps [5], [6].

Indoor localization can be classified into two categories:
range-based and range-free. Range-free localization methods
do not require additional hardware for absolute point-to-point
distance measurements, but have higher localization errors.
Range-based localization methods have been extensively in-
vestigated in the literature, including signal strength (RSS),
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Fig. 1: Traditional TDOA measurement method.

direction of arrival (DOA), time of arrival (TOA), time differ-
ence of arrival (TDOA), and angle of arrival (AOA), etc [7],
[8]. TDOA is the most popular method due to its low cost,
accuracy, and simplicity [7], [9].

TDOA-based target localization involves the following
steps. First, the anchor nodes are synchronized to a common
time reference as shown in Fig.1. Next, the measured time
difference between a target node and a spatially distributed
anchor node is used to determine a hyperbolic model. By
intersecting the calculated TDOA values with numerous hy-
perbolas, the target node can be located [7].

Reliable clock synchronization between all anchor nodes
is essential to the design of TDOA localization methods.
However, even if all clocks in the network are synchronized ac-
curately, they may drift away from each other over time due to
oscillator imperfections and other environmental factors. It is
possible for target localization errors to be significant if there is
a small difference between the network clocks [10]. Therefore,
each node needs to be synchronized periodically. Numerous
clock synchronization methods have been proposed in wire-
less networks, including Timing Synch Protocol for Sensor
Networks (TPSN), Flooding Time Synchronization Protocol
(FTSP), and Reference Broadcast Synchronization (RBS) [11].
Traditionally, clock-synchronization-based localization models
have relied on a large number of packet exchanges between
anchor nodes to achieve high-accuracy localization at the cost
of communication overhead and system complexity [12]. As
a result, these synchronization-based methods are extremely
challenging for high-accurate localization.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327883

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

 

Fig. 2: Asynchronous TDOA measurement method.

In the past few years, a few localization methods have been
proposed to measure the TDOA directly without synchroniza-
tion. [13]–[15]. In [16], the ASync-TDOA localization model
uses a reference node to obtain TDOA measurements without
anchors synchronizing their clocks as shown in Fig. 2. With
this one-way-based ranging model, packet exchanges can be
reduced and a high level of accuracy can be achieved at a
relatively low cost. In this paper, we use UWB signals to
collect timestamps and the ASync-TDOA to measure TDOAs.

A. Related Work and Motivation

Recently, indoor target localization has attracted consid-
erable attention due to the increasing demand for location-
based services. A major advantage of UWB technology is
its high time resolution and high bandwidth, which makes
it an attractive choice for high-precision indoor localization.
Localization models based on UWB use very short-duration
pulses on the order of nanoseconds, which minimize multipath
effects and provide accurate Time of Flight (TOF) estimations.
Thus, UWB technology is particularly suitable for range-
based approaches such as TDOA localization models. Several
localization systems have used UWB to localize objects, with
encouraging results.

There are many factors that influence the TDOA measure-
ments in UWB localization models, such as anchor node
positions, clock synchronization, random transmission delays,
and packet loss. In [17], the authors analyzed how anchor
position errors affect target location accuracy. In order to
improve localization accuracy, they proposed an algorithm
with a closed-form solution based on the statistical distribution
of anchor positions. The study in [18] considered using a
single calibration emitter with a precisely known location
to reduce the loss in target localization accuracy caused by
the random anchor position errors. These approaches could
reach the Cramer-Rao lower bound (CRLB) when anchor
position errors are sufficiently small at the cost of increased
computational complexity.

Significant research efforts in indoor target localization
have focused on precise synchronization for TDOA measure-

ments [19]. In [10], the authors studied TDOA-based indoor
target localization in the presence of clock imperfections.
This study presented joint clock skew and target location
estimation based on semidefinite programming with a refining
step. Moreover, differential TDOA is proposed in [20], [21]
as a method for mitigating the effects of imperfect clocks
by employing a nonlinear least squares criterion. In [11], the
authors develop a robust maximum likelihood estimator for
the clock skew and clock offset in order to achieve high
synchronization accuracy. The method developed in [22] uses
wireless clock synchronization based on IEEE 802.15.4a for
TDOA-based localization. A high-precision TDOA positioning
scheme is proposed in [23] based on IEEE 802.15.4z. The
authors in [24] designed transmitter and receiver boards for
localization using clock offset estimation. A asymptotic gradi-
ent clock synchronization algorithm is proposed in [25], which
relies on periodic transmissions from each node to correct
clock bias and gradually approaches global clock consistency.
In spite of the fact that these synchronized localization models
have very good accuracy, their synchronization method is quite
complex and increases network load.

The author proposes a coherent integration TDOA esti-
mation method that minimizes time synchronization errors
by using the target and reference signals [26]. It is actually
difficult for the receiver to guarantee the same random phase
between signals received from mixers and receivers in different
frequency bands simultaneously.

Various approaches have been developed in recent years to
calculate the TDOA measurements without synchronization.
Based on two-signal sensing and sample counting techniques
in [27], the author proposes a novel TDOA localization
technique without clock synchronization. The TDOA method
proposed in [28] is capable of measuring the time difference
without the need for clock synchronization, but it requires the
initial coordinates of the target node. Asynchronous hyperbolic
source localization is proposed in [29], which relies on packet
exchange between two anchors to reduce errors caused by
clock drift. An algorithm for one-way transmission ranging
has been proposed in [30] that does not require clock synchro-
nization between anchors, but requires each anchor to send a
broadcast packet to estimate and compensate for clock offsets.
In [16], the authors presented an asynchronous TDOA method
that uses a reference node to determine the time difference
between anchor and target nodes. The proposed method is
implemented on a localization platform with UWB signals to
estimate the target node’s position.

In the above-mentioned literature, since the TDOA measure-
ments are calculated based on localization timestamps received
by the server from the anchor nodes, very precise timestamps
are required to estimate the target location. Most of the existing
TDOA-based localization algorithms in the literature calculate
the TDOA measurements directly using the noisy timestamps
collected with the assumption that full localization timestamps
have been received. However, in practical wireless communi-
cation networks, the received timestamps can be affected by
delay variations and thereby degrade the localization process.
Credible target position estimation is challenged by the trans-
mission delay of the timestamp packets. Transmission delays
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can be divided into two types: fixed delays and random delays.
In addition, limited communication range, and environmental
effects result in timestamp packet loss that affects the accuracy
of localization. Target localization is adversely affected by the
loss of timestamp packets, and the performance deteriorates
even further in harsh wireless environments when successive
packet loss occurs. Thus, the noisy and incomplete timestamps
must be processed before TDOA calculations are performed.

Motivated by the above-mentioned challenges, in this paper,
we develop a robust TDOA localization algorithm based
on low-rank matrix approximation. The LRMA localization
scheme is able to correct the received timestamps in the pres-
ence of random transmission delays and missing data, resulting
in improved target localization. The proposed algorithm has
two complementary stages. In the first stage, the timestamp
correction problem is formulated as a low-rank matrix comple-
tion problem arising from a noisy and incomplete timestamp
matrix. The purpose of timestamp correction and recovery
is to reconstruct the original timestamps from their noisy,
incomplete received set as accurately as possible. In order to
overcome the nonconvexity of the rank minimization problem,
we show that this problem can be solved by minimizing the
nuclear norm of the matrix as convex relaxation. To improve
the estimation accuracy, the second stage uses a linear fusion
algorithm to estimate the target location based on the recovered
timestamps.

B. Main Contributions

We propose a linear fusion algorithm for TDOA localization
with noisy and incomplete timestamps that utilizes a low-rank
matrix completion algorithm. The TDOA measurements are
calculated directly based on the received timestamps between
the anchor nodes and target nodes using the ASync-TDOA
model. The main contributions of this paper are summarized
as follows:

• We propose a framework for indoor localization based on
TDOA under random loss of timestamp packets. With the
collected set of timestamp packets, we develop a rank-two
matrix model. The formulated timestamp matrix consists
of rows that represent the localization rounds of anchor
nodes, and columns representing their timestamps.

• We formulate the localization problem from a noisy
and incomplete timestamp matrix into a low-rank matrix
recovery problem using the known subset of timestamp
information. The proposed scheme first solves the for-
mulation recovery problem by minimizing the Frobenius
norm. Secondly, using the recovered timestamps, the pro-
posed scheme calculates TDOA measurements between
the target node and the known anchors, and then estimates
the location of the target.

• We devise a linear fusion strategy based on the collected
set of localization rounds in order to improve positioning
accuracy further.

The experimental results show that the proposed scheme is
more accurate than state-of-the-art methods under conditions
of timestamp packet loss and corruption.

The rest of the paper is structured as follows. We re-
view the preliminary in Section II. Section III introduces the
proposed matrix completion-based target localization method,
including timestamp matrix formulation, timestamp matrix
recovery strategy, and traditional localization algorithms. We
optimize the localization results using the linear weighted
fusion algorithm in Section IV. In Section V, the performance
improvement of the proposed localization algorithm is verified
by simulation results. Additionally, we verify the algorithm’s
effectiveness in hardware experiments in Section VI. Finally,
we summarize the paper in Section VII.

II. PRELIMINARIES

A. TDOA Localization Model

In the traditional TDOA measurement method, the working
principle of a group of anchor nodes is shown in Fig.2.
Consider an array of N ≥ 4 anchor nodes in 3-dimensional
space. We define P = (x, y, z)T as the unknown coordinates
of the target node and Pi = (xi, yi, zi)

T , i = 1, 2, · · · , N as
the known coordinates of the i-th anchor node. Generally,
we refer to the first anchor node as the master anchor, and
the remaining anchor nodes as the slave anchors. The TDOA
measurements between the master anchor and the i-th slave
anchor are denoted by

t̃i,1 = t̃i − t̃1, i = 2, 3, · · · , N, (1)

where t̃i is the real-time of signal propagation between the
target node and the i-th anchor node.

In traditional TDOA technologies, precise clock synchro-
nization between anchor nodes is required to be maintained.
A large number of timestamp packets need to be exchanged
regularly between anchor nodes to synchronize clocks, which
increases estimation and network overhead [31]. Additionally,
clock skew and drift make it difficult to precisely solve
the problem of clock synchronization. To reduce packet ex-
changes, we considers a TDOA localization method based
on an asynchronous network [32]. It is possible to measure
TDOAs using this calibration packet-based model without
clock synchronization.

As shown in Fig. 3, the TDOA measurement process
involves the following steps:

1) The master anchor records the current time tMk , and then
broadcasts a calibration packet to all slave anchors.

2) The i-th slave anchor records the time of receiving the
master calibration packet with their local clock tSi,M

k .

3) Target node broadcasts the localization packet.

4) The i-th slave anchor records the time of receiving
the localization packet with their local clock tSi,T

k , and
the master anchor records the time of receiving this
localization packet with its local clock tM,T

k .

5) Repeat the above steps J ≥ 10 times to get a set of
timestamps TTT s with J rows.

We can calculate all TDOA measurements based on the
collection set of timestamps, which is denoted as TTT s ={
tMk , t

S1,M
k , . . . , t

SN−1,M
k , tM,T

k , tS1,T
k , . . . , t

SN−1,T
k

}J
k=1

.
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Fig. 3: TDOA measurement process.

To calculate the TDOA value without clock synchronization,
tSi,T
k are mapped to the clock of master anchor [16], which

is denoted by

tSi,T
k

mapping
⇒ tSi,T,M

k . (2)

With the location of anchor nodes known, the time of
flight from the master anchor to the i-th slave anchor can
be determined. As a result, tSi,T,M

k can be calculated by

tSi,T,M
k − tMk −∆tM,Si

tMk+1 − tMk
=

tSi,T
k − tSi,M

k

tSi,M
k+1 − t

Si,M
k

, (3)

where ∆tM,Si
represents the time of flight from the master

anchor to the i-th slave anchor. Finally, the TDOA measure-
ments between master node and i-th slave node, denoted as
TM,Si

k , is given by

TM,Si

k = tM,T
k − tSi,T,M

k . (4)

B. Matrix Completion

In signal processing, matrix completion is used to recover
a low-rank matrix based on a subset of its entries, requiring
only a limited amount of data [33]. Matrix completion involves
identifying as closely as possible a low-rank matrix that
corresponds to the observed entries of the given incomplete
matrix.

Let HHH ∈ Rn×m represents a rank-r noisy and incomplete
data matrix with r � min {n,m}. Assume that some of
the matrix entries are given with their indices (i, j) ∈ Υ
are randomly chosen. Thus, observations can be defined by
the observation operator PΥ(HHH), which has the following
definition:

[PΥ(HHH)]ij =

 Hij , (i, j) ∈ Υ

0 otherwise.
(5)

In the absence of noise, the original matrix HHH can be
accurately recovered by solving the following optimization
problem:

min rank(GGG)

s.t. PΥ(GGG) = PΥ(HHH),
(6)

where rank(GGG) represents the rank of the recovered matrix
GGG. In (6), the rank minimization involves finding a low-rank
matrix GGG that matches the given entries Hi,j , (i, j) ∈ Υ.
This optimization problem has a computation complexity
that is non-deterministic polynomial-time hard (NP-hard). The
nuclear norm, which sums its singular values, can be used to
replace the rank, as a convex relaxation. The nuclear norm
minimization problem can be described as follows:

min ‖GGG‖∗
s.t. PΥ(GGG) = PΥ(HHH),

(7)

where ‖GGG‖∗ represents the nuclear norm of the matrix GGG. It
is defined as

‖GGG‖∗ =

min{n,m}∑
i=1

σi, (8)

where σi ≥ 0 is the i-th singular value of the matrix GGG.
A number of research efforts have been conducted on matrix

completion to solve (7), including fixed point continuation
with approximate singular value decomposition (FPCA) [34],
iterative reweighted least squares algorithm (IRLS-M) [35],
and singular value thresholding (SVT) [36]. Nuclear-norm
minimization methods require singular value decompositions
(SVD) of matrices, which are computationally expensive,
especially when the underlying matrices have large dimen-
sions and ranks. In this paper, we utilize a low-rank matrix
approximation algorithm introduced in [37] that is based on
regular QR factorization instead of SVD of the full or partial
matrix at each iteration.

C. Problem Formulation

TDOA-based target localization essentially involves the
following steps. Initially, packet exchange occurs between
anchor nodes and target nodes via a common wireless link.
Secondly, we use the collected timestamps to calculate the
TDOAs and then estimate the target location. As a result of
random transmission delays and packet loss, which reduce
the computational accuracy of TDOAs, traditional localization
methods are inaccurate.

For accurate and robust localization results, we formulate
the target localization problem from noisy and incomplete
timestamps into a low-rank matrix recovery problem. We pro-
pose a rank-two matrix to hold the collected set of localization
timestamps. In the absence of random transmission delays,
the formulated timestamp matrix is low-rank. The proposed
scheme utilizes this low-rank property to denoise the received
timestamps and efficiently recover the lost ones. Then, using
the obtained complete and denoised version of the localization
timestamps, we can estimate the target location.
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Fig. 4: Proposed robust TDOA measurement scheme.

III. PROPOSED MATRIX COMPLETION BASED TARGET
LOCALIZATION

In this section, we present the proposed matrix completion-
based indoor localization scheme to get an estimate of the un-
known target location from incomplete and noisy timestamps
caused by random transmission delays and packet loss. The
proposed TDOA-based localization scheme consists of two
main stages as shown in Fig. 4.

A. Timestamps Matrix Formulation

Consider a positioning system with one master anchor, N−1
slave anchors, and one unknown target node. Once J local-
ization rounds have been completed, we will collect a set of
timestamps. In this paper, we propose a matrix formulation for
denoising and recovering lost timestamps during the process of
exchanging localization packets. The proposed scheme defines
a localization timestamp matrix TTT s that stores the timestamps
collected during the localization rounds. Each row of the
localization timestamp matrix TTT s represents the localization
round for all anchor nodes, while each column represents
the localization timestamp for that round. The localization
timestamp matrix TTT s is defined as follows

TTT s =


tM1 tS1,M

1 · · · t
SN−1,M
1 tM,T

1 tS1,T
1 · · · t

SN−1,T
1

tM2 tS1,M
2 · · · t

SN−1,M
2 tM,T

2 tS1,T
2 · · · t

SN−1,T
2

...
...

. . .
...

...
...

. . .
...

tMJ tS1,M
J · · · t

SN−1,M

J tM,T
J tS1,T

J · · · t
SN−1,T

J

 ,
(9)

The symbols in the TTT s matrix are defined as follows:
• tMk : The start time of each round of timestamp collection,

which is periodically initiated by the master anchor
sending calibration packets at fixed intervals ∆τ .

• tk
Si,M : The timestamp recorded when the calibration

packet was received from the i-th slave anchor.

• tk
M,T : The timestamp recorded when the localization

packet was received from the master anchor.
• tk

Si,T : The timestamp recorded when the localization
packet was received from the i-th slave anchor.

The target node can be considered stationary for a short
period of time. Considering that all anchors are equipped with
the same crystals and operate in the same environment, and
the master anchor initiates new positioning rounds at very
short intervals, timestamps are often tightly correlated without
random delays. Ignoring the random transmission delays of
anchors, the timestamp matrix TTT s can be viewed as elements
of the previous row delayed by a fixed time interval ∆τ . After
elementary row transformation, matrix TTT s can be transformed
into the following:

TTT s →


tM1 tS1,M

1 · · · t
SN−1,M
1 tM,T

1 tS1,T
1 · · · t

SN−1,T
1

∆τ ∆τ · · · ∆τ ∆τ ∆τ · · · ∆τ
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0

 ,
(10)

Thus, the collected timestamp matrix TTT s is a rank-two
matrix.

B. Recovery of Localization Timestamps Matrix

Due to hardware failure and wireless channel conditions,
some packets may be lost during the localization packet
exchange process. In addition, the collected localization times-
tamps are perturbed by random transmission delays. Thus,
some entries of the formulated matrix TTT s are missing and the
observed ones are corrupted by delays. The observed entries
of the timestamp matrix TTT s can be defined by the observation
operator PΥ [TTT s], which is given by

PΥ [TTT s(i, j)] =

 TTT s(i, j), (i, j) ∈ Υ

0 otherwise.
(11)

where Υ represents the subset of known entries in the TTT s
matrix. The noisy incomplete version TTT sn of the noise-free
timestamp matrix TTT s can be written as

TTT sn = TTT s +WWW, (12)

whereWWW defines the noise matrix caused by random transmis-
sion delays during the localization packets exchange process.
Our aim is to search for a denoised, complete, and low-rank
matrix T̂TT s from the noisy incomplete matrix TTT sn with the
observed subset Υ. The proposed scheme exploits the low-
rank property of the matrix TTT s to recover lost entries through
matrix completion theory.

In this subsection, we formulate the indoor localization
problem from a noisy and incomplete timestamp matrix as
a low-rank matrix completion problem using the subset of
observed entries Υ. In this paper, we utilize a low-rank
approximation algorithm based on Frobenius norm minimiza-
tion proposed in [37] to search for the rank-r matrix T̂TT s.
The recovered matrix T̂TT s ∈ RJ×K can be decomposed into
T̂TT s = PQPQPQ, PPP ∈ RJ×r and QQQ ∈ Rr×K . Thus, the rank
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Algorithm 1 :Low-Rank Matrix Approximation (LRMA)
Algorithm

1: Input:Input:Input: TTT s
2: Initialize:Initialize:Initialize: PPP 0 ∈ CN×l , QQQ0 ∈ Cl×K , imax = maximum

iteration number, τ = 10−6

3: RepeatRepeatRepeat
4: Pi+1 = RiQ

+
i = arg min

P

1
2 ‖Ri −PiQi‖2F

5: Qi+1 = P+
i+1Ri = arg min

Q

1
2 ‖Ri −Pi+1Qi‖2F

6: i = i+ 1

7: UntilUntilUntil ‖Ri+1−Pi+1Qi+1‖2F
‖Ri+1‖2F

≤ τ ororor i >= imax

8: Onputs:Onputs:Onputs: T̂TT s = Pi+1Qi+1

minimization problem in (10) can be formulated as a non-
convex relaxation given by

min
P ,Q,R

1

2
‖R−PQ‖2F

s.t. PΥ(R) = PΥ(TTT sn),
(13)

where RRR ∈ RJ×K . In the proposed algorithm, the three vari-
ables RRR, PPP , and QQQ are updated iteratively by minimizing (13)
with respect to each of them while the other two are fixed. At
the i-iteration, by fixing the variables QQQ and RRR, we update the
variable PPP as follows:

Pi+1 = RiQ
+
i = arg min

P

1

2
‖Ri −PiQi‖2F (14)

where Q+
i represents the Moore-Penrose pseudoinverse of

matrix Q at the i-iteration. A similar procedure is followed
for updating matrices QQQ and RRR using the recent values of the
other two fixed matrices. The values of Qi and Ri are given
by

Qi+1 = P+
i+1Ri = arg min

Q

1
2 ‖Ri −Pi+1Qi‖2F

Ri+1 = Pi+1Qi+1 + PΥ (Tsn −Pi+1Qi+1) .

(15)

Here are the criteria for stopping the algorithm:

‖Ri+1 −Pi+1Qi+1‖2F
‖Ri+1‖2F

≤ τ, (16)

where τ denotes a small positive constant. Then a complete
and denoised low rank matrix is obtained based on T̂TT s =
Pi+1Qi+1. The low rank recovery algorithm is summarized
in Algorithm 1.

C. TDOA based Indoor Localization

Once the complete and denoised timestamp matrix T̂TT s is
recovered, the unknown target location can be estimated using
the traditional LS and Chan algorithms.

In a geometric sense, TDOA localization methods are hy-
perbolic location methods. For each anchor pair, a hyperbola
branch can be drawn based on the difference in reception
times. The point where all hyperbolas intersect marks the
position of the target.

Suppose that the coordinates of the target are expressed as
(x, y), and the coordinates of i-th known anchor are expressed
as (xi, yi), the distance relationship between the target node
and each known anchor is given by

Ri =

√
(xi − x)

2
+ (yi − y)

2
. (17)

With anchor number 1 as the master anchor, the distance
between master anchor and slave anchor is defined by .

Ri,1 = Ri −R1 = v × TM,Si

k , (18)

where v is the propagation speed of the anchor nodes, TM,Si

k

A represents the TDOA value of k-th round resulting from
equation (4).

Therefore, we can obtain the position of the target (x, y) in
the 2D model by using the following TDOA equations for N
anchors.



R2,1 =
√

(x− x2)2 + (y − y2)2 −
√

(x− x1)2 + (y − y1)2

R3,1 =
√

(x− x3)2 + (y − y3)2 −
√

(x− x1)2 + (y − y1)2

...

RN,1 =
√

(x− xN )2 + (y − yN )2 −
√

(x− x1)2 + (y − y1)2

(19)

In this paper, we consider using two typical target lo-
cation estimation algorithms, i.e. LS algorithm and Chan
algorithm [38].

1) LS method: The LS method is the simple and effective
method to solve nonlinear hyperbolic equations in (19). After
simplifying equation (19), it can be rewritten as

xi,1x+yi,1y = −Ri,1R1+
1

2

(
Vi − V1 −R2

i,1

)
, i = 2, 3, . . . , N

(20)
where xi,1 = xi − x1, yi,1 = yi − y1, and Vi = x2

i + y2
i .

Rewrite (20) into matrix form

AX = b, (21)

where A =


x2,1 y2,1
x3,1 y3,1

...
...

xi,1 yi,1

 , X =

[
x
y

]
,

b = −



R2,1

R3,1

...
Ri,1

R1 + 1
2


R2

2,1 − V2 + V1
R2

3,1 − V3 + V1
· · ·

R2
i,1 − Vi + V1


 .

The minimum estimate of X can be obtained by

X̂ =
(
ATA

)−1
ATb. (22)

2) Chan method: Suppose that Za =
[
ZTp , R1

]T
, where

Zp = [x, y]T is the position of the target node, the positioning
error vector can be represented as

ε = h−GaZa, (23)

where h = 1
2


R2,1

2 − V2 + V1
R3,1

2 − V3 + V1
...

Ri,1
2 − Vi + V1

 , Ga = −


x2,1 y2,1 R2,1

x3,1 y3,1 R3,1

...
xi,1 yi,1 Ri,1

 .

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327883

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7

Assuming that the variance of the TDOA measurements is
σi,1, the measurement error covariance matrix U is expressed
as

U = diag
{
σ2

2,1 σ2
3,1 · · · σ2

i,1

}
. (24)

When the measurement error of TDOA is relatively small, the
covariance matrix of the error vector can be approximated by

Ψ = E
[
εεT
]

= c2BUB, (25)

where B = diag
{
R0

2 R0
3 · · · R0

i

}
. In general, the

approximate coordinate (x, y) of the target obtained by WLS
can calculate Ri, and replace R0

i with Ri, then the approximate
coordinate of the target node Za = [x0, y0, R0

1]T can be
expressed as

Za =
(
GTaΨ−1Ga

)−1
GTaΨ−1h. (26)

To improve accuracy, Z ′a is estimated with WLS. That is:

ε′ = h′ −G′aZ ′a, (27)

where h′ =


(
x0 − x1

)2(
y0 − y1

)2
R0

1
2

 , G′a =

 1 0
0 1
1 1

 ,
Z ′a =

[
(x− x1)

2

(y − y1)
2

]
. The covariance matrix Ψ′ can be

expressed as

Ψ′ = E
[
ε′ε′T

]
= 4B′

(
G
′T
a Ψ′G′a

)−1

B′, (28)

where B′ = diag
{
x0 − x1 y0 − y1 R0

1

}
. Z ′a can be

obtained by

Z ′a =
(
G
′T
a Ψ′−1G′a

)−1

G′Ta Ψ′−1h′. (29)

The final result is expressed as

Zp = ±
√
Z ′a +

[
x1 y1

]−1
(30)

To ascertain the covariance matrix of position estimates, we
define x = x0 + ex and y = y0 + ey within the domain zp,
where the errors ex and ey are relatively small in comparison
to x0 and y0. Based on (25) and (28), the corresponding
position covariance matrix Zp is determined as follows:

Φ = cov (Zp) =
1

4
B′′−1 cov (Z ′a)B′′−1, (31)

where B′′ =

[ (
x0 − x1

)
0

0
(
y0 − y1

) ]. The covariance

matrix of Z ′a can be expressed as [39]

cov (Z′a) =
(
G′Ta Ψ′−1G′a

)−1
. (32)

Upon using (25), (28) and (32), (31) is found to be

Φ = c2B′′G′Ta B
′−1GTaB

−1U−1B−1GaB
′−1G′aB

′′)−1
.

(33)
The Cramer-Rao lower bound (CRLB) of the estimated target’s
coordinates can be obtained by [39]

Φ = c2
(
GTt U

−1Gt
)−1

, (34)

where Gt =


x̃1/R1

0 − x̃2/R2
0 ỹ1/R1

0 − ỹ2/R2
0

x̃1/R1
0 − x̃3/R3

0 ỹ1/R1
0 − ỹ3/R3

0

x̃1/R1
0 − x̃M/RM 0 ỹ1/R1

0 − ỹM/RM 0

,

x̃i = xi − x0, ỹi = yi − y0, i = 1, 2, ...,M , Ri0 is defind
in (17) with (x, y) = (x0, y0). In our experiment, we will use
the recovered timestamp matrix as T̂TT s to calculate U .

The traditional LS and Chan algorithms rely upon accurate
and sufficient distance measurements. Distance measurements
are subject to noise and data loss, so the above methods
are insufficiently precise when the distance information is
incomplete or damaged.

IV. PROPOSED LINEAR FUSION TARGET LOCALIZATION

In this subsection, we use the information obtained from
multiple localization rounds to improve the accuracy of target
localization. For the purpose of determining the final location
of the target, we devise a data fusion strategy. Based on linear
information fusion, the final estimate of target location is given
by

Â = α1Â1 + α2Â2 + · · ·+ αJ−1ÂJ−1 =

J−1∑
j=1

αjÂj , (35)

where Âj , j = 1, 2, . . . , J−1 refer to the J−1 target location
estimators which are based on different localization rounds,
and αj is the weighing factor of j-th location estimator. Our
objective is to optimize the final result by estimating the
weighting factors {αj}J−1

j=1 using the weighted linear mini-
mum variance information fusion algorithm. In the proposed
algorithm, we determine the weighting factors by comparing
the deviation of each location estimator from the mean of
all location estimators. The larger the deviation, the smaller
the corresponding weight should be. Let the fusion estimation
error be

Ãj = A− Âj , j = 1, 2, . . . , J − 1, (36)

where A represents the mean of the location estimators{
Âj

}J−1

j=1
. Considering Âj is unbiased, then E[Âj ] = A. By

taking the mathematical expectation of the fusion estimator Â
in (43)

E[Â] = E[

J−1∑
j=1

αjÂj ] =

J−1∑
j=1

αjE[Âj ] =

J−1∑
j=1

αjA = A. (37)

Then,

J−1∑
j=1

αj = 1. (38)
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Algorithm 2 :Proposed Linear Fusion (LF) Algorithm

1: Input:Input:Input: Anchors = (xi, yi), target = (x0, y0)

2: In each timestamp sampling cycle, the master anchor node
initiates calibration packets for JJJ rounds.

3: Collect timestamps recorded by each anchor node{
tMk , t

S1,M
k , . . . , t

SN−1,M
k , tM,T

k , tS1,T
k , . . . , t

SN−1,T
k

}J
k=1

.

4: Form the timestamps matrix TTT sn from the successfully
recorded timestamps and save the coordinates of the
known entries into the index set Υ.

5: Find an estimate of the complete denoised low rank matrix
T̂TT s by solving (13).

6: Calculate the TDOA values {TM,Si

k }
J−1

k=1
from (3) and (4)

using the recovered timestamps matrix T̂TT s.

7: Use the calculated TDOA values {TM,Si

k }
J−1

k=1
to estimate

the positions of target node {Âj}
J−1

j=1 based on traditional
LS method and traditional Chan method mentioned in
section III.

8: Estimate the weights {αj}J−1
j=1 by (42) to optimize the

final position Â:

Â =

J−1∑
j=1

αjÂj .

9: OOOutput:Estimatd target = (x, y)

The mean square error Ω of the fusion location estimator Â
is given by

Ω(Â) = E
[
(Â−A)T (Â−A)

]
= E

J−1∑
j=1

αj(Âj −A)T (Âj −A)


+ E

2

J−1∑
j=1,i=1,j 6=i

αjαi(Âj −A)T (Âi −A)

 .
(39)

It is usually reasonable to assume that different estimators
are independent. Thus, Â1, Â2, · · · , ÂJ = are assumed to be
independent of each other. Hence, E

[
(Âj −A)T (Âi −A)

]
=

0. The simplified form of (39) is given as

Ω(Â) = E

J−1∑
j=1

αj(Âj −A)T (Âj −A)


=

J−1∑
j=1

αjΩ(Âj).

(40)

According to the [40], the optimal weight is to minimize Ω(Â)
under the constraint (38). Constructing the objective function
using the Lagrange multiplier method, we get

min
αj(j=1,2,···,J−1)

F =

J−1∑
j=1

α2
jΩ
(
Âj

)
+ λ

(
J−1∑
i=1

αj − 1

)
(41)

TABLE I: Simulation Parameters.

Parameter Description Value
J The number of rounds [10, 20]

N The number of localization anchors 5

SNR Standard deviation of random delay [5,15]

loss Ratio of packet loss 10%

Then, the optimal weighting factors {αj}J−1
j=1 are given by

αj =
1

Ω(Âj)

J−1∑
j=1

1

Ω(Âj)

−1

(42)

Hence, the fusion location estimator is calculated as

Â =

J−1∑
j=1

 1

Ω(Âj)

J−1∑
j=1

1

Ω(Âj)

−1

×Aj

 . (43)

Based on (43), the final estimate of tag location is obtained
using different localization rounds. The proposed linear fusion
indoor localization algorithm is summarized in Algorithm 2.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the LF
algorithm for indoor target location estimation in the presence
of packet loss and random transmission delays.

A. Simulation Setup

In all experiments, the localization system model consists of
five anchor nodes, i.e. one master anchor, four slave anchors,
and one randomly positioned static target. We set the signal-
to-noise ratios SNR ∈ [5, 15], and the propagation speed
v of the sensors to 3 × 107m/s. The random delays are
normally distributed with zero mean µ = 0 and variance
σ2
n = 10 ˆ (−(SNR)/10)/v. It is assumed that the standard

deviation of the noise is the same for all anchor nodes. The
experimental parameters are listed in Table I. We consider the
root-mean-squared error (RMSE) and the cumulative distribu-
tion function (CDF) as performance metrics to measure the
accuracy of the estimated target location.

B. Localization Performance with The Proposed Low Rank
Matrix Recovery

In this subsection, we study the performance of the proposed
algorithm in terms of RMSE and CDF in the presence of
packet loss and transmission delays. The performance is
examined for a packet loss ratio of 10%.

In Fig. 5, we evaluate the denoise performance of low-rank
matrix approximation. We compare the RMSE and SNR of
target positions estimated with and without LRMA estimators
in the presence of normal distribution transmission delays. It
is observed that the LRMA estimators significantly improve
target localization accuracy, especially at low SNR compared
to the existing LS and Chan algorithms. Note that the perfor-
mance of the proposed LRMA algorithm is close to the CRLB
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Fig. 5: RMSE of the estimated location v.s. SNR.

and the proposed algorithm with CHAN estimation curve is
merging with the CRLB curve for SNR ≥ 10 dB.

In Fig. 6, we evaluate the recovery performance of low-rank
matrix approximation. Considering packet loss, we compare
the RMSE and SNR of target positions estimated using and
without LRMA estimators. The addition of LRMA estimators
improves target localization accuracy significantly, especially
at low SNR, in comparison with the existing LS and Chan
algorithms.

C. Localization Performance with The Proposed Linear Fu-
sion Algorithm

In this subsection, we study the localization performance
with the proposed linear fusion algorithm (LF). In following
figures, LF algorithm refers to the proposed algorithm includ-
ing low rank matrix recovery and the proposed linear fusion
strategy.

In Fig. 5 and Fig. 6, the positioning results from multiple
localization rounds are averaged to get the final target’s
position. In the proposed fusion strategy, less weights are given
to poor positioning results, whereas the larger weight are given
to the good ones to improve the accuracy of target localization.

In Fig. 7, we compare the RMSE of estimated target loca-
tions versus SNR using different approaches in the presence of
normally distributed transmission delays. It is observed that the
proposed algorithm significantly improves target localization
accuracy, especially at low SNR compared to the existing
LS and Chan algorithms. The reason for this is that the LF
algorithm, in addition to the proposed fusion method, corrects
the collected localization timestamps first. In contrast, the
LS and Chan algorithms use the collected timestamp values
directly.

Fig. 8 shows the CDF of localization errors for the proposed
algorithm and other algorithms with SNR set to 10. It shows
that the CDF of the proposed scheme is much higher than
the traditional LS and Chan methods. With the timestamps
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0
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R
M

S
E

/m

LS Algorithm for packet loss 10%

Chan Algorithm for packet loss 10%

LRMA Algorithm for packet loss 10% with LS Estimation

LRMA Algorithm for packet loss 10% with Chan Estimation

CRLB

Fig. 6: RMSE of the estimated location with packet loss v.s. SNR.

5 7 9 11 13 15

SNR 

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

/m
LS algorithm

Chan algorithm

LF algorithm with LS estimation

LF algorithm with Chan estimation

Fig. 7: RMSE of the estimated location v.s. SNR.

correction, the distance error of the LF algorithm with Chan
estimation is less than 0.08 m, accounting for approximately
95% of all times, and that of the LF algorithm with LS
estimation is less than 0.11 m, accounting for about 95% of
all times. While, the distance errors of existing Chan and LS
methods are less than 0.18 m and 0.24 m, respectively, with
a probability of approximately 95%. It can be concluded that
the average distance error reduces from 0.18 m and 0.24 m to
0.08 m and 0.11 m, with a relative performance improvement
of around 55%.

Moreover, Fig. 9 illustrates the RMSE versus the number of
localization rounds J , where the SNR is set to 10. The results
show that the proposed scheme can estimate the target position
efficiently under random transmission delays even with a small
number of localization rounds. In addition, it is clear that
the proposed algorithm can benefit from extra positioning
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Fig. 9: RMSE of the estimated location v.s. the number of positioning rounds.

rounds to improve target position estimation accuracy, while
traditional methods have approximately constant behavior with
position rounds.

Fig. 10 visualizes the localization results of the target node
for a 2-D network. We compare the true target position with
the position estimates obtained using different approaches. The
obtained results show that the proposed algorithm significantly
improves the estimation accuracy of target localization. In
contrast, traditional LS and Chan methods have poorer per-
formance than the proposed algorithm, and there is a large
deviation from the actual position.

In Fig. 11, we show the RMSE of the estimated target
location with respect to the SNR under the effect of a packet
loss ratio of 10%. The figure illustrates how the performance
of the traditional LS and Chan methods degrades when packet
loss occurs. It is observed that the proposed matrix comple-
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Fig. 10: Localization results under the interference of mixed noise.
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Fig. 11: RMSE of the estimated location with packet loss v.s. SNR.

tion based localization scheme significantly improves target
position estimation accuracy compared with the existing LS
and Chan methods. The reason is that the proposed scheme
uses recovered timestamps to estimate the target position, in
addition to fusing the results obtained from multiple rounds
of localization.

From Fig. 11, it is also noticed that the improvement of the
proposed target location estimation scheme is superior to the
existing methods, especially in severe channel conditions, i.e.,
low SNR.

Fig. 12 shows the CDF of localization errors of the proposed
scheme under the effect of packet loss ratio = 10%. From
Fig. 12, we can get the same conclusion, where we can
see clearly that the target position estimation based on the
proposed matrix completion based scheme performs better
than the existing methods. It is observed that the distance
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Fig. 12: CDF of the estimated location with packet loss.

errors of the proposed scheme with LS and Chan estimations
are less than 0.12 m and 0.09 m, respectively, about 95% of
the time. While, the distance errors of the existing LS and
Chan methods are less than 0.18 m and 0.25 m, respectively,
about 95% of the time. This is due to the denoising feature of
the LF localization scheme in addition to the recovery of lost
localization timestamps.

The proposed scheme has two stages, the timestaps pre-
processing stage and the target position estimation stage. The
computational complexity of the estimation stage is the same
as that of the traditional LS and CHAN algorithms with order
O(N3). The timestamps preprocessing stage includes low-
rank matrix recovery with complexity O(KLog(K)Nr) for
the timestamps matrix TTT s ∈ RN×K with rank r. Thus, the
proposed scheme has improved performance compared to ex-
isting estimators at slightly higher computational complexity,
reduced SNR, and reduced number of packet transmissions for
more accurate estimation.

VI. EXPERIMENTAL RESULTS

In this section, for an experimentation-based demonstration,
we provide experimental results in an indoor environment to
validate the performance of the proposed algorithm. First, we
describe the experimental setup, followed by the results and
discussion.

A. Experimental Setup

As shown in Fig. 12 (a), we use UWB devices as RF
front-end modules for localization. The UWB device uses
the Decave DWM1000 chip as the transceiver module and
the STM32F103C8T6 chip as the control chip, which can be
defined as an anchor or target.

The experimental setup is shown in Fig. 12 (b), (c) with an
indoor environment consisting of a master anchor, i.e., anchor
1, four slave anchors, a target node, and a personal computer
(PC).
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Fig. 13: Experiment of localization trajectory.
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First, the algorithm initiates the localization process by
sending a command to the master anchor. Through the local-
ization process, each slave anchor stores the timestamp data
and transmits it back to master anchor 1. To calculate the target
location, the master anchor sends the timestamp information
to the PC.

B. Experimental Analysis

In the following experiment, we designed the movement
track of the target to stay at the same height and move
in a square with 2.4 m on each side. Fig. 13. shows the
spiral localization of a target node in a 2-D network. For
comparison, we compare the trajectory formed by the actual
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Fig. 15: Indoor localization experiment.

target position with the trajectory estimates obtained using
the proposed algorithm and other approaches. Similarly to
simulation results, one can see that the proposed scheme with
matrix completion and linear fusion achieves better estimation
performance of target location than other schemes. The RMSE
of target coordinates based on the Chan algorithm is 10.05 cm,
and that of target coordinates using the LF algorithm is 8.01
cm.

In Fig. 14, we show the CDF results of the localization
error. Obviously, the proposed algorithm performs better than
the existing Chan algorithm. It is observed that the distance
errors of the proposed scheme with Chan estimations are less
than 0.15 m, about 90% of the time. While, the distance errors
of the existing Chan methods are less than 0.20 m, about 90%
of the time. The reason is that the LF algorithm recovers the
lost timestamps and uses them along with the collected values
to estimate the target location, whereas the Chan algorithm
scheme only uses the collected values.

VII. CONCLUSION

This paper proposes a robust indoor target location esti-
mation method using the ASync-TDOA localization model
with low-rank matrix completion. In the proposed scheme,
the localization timestamp correction and completion prob-
lem is formulated as a low-rank matrix completion problem,
and then the TDOA measurements are calculated from the
recovered timestamps. The target location is estimated by the
proposed linear fusion strategy based on different localization
rounds to further refine the location estimate. In order to
verify the effectiveness of the proposed method, numerical
simulations were conducted under different SNR values and
localization rounds with packet loss and transmission delays.
The conducted simulations and experiments illustrate that the
proposed scheme outperforms traditional localization methods
and achieves higher localization accuracy when transmission
delays or packet loss occur.
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