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Abstract—When the second-order statistics of channel and
noise, such as their covariance matrices, are not exactly known,
the acquisition of accurate channel state information (CSI) for a
wireless propagation environment becomes quite challenging. In
this paper, we tackle the problem of robust channel estimation for
multiple-input multiple-output (MIMO)-aided Internet-of-Things
(IoT) systems in the presence of uncertainties in the channel
and noise covariance matrices. Our goal is to minimize the
mean square error (MSE) of the channel estimation under the
channel and noise covariance uncertainties by jointly optimizing
the channel estimator and pilot signal, which is however highly
nonconvex and mathematically intractable. To effectively and
intelligently cope with this issue, we exploit a deep learning (DL)
technique and propose a novel network architecture with two
modules, namely, the pilot optimizer and channel predictor, both
of which are designed by neural networks with their own local
connections and weight sharings. Moreover, a novel and effective
training strategy for the proposed DL model is devised in a
self-supervised manner, in which samples obtained by properly
compensated channel and noise covariance matrices are utilized
to overcome any adverse impacts of the underlying uncertainties
on the channel estimation. Through extensive numerical results
simulated in realistic propagation environments, we substantiate
the superior performance and effectiveness of the proposed
scheme.

Index Terms—Channel estimation, covariance uncertainty,
deep learning, MIMO, IoT, robust training design.

I. INTRODUCTION

Internet-of-Things (IoT) is now becoming an essential part
of ubiquitous connections between various devices and ser-
vices, supporting seamless interactions in our daily lives [1]–
[3]. Particularly, the extensive connectivity of IoT together
with the substantial data collected by diverse devices will
be practically very useful in many deployment scenarios
such as smart cities, smart homes, smart factories, and smart
transportation [2], [3]. However, the rapid proliferation of IoT
and its applications in various fields have led to ever-increasing
demands for reliable wireless communications. Multiple-input
multiple-output (MIMO) exploiting the spatial diversity of a
wireless channel through the use of multiple antennas at both
the transmitter and receiver [4], [5], has recently emerged
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as a key enabler technology to address such challenges [1],
[2]. Accordingly, MIMO-aided IoT systems have the great
potential and synergies to substantially enhance the reliability,
coverage, and energy-efficiency of communication links.

However, the merits the MIMO IoT systems can offer are
fully realizable only when accurate channel state information
(CSI) is available. In practice, the CSI needs to be acquired
by sending a priori known pilot (or training) signal, for which
the accuracy of the resulting CSI estimate critically relies on
how well the channel training process is designed according
to the statistical knowledge of a given wireless propagation
environment such as second-order statistics or covariance
matrices of channel and noise [6]–[13].

In practice, the channel and noise covariance matrices need
to be estimated as well based on real samples for channel
estimate and noise measurement, respectively. As a result, the
estimates of these covariance matrices are inevitably erroneous
(especially, in some extreme propagation environments such as
in unmanned aerial vehicle (UAV) or satellite communication
scenarios with high mobility) due to imperfections in the
channel estimation and noise measurement processes [14]–
[22]. Moreover, the estimated covariance matrices may even be
further distorted for the certain purposes such as quatization,
compression, data embedding, feedback transmission, etc.,
inducing additional discrepancies with the actual values [17]–
[22]. It is obvious that only with the knowledge of the esti-
mated channel and noise covariance matrices, the traditional
signal processing approach such as the linear minimum mean
square error (LMMSE) channel estimation method may fail to
accurately estimate the CSI due to the mismatches between the
actual and estimated covariance matrices [19]. Even though
the CSI can be estimated without any knowledge of the
channel and noise statistics such as via the least squares
(LS) channel estimation method, the resulting performance
of such an approach might not be satisfactory, especially at
low signal-to-noise ratio (SNR), due to the noise amplification
[8]. To properly cope with these issues while guaranteeing the
robustness, therefore, the uncertainties involved in the channel
and noise covariance matrices have to be taken into account
during the channel estimation.

In the literature, in the presence of the covariance uncertain-
ties, the robust pilot signal design techniques were investigated
for multiple-input single-output (MISO) systems [16], MIMO
systems [17]–[20], UAV-assisted communication systems [21],
and MIMO relaying systems [22]. These techniques, however,
have several major limitations. First of all, in [16]–[22], an
idealistic assumption was made that the LMMSE channel
estimation could be performed with the exact knowledge of the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324667

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

channel and noise covariance matrices. Thus, the channel esti-
mation methodology considered therein is not actually robust.
Furthermore, in the majority of the works [16]–[21], only the
impact of the channel covariance uncertainty was considered in
the pilot design, while that of the noise covariance uncertainty
was neglected. In addition, the design approaches of [17]–
[22] all presumed a specific channel model (namely, the
Kronecker channel model), and thus, there is lack of generality
in their applicability, especially for the scenarios where the
presumed channel model is violated. Even if the presumed
channel model is validated, the pilot signal designs need to be
carried out through complicated iterative algorithms with high
computational complexities (except for some special cases
investigated in [16] and [20]), which hinders their applicability
to practical IoT systems with stringent real-time operations.

Recently, deep learning (DL) techniques have emerged as
promising solutions to improve the performance of wireless
communication systems by effectively and intelligently over-
coming various technical challenges [23]–[31]. Particularly,
in [32]–[39], DL-based channel estimation techniques have
been developed for various MIMO systems by considering
different design approaches. Specifically, in [32], a beamspace
channel estimation technique has been devised for millimeter-
wave massive MIMO systems based on a learned denoising-
based approximate message passing (LDAMP) neural network,
which incorporated a denoising convolutional neural network
(CNN) into an iterative sparse signal recovery algorithm.
In [33], two algorithms for direction-of-arrival (DOA) es-
timation and channel estimation have been developed for
massive MIMO systems based on (deep) feedforward neural
networks (FNNs) by leveraging the spatial structure. In [34], a
deep learning compressed sensing (DLCS) channel estimation
scheme has been proposed for multi-user millimeter-wave
massive MIMO systems and a deep learning quantized phase
(DLQP) hybrid precoder design method has been developed
subsequent to the channel estimation. The authors in [35]
proposed a sparse complex-valued neural network (SCNet)
for the downlink CSI prediction in frequency division duplex
(FDD) massive MIMO systems via the uplink-to-downlink
mapping function. Moreover, joint channel estimation and
pilot signal design schemes with different DL architectures
have been suggested for massive MIMO systems via data-
aided iterative channel estimation [36], multi-user MIMO
systems via successive interference cancellation [37], MIMO
systems via received SNR feedback [38], and MIMO-OFDM
systems via neural network pruning [39]. Unfortunately, how-
ever, the aforementioned works [32]–[39] did not consider
the impacts of the channel and noise covariance uncertainties
in the channel estimation (as well as pilot design) process,
and thus, their performance will be deteriorated seriously in
the real-world scenarios with imperfect covariance information
(i.e., only with the knowledge of inexact covariance matrices).
Accordingly, it is highly necessary to develop an innovative
channel estimation scheme with high accuracy of the channel
estimate even under the channel and noise covariance uncer-
tainties.

To the best of our knowledge, all the aforementioned critical
issues have not been addressed yet in the literature, which

motivated our work. In this paper, we study the problem of
robust channel estimation for MIMO-aided IoT systems in
the presence of uncertainties in both the channel and noise
covariance matrices, based on deep learning.1 Note that our
work is the first to present a DL framework for the robust
channel estimation and pilot signal design, to the best of
our knowledge, which is not resorting to the assumptions
invoked in [16]–[22], and hence, has a wider applicability. To
accomplish our design goal, we aim to minimize mean square
error (MSE) of the channel estimation under the channel
and noise covariance uncertainties by jointly optimizing the
channel estimator and pilot signal, which is however generally
hard to tackle due to nonconvexity and intractability. To break
through this technical challenge, we develop an effective and
intelligent DL technique. The main contributions of this paper
are as follows:

• We propose a novel and effective DL model for the robust
MIMO channel estimation with two modules, namely, the
pilot optimizer and channel predictor, which has never
been reported in the literature to the best of our knowl-
edge.2 The pilot optimizer is constructed by a locally-
connected and weight-shared FNN with a specifically
designed layer, called the pilot layer, such that the shared
weights between the locally-connected nodes correspond
to the pilot signal, enabling the optimization of the
pilot signal through training. Moreover, we construct the
channel predictor by adopting a CNN structure such that
useful features for the robust MIMO channel estimation
are efficiently learnable.

• In addition, we devise a novel and effective training
strategy for the proposed DL model in a self-supervised
manner, in which the channel and noise covariance ma-
trices are appropriately compensated to overcome any
adverse impacts of the underlying uncertainties on the
channel estimation, and then, the samples drawn from
the compensated covariance matrices are used to jointly
train the two modules of the proposed DL model based
on two different gradient descent approaches such that
the MSE loss function of the prediction is minimized.

• We present extensive simulation results, through which
the superior performance and better effectiveness of the
proposed DL model is demonstrated compared to baseline
schemes and some useful engineering insights into the

1The robust channel estimation in this paper means the robust estimation of
CSI of the MIMO system with imperfect knowledge of the channel and noise
covariance matrices under uncertainties in the channel and noise covariance
matrices, the goal of which is to acquire the CSI estimate of the MIMO
system that is robust to the channel and noise covariance uncertainties. The
CSI estimate acquired by the robust channel estimation can be used for
the subsequent tasks such as the robust beamforming design. Our proposed
scheme can also be used for this purpose.

2The key novelty of our work lies in constructing the network structure of
the pilot optimizer based on our own innovative construction inspired by the
MIMO system model for transmission and reception of the pilot signal. In
turn, the whole network structure of the proposed DL model combining the
pilot optimizer and the channel predictor is entirely new and specialized in
dealing with the robust channel estimation. In addition, a new finding from
our work is that the constructed pilot optimizer (i.e., a very special neural
network) still works well with the channel predictor, further supporting and
demonstrating the universal superiority and effectiveness of constructing the
prediction part with the CNN structure.
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Fig. 1. A MIMO IoT system with the proposed DL model for the robust
channel estimation.

practical design are drawn. We also analyze the computa-
tional complexities of the proposed and baseline schemes.

This paper is organized as follows. In Section II, the
system model is described and the robust channel estimation
problem under consideration is formulated. In Section III, the
proposed DL architecture and training strategy are elaborated.
Section IV presents the simulation results along with thorough
discussions and complexity analysis. Section V concludes this
paper.

Notations: Ra×b and Ca×b stand for the sets of a × b
real- and complex-valued matrices, respectively. Also, AT,
AH, A

1
2 , A−1, and A† denote the transpose, conjugate (or

Hermitian) transpose, (Hermitian) square root, inverse, and
pseudo-inverse of a matrix A, respectively. a = vec(A) is the
vectorization of a matrix A, which stacks all column vectors
of A into a long column vector a, and its inverse operator
is denoted by A = vec−1(a). Also, A ⊗B is the Kronecker
product between matrices A and B. The maximum eigenvalue
of a matrix A is denoted by λmax(A), and the (a, b)th entry of
A by

[
A
]
a,b

. The expectation of a random variable is denoted
by E [·]. The real and imaginary parts of a complex-valued
argument a is denoted by Re{a} and Im{a}, respectively. The
cardinality of a set A is denoted by |A|. An a × a identity
matrix is denoted by Ia, and a zero matrix with an appropriate
size by 0. In addition, A ⪰ 0 means that a Hermitian matrix
A is positive semi-definite. The probability distribution of
a circularly symmetric complex Gaussian (CSCG) random
vector with mean a and covariance matrix B is denoted by
CN (a,B). Also,W(a,B) denotes a Wishart distribution with
a degrees of freedom and a scale matrix B.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a MIMO IoT system
composed of a transmitter (e.g., a mobile or IoT device) and a
receiver (e.g., a base station or gateway),3 which are equipped

3This single user scenario is very fundamental, and even useful and
insightful (and thus, still meaningful) for in-depth inspection of the robust
channel estimation with deep learning. Nevertheless, our work is not confined
to the single user scenario, but can be readily extended to the multi-user
or massive access scenario. Specifically, the proposed DL model developed
for the single user scenario can be readily extended to the multi-user or

with M and N antennas, respectively. For the purpose of CSI
acquisition, the transmitter sends a priori known pilot signal
of length L, denoted by S ∈ CL×M , to the receiver, of which
transmission power is constrained such that Tr(SHS) ≤ P ,
where P denotes the maximum power budget. The received
pilot signal at the receiver, denoted by Y ∈ CN×L, is then
given by

Y = HST + Z (1)

where H ∈ CN×M and Z ∈ CN×L are the matrices of MIMO
channel coefficients and received additive noises (possibly
accounting for interference from other links), respectively.
Using vec(AXB) = (BT ⊗ A)vec(X) [40], the received
signal in (1) can be written in a vector form as

y =
(
S⊗ IN

)
h+ z (2)

where y = vec(Y), h = vec(H), and z = vec(Z).
Let Ch = E[hhH] ⪰ 0 and Cz = E[zzH] ⪰ 0 denote the

(actual) channel and noise covariance matrices, respectively.
In practice, the values of Ch and Cz are not exactly known
as they have to be estimated or acquired from the real (yet
erroneous) samples for the channel estimate and noise mea-
surement, respectively.4 On top of such an incomplete acquisi-
tion, further errors may also arise in the subsequent processes
such as quantization, compression, data embedding, feedback
transmission, etc. Consequently, in practice, the estimated
channel and noise covariance matrices are generally inaccurate
and unavoidably subject to some errors. Considering such
imperfection, in this paper, the mismatches between the actual
values of Ch and Cz, and their estimated values (denoted by
Ĉh ⪰ 0 and Ĉz ⪰ 0, respectively) are modeled as follows
[16]–[22]:

Ch = Ĉh +Eh, (3)

Cz = Ĉz +Ez (4)

where Eh ∈ Eh and Ez ∈ Ez denote the corresponding
error matrices, both of which are (generally indefinite) Her-
mitian matrices (i.e., Eh = EH

h and Ez = EH
z ) such that

Ĉh+Eh ⪰ 0 and Ĉz+Ez ⪰ 0, respectively. Furthermore, Eh
and Ez denote unitarily-invariant sets of the channel and noise
covariance uncertainties, respectively, such that if Eh ∈ Eh
and Ez ∈ Ez, then UEhU

H ∈ Eh and VEzV
H ∈ Ez

for arbitrary unitary matrices U and V. Examples of such
unitarily-invariant sets are norm-bounded sets such as Ea ={
Ea : Tr(EH

aEa) ≤ ϵa
}

(i.e., Frobenius norm-bounded set),

massive access scenario in uplink only with a very minor modification on the
parameter update for the pilot optimizer to deal with individual transmission
power constraints on pilot signals of multiple transmitters. Also, the proposed
scheme can be directly applied to the multi-user or massive access scenario
in downlink by treating the whole of multiple receivers as a large-size
single receiver. Due to the scalability issue, however, the maximum number
of accessible users should be limited or judiciously determined in practice
according to the model capacity of the constructed DL network as well as
the system requirements on the computational cost/capability/burden and the
inference latency/delay.

4If the actual covariance matrices Ch and Cz were exactly known, the
system CSI could be acquired via the linear channel estimation technique
such as the LMMSE channel estimation, which would be given by (27) with
Ĉh and Ĉz replaced by Ch and Cz, respectively.
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Ea =
{
Ea :

√
λmax(EH

aEa) ≤ ϵa
}

(i.e., spectral norm-
bounded set), and Ea =

{
Ea : Tr

(
(EH

aEa)
1
2

)
≤ ϵa

}
(i.e.,

nuclear norm-bounded set) for a ∈ {h, z}, where ϵa ≥ 0
denotes an upper bound [20], [21].

Remark 1: In this paper, we consider a more realistic and
general, yet much more challenging, scenario than the previous
works [16]–[21] considered, in the following aspects:

• In [16]–[22], the actual values of the channel and noise
covariance matrices were assumed to be exactly known
at the receiver, which is idealistic and impractical. While,
in this paper, we make a more practical assumption that
those actual values are not knowable even at the receiver
side.

• Most of the previous works [16]–[21] assumed that there
existed the uncertainty only in the channel covariance
matrix, whereas there was no uncertainty in the noise
covariance matrix. More generally, in this paper, we
assume that there exist the uncertainties in both the
channel and noise covariance matrices.

• In [17]–[22], the channel and noise covariance matrices
were assumed to be Kronecker-separable; that is, each
of them can be factorized into the Kronecker product
of two smaller matrices such that Ch = Ah ⊗ Bh and
Cz = Az⊗Bz for some Ah ⪰ 0, Bh ⪰ 0, Az ⪰ 0, and
Bz ⪰ 0. However, this assumption is generally inaccurate
in practice [14] and may even be violated in certain sce-
narios where a strong coupling between transmitter and
receiver exists due to proximity and/or in certain types
of propagation environments where the transmitter and
receiver shares a part of scatterers [14]. In this paper, for
generality and universality of the practical applicability, it
is assumed that the channel and noise covariance matrices
are Kronecker-inseparable, i.e., Ch ̸= Ah ⊗ Bh and
Cz ̸= Az ⊗Bz, respectively.

B. Problem Formulation

The goal of the robust channel estimation in this paper
is to estimate the MIMO channel vector h as accurately as
possible in the presence of the uncertainties in the channel
and noise covariance matrices, which is a rather challenging
task. Obviously, only with the knowledge of the estimated co-
variance matrices Ĉh and Ĉz, the traditional signal processing
approach such as the LMMSE channel estimation method may
fail to achieve this goal due to the mismatches between the
actual and estimated covariance matrices.

To mathematically formalize an optimization problem for
the robust channel estimation under consideration, let ĥ =
fθ (y;S) denote a MIMO channel estimate, which is specified
by a (possibly nonlinear) function of the received signal y for
a given pilot signal S, parameterized by a set θ of parameters.
In this paper, we aim to find the channel estimator fθ as well
as to design the pilot signal S with the transmission power
constraint such that the MSE of the channel estimation is min-
imized under the channel and noise covariance uncertainties
as follows:

(P1) : minimize
fθ,S

E
[∥∥h− fθ (y;S)

∥∥2∣∣∣ Ĉh, Ĉz

]
(5)

subject to Tr
(
SHS

)
≤ P.

Note that problem (P1) is nonlinear and nonconvex. In partic-
ular, it even involves functional optimization that is mathemat-
ically intractable. As a result, problem (P1) is generally NP-
hard, and thus, it is infeasible to tackle problem (P1) directly.5

Even for a rather simpler case where the channel estimator
is restricted to be linear as well as for a very simplistic
case where the LMMSE channel estimator is adopted with an
idealistic assumption that the exact knowledge of the channel
and noise covariance matrices is available, problem (P1) still
remains very difficult to solve even numerically due to the non-
convexity. Furthermore, as discussed in Remark 1, the robust
channel estimation problem formulated in (P1) is much more
challenging than those considered in the previous works [16]–
[22]. Consequently, the existing solution approaches in [16]–
[22] from the optimization perspective are neither effective nor
applicable to solving (P1).

Motivated by breaking through these technical challenges
effectively and intelligently, in the following section, we derive
a new and innovative solution to problem (P1) based on deep
learning via the construction of a novel neural network.

III. DEEP LEARNING-BASED ROBUST MIMO CHANNEL
ESTIMATION

In this section, we first elaborate the network structure of the
proposed DL model developed for the robust MIMO channel
estimation. Then the training methodology with a strategy of
the channel and noise covariance compensation is presented.

A. Network Structure

The whole network structure of the proposed DL model is
presented in Fig. 2. The covariance compensation is initially
carried out to obtain training samples. Then two DL modules,
the pilot optimizer and the channel predictor, that are con-
nected in tandem are trained via two different gradient descent
methods with the MSE loss function. In what follows, these
three components are elaborated and specified.

1) Covariance Compensation: Note that since the actual
covariance matrices are not known, these cannot be used
for the training. On the other hand, although the estimated
covariance matrices are known, only using these for the
training results in severely limited performance due to the
discrepancies with the actual covariance matrices (as will be
demonstrated by the simulation results in Section IV). To
properly deal with these issues and to guarantee the robustness
against the covariance uncertainties by compromising between
the actual and estimated covariance matrices, in the proposed
DL model, we compensate the estimated channel and noise
covariance matrices, Ĉh and Ĉz, by intentionally adding some
distortions Ēh and Ēz, respectively, as follows:

C̄h = Ĉh + Ēh, (6)

C̄z = Ĉz + Ēz. (7)

5Even in certain scenarios such as in the low SNR regime and/or when
adopting the LMMSE channel estimator, considering or importing the noise
covariance matrix uncertainty particularly poses several major technical chal-
lenges beyond just handling more variables.
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Fig. 2. The whole network structure of the proposed DL model.

Here, Ēh and Ēz have the same statistics as those of Eh and
Ez, respectively, i.e., Ēh ∈ Eh and Ēz ∈ Ez. Consequently,
C̄h and C̄z have the same statistics as those of the actual
covariance matrices Ch and Cz, respectively (although the
values of C̄h and C̄z are not exactly the same as those of
Ch and Cz). In the sequel, we will refer to C̄h and C̄z

as the compensated channel and noise covariance matrices,
respectively, or simply, the compensated covariance matrices.6

Let h̄ and z̄ denote the channel and noise vectors whose
covariance matrices are equivalent to the compensated channel
and noise covariance matrices C̄h and C̄z, respectively (these
will be simply referred to as the compensated channel and
noise vectors in the sequel). Then the inputs of the proposed
DL model are h̄ and z̄, and the output is the prediction of
h̄, denoted by ˆ̄h. In what follows, we further elaborate and
specify the two modules of the proposed DL model.

2) Pilot Optimizer (DL Module I): The goal of employing
the pilot optimizer in the proposed DL model is to enable the
pilot signal S optimizable or designable as in problem (P1)
by learning the system model of (2) for the transmission and
reception of the pilot signal through the noisy MIMO channel.7

To achieve this design goal, we construct the pilot optimizer
using a single layer FNN with a novel local connection and
weight sharing between the input and output nodes such
that the shared weights between the locally-connected nodes

6Overall, according to (6) and (7), C̄h and C̄z are defined as the
intentionally compensated or artificially distorted versions of the estimated
covariance matrices Ĉh and Ĉz, respectively, to mimic the statistics of the
actual covariance matrices Ch and Cz.

7It is worth noting that as will be demonstrated by the simulation results in
Section IV, a naive DL model solely using the channel predictor without the
pilot optimizer turns out to be ineffective, indicating that the pilot optimizer
plays a crucial role in the DL-based robust channel estimation.

correspond to the pilot signal S to be optimized. We refer to
this specifically designed layer as the pilot layer.

The network structure of the pilot optimizer (i.e., DL mod-
ule I) we construct is shown in Fig. 3, detailed explanations
and specifications on which are given as follows:

• Configuration: In the constructed pilot optimizer, the
number of input nodes (i.e., input size) is 2N(M + L)
and the number of output nodes (i.e., output size) is 2NL.
For the sake of notational brevity, we denote the first
NL output nodes by {a(l−1)N+n : l = 1, · · · , L, n =
1, · · · , N} and the remaining NL output nodes by
{a′(l−1)N+n : l = 1, · · · , L, n = 1, · · · , N}. In a
similar fashion, we denote the first 2MN input nodes
via {x(m−1)N+n, x

′
(m−1)N+n : m = 1, · · · ,M, n =

1, · · · , N} and the remaining 2NL input nodes via
{b(l−1)N+n, b

′
(l−1)N+n : l = 1, · · · , L, n = 1, · · · , N}.

• Weight connection: As depicted in Fig. 3(a), in the
pilot optimizer, the input and output nodes are locally
connected with shared weights such that for each n ∈
{1, · · · , N} and l ∈ {1, · · · , L};
– {x(m−1)N+n : m = 1, · · · ,M} are connected to

a(l−1)N+n and a′(l−1)N+n with weights {wl,m : m =
1, · · · ,M} and {w′

l,m : m = 1, · · · ,M}, respectively.
– {x′

(m−1)N+n : m = 1, · · · ,M} are connected to
a(l−1)N+n and a′(l−1)N+n with weights {−wl,m : m =
1, · · · ,M} and {wl,m : m = 1, · · · ,M}, respectively.

– b(l−1)N+n is connected to a(l−1)N+n with a weight
fixed to 1.

– b′(l−1)N+n is connected to a′(l−1)N+n with a weight
fixed to 1.

As an illustrative example, in Fig. 3(b), the network
structure of the constructed pilot optimizer is shown when
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Fig. 3. Network structure of the pilot optimizer in the proposed DL model. (a) Weight connection between the input and output nodes for each n ∈ {1, · · · , N}
and l ∈ {1, · · · , L}, where not all nodes are shown; instead, only the nodes with connections are shown for brevity. The connections with weights
{wl,m : m = 1, · · · ,M} and {w′

l,m : m = 1, · · · ,M} are denoted by dashed and dashed-dot lines, respectively. Also, the connections with weights fixed
to 1 are denoted by solid lines. (b) Network structure of the pilot optimizer when M = L = 1 and N = 2.

M = L = 1 and N = 2.
• Operation: At each output node, the weighted sum of

the inputs is computed, followed by passing through
an activation function ϕ(·). Thus, the operation of each
output node is given by (8) (shown at the bottom), or
equivalently,[

a
a′

]
= ϕ

(([
W −W′

W′ W

]
⊗ IN

)[
x
x′

]
+

[
b
b′

])
∈ R2NL×1 (9)

where

a =
[
a1 a2 · · · aNL

]T ∈ RNL×1, (10)

W =


w1,1 w1,2 · · · w1,M

w2,1 w2,2 · · · w2,M

...
...

. . .
...

wL,1 wL,2 · · · wL,M


T

∈ RL×M , (11)

x =
[
x1 x2 · · · xMN

]T ∈ RMN×1, (12)

b =
[
b1 b2 · · · bNL

]T ∈ RNL×1. (13)

Also, a′, W′, x′, and b′ are defined similarly as in (10)–
(13), respectively.

• Design inspiration: The network structure of the pilot
optimizer is inspired by the system model of (2). Specifi-
cally, we can decompose (2) into real and imaginary parts

a(l−1)N+n = ϕ

(
M∑

m=1

[
wl,mx(m−1)N+n − w′

l,mx′
(m−1)N+n

]
+ b(l−1)N+n

)
, n = 1, · · · , N, l = 1, · · · , L, (8a)

a′(l−1)N+n = ϕ

(
M∑

m=1

[
wl,mx′

(m−1)N+n + w′
l,mx(m−1)N+n

]
+ b′(l−1)N+n

)
, n = 1, · · · , N, l = 1, · · · , L. (8b)
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as [
Re{y}
Im{y}

]
=

([
Re{S} −Im{S}
Im{S} Re{S}

]
⊗ IN

)[
Re{h}
Im{h}

]
+

[
Re{z}
Im{z}

]
∈ R2NL×1. (14)

Notably and rather intriguingly, we can observe that the
mathematical expression of (9) is equivalent to that of
(14) provided that ϕ(x) = x, a = Re{y}, a′ = Im{y},
W = Re{S}, W′ = Im{S} x = Re{h}, x′ = Im{h},
b = Re{z}, and b′ = Im{z}. This essentially means that
the physical mechanism (as well as relevant important
feature) for the transmission and reception of the pilot
signal through the noisy MIMO channel can be learned by
the constructed pilot optimizer. In particular, the weights
of the constructed pilot optimizer correspond to the pilot
signal (i.e., W = Re{S} and W′ = Im{S}), and thus,
the optimization of the pilot signal can be readily carried
out through the training procedure, which is clearly a
significant design advantage.

• Parameter setup: According to the aforementioned design
inspiration, in the sequel, we treat the weights of the pilot
optimizer as the pilot signal to be optimized, i.e., we set
W = Re{S} and W′ = Im{S}.

• Activation function: Also, the activation function at each
output node is set to the linear function, i.e., ϕ(x) = x.

• Input: To enable the optimization of the pilot signal
through the training procedure, the pilot optimizer needs
to take the actual values of h and z as inputs such that
x = Re{h}, x′ = Im{h}, b = Re{z}, and b′ = Im{z}.
Unfortunately, however, this is infeasible since the actual
covariance matrices are not known. To address this issue,
we instead propose to take the real and imaginary parts of
the compensated channel and noise vectors (rather than
the actual values that are unknown) as the inputs of the
pilot optimizer as follows:[

x
x′

]
=

[
Re{h̄}
Im{h̄}

]
∈ R2MN×1, (15)[

b
b′

]
=

[
Re{z̄}
Im{z̄}

]
∈ R2NL×1. (16)

3) Channel Predictor (DL Module II): In the proposed DL
model, we also employ a (deep) neural network subsequent
to the pilot optimizer, called the channel predictor, which
serves as the channel estimator fθ in problem (P1), where θ
denotes the set of all learnable parameters. This is motivated
by the universal function approximation theorem: even a
neural network with a single hidden layer has a capability
to approximate any nonlinear function within an arbitrarily
accuracy [41]–[43]. Particularly, we construct the channel
predictor by adopting a CNN structure that is characterized
by local connection and weight sharing, in order to pursue
a structural matching with the pilot optimizer as well as to
efficiently learn and extract the effective/useful features for
the robust MIMO channel estimation under the channel and
noise covariance uncertainties.

The network structure of the constructed channel predictor
(i.e., DL module II) is shown in Fig. 4, which consists of

a sequential connection of several convolutional and pooling
layers, followed by a fully-connected (FC) layer. Details are
given in the following.

• Reshaping: The channel predictor in the proposed DL
model first reshapes the output of the pilot optimizer for
an appropriate processing by the CNN. Specifically, the
output

[
aT,a′

T]T ∈ R2NL×1 of the pilot optimizer is
divided into 2N patches, each of length L, as follows:[

A
A′

]
∈ R2N×L (17)

where A = vec−1(a) and A′ = vec−1(a′).
• 1D Conv Layers: In the convolution stage, we employ

three one-dimensional (1D) convolutional layers.
– Input: The first convolutional layer takes the reshaped

output of the pilot optimizer in (17) as the input. The
second and third convolutional layers take the outputs
of the first and second max-pooling layers as the inputs,
respectively. In each convolutional layer, the input is
properly zero padded such that the output has the same
size as the input.

– Operation: The kth convolutional layer performs 1D
convolution between the zero-padded input and ck
different kernels, each of size (or length) ℓk, with
unit stride rate. Let {χi,j} denote the input to the
kth convolutional layer. Then the output of the kth
convolutional layer of size rk is given as [42], [43]

αi,j = φ

ck−1∑
p=1

ℓk−1∑
q=1

ωi,p,qχp,j+q−1 + βi

 (18)

for i = 1, · · · , ck and j = 1, · · · , rk, where {ωi,p,q} is
the set of weights of the ith kernel and {βi} denotes
the set of bias terms. For k = 1, we have c0 = 2N ,
ℓ0 = L, and {χi,j} is properly formed by entries of[
AT,A′T]T covered by the c1 kernels. Also, φ denotes

an activation function.
– Number and size of kernels: The number of kernels

in the kth convolutional layer is set to ck = 8kMN ,
k = 1, 2, 3. Also, the kernel size is set to ℓk = 3, ∀k,
which has been demonstrated to be an adequate size to
extract sufficient spatial features of the input data [44].

– Activation function: The activation function in each
convolutional layer is chosen as the exponential linear
unit (ELU), i.e., φ(x) = exp(x) − 1 for x ≤ 0 and
φ(x) = x for x > 0 [45].

• Max-Pooling Layers: In the pooling stage, we employ
three max-pooling layers, each of which is placed after
each convolutional layer, such that the dimensionality of
the features extracted by the prior convolutional layers
is gradually reduced via 1D down-sampling in order to
prevent overfitting as well as make features more robust
against noise, shift, distortion, etc.
– Input: The kth max-pooling layer takes the output of

the kth convolutional layer as the input.
– Operation: Let ℓ′k denote the kernel size as well as

the stride rate in the kth max-pooling layer. Then the
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Fig. 4. Network structure of the channel predictor in the proposed DL model.

output of the kth max-pooling layer of size r′k is given
by [43]

α′
i,j = max

{
αi,q : q ∈ Ωj

}
(19)

for i = 1, · · · , ck and j = 1, · · · , r′k, where Ωj =
{
q :

q ∈ {ℓ′k(j−1)+1, ℓ′k(j−1)+2, · · · , ℓ′k(j−1)+ℓ′k}
}

.
– Kernel size: In each pooling layer of the constructed

channel predictor, the kernel size is set to ℓ′k = 2,
k = 1, 2, 3, such that the size of the feature extracted by
each convolutional layer is halved after passing through
each pooling layer.

• Concatenation: The output of the last max-pooling layer
is concatenated into a one-dimensional vector.

• FC Layer: The final stage of the channel predictor is the
FC layer, which is constructed by a single layer FNN
with full connection for the purpose of fine-tuning of the
features obtained by the convolutional and pooling layers.
– Input: The FC layer takes the concatenated output of

the last pooling layer as the input.
– Operation: Let xF denote the input of the FC layer,

i.e., the concatenated output of the last max-pooling
layer. Then the FC layer processes the input by first
multiplying a weight matrix WF and then adding a bias
vector bF, followed by passing through an activation
function φF(·). Thus, the output of the FC layer is
given by aF = φF (WFxF + bF).

– Activation function: The activation function in the FC
layer is set to the linear function, i.e., φF(x) = x.

• Output: The channel predictor takes the output of the FC
layer as its output such that the real and imaginary parts

of the compensated channel vector h̄ are predicted as[
Re{ˆ̄h}
Im{ˆ̄h}

]
= WFxF + bF. (20)

B. Proposed Training Procedure

Through the training procedure, we jointly train the two
modules, the pilot optimizer and channel predictor, of the
proposed DL model in the self-supervised manner such that
the joint optimization in (P1) can be carried out. The detailed
process is explained in the following.

1) Training Data Acquisition: Once the channel and noise
covariance matrices are compensated as in (6) and (7), re-
spectively, the samples of the compensated channel and noise
vectors, h̄ and z̄, i.e., the inputs of the proposed DL model,
are drawn from the compensated covariance matrices C̄h

and C̄z, respectively. For example, for the case of Rayleigh
fading with additive Gaussian noise (i.e., h ∼ CN (0,Ch) and
z ∼ CN (0,Cz)), the samples of h̄ and z̄ can be obtained such
that h̄ ∼ CN (0, C̄h) and z̄ ∼ CN (0, C̄z), respectively.

2) Parameter Update: The parameters of the proposed DL
model, i.e., the weights W = Re{S} and W′ = Im{S} in the
pilot layer of the pilot optimizer and the set θ of the weights
and biases in the convolutional and fully-connected layers of
the channel predictor, need to be jointly optimized. For this
purpose, the loss function for the training is selected as the
empirical MSE between the compensated channel vector h̄

and the predicted value ˆ̄h (i.e., the output of the proposed DL
model) as follows:

L(S, θ) = 1

|T |
∑

(h̄,z̄)∈T

∥∥∥∥∥
[
Re{h̄}
Im{h̄}

]
−

[
Re{ˆ̄h}
Im{ˆ̄h}

]∥∥∥∥∥
2

(21)
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ΠS

([
Re{A}
Im{A}

])
=



[
Re{A}
Im{A}

]
, if Tr

(
Re{AT}Re{A}+ Im{AT}Im{A}

)
≤ P√

P

Tr
(
Re{AT}Re{A}+Im{AT}Im{A}

) [Re{A}
Im{A}

]
, if Tr

(
Re{AT}Re{A}+ Im{AT}Im{A}

)
> P

. (24)

where T denotes the set of training samples.
To minimize the loss function in (21), the parameters of the

proposed DL model can be updated based on two different
gradient descent methods through the backward computations.
Specifically, the update of θ can be performed via the stochas-
tic gradient descent (SGD) method as

θ ← θ − γ
∂L(S, θ)

∂θ
(22)

where γ > 0 is the step size or learning rate. On the other
hand, the weight update for the pilot optimizer can be carried
out based on the projected SGD (PSGD) method such that the
power constraint of the pilot signal in problem (P1) is fulfilled
as [38] [

Re{S}
Im{S}

]
← ΠS

([
Re{S}
Im{S}

]
− γ

[
∂L(S,θ)
∂Re{S}
∂L(S,θ)
∂Im{S}

])
(23)

where ΠS denotes the projection operator onto the feasible
set S =

{
S ∈ CL×M : Tr

(
SHS

)
≤ P

}
, which is given by

(24) (shown at the top). That is, if the power constraint is
violated after the SGD update, the value of the updated S is
immediately normalized such that Tr

(
SHS

)
= P .

3) Deployment of Proposed DL Model After Training: Note
that although the two modules of the proposed DL model are
jointly trained in the (offline) training phase, these are used
separately at the (online) deployment stage for different pur-
poses, as depicted in Fig. 1. Specifically, the trained channel
predictor is used to robustly estimate the MIMO channel h
from the received pilot signal y via ĥ = fθ (y;S). On the
other hand, the trained pilot optimizer is not used directly;
instead, its learned weights are utilized as the optimized pilot
signal.

IV. SIMULATION RESULTS

In this section, we present the simulation results to validate
the performance and effectiveness of the proposed DL model.

A. Simulation Setups

In the simulations, the estimated channel and noise covari-
ance matrices, Ĉh and Ĉz, are obtained by the well-known
exponential model as follows [46]:[

Ĉh

]
m,n

= ρ
|m−n|
h , 0 ≤ m,n ≤MN − 1, (25)[

Ĉz

]
n,l

= σ2ρ|n−l|
z , 0 ≤ n, l ≤ NL− 1, (26)

where 0 ≤ ρh ≤ 1 and 0 ≤ ρz ≤ 1 denote the channel and
noise correlation coefficients, respectively. Also, σ2 denotes
a parameter such that the system SNR is defined as P

σ2NL .
The spectral norm-bounded covariance uncertainty sets are

considered here. Specifically, the values of Eh and Ez are
randomly generated such that Eh ∼ W(MN, IMN ) and Ez ∼
W(NL, INL), respectively,8 and then, they are normalized
such that

√
λmax(EH

hEh) = ϵh and
√
λmax(EH

zEz) = ϵz,
respectively, where the values of ϵh and ϵz are chosen such
that ϵh = βh

√
λmax

(
ĈH

hĈh

)
and ϵz = βz

√
λmax

(
ĈH

z Ĉz

)
for 0 ≤ βh, βz ≤ 1. Throughout the simulations, we use
the following parameter settings as default unless specified
otherwise: M = N = 2, L = 8, P = 2 W, ρh = ρz = 0.7,
βh = βz = 0.2, and SNR = 10 dB.

In the training phase, the proposed DL model is trained with
105 samples of the compensated channel and noise vectors, h̄
and z̄, drawn from h̄ ∼ CN (0, C̄h) and z̄ ∼ CN (0, C̄z),
respectively. During the training (resp. after the training), the
performance of the proposed DL model is validated through
the validation step (resp. evaluated through the test step) using
3 × 104 samples of the actual channel and noise vectors, h
and z, drawn from h ∼ CN (0,Ch) and z ∼ CN (0,Cz),
respectively.

B. Ablation Studies

We first conduct the ablation studies to examine the effects
of parameters and configurations of the proposed DL model
and to gain the relevant design insights. Figs. 5(a) and 5(b)
show the training and validation performance of the proposed
DL model, respectively, for various values of the step size
γ when trained over 103 epochs with a mini-batch size of
103 (i.e., totally over 105 iterations). As can be seen from
Figs. 5(a) and 5(b), larger values of γ such as γ = 0.1 and
γ = 0.01 result in unstable learning with poor generalization
behaviors, whereas smaller values of γ such as γ = 0.001 and
γ = 0.0001 yield stable learning with good generalization
behaviors. Also, it can be observed that although the training
with γ = 0.0001 exhibits a slower convergence behavior than
that with γ = 0.001, the former has better generalization
performance than the latter due to less overfitting. For this
reason, in the subsequent simulations, we use γ = 0.0001
when training the proposed DL model.

In Fig. 6, we compare the performance of the proposed DL
model to that of the following variants:

(i) The proposed DL model without (w/o) the pilot opti-
mizer, in which the channel predictor is solely employed

8It is practically valid and reasonable to use the Wishart distributions to
model the distributions of the (sample) estimation error covariance matrices
of the channel and noise when the corresponding estimation errors follow
the Gaussian distributions. Meanwhile, the proposed DL model can still be
used even when the estimation error covariance matrices follow any other
distributions.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324667

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

2 4 6 8 10

Iteration 10
4

10
-1

10
0

L
o
s
s

=0.1

=0.0001

=0.001

=0.01

(a)

2 4 6 8 10

Iteration 10
4

10
-1

10
0

L
o
s
s

7.5 8 8.5

Iteration 10
4

0.0138

0.014

0.0142

0.0144

0.0146

L
o
s
s

=0.1

=0.0001

=0.001

=0.01

(b)
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Fig. 6. Learning curves for the proposed DL model with different configurations. (a) Training performance. (b) Validation performance.

by adopting the orthogonal pilot signal with the transmis-
sion power equal to P , i.e., SHS = P

M IM .
(ii) The proposed DL model trained without the covariance

compensation, in which the proposed DL model is trained
with the samples of the uncompensated channel and
noise vectors drawn from CN (0, Ĉh) and CN (0, Ĉz),
respectively.

(iii) The proposed DL model without the CNN in the channel
predictor, in which K convolutional and pooling layers
are replaced by K fully-connected layers, where the
number of learnable parameters in each fully-connected
layer is set to be the same as that in each convolutional
layer.

From Fig. 6, it can be observed that the proposed DL model
provides the best generalization performance (although all of

the proposed DL model and its variants are stably trainable),
thereby demonstrating the effectiveness and completeness of
the proposed network architecture and training strategy. Par-
ticularly, solely using the channel predictor without the pilot
optimizer is never effective due to severe overfitting with very
poor generalization performance.

In Fig. 7, the pilot signal learned by the proposed DL model
is visualized. In Fig. 7(a) and 7(b), the weights of the trained
pilot optimizer and the Gram matrix SHS of the optimized
pilot signal (i.e., weight matrix of the trained pilot optimizer
in the proposed DL model) are shown for various SNR values,
respectively. From 7(a), it can be seen that the design or
optimization pattern of the pilot signal varies depending on
the SNR value. Also, from 7(b), we can observe that as the
SNR increases, the off-diagonal values of the Gram matrix and
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Fig. 7. Visualization of the pilot signal learned by the proposed DL model. (a) Weights of the trained pilot optimizer. (b) Gram matrix of the optimized pilot
signal.

the variance of the diagonal values get smaller, meaning that
the pilot signal learned by the proposed DL model becomes
less correlated with less crosstalk or interference, which agrees
well with the intuition.

C. Performance Comparisons

Now, we compare the performance of the proposed DL
model with that of the following baseline schemes:

• Baseline Scheme I: This scheme corresponds to a non-
robust LMMSE channel estimation with the estimated
channel and noise covariance matrices, in which the
MIMO channel is estimated as

ĥ = Ĉh

(
SH ⊗ IN

)[(
S⊗ IN

)
Ĉh

(
SH ⊗ IN

)
+ Ĉz

]−1

y.

(27)

Also, the pilot signal is set such that SHS = P
M IM .

• Baseline Scheme II: This scheme is an extension of the
existing scheme in [20, Theorem 2] to the case with
both the channel and noise covariance uncertainties, in
which the MIMO channel is estimated as in (27) with
Ĉh and Ĉz replaced by Ĉh + ϵhIMN and Ĉz + ϵzINL

respectively. Also, the pilot signal is set such that SHS =[
Λ 0
0 0

]
, where Λ is a ν × ν diagonal matrix (ν ≤ M )

such that Λ = µIν−(Σ+ϵhIν)
−1. Herein, µ is a smallest

value of i such that P+σ2Tr[(Σ+ϵhIν)
−1]

σ2M > 1
[Σ]i,i+ϵh

and Σ is a ν × ν diagonal matrix containing ν largest
eigenvalues of Ĉh in descending order on the diagonal.

• Baseline Scheme III: This scheme is the LS channel
estimation with no knowledge of the channel and noise
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Fig. 8. Channel estimation MSEs of the proposed and baseline schemes over
different SNR values.

covariance matrices, in which the MIMO channel is
estimated as

ĥ =
(
S† ⊗ IN

)
y. (28)

Also, the pilot signal is set such that SHS = P
M IM .

In Fig. 8, the channel estimation MSEs of the proposed
and baseline schemes are shown versus the SNR. From Fig.
8, it can be observed that the proposed scheme consistently
outperforms the baseline schemes over the entire SNR range,
indicating that the proposed DL model effectively copes
with the channel and noise covariance uncertainties via the
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Fig. 9. Channel estimation MSEs of the proposed and baseline schemes over
different values of ρ.

covariance compensation strategy during the training. The
baseline scheme III performs worst mainly due to the noise
amplification issue and lack of utilizing the channel and noise
covariance matrices for the channel estimation. Even though
the baseline schemes I and II result in better performance than
the baseline scheme III, their performance is still marginal due
to the mismatches between the actual and estimated covariance
matrices. Overall, the results of Fig. 8 reveal that properly
utilizing the channel and noise statistical information and
overcoming the uncertainties in such information play crucial
roles in improving the performance of the MIMO channel
estimation in practice.

In order to investigate the impacts of the strengths of
the channel and noise correlations on the channel estimation
performance, in Fig. 9, the values of ρh and ρz are set to
be the same as ρ (i.e., ρ = ρh = ρz). Then we depict the
channel estimation MSEs of the various schemes as functions
of the (common) correlation coefficient ρ. From Fig. 9, we
can observe that the performance of all the baseline schemes
degrades as ρ increases and very large values of ρ eventually
result in the baseline scheme I performing even worse than
the baseline scheme III, meaning that the adverse impacts of
the channel and noise covariance uncertainties on the channel
estimation become (much) more severe in (extremely) strongly
correlated environments. On the other hand, the performance
of the proposed scheme initially improves until about ρ = 0.6
and then degrades, suggesting that the robust channel estima-
tion with the proposed DL model will be most effective in
moderately correlated environments.

We further investigate the impacts of the degrees of the
channel and noise covariance uncertainties on the channel
estimation performance by introducing and controlling a pa-
rameter β such that β = βh = βz. In Fig.10, the channel
estimation MSEs of the proposed and baseline schemes are
shown for different values of β. It can be seen from Fig. 10 that
as β increases, the performance of all the schemes degrades,
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Fig. 10. Channel estimation MSEs of the proposed and baseline schemes
over different values of β.

2 3 4 5 6 7 8

Pilot length, L

0.02

0.03

0.04

0.05

0.06

0.07

M
S

E
Proposed

Baseline I

Baseline II

Baseline III

Fig. 11. Channel estimation MSEs of the proposed and baseline schemes
over different values of L.

as expected, because there are more uncertainties (or errors)
in the channel and noise covariance matrices. Nevertheless,
the proposed scheme still performs better than the other
schemes and the performance gaps are more pronounced for
medium values of β. Therefore, the proposed DL model will
be indeed very useful in practical IoT applications where only
a coarse (not fine-grained) estimation of the channel and noise
covariance matrices is possible with insufficient or erroneous
samples.

In Fig. 11, the channel estimation performance of the
various schemes is shown versus L to examine the effects of
the pilot length. Also, in Fig. 12, setting µ = M = N , we plot
the channel estimation performance of the various schemes for
different values of µ to investigate the effects of the number
of antennas. As can be seen from Fig. 11 (resp. Fig. 12), the
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performance of all the schemes improves when L increases
(resp. M decreases) since the effect of noise is reduced given
the same SNR in our simulation setting (resp. the number of
channel coefficients to be estimated increases given the same
resources). Nonetheless, the proposed scheme is observed to
still surpass the other schemes, where the performance gaps
are more pronounced as L increases or M decreases.

D. Computational Complexity Analysis

Lastly, we analyze and compare the computational com-
plexities of the proposed and baseline schemes in terms of the
training and inference complexities, which are summarized in
Table I.

1) Inference Complexity: The inference complexities of the
baseline schemes I and II are all dominated by the computa-
tion of the LMMSE channel estimate in (27), which require
O(LMN2 +N3L3) [47]. Similarly, the inference complexity
of the baseline scheme III is given by O(LMN2 + L3) [47].
On the other hand, for the interference of the proposed scheme,
the feedforward computations of the pilot layer, K convolu-
tional/pooling layers, and the fully-connected layer need to be
sequentially performed, of which computational complexities
are O

(
LMN2

)
, O

(
LN

∑K
k=1 ℓkck−1ck

)
, and O (MNnF),

respectively [38], [43], where nF denotes the size of the input
in the fully-connected layer of the channel predictor. Thus, the
total inference complexity of the proposed scheme is estimated
as O

(
LMN2 + LN

∑K
k=1 ℓkck−1ck +MNnF

)
.

2) Training Complexity: The training of the proposed
scheme can be done via the backpropagation algorithm,
which requires to perform multiple iterations of forward
and backward computations [43]. As analyzed just
before, one iteration of the forward computation of the
proposed scheme requires the computational complexity
of O

(
LMN2 + LN

∑K
k=1 ℓkck−1ck +MNnF

)
. Also,

the backward computation of the proposed scheme in

one iteration has the similar complexity to that of the
forward computation [43], which is thus still given by
O
(
LMN2 + LN

∑K
k=1 ℓkck−1ck +MNnF

)
. Overall, the

training complexity of the proposed scheme is estimated
as O

(
Niter

(
LMN2 + LN

∑K
k=1 ℓkck−1ck +MNnF

))
,

where Niter denotes the number of iterations.
Importantly and intriguingly, the above complexity analysis

implies that the inference complexity of the proposed DL
model can be even lower than those of the baseline schemes if
the values of the parameters are properly chosen. For example,
when

∑K
k=1 ℓkck−1ck

N2L2 + MnF

N2L3 ≤ 1, the proposed scheme has
clearly a lower inference complexity than the baseline schemes
I and II.

V. CONCLUSION

This paper investigated the robust channel estimation prob-
lem for the MIMO-aided IoT system in the presence of the
channel and noise covariance uncertainties, to solve which
the novel DL model composed of the two modules, the pilot
optimizer and channel predictor, was proposed. The effective
training strategy for the proposed DL model was also devised
by properly compensating the channel and noise covariance
matrices such that the adverse impacts of the underlying
uncertainties were overcome. The extensive simulation results
confirmed that the proposed DL model performed better and is
more effective than the baseline schemes, rendering it highly
useful in practice.

As an interesting and important focus of future research, it
is also deserved to investigate the robust channel estimation
problem for other wireless communication systems, e.g., with
orthogonal frequency division multiplexing (OFDM), large an-
tenna arrays, reconfigurable intelligent surfaces (RIS), and/or
satellite-terrestrial links.
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