
IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 1

Virtual Network Embedding Based on Hierarchical
Cooperative Multi-Agent Reinforcement Learning

Hyun-Kyo Lim, Ihsan Ullah, Ju-Bong Kim, Youn-Hee Han

Abstract—Virtual network embedding (VNE) is a promising
technique enabling 5G networks to satisfy the given requirements
of each service via network virtualization. For better performance
of the embedding algorithm, it is necessary to automatically
detect the network status and provide an optimal embedding
decision. However, existing VNE algorithms disregard the long-
term effect by focusing on selecting only one virtual network
request from the waiting queue, without considering all waiting
virtual network requests concurrently. In this study, we propose
a hierarchical cooperative multi-agent reinforcement learning
algorithm to optimize the VNE problem by maximizing average
revenue, minimizing average cost, and also improving the request
acceptance ratio. The proposed algorithm applies two reinforce-
ment learning algorithms: 1) two-level hierarchical reinforcement
learning to efficiently solve the problem by dividing it into sub-
problems, and 2) multi-agent-based cooperative reinforcement
learning to improve algorithm performance through the cooper-
ation of multiple agents. In order to evaluate and analyze the pro-
posed scheme from the long-term perspective, four performance
parameters are evaluated: revenue, cost, revenue-to-cost ratio,
and acceptance ratio. The simulation results demonstrate that
the proposed VNE algorithm based on hierarchical and multi-
agent reinforcement learning outperforms the existing RL-based
approaches.

Index Terms—Hierarchical reinforcement learning, multi-
agent reinforcement learning, virtual network embedding.

I. INTRODUCTION

IN recent years, the commercialization of 5G networks has
had a significant impact on the general network manage-

ment systems. In particular, the rapid growth of the IoT device
market has led to significant challenges for current network
infrastructures in meeting the increasing resource demands [1].
Due to limited network resources, it is impossible to meet
the requirements of all services offered by service providers
(SPs) or expand the infrastructure resources based on user
needs. Moreover, the current network system architecture is
rigid and unyielding to change, which makes it challenging to
incorporate emerging technologies and services due to network
ossification [2].

Network slicing (NS) and Network virtualization (NV)
technology is a potential solution to the problem of network
ossification [3], [4]. It partitions a static physical network and
configures custom virtual networks to lease resources from
the Internet provider (InP) according to the needs of the end

Corresponding author: Youn-Hee Han. (e-mail: yhhan@koreatech.ac.kr)
Hyun-Kyo Lim, Ju-Bong Kim, and Youn-Hee Han are with Future Conver-

gence Engineering, Korea University of Technology and Education, Cheonan,
31253, Korea. (e-mail: {glenn89, rlawnqhd, yhhan}@koreatech.ac.kr)

Ihsan Ullah is with Advanced Technology Research Center, Korea Uni-
versity of Technology and Education, Cheonan, 31253, Korea. (e-mail:
ihsan@koreatech.ac.kr)

users. Efficient SP and InP management techniques increase
the effectiveness of the substrate network and boost revenue
for both providers. In the context of 5G networks, virtual
network embedding (VNE) is important, especially with regard
to NS and NV [5]. As 5G technology enables dynamic NS and
NV, VNE plays a pivotal role in efficiently allocating virtual
resources across diverse slices for quality service delivery.
VNE refers to the process of efficiently allocating substrate
network resources to meet the constraints of virtual network
requests (VNRs) with respect to virtual nodes and links.
Network service providers (NSPs) are responsible for mapping
VNRs onto the underlying substrate network.

However, the VNE problem is NP-hard due to the extensive
search space, even with single VNRs or single virtual nodes,
and is further compounded by the NP-hard characteristic of
mapping VNRs onto substrate networks [6]. So, many VNE
algorithms exist to facilitate the efficient allocation of network
resources for embedding VNRs into the underlying substrate
network. Several heuristic-based algorithms [6]–[15] and bio-
inspired algorithms [16]–[20] have been proposed to solve
VNE problems where several sub-goals are sometimes incor-
porated in different ways. While heuristic-based algorithms
often use greedy optimization and may not yield optimal
solutions, bio-inspired methods such as ant colony optimiza-
tion, genetic algorithms, and particle swarm optimization have
shown effectiveness in solving VNE problems. However, these
bio-inspired methods require significant solution search time,
especially when dealing with large or dynamic networks.

In recent years, several intelligent networks have been
proposed by applying machine learning techniques to network
management problems. One of such techniques is reinforce-
ment learning (RL) [21], [22]. An RL agent learns to find the
optimal VNE solution through interaction with the network
environment, and it obtains a policy model that maximizes
a predefined reward function. Several RL algorithms, includ-
ing simple Q-learning, deep Q-learning (DQN), advantage
actor-critic (A2C), asynchronous advantage actor-critic (A3C),
proximal policy optimization (PPO), and deep deterministic
policy gradient (DDPG) have been utilized to improve the
performance of VNE algorithms [23]–[32]. Most existing
methods solve the VNE problem by first embedding all nodes
without considering link embedding information. However,
such approaches can lead to suboptimal link embeddings due
to decisions made without explicitly considering the require-
ments and characteristics of the links. So, recently, graph
neural network models-based RL methods have been intro-
duced to address these limitations by considering both nodes
and links information within the substrate network topology,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 2

enabling more effective node embedding [33]–[37]. Moreover,
the existing RL methods to the VNE problem often overlook
the long-term perspective of revenue, cost, and acceptance
ratio. To address these issues, a hierarchical RL (HRL)-based
technique [37] has been proposed. The HRL-based technique
involves decomposing the VNE problem into smaller sub-
problems and learning policies for each sub-problem. By using
HRL, the technique tries to optimize revenue, reduce cost,
and improve acceptance ratio over a longer time horizon.
However, a limitation of the technique is that it assigns
only one VNR per time step throughout the entire RL time
horizon, and does not consider a group of VNRs and their
resource demand systematically. This may result in suboptimal
resource allocation and placement, leading to lower revenue
and acceptance ratio in the long-term perspective.

In the context of VNE problem, it is common to have mul-
tiple VNRs waiting for resources simultaneously. Considering
all waiting VNRs concurrently is crucial for RL algorithms
to achieve optimal resource allocation and VNR placement.
It ensures that all available resources are utilized efficiently,
which can result in improved revenue and acceptance ratio
over a longer time horizon. The decision-making process
involved in selecting which VNRs to accept or reject during
embedding is a complex and challenging problem. To over-
come this challenge, a novel coordinated approach is required
to optimize the performance of VNE.

To address the complex problem of selection in multiple
VNRs, a multi-agent reinforcement learning (MARL) ap-
proach can be employed. One potential approach is to create
a logical link between each VNR and an agent, allowing
for cooperative decision-making among agents. This approach
can help to optimize VNR placement and resource allocation,
resulting in improved revenue and acceptance ratio. In par-
ticular, MARL has gained significant attention for network
resource allocation recently. Most of the existing research
applying MARL has primarily focused on resource allocation
in wireless environments [38], [39]. However, designing an
effective MARL algorithm for VNE requires addressing how
to facilitate efficient cooperation among agents. Particularly,
with the advancement of 5G networks and the rapid growth
of the IoT device market, there is a growing demand for a
sophisticated and efficient algorithm that can autonomously
embed VNRs to support diverse services. The automated VNE
algorithm should have the capacity to concurrently handle
multiple VNRs, enhance the revenue and acceptance ratio for
NSP, and efficiently embed network resources at a reduced
cost for SP. This study proposes a hierarchical and cooperative
solution for VNE problem by incorporating HRL with MARL,
named HCMARL-VNE. It employs HRL for efficient long-
term exploration and MARL to accelerate VNE solutions via
agent collaboration. To achieve an optimal link embedding
solution, our approach also generates an augmented graph that
encompasses the substrate network, virtual network nodes, and
link information. GCNs model [33] is employed to extract
network features and information by identifying the relation-
ships between each node and link. Typical RL methods often
require much exploration to solve problems, which can be
computationally expensive. In contrast, HRL can break down

problems into smaller and more manageable sub-problems.
The proposed HRL algorithm divides the embedding task

into two levels. At the high-level, MARL is applied to evaluate
the VNRs in the waiting queue. The evaluation determines
whether each waiting VNR should be embedded immediately
or postponed for later embedding based on their long-term
revenue potential. The collaboration of multiple agents in
MARL leads to the maximization of long-term revenue. At the
low-level, single-agent RL is used to select the best substrate
node for embedding the virtual nodes of the VNRs, that
have been chosen by the high-level, based on the short-term
embedding cost as well as the short-term revenue.

The main contributions of this study are summarized as
follows:

• To the best of our knowledge, this is the first study that
MARL has been applied to the VNE problem to promote
collaboration between individual agents and to improve
the overall VNE performance.

• The proposed algorithm divides the VNE problem into
sub-problems, and utilizes HRL to enable agents at dif-
ferent levels to focus on enhancing their performance.

• To automatically extract features, the proposed algorithm
incorporates substrate and virtual network information
into a newly defined augmented graph. The GCN is then
employed to identify relationships between nodes and
links in the network.

The rest of the paper is organized as follows. Section II
describes the research status of RL-based VNE algorithms
and the preliminaries of our work. In Section III, the substrate
network and VNR models are described and our VNE problem
is formalized. Section IV describes the details of the proposed
algorithm. In Section V, the performance evaluation and
comparison results are presented. Finally, the conclusions and
future work are described in Section VI.

II. RELATED WORK

A. Heuristic and Bio-inspired algorithms for VNE

In [7], the PageRank algorithm [40] is referenced to measure
the relative importance of nodes by considering the topological
attributes of substrate network components. The topology-
aware node ranking is a method to measure the relative
importance of nodes in a network based on their resource
and topological attributes. It uses a Markov random walk
model to compute the node rank, which reflects the CPU and
bandwidth resources of the node and its neighbors, as well
as the connectivity between them. In [14], node weight is
determined by factoring in node degree within the network
topology as well as the available resources at each substrate
node. An ego-network is then established around the substrate
node with the highest weight, followed by link mapping where
neighboring nodes meeting the VNR’s demand constraint are
selected. In [17], a genetic algorithm employing parallel com-
putation and a novel fitness function is employed to discover
nearly optimal solutions for the link mapping phase. Initially,
a path pool is generated using the k-shortest path algorithm,
considering only the substrate nodes complying with the
VNR’s virtual node resource constraints. Subsequently, the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 3

genetic algorithm undergoes iterative evaluation, selection,
crossover, and mutation processes to ascertain a suitable path
for link mapping. However, many existing heuristics and
bio-inspired algorithms often yield suboptimal solutions due
to their reliance on approximation techniques or simplified
optimization strategies. This can lead to inefficient resource
utilization and revenue loss for service providers. Therefore,
recently, RL-based VNE algorithms have been proposed to
overcome resource utilization, load balancing, revenue, cost
and acceptance ratio.

B. Reinforcement Learning Algorithms for VNE
In [21], [22], RL is used to generate the possibility of

training abstractions on a high-dimensional state space; how-
ever, exploration tasks using sparse feedback remain a ma-
jor challenge. To this end, Boltzmann search and Thomson
sampling [41], [42] use a rudimentary level algorithm to
outperform the ϵ-greedy algorithm. Recently, RL has gained
significant attention for efficiently allocating limited resources
of substrate networks with various VNRs [23]–[32], [34]–[36].

In [29], the authors propose an RL-based VNE algorithm
using a pointer network model [43]. The algorithm employs
the attention mechanism to focus on a specific substrate
node, and the pointer network model comprises an encoder-
decoder that takes the substrate node’s features as input. The
decoder outputs the probability of attention to the substrate
nodes, which correspond to the virtual nodes of the VNR.
The RL agent selects a substrate node by sampling the final
outcome obtained by multiplying the attention probability with
the masking information generated by a rule-based function.
However, existing RL-based algorithms lack sufficient consid-
eration for link embedding when the RL agent makes node
selections.

The VNE algorithm introduced in [36] combines GCN and
RL algorithms to solve the VNE problem. By utilizing GCN
model to comprehend the relationships between nodes, node
selection can be performed more efficiently. It combines the
information in the substrate node and virtual node features
for the input of GCN. Subsequently, the output of GCN is
directly used to select the substrate node. The algorithm is
developed based on the actor-critic concept, which means that
the actor selects a substrate node depending on the current
policy, and the critic evaluates the currently selected action,
that is, the selected substrate node, whereby, the critic’s state
value is used to update the model.

In [34], the authors adopt an advanced deep RL technique,
using the A3C policy gradient method [44], to solve the VNE
problem. To speed up the training procedure and generate the
training experience more efficiently, they trained the policy-
generation algorithm using A3C. To extract spatial features
from network information (raw state) more efficiently, they
designed a 3-ordered layer GCN inside the training agent.
While using GCN for node embedding takes into account link
embedding as well, it exists an issue where the dimension of
the state-action space that a single agent needs to consider
becomes too large.

In [37], the presented solution for the complex VNE prob-
lem employs HRL and GCN. While GCN is used for feature

extraction based on node and edge relationships, the approach
involves a high-level agent for ordering waiting VNRs and
a low-level RL agent for selecting suitable substrate nodes.
However, this approach focuses solely on the VNRs at the
current step without considering future rewards and revenue
implications sufficiently. This lack of future-oriented decision-
making can lead to inefficient resource allocation, potentially
resulting in reduced long-term revenue and acceptance rates.
In addition, the most significant contribution of our scheme
lies in utilizing a MARL framework to allow multiple agents
to simultaneously choose actions in a cooperate way, and also
in introducing a ’postponing’ action in the high-level decision-
making process, which deliberately defers the embedding of
certain VNRs. They empower multiple agents for efficient
VNR embedding, a critical factor for accommodating multiple
VNRs concurrently, and its distributed architecture enhances
scalability, making it ideal for complex real-world networks.

C. Hierarchical Reinforcement Learning

HRL algorithm is a new approach in the field of RL that
aims to enhance the efficiency and effectiveness of learning
in complex environments that provide sparse rewards and
complex tasks [45]–[47]. It introduces a hierarchical structure
in which multiple levels of agents or controllers work together
to solve a problem.

Particularly in [45], an HRL-based approach is used to
solve a problem by hierarchically dividing the main objective
into sub-goals, with HRL agent learning options to explore
complex and sparse reward issues. This study proposes a novel
approach for important concepts in RL: temporal abstraction.
Temporal abstraction refers to the ability of an RL agent
to reason and make decisions at different levels of time
scales or levels of abstraction. The proposed method uses a
hierarchical architecture where the agent learns at different
levels of abstraction, allowing it to make decisions based on
long-term goals and short-term actions.

D. Cooperative Multi-Agent Reinforcement Learning

Using multi-agent RL (MARL) can provide several advan-
tages compared to single-agent RL [48]–[50]. One advantage
is that it allows multiple agents to learn and interact in
the same environment, leading to better coordination and
cooperation between agents. This can lead to more efficient
use of substrate resources and better overall performance.
Additionally, MARL can handle complex and dynamic tasks,
where the behavior of one agent may impact the behavior of
other agents. By considering the actions of multiple agents,
MARL can generate more robust and adaptive policies.

Challenges arise when using single-agent RL with a central-
ized method or fully decentralized method for multiple agents.
The former faces difficulty in finding an optimal solution,
while the latter struggles to learn the desired cooperative
or competitive behavior through MARL. To address these
issues, MARL methods have been developed to enable organic
cooperation among agents for efficient actions. One popular
approach is centralized training with decentralized execution

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 4

TABLE I: The notations of network modeling

Notation Description
GS Substrate network
NS The set of substrate nodes
ES The set of substrate links
c(ns) Each substrate node’s CPU capacity (ns ∈ NS)
c(es) Each substrate link’s bandwidth capacity (es ∈ ES)
σ(ns) The nodal cost per CPU unit capacity
σ(es) The link cost per bandwidth unit capacity
GV Virtual network request
NV The set of virtual nodes
EV The set of virtual links
d(nv) Each virtual node’s CPU demand (nv ∈ NV)
d(ev) Each virtual link’s bandwidth demand (ev ∈ EV)
dt VNR arrival time
dd Maximum delay time on the waiting queue for VNR
ds VNR service duration time

(CTDE) [51]. Representative models of MARL include value-
decomposition networks (VDN) [52] and Q-value Mixing
(QMIX) [53], based on state-action values. QMIX is a rep-
resentative MARL algorithm designed to learn decentralized
policies for cooperative tasks in partially observable settings.
The core idea of QMIX is to generate a joint action-value func-
tion by mixing the individual agents’ action-value functions
(Q-values). To do this, QMIX configured with a hypernetwork
[54] to generate weights and biases for the mixing network.
The hypernetwork takes the global state as input and produces
the weights and biases for the mixing network, which in turn
combines the agents’ Q-values to obtain the joint action-value
(Q-total) through an average pooling process called readout.

In this study, multiple agents are created, equal to the
number of waiting VNRs, with each VNR being associated
with an agent. At each time step, these agents need to cooper-
atively decide whether to embed their corresponding VNRs or
postpone them to optimize the overall network performance
and resource allocation. The QMIX algorithm is employed in
this context to learn a decentralized decision policy for the
VNE problem. By using QMIX, the agents can learn to work
together and make coordinated decisions on VNR embedding,
taking into account the constraints and resource availability of
the substrate network.

III. FORMALIZATION OF THE VNE PROBLEM

In this section, we describe the system models for the VNE
problem, and provide the definition of the problem objective.
The major notations used in the proposed system model are
listed in Table I.

A. Substrate Network Modeling

The substrate network S is a physical network managed
by an InP. It is typically modeled as an undirected graph
GS = (NS , ES , c(·), σ(·)), where NS and ES refer to the
sets of substrate nodes and links, respectively. The substrate
node ns(∈ NS) and link es(∈ ES) are associated with the
capacities of c(ns) and c(es), respectively. c(ns) represents the
maximum amount of computational resources, such as CPU
or memory, that can be allocated to the node, and c(es) the
maximum amount of data that can be transmitted through the

physical link, typically referred to as the bandwidth capacity.
In addition, each substrate node and link has a per-unit
capacity cost, denoted by σ(ns) and σ(es), respectively. These
costs represent the cost per unit of capacity that the InP or NSP
must pay to provide and maintain the physical infrastructure.

B. Virtual Network Modeling

In virtual network embedding, a virtual network V is created
by an SP to allocate network resources to the InP. The
VNR is typically modeled as an undirected graph, denoted
by GV = (NV , EV , d(·), dt, dd, ds). NV and EV denote
the sets of virtual nodes and links, respectively, where nv(∈
NV) and ev(∈ EV) represent the virtual nodes and links
associated with the resource demand, denoted by d(nv) and
d(ev), respectively. Additionally, dt represents the VNR arrival
time. Furthermore, dd represents the maximum delay time
in the waiting queue for the VNR, while ds denotes the
service duration time of the VNR. By modeling the VNR
as an undirected graph with these parameters, we can more
accurately represent the demands and constraints of virtual
networks in the process of embedding them onto the substrate
network.

C. The VNE Procedure

Fig. 1 provides an example of substrate network onto which
VNRs are mapped. Multiple virtual nodes from different
VNRs can be assigned to a substrate node concurrently (e.g.,
the virtual nodes ‘a’ and ‘f’ are assigned to the same substrate
node ‘A’). Similarly, multiple virtual links can be assigned to
one substrate link, or a virtual link can be mapped to multiple
substrate links (e.g., the virtual link of two nodes ‘b’ and
‘c’ are mapped onto substrate links C-E-F). However, virtual
nodes and links from the same VNR cannot be assigned to the
same substrate node and link, respectively [23]. This constraint
can improve network reliability and assists in preventing
potential congestion or resource bottleneck.

There are multiple VNRs in the queue waiting to be
serviced, and at each step the RL agent selects the most
appropriate VNRs for embedding. In the VNE problem, the
embedding consists of two main parts, node embedding and
link embedding, as explained in Fig. 2. For a selected VNR,
node embedding maps a virtual node to a substrate node, while
link embedding maps a virtual link to a path in the substrate
network. Once both the node embedding and link embedding
are successful, the corresponding VNR service is activated and
the resource gets occupied based on the VNR’s demand. Once
the VNR’s service time ds has elapsed, the occupied resources
are released and restored. In case the node or link embedding
fails, the VNR is postponed and placed again in the waiting
queue for reallocation in the next step. In some cases, a VNR
may be postponed multiple times and remain in the queue for
an extended period. However, if the maximum delay time dd
for a VNR expires, it is rejected and removed from the queue.

D. Formal Definition of Our VNE Problem

MV
N and MV

E refer to the functions that define how the
nodes and links of a virtual network GV are embedded

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 5

Fig. 1: An example of virtual network embedding. Triangles
represent the nodes of VNR 1, squares represent the nodes
of VNR 2, and pentagons represent substrate nodes. Triangles
and squares attached near pentagons indicate that virtual nodes
have been embedded on this substrate node, while solid lines
close to dashed lines represent embedded virtual links.

onto a given substrate network GS , respectively. The node
mapping is denoted as MV

N : NV→NS . On the other hand,
the link mapping is denoted by MV

E : EV→Power(ES),
where Power(ES) represents all subsets of ES . In our
algorithm, the virtual nodes and virtual links are limited to
only having CPU and bandwidth requirements, respectively.
A virtual node nv ∈ NV can be embedded into a substrate
node ns ∈ NS if the remaining capacity of ns is greater than
or equal to the CPU demand d(nv) of the virtual node, i.e.,
c(MV

N (nv)) ≥ d(nv). A virtual link can be embedded into the
links composed of a loop-free substrate path if the substrate
links have a larger capacity than its required bandwidth, i.e.,
c(es) ≥ d(ev) for each es ∈MV

E (ev).
In this study, the main objective of the VNE problem is

to accept as many VNRs as possible while maximizing long-
term average revenue and minimizing long-term average cost.
To measure the effectiveness of a VNE algorithm, we use
four metrics: 1) revenue, 2) cost, 3) revenue-to-cost ratio
(R/C ratio), and 4) acceptance ratio. Revenue is the primary
metric for evaluating the profit earned by InP or NSP from SP
through VNR embeddings, and it increases with more VNRs
embedded. Revenue at each time step t can be expressed as:

REVt =

Pt∑
i=1

 ∑
nv∈NVi

d(nv) +
∑

ev∈EVi

d(ev)

 (1)

where Pt represents the total number of the serving VNRs
and the new VNRs embedded at time step t. REVt represents
the sum of the CPU demand of the virtual nodes and the
bandwidth demand of the virtual links of all the VNRs. The
overall performance evaluation of a VNE algorithm is based

on the long-term average revenue, as follows:

lim
T→∞

∑T
t=1 REVt

T
. (2)

The cost refers to the amount of resources, i.e., CPU and
bandwidth, consumed during the embedding process. When a
virtual node nv with CPU demand d(nv) is embedded into
the substrate node ns with CPU unit capacity of σ(ns), the
total node embedding cost is σ(ns) · d(nv). When a virtual
link ev with bandwidth demand d(ev) is embedded into the
substrate path

(
es1, e

s
2, · · · , esK

)
, where each bandwidth unit

capacity σ(es1), σ(e
s
2), · · · , σ(esK), the total link embedding

cost is
∑K

k=1 σ(e
s
k) · d(ev). The cost incurred at each time

step t can be defined as:

COSTt =

Pt∑
i=1

(∑
nv∈NVi ,

ns = M
Vi
N (nv)

σ(ns) · d(nv) +

∑
ev ∈ EVi , esk ∈ M

Vi
E (ev),

K =
∣∣MVi

E (ev)
∣∣

K∑
k=1

σ(esk) · d(ev)

)
.

(3)

On the other hand, the long-term objective is to minimize the
following average cost:

lim
T→∞

∑T
t=1 COSTt

T
. (4)

The R/C ratio takes into account both the revenue and cost
for the VNR embeddings. The R/C ratio at time step t has a
range of 0 to 1, and defined as follows:

αt =
REVt

COSTt
, (5)

and the long-term average R/C ratio is calculated as:

lim
T→∞

∑T
t=1 αt

T
. (6)

The acceptance ratio is a metric that expresses the ratio of
embedded VNRs to waiting VNRs in the queue at each time
t, and it can be defined as

βt =
NUM

V

t

NUMV
t

(7)

where NUM
V

t is the number of embedded VNRs at time step
t and NUMV

t is the number of waiting VNRs in the queue.
Finally, the long-term average acceptance ratio is

lim
T→∞

∑T
t=1 βt

T
. (8)

IV. PROPOSED HIERARCHICAL COOPERATIVE
MULTI-AGENT REINFORCEMENT LEARNING

In this section, the proposed hierarchical cooperative multi-
agent reinforcement learning called HCMARL-VNE is ex-
plained in detail.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 6

Fig. 2: An in-depth view of the virtual network embedding procedure

A. Designing Process

In this section, we explain the overall design of the proposed
HCMARL-VNE. We divide the embedding decision into two
levels, i.e., the high-level (HL) and the low-level (LL), and
HRL is utilized to solve our VNE problem. In our HRL,
multiple HL agents collectively determine the sub-goal to be
achieved. The sub-goal is to decide which VNRs to select for
embedding and which VNRs to postpone, among the waiting
VNRs in the queue. The LL agent makes decisions to solve
the VNE problem in the given sub-goal. That is, the LL agent
learns a policy to decide and select a substrate node for each
virtual node in VNRs that have been selected by the multiple
HL agents.

Here is a more exploration on the design process. At each
time step, the multiple HL agents are created, matching the
number of VNRs in the queue. The agents then select the
appropriate sub-goal, i.e., VNRs to be embedded, based on
the current state of the environment. They share a single Q-
network for a proper selection of action. During the training of
the Q-network, the QMIX framework is utilized. It involves a
mixing network based on the Q-values of the actions selected
by each agent. Based on the multiple agents’ Q-values, the
mixing network calculates the Q-total value and updates the
shared Q-network in the HL. Then, the LL agent executes its
policy for that sub-goal until it attempts to embed all virtual
nodes of the selected VNRs from HL. Once the sub-goal
is achieved, the LL agent reports back to the multiple HL
agents, who then select the next sub-goal and assign it to the
low-level agent. The process continues until the predefined
number of time steps is reached. Throughout the process, the
multiple HL agents learn their policies that select sub-goals
based on the current state, i.e., the information of the overall
substrate network and VNRs. We design the action chosen in
the multiple HL agents to be critical to maximizing long-term

revenue. The LL agent also learns a policy for each sub-goal.
We design the action chosen in the LL agent to be critical
to maximizing the short-term R/C ratio over the duration
of the sub-goal. By breaking down the VNE problem into
smaller sub-goals and assigning them to a low-level agent, the
overall task becomes more manageable and can be achieved
more efficiently and effectively. The hierarchical structure also
allows the agents to adapt to changes in the information of
the overall substrate network and VNRs, and to leverage prior
knowledge and experience.

Fig. 3 demonstrates an example of steps involved in the
proposed HCMARL-VNE algorithm. It employs an augmented
substrate graph (ASG) composer function that creates states
and observations using the overall current information of the
substrate network and waiting VNRs. Further details on the
ASG composer are provided in Section IV-C. First of all,
multiple HL agents simultaneously select VNRs #1 and #3
to be embedded into the substrate network, while VNR #2
has been decided to be postponed for embedding at a later
time. At the LL steps, the LL agent prioritizes the embedding
of the VNR with the highest revenue when choosing between
VNR #1 and VNR #3. A single agent selects a proper substrate
node for each virtual node, and continues this process until it
attempts to embed all virtual nodes of the selected VNRs.

B. Markov Decision Process for HCMARL-VNE

In the proposed algorithm, the VNE problem is formulated
as a hierarchical decentralized partially observable Markov
decision process (HDec-POMDP), which consists of HL-MDP
and LL-MDP. With fully cooperative multi-agents, HL-MDP
can be expressed as ⟨SH , NH , OH , UH , tH , rH , yH⟩ where
sH ∈ SH is the true state of the environment and is common
to the HL agents, NH is the number of HL agents and equals
the number of waiting VNRs for embedding, oH,i ∈ OH is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 7

Fig. 3: An example of steps involved in the proposed HCMARL-VNE procedure at a time step (ΘN and ΘL represent the
final node and link embedding information)

the observation for the HL agent i, uH,i ∈ UH is an action
for the HL agent i, tH is the HL state transition probability
which the multiple HL agents do not know, rH is the HL
reward function, and yH is the discount factor.

The LL-MDP is based on single-agent RL which for se-
lecting appropriate substrate nodes for the virtual nodes of
the VNRs. The number of internal steps in the LL-MDP is
equal to the number of virtual nodes in VNRs chosen by
multiple HL agents. Therefore, the LL-MDP can be defined
as a general MDP, unlike the HL Dec-POMDP. The LL-MDP
can be defined as ⟨SL, UL, tL, rL, yL⟩ where sL ∈ SL is a
state for the LL agent, uL ∈ UL is an action for the LL agent,
tL is the LL state transition probability which the LL agent
does not know, rL is the LL reward function, and yL is the
LL discount factor.

C. States, Actions, and Rewards

In our algorithm, the state representation includes informa-
tion about the overall substrate network and VNRs at each
time step. The ASG composer serves as a crucial component
in constructing the ASG model. The ASG model captures the
resources and connectivity of the substrate network, and is
further augmented with information about serving VNRs (or
embedding VNRs) and waiting VNRs. By utilizing ASG in
the state construction, several critical factors are taken into
account when the multiple HL agents select VNRs in the
waiting queue, or the LL agent chooses appropriate substrate
nodes for the selected VNRs. These factors include 1) the
availability of resources and connectivity within the substrate
network, 2) the allocation status of currently serving VNRs,
and 3) the status of waiting VNRs in the queue.

At time step t, ASG is defined as GA
t = (NA

t , EA
t) where

NA
t is the set of ASG nodes and EA

t is the set of ASG links.
NA

t is defined as follows:

NA
t = NS ∪

⋃
Vs∈ΩV

t

NVs ∪
⋃

Vw∈ΦV
t

NVw (9)

where NS is the set of substrate nodes, ΩV
t is the set of

currently serving VNRs, and ΦV
t is the set of waiting VNRs

in the queue.
On the other hand, EA

t comprises different types of links,
including substrate links and virtual links of waiting VNRs
in the queue. Additionally, augmented links are added to EA

t

to establish the relationship between VNRs and the substrate
network. The augmented links serve two primary functions.
First, they connect the virtual node of currently serving VNRs
to the embedded substrate node, reporting the current mapping
and allocation of network resources. Second, they connect the
virtual nodes of waiting VNRs to the candidate substrate nodes
that can embed these virtual nodes, facilitating the selection
of appropriate resources for the pending VNRs. Accordingly,
EA

t is defined as follows:

EA
t =ES ∪

⋃
Vw∈ΦV

t

EVw ∪

{
(MV

N (nv), nv)

∣∣∣∣MV
N (nv)∈NS , nv∈

⋃
Vs∈ΩV

t

NVs

}
∪

{
(ns, nv)

∣∣∣∣ns ∈ NS , nv∈
⋃

Vw∈ΦV
t

NVw , c(ns) ≥ d(nv)

}
(10)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 8

1) States: For a time step t, a state sHt configured by the
ASG composer consists of ASG node features NFt, ASG edge
index EIt, and action masking AMt. For a node in AGS, NFt

consists of seven features denoted by [T,A,B,C,D,E,X].
• T represents whether a node is a substrate node (denoted

by 0), a serving VNR node (denoted by 1), or a waiting
VNR node (2);

• A represents the remaining or demanded resource of
the corresponding node, depending on whether it is a
substrate or a virtual node;

• B is the node degree;
• C is the number of postponements if this node is a virtual

node in a waiting VNR;
• D is the remaining delay time if this node is a virtual

node in a waiting VNR;
• E is the service duration time if this node is a virtual

node in a waiting VNR;
• X can take on values of 0 or 1 if this node is a virtual

node in a waiting VNR. The value varies based on the
agent type and will be described in more detail later.

It is noted that C, D, E, and X are set to −1 for a substrate
node or a virtual node in a serving VNR. On the other hand,
EIt simply represents the adjacency of each node, and it is
formed using EA

t at every step t.
AMt refers to the binary action masking information for

candidate substrate nodes that are suitable for embedding each
virtual node of a VNR. For a virtual node, candidate substrate
nodes are masked when they have been already mapped to
other virtual nodes of a VNR, and the amount of remaining
CPU in the candidate substrate node is less than the demanded
CPU for the virtual node. This AM helps to ensure that
unmasked candidate nodes have sufficient remaining CPU and
memory are available for use, resulting in better RL learning
performance.

As shown in Fig. 3, the ASG composer configures the
observation oH,i

t for each HL agent i by using the current
identical state sHt . Each oH,i

t consists of NFt and EIt included
in sHt , but the last feature X of NFt is set to one for
virtual nodes in the VNR associated with the HL agent i,
and set to zero to other virtual nodes. Therefore, each HL
agent uses unique observation as its input, allowing it to
make independent decisions. This observation enables the HL
agents to consider various features, such as the specific VNR’s
requirements and the substrate network’s current status, when
deciding whether to embed or postpone the associated VNR.

The ASG composer then configures the state sLz for each
internal step z of the LL agent. For each internal step z, the
LL agent attempts to sequentially embed a virtual node of the
VNRs selected by multiple HL agents. For a HL time step t,
sLz is configured by utilizing NFt, EIt and AMt included in
sHt , as well as by incorporating the VNRs selected by the
HL agents (i.e., the action information of the HL agents).
However, the last feature X in NFt is set to one for the
virtual node being targeted for embedding by the LL agent
at internal step z, and is set to zero for all other virtual nodes.
For each internal step z, NFt, EIt, and AMt are denoted
by NF z

t , EIzt , and AMz
t , respectively, and changed by the

ASG composer to reflect the remaining resources of substrate

Fig. 4: Q-network structure for the HL agent i

nodes and links, which have been reduced due to virtual node
embedding in the previous internal steps.

2) Actions: At time step t, each HL agent i makes a
decision on embedding (1) or postponing (0) the VNR as-
sociated with the HL agent based on its policy, and takes the
corresponding action uH,i

t . Then, uH
t is formed by collecting

the individual actions {uH,i
t }N

H

i=1 of multiple HL agents. uH
t

is also used for the ASG composer to configure the state for
the LL agent.

On the other hand, the LL agent chooses a substrate node
ns for a virtual node being targeted for embedding at an
internal step z for the time step of the HL agents, and takes
the corresponding action uL

z . The virtual nodes targeted for
embedding are selected in order of their resource demand, so
that the LL agent first selects the virtual node with the highest
demand. If the LL agent is unable to find an appropriate
substrate node for a virtual node in a VNR, the entire VNR
is postponed and added to the queue of waiting VNRs. Then,
uL
t is formed by collecting the individual actions {uL

z }N
L

k=1.
The HL and LL agents interact with the environment by

executing both uH
t and uL

t actions, and receiving feedback
in the form of rewards. After taking actions and receiving
rewards, the agents update their policies to improve future
decision-making.

3) Rewards: We use HL agents to embed high-revenue
VNRs while postponing lower-revenue ones to maximize long-
term cumulative revenue. Therefore, the HL agent’s reward is
based on the revenue generated by both the VNRs currently
being served and the revenue of any new VNRs embedded
during the current time step t. If the LL agent fails to embed
a VNR that was selected by a HL agent, then the revenue
generated by that VNR is not added to the HL agent’s reward.
The reward function for the HL agents’ action uH

t is defined
as follows:

rHt =
∑

Vs∈ΩV
t

(∑
nv∈NVs

d(nv) +
∑

ev∈EVs

d(ev)

)

+
∑

Vn∈πV
t

(∑
nv∈NVn

d(nv) +
∑

ev∈EVn

d(ev)

) (11)

where ΩV
t is the set of currently serving VNRs and πV

t is the
set of new VNRs embedded at time step t.

For a virtual node of VNRs chosen by the HL agents, we
use the LL agent to find a high-revenue and low-cost substrate
node for each of the virtual nodes. This means that the LL
agent will try to avoid long paths when embedding links
between the virtual nodes, as longer paths tend to have higher

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 9

Fig. 5: Mixing network structure for the cooperation of the
multiple HL agents

costs. Because the LL agent’s decisions are made based on the
the HL agents’ long-term goal, the LL agent needs to consider
the short-term goals and make decisions. For a time step of
the HL agents, the reward function for the LL agent’s action
at an internal step z (i.e., the reward for the LL agent’s action
uL
z) is defined as follows:

rLz =
∑

Vn∈πV
t

(∑
nv∈NVn

d(nv) +
∑

ev∈EVn

d(ev)

)

− α
∑

Vn∈πV
t

(∑
nv∈NVn ,

ns = MVn
N (nv)

σ(ns) · d(nv) +

∑
ev ∈ EVn , esk ∈ MVn

E (ev),

K =
∣∣MVn

E (ev)
∣∣

K∑
k=1

σ(esk) · d(ev)

)

(12)

where α determines how much weight is given to the cost
against the reward. It should be noted that the reward rLz is
calculated based on both the node embedding and the link
embedding.

D. High-level Mixed Q-network Model and Training

Our proposed algorithm aims to maximize long-term rev-
enue by training multiple HL agents using the QMIX algo-
rithm. As shown in Fig. 4, the Q-network of each HL agent is
used to select an action based on the ASG node features (NFt)
and ASG edge index EIt configured by the ASG composer.
The proposed HL agent Q-network consists of GCNs and the
gated recurrent units (GRUs) [55]. In VNE problems, it is
important for RL agents to recognize the spatial characteristics
of the substrate network and virtual networks. GCNs are used
to extract the features based on the relationship between nodes
and edges in the configured ASG. As explained in Sec. IV-C,
the ASG’s augmented nodes and links represent the diverse
relations among the serving VNRs, the pending VNRs, and
the substrate nodes, so that the features extracted by the
GCN model can be useful in selecting appropriate VNRs for
embedding. In the proposed HL agent’s Q-network, GRUs
are used to model the temporal dependencies of the agents’
actions and states, which is particularly useful in partially
observable environments. The final output layer of Q-network

Fig. 6: Q-network structure for the LL agent at internal step
z

is configured by a fully connected layer. The LL agent’s Q-
network produces Q-values for all possible actions from the
final output layer. These Q-values estimate the future rewards
for each action. During the training phase, the HL agent selects
the action to take using an ϵ-greedy method based on the Q-
values.

The proposed GCN-based HL mixing network, as shown
in Fig. 5, is designed to enhance the QMIX algorithm by
incorporating GCNs for better representation learning of the
global state, which is also modeled as the ASG. It utilizes
a hypernetwork [54] to generate weights and biases for the
mixing network based on the global state. These parameters
are then employed by the mixing network to combine agents’
Q-values and compute the joint action-value (Q-total) using
an average pooling process known as readout.

During the training of HL agents, for each time step t, the
following pieces of information are collected.

• sHt and s̃Ht : the global state and the next global state
shared by all HL agents and configured by using NFt

and EIt;
• oH,i

t and õH,i
t : the HL agent i’s observation and the

agent’s next observation configured by using NFt and
EIt;

• hH,i
t and h̃H,i

t : the HL agent i’s hidden information and
the agent’s next hidden information;

• uH,i
t : the HL agent i’s action;

• rHt : the HL reward.

It is noted that sHt , s̃Ht , oH,i
t and õH,i

t are configured by using
NFt and EIt. The collected information for each time step
and each HL agent is referred to as a HL transition. The
HL agents’ transitions from all time steps are stored in the
replay memory for later use in training both the HL mixing
Q-network and the Q-network of each HL agent. In QMIX, the
replay memory (also known as experience replay buffer) plays
a crucial role in stabilizing and improving the learning process.
The replay memory allows the QMIX algorithm to reuse past
experiences multiple times. This helps improve the sample
efficiency and accelerate the learning process. During training,
the QMIX algorithm samples mini-batches of HL transitions
from the replay memory to update the agents’ Q-networks and
the mixing network.

For a mini-batch sampled from the replay memory and the
index τ representing a HL transition within the mini-batch,
they are trained together in an end-to-end manner to minimize

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 10

Fig. 7: The overall training procedure for the proposed models

the following temporal-difference (TD) error:

LossH =

B∑
τ=1

(
rHτ +

γH ·MixQ
H

(
s̃Hτ ,

{
maxuQ

H
(
õH,i
τ , u, h̃H,j

τ

)}ÑH

j=1

)

−MixQH

(
sHτ ,

{
QH(oH,i

τ , uH,i
τ , hH,i

τ)
}NH

i=1

))2

(13)

where B represents the batch size, and other notations are
defined as follows:

• QH : the Q-value of each HL agent;
• MixQH : the mixing network’s total Q-value;
• Q

H
: the target Q-value of each HL agent;

• MixQ
H

: the mixing network’s target Q-value;
• NH : the number of HL agents τ ;
• ÑH : the number of HL agents at the next time step.

By configuring the loss function in Equation (13), the QMIX
algorithm can effectively train the HL agents’ Q-networks and
the mixing network. Figure 7 illustrates the overall training
process of the model from Section IV, starting from subsection
B to subsection E. The environment’s state, denoted as sH , is
provided as input to the MARL-based HL agents through the
ASG composer, generating observations oH,i. Subsequently,
the HL agents employ their Q-networks to select Q-values
and actions, denoted as uH . The selected actions uH from the
HL agents, along with state sL, are then input into the LL Q-
networks, determining Q-values and uL. Following this, both
the HL and LL agents update their respective replay buffers.
In the case of the HL agents, they undergo additional mixing
network operations for cooperation before updating.

The procedure depicted in Figure 7 involves training the HL
agent Q-network and mixing network, which allows them to
learn a decentralized decision policy. This policy involves de-
termining whether to embed or postpone the VNR associated
with each HL agent. By repeating this procedure, the agents

can work together to learn and improve their decision-making
abilities in a collaborative manner.

E. Low-level Q-network Model and Training

The proposed LL agent Q-network utilizes a similar archi-
tecture to the Q-network used by the HL agent. Specifically,
the LL agent Q-network is composed of GCNs and GRUs,
as shown in Figure 6. GRU uses the hidden state hL

z to
receive additional input to recognize information about the
substrate node previously selected by the LL agent. Moreover,
the LL agent Q-network operates in a similar manner to the
HL agent Q-network. However, action masking is employed
by the LL agent to filter out substrate nodes that have already
been embedded with virtual nodes, as well as those that do
not have sufficient remaining CPU and memory to support
the virtual node at the internal step. By using action masking
in this way, the LL agent can focus on selecting only those
substrate nodes that are viable candidates for mapping virtual
nodes, which can ultimately lead to more efficient and effective
resource allocation.

During the training of LL agents, for each internal step z,
the following pieces of information are collected.

• sLz : the LL agent’s internal state;
• s̃Lz : the LL agent’s next internal state;
• hL

z : the LL agent’s hidden information;
• h̃L

z : the LL agent’s next hidden information;
• uL

z : the LL agent action;
• rLz : the LL reward.

It is noted that sLz and s̃Lz are configured by using AMz
t as

well as NF z
t and EIzt . As described in Section IV-C3, it is

important to note that the LL reward rLz is calculated based
on both the node embedding and the link embedding. The
link embedding process involves finding a suitable substrate
path by using the k-shortest path algorithm [6]. It helps
ensure that the virtual links are mapped to substrate paths that
can support their bandwidth requirements, and also helps to
minimize bandwidth consumption by the link embedding. By

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 11

incorporating both node and link embedding into the reward
calculation, the LL agent can make more informed decisions
for VNE.

The collected information for each time step is referred to
as a LL transition. The LL transitions from all internal steps
are stored in the replay memory for later use in training the
Q-network of the LL agent. This is accomplished through the
DQN training method, which involves updating the Q-network
by minimizing the TD-error between the predicted Q-values
and the target Q-values. The target Q-network is updated
periodically (less frequently than the Q-network) by copying
the parameters from the Q-network. This helps stabilize the
target Q-value estimates.

For a mini-batch sampled from the replay memory and the
index τ representing a transition within the mini-batch, the
Q-network is trained to minimize the following TD error:

LossL =

B∑
τ=1

(
rLτ +γL·maxuQ

L
(s̃Lτ , u, h̃

L
τ)−QL(sLτ , u

L
τ , h

L
τ)

)2

(14)
where B represents the batch size, QL is the Q-value of the
LL agent, and Q

L
is the target Q-value of the LL agent. The

procedure depicted in Figure 7 also involves training the LL
agent Q-network. By repeating this procedure, the LL agent
can learn and improve its decision-making ability to select the
best possible substrate nodes for the virtual nodes.

F. HCMARL-VNE procedure with Trained Models

After training all the network models of the HL and LL
agents, they can be used for VNE using Algorithm 1 called
HCMARL-VNE. For each time step, the HL agents to select
the proper VNRs for embedding based on their learned deci-
sion policy (lines 7∼12). Once the VNR selection is complete,
the LL agent performs the node and link embedding procedure
(lines 13∼40). If a suitable substrate node is not identified for a
virtual node through the action mask, the corresponding VNR
embedding is deferred to the next time step (lines 20∼22).
Only when suitable substrate nodes are successfully identified
for all virtual nodes in a VNR (lines 24∼28), the LL agent
initiates the link embedding process to find a suitable substrate
path for each virtual link of the VNR (lines 30∼33). This
process involves using a k-shortest path algorithm to ensure
that the virtual links are mapped to the most suitable substrate
paths possible. If a suitable substrate path is not found for
a particular virtual link, the corresponding VNR embedding
is also postponed until the next time step (lines 35∼36). If
the node and link embedding for a VNR are successfully
performed, the embedding information is stored to the final
embedding information at the current time step. After the node
and link embeddings have been carried out for all VNRs, the
actual embeddings are performed using the final embedding
information (line 41). On the other hand, the VNRs that are
classified as postponed ones are placed into the queue of
waiting VNRs for the next time step (line 42).

In Algorithm 1, the time complexity of the k-shortest path
algorithm is O(ms + ns log ns + k) [37], where ms, ns and
mv refer to the number of substrate nodes, substrate links

Algorithm 1: The proposed overall procedure of
HCMARL-VNE at a time step t

1 ΦV
t ← the waiting VNRs

2 NFt, EIt, AMt ← the current ASG
3 uH

t ← ∅ /* HL agent’s action */

4 ΘN
t ← ∅ /* final node embeddings */

5 ΘL
t ← ∅ /* final link embeddings */

6 Γt ← ∅ /* VNRs decided to be postponed */

7 foreach Vi ∈ ΦV
t do

8 Update NFt, EIt, AMt

9 Gather sH,i
t , oH,i

t , and hH,i

10 uH,i
t ← maxuQ

H(oH,i
t , u, hH,i

t)

11 uH
t ← uH

t ∪ {u
H,i
t }

12 Save hH,i for next time step

13 foreach uH,i
t ∈ uH

t do
14 Vi ← the corresponding VNR
15 z ← 0 /* internal step */

16 if uH,i
t is ‘Embedding’ then

17 ΘNi
t ← ∅ and ΘLi

t ← ∅
18 for n ∈ NVi do
19 Update NF z

t , EIzt , AMz
t

20 if no available substrate node in AMz
t then

21 Γt ← Γt ∪ {Vi}
22 break
23 else
24 Gather the updated sLz and hL

z

25 uL
z ← maxuQ

L(sLz , u, h
L
z)

26 ΘNi
t ← ΘNi

t ∪ {(n 7→ uL
z)}

27 Save hL
z for next internal step

28 z ← z + 1

29 if all nodes ∈ NVi are embedded then
30 for e ∈ EVi do
31 Find the substrate path p using the

k-shortest paths while increasing k
32 if p is found then
33 ΘLi

t ← ΘLi
t ∪ {(e 7→ p)}

34 else
35 Γt ← Γt ∪ {Vi}
36 break

37 if all links ∈ EVi are embedded then
38 ΘN

t ← ΘN
t ∪Θ

Ni
t and ΘL

t ← ΘL
t ∪Θ

Li
t

39 else
40 Γt ← Γt ∪ {Vi}

41 Perform the embeddings ΘN
t and ΘL

t to the substrate
networks

42 ΦV
t+1 ← ΦV

t+1 ∪ Γt for the procedure at the next time
step t+ 1

and virtual links, respectively. Therefore, the overall time
complexity of the proposed HCMARL-VNE is denoted as
O(mv(n+ms + ns log ns + k)).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 12

TABLE II: Parameter settings of three simulated networks

Didactic
network I

Didactic
network II

ISP network

NS 3 4 100
ES 2 5 500

c(ns)

10, 10, and 10
units for each of
three substrate
nodes

13, 16, 11, and 15
units for each of
four substrate
nodes

50∼100 units
for all substrate
nodes (Uniform
distribution)

c(es)

10 and 10
units for each of
two substrate
edges

8, 10, 6, 10, and 13
units for each of
five substrate
edges

50∼100 units
for all substrate
edges (Uniform
distribution)

σ(ns) 1 1 1
σ(es) 1 1 1

NV
VNR #1: 3 nodes
VNR #2: 3 nodes
VNR #3: 3 nodes

VNR #1: 3 nodes
VNR #2: 3 nodes
VNR #3: 3 nodes
VNR #4: 3 nodes
VNR #5: 3 nodes

5∼10 nodes
for each VNRs
(Uniform
distribution)

EV
VNR #1: 2 edges
VNR #2: 2 edges
VNR #3: 2 edges

VNR #1: 2 edges
VNR #2: 3 edges
VNR #3: 2 edges
VNR #4: 3 edges
VNR #5: 2 edges

0.5
(Link
connection
probability
for each pair
of nodes)

d(nv)
VNR #1: [6, 6, 6]
VNR #2: [1, 1, 1]
VNR #3: [4, 4, 4]

VNR #1: [3, 4, 7]
VNR #2: [3, 5, 2]
VNR #3: [3, 4, 1]
VNR #4: [3, 5, 2]
VNR #5: [3, 4, 7]

10∼30 units
(Uniform
distribution)

d(ev)
VNR #1: [1, 1]
VNR #2: [1, 1]
VNR #3: [1, 1]

VNR #1: [1, 5]
VNR #2: [3, 5, 1]
VNR #3: [1, 3]
VNR #4: [3, 5, 1]
VNR #5: [1, 5]

10∼30 units
(Uniform
distribution)

dt

1, 2, and 3
time epochs for
each of 3 VNRs

1, 2, 3, 4, and 5
time epochs for
each of 5 VNRs

λ = 1/20 per
time unit
(Poisson
distribution,
about 2800
VNRs)

dd

5, 5, and 5
time units for
each of 3 VNRs

5, 5, 5, 5, and 5
time units for
each of 5 VNRs

200 time units
for all VNRs

ds

5, 5, and 5
time units for
each of 3 VNRs

10, 9, 8, 7, and 6
time units for
each of 5 VNRs

λ = 500
time units
(Exponential
distribution)

TABLE III: The learning parameter setting

Parameters Values
GRU hidden dimension 64
Output dense layer dimension 32
QMIX hidden dimension 32
Hypernetwork hidden dimension 64
Replay Buffer Capacity 5000
Target update training step cycle 100
Gradient clipping 10
Discount factor (γ) 0.99
Learning rate 0.0005
Batch size (B) 128
Epsilon (ϵ) 1 (initial), 0.05 (final)
The number of the train steps 1

V. PERFORMANCE EVALUATION

This section describes the performance evaluation of the
proposed algorithm. The simulation environment is set up
using an i9-9900K CPU with 64GB RAM and an RTX
3090 GPU with a Linux Ubuntu 20.04 LTS. The proposed

algorithm is implemented with Python 3.8 and PyTorch 1.9.0
where the NetworkX 2.5.1 library is utilized to configure the
network environments. In addition, Torch-geometric 1.7.2 is
used to construct the GCN model. The parameters of three
simulated network environments are described in detail in
Tables II. The parameters of the HCMARL-VNE algorithm
are also described in detail in Tables III. The parameters of the
HCMARL-VNE algorithm are selected based on our experi-
ments to achieve the best results and appropriate experimental
runtime.

A. Simulation Environment

1) Didactic network I: Didactic network I refers to a sim-
plistic and easy-to-understand environment used for represent-
ing our algorithm’s superiority. The experiment demonstrates
that a better episode reward can be achieved by postponing
the second VNR. This means that delaying the embedding of
the second VNR allows for more efficient resource allocation.

As described in Table II, three VNRs arrive sequentially at
time epoch 1, 2, and 3, where their CPU resource demands
are [6, 6, 6], [1, 1, 1], and [3, 3, 3] for all three virtual
nodes. In the substrate network, there are a total of three
substrate nodes, each with a CPU capacity of 10. Given these
constraints, it becomes infeasible to embed the virtual nodes
of all three VNRs into the substrate nodes. In the specified
didactic network, the substrate network’s capacity is limited
to embedding a maximum of two VNRs. The length of an
episode is equivalent to 5 time steps. Embedding the first
and second VNRs consumes seven CPU units, and thus it
is impossible to accommodate the third VNR. Consequently,
this approach does not yield optimal long-term revenue. To
achieve better long-term revenue, it is better to embed the
first and third VNRs while postponing the second VNR.

2) Didactic network II: In the didactic network II, the
substrate network’s scale is expanded and the number of
incoming VNRs has increased to five. In the substrate network,
the substrate nodes and links have diverse CPU capacities
and bandwidth resources. Additionally, the five VNRs possess
varying CPU and bandwidth demands for their three virtual
nodes and two or three virtual links. They arrive sequentially
to the waiting queue at time epoch 1, 2, 3, 4, and 5. For the
VNRs, the maximum delay times on the waiting queue are
consistently five time units, but their service duration times
after successful embedding differ, with values of 10, 9, 8, 7,
and 6, respectively. The length of an episode is equivalent
to 10 time steps. The combination of heterogeneous substrate
resource capacities and diverse VNR demands add complexity
to the VNE problem. In addition, it is crucial to carefully
consider the maximum delay time and the service time when
making decisions related to the problem. All these factors
underscore the necessity of developing an effective VNE
algorithm to optimize embedding performance and efficiently
manage network resources.

3) ISP network: In alignment with a specification for
medium-sized ISPs, we have configured the substrate network
to comprise 100 nodes and 500 links. The CPU resources
allocated to the substrate nodes are uniformly distributed

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 13

TABLE IV: Existing VNE algorithms for performance com-
parison

VNE algo-
rithms

Description

Heuristic
baseline [6]

To begin the embedding process, the VNR with the high-
est revenue among those waiting in the queue is greedily
selected. Virtual nodes are then allocated resources on the
substrate nodes based on the available resources, with
priority with more remaining resources. The k-shortest
path algorithm is employed for link embedding.

Topology-
Aware [7]

Topology-aware node ranking evaluates node significance
within a network by considering resource and topological
attributes. Utilizing a Markov random walk model, it
calculates node ranks based on CPU, bandwidth, and
neighbor resources, along with their inter-connectivity.

A3C+GCN
[34]

GCN is used to automatically extract spatial features in
a substrate network. A3C is also used to ensure efficient
sampling of the training experiences and optimization of
the learning agent.

Pointer net-
works [29]

Pointer network and Dijkstra algorithm are used to de-
termine embedding policies for virtual nodes and links,
respectively. Additionally, the attention mechanism is
incorporated to emphasize the substrate nodes that are
more probable to be chosen.

HRL-VNE
[37]

This considers both the long-term and short-term effects
of VNR embedding. The process involves a HL agent
selecting a feasible VNR in the waiting queue with the
highest long-term revenue, followed by a low-level agent
embedding the VNR on the substrate node.

within the range of 50 to 100 units. Similarly, the bandwidth
resources assigned to the substrate links are also uniformly
distributed within the range of 50 to 100 units. The arrival
rate of VNRs aligns with a Poisson distribution, with an
average occurrence of one VNR every 20 time units. The delay
expiration time at the waiting queue is set to 200 time units,
while the serving duration follows an exponential distribution
with a mean of 500 time units. The number of virtual nodes
for the VNR is uniformly distributed within the range of 5 to
15 nodes. The probability of a connection between two nodes
is 0.5. The CPU and bandwidth demands for virtual nodes and
links are uniformly distributed between 10 and 30 units. The
overall time span extends to a duration of 56,000 time steps,
indicating that the length of an episode is equivalent to 56,000
time steps.

B. Performance of Proposed algorithm

The proposed HCMARL-VNE algorithm is compared with
four existing VNE algorithms, namely 1) the heuristic baseline
(called Baseline) [6], 2) RL algorithm using A3C and GCN
(called A3C+GCN) [34], 3) the attention mechanism using
pointer networks (called PN) [29], and 4) HRL-based algo-
rithm using DQN (called HRL-VNE) [37]. Table IV describes
the four VNE algorithms.

Fig. 8 represents the results of a comparison between
the proposed algorithm and existing VNE algorithms in the
didactic network I. The proposed HCMARL-VNE algorithm
demonstrates lower revenue, cost, and acceptance ratio than
other VNE algorithms until the time step 2. This result can be
attributed to a HL agent’s choice of ‘Postponing’ action for
the second VNR. However, by embedding the third VNR in
the time step 3, the proposed algorithm achieved the highest
revenue (34 revenue) compared with the one (25 revenue) of

Fig. 8: Effectiveness of the proposed algorithm in the didactic
network I

Fig. 9: Effectiveness of the proposed algorithm in the didactic
network II

the other VNE algorithms. Although the cost increases due to
the embedding of the third VNR, the the R/C ratio and the
acceptance ratio remain unchanged. The proposed HCMARL-
VNE algorithm is expected to achieve similar performance to
HRL-VNE if all VNRs are added to the queue at time step
t = 1. However, in the cases where VNRs are accumulated
step by step, such as in the didactic network I, HRL-VNE
would embed VNR #2 as it lacks the ‘Postponing’ action. In
contrast, the proposed HCMARL-VNE would not embed, but
choose to postpone VNR #2, because it is trained to maximize
the overall long-term revenue.

The experimental results in the didactic network II are
shown in Fig. 9. In this particular network, the embedded
VNRs for each respective algorithm are as follows:

• HCMARL-VNE: VNR #1, VNR #2, VNR #3, VNR #5;
• HRL-VNE: VNR #1, VNR #2, VNR #3, VNR #4;
• A3C+GCN: VNR #1, VNR #2, VNR #3, VNR #4;
• PN: VNR #1, VNR #2, VNR #3;

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 14

(a) Long-term average revenue results (b) Long-term average cost results

(c) Long-term average R/C ratio results (d) Long-term average acceptance ratio results

Fig. 10: Effectiveness of the proposed algorithm in the ISP network

• Baseline: VNR #1, VNR #2, VNR #3;
Therefore, the performance of HCMARL-VNE, HRL-VNE,
and A3C+GCN surpasses that of both PN and Baseline in
terms of generated revenue. Moreover, the highest revenue
is achieved by the proposed HCMARL-VNE (76 revenue) in
comparison to HRL-VNE (70 revenue) and A3C+GCN (70
revenue). This outcome can be attributed to HCMARL-VNE’s
strategic decision to postpone the low-revenue VNR (the 4th
VNR) while embedding the high-revenue VNR (the 5th VNR).
Also, with respect to the cost, HCMARL-VNE (76 cost) is
more efficient than HRL-VNE (76 cost) and A3C+GCN (78
cost) because it postpones the high-cost VNR (the 4th VNR)
while embedding the low-cost VNR (the 5th VNR). As a
result, it can be confirmed that HCMARL-VNE has the best
R/C ratio. Hence, the proposed HCMARL-VNE demonstrates
the optimal results in terms of most performance metrics.

In contrast to the results presented in Fig. 8 and Fig. 9, Fig.
10 presents the long-term outcomes of a proposed algorithm
and provides a comparison with existing VNE algorithms in
the ISP network. Fig. 10a and Fig. 10b present the long-term
average revenue and cost obtained up to 56,000 time steps. The
HCMARL-VNE algorithm, as proposed, outperforms all other
compared VNE algorithms in terms of both revenue generation
and cost efficiency. Specifically, the algorithm achieves the
highest revenue among all compared algorithms, while also
recording the lowest cost. In contrast, the Baseline algorithm
performs the worst in terms of revenue generation, while
also having the highest cost among all compared algorithms.

The PN and A3C+GCN algorithms exhibit similar revenue
performance. However, A3C+GCN demonstrates superior cost
performance compared to PN. This suggests that A3C+GCN
may be a more cost-efficient solution than PN, while still
achieving comparable revenue outcomes. To summarize once
again, the proposed HCMARL-VNE algorithm efficiently
manages the allocation of physical resources to VNRs while
embedding virtual nodes using potentially shorter paths. These
results obtained can be also validated at Fig. 10c, which
provides a long-term perspective of the R/C ratio for the four
VNE algorithms. The efficient use of CPU and bandwidth
resources makes the proposed HCMARL-VNE algorithm the
best choice in terms of R/C ratio.

In Fig. 10d, we also compare the long-term acceptance ratio
of the proposed algorithm with existing VNE algorithms. For
all the algorithms under consideration, the initial acceptance
ratio is initially high, as the substrate network has sufficient
resources available to embed a large number of VNRs. How-
ever, as time goes by, it often happens that VNRs waiting in
the queue cannot be embedded due to insufficient resources,
so the acceptance ratio gradually decreases, and after some
time, it converges to a certain value based on the performance
of each algorithm. As also shown in the figure, the proposed
HCMARL-VNE algorithm exhibits the best performance in
terms of the acceptance ratio. Because it allocates the CPU
and bandwidth resources efficiently, it can embed more VNRs
than others VNE algorithms. We assert that the reason for this
outcome is attributed to the effective learning of the HL agent,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 15

(a) Long-term average revenue results (b) Long-term average cost results

(c) Long-term average R/C ratio results (d) Long-term average acceptance ratio results

Fig. 11: The results of ablation studys of without-HL, without-mixing network, and HCMARL-VNE

enabling it to strategically perform the ‘Postponing’ action
for a waiting VNR. Furthermore, the cooperation between
multiple HL agents in selecting VNRs to be embedded also
contributes to achieving optimal results.

C. Ablation study

In this section, we show how effective the HRL and MARL
used in HCMARL-VNE are in improving the performance
of the VNE algorithm in an explicit manner. We implement
two comparative versions of HCMARL-VNE. The first one
is ‘without-HL’, which just uses the LL single agent. This
algorithm treats all VNRs equally and allows agents to process
VNRs with the highest revenue first, ignoring the long-term
impact of each VNR embedding. The second one is a ‘without-
mixing network’, which still uses the HL agents, but does not
utilize the mixing network designed for cooperation in the
training of the HL agents. This removes the part where each
agent comprehensively evaluates the actions selected by others
through a mixing network for cooperation during training.

The results are shown in Figure 11, which clearly demon-
strates that the proposed scheme outperforms the two com-
parative versions of it in terms of all performance metrics.
Furthermore, it indicates that the performance is significantly
lower when using only the LL single agent. Additionally, it
shows the beneficial impact of having multiple HL agents
on overall performance, even in the absence of the mixing
network.

VI. CONCLUSION

The study proposes a new approach called HCMARL-VNE
to efficiently solve the VNE problem through hierarchical co-
operative MARL. This approach is novel and aims to improve
upon existing methods for addressing the VNE problem. It
divides the VNR embedding task into two levels of agents; 1)
high-level agent and 2) low-level agent. The high-level agent’s
role is to choose the most feasible VNR from the waiting
queue with the highest long-term revenue potential. The low-
level agent’s responsibility is to embed the selected VNR onto
the substrate network while taking into account the embedding
cost. This hierarchical approach aims to improve the effi-
ciency and effectiveness of VNR embedding. The simulation
results demonstrate that HCMARL-VNE outperforms existing
VNE algorithms in terms of long-term revenue, R/C ratio,
acceptance ratio, and reduced long-term cost. These results
suggest that HCMARL-VNE has the potential to provide
significant improvements in VNR embedding efficiency and
cost-effectiveness. Therefore, the proposed HCMARL-VNE
has the potential to efficiently allocate network resources for
various VNRs from service providers (SPs). This could be a
significant contribution to network slicing and network virtual-
ization, especially in the context of the expanding 5G network
and IoT market. As a future research direction, HCMARL-
VNE could be extended by incorporating an explicit RL-based
optimal path algorithm to further enhance the performance
of link embedding. Additionally, we will further enhance the
performance of the algorithm and address the issue of long
learning time.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 16

ACKNOWLEDGMENTS

This research was supported by two Basic Science Research
Programs through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (No. NRF-
2023R1A2C1003143 and NRF-2018R1A6A1A03025526).

REFERENCES

[1] J. A. Stankovic, “Research directions for the internet of things,” IEEE
internet of things journal, vol. 1, no. 1, pp. 3–9, 2014.

[2] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour, and
Y. Wang, “A survey of network virtualization techniques for internet of
things using SDN and NFV,” ACM Computing Surveys (CSUR), vol. 53,
no. 2, pp. 1–40, 2020.

[3] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-oriented
network virtualization toward convergence of networking and cloud
computing,” IEEE Transactions on Network and Service Management,
vol. 9, no. 4, pp. 373–392, 2012.

[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[5] X. Li, C. Guo, J. Xu, L. Gupta, and R. Jain, “Towards efficiently
provisioning 5g core network slice based on resource and topology
attributes,” Applied Sciences, vol. 9, no. 20, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/20/4361

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[7] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 2, pp.
38–47, 2011.

[8] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on the
degree and clustering coefficient information,” IEEE Access, vol. 4, pp.
8572–8580, 2016.

[9] M. Feng, L. Zhang, X. Zhu, J. Wang, Q. Qi, and J. Liao, “Topology-
aware virtual network embedding through the degree,” in National Doc-
toral Academic Forum on Information and Communications Technology
2013. IET, 2013.

[10] Z. Wang, Y. Han, T. Lin, H. Tang, and S. Ci, “Virtual network
embedding by exploiting topological information,” in 2012 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2012, pp. 2603–
2608.

[11] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in IEEE IN-
FOCOM 2014-IEEE Conference on Computer Communications. IEEE,
2014, pp. 1–9.

[12] H. Cao, Y. Zhu, L. Yang, and G. Zheng, “A efficient mapping algorithm
with novel node-ranking approach for embedding virtual networks,”
IEEE Access, vol. 5, pp. 22 054–22 066, 2017.

[13] S. Haeri and L. Trajković, “Virtual network embedding via monte carlo
tree search,” IEEE transactions on cybernetics, vol. 48, no. 2, pp. 510–
521, 2017.

[14] I. Ullah, H.-K. Lim, and Y.-H. Han, “Ego network-based virtual network
embedding scheme for revenue maximization,” in 2021 International
Conference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2021, pp. 155–160.

[15] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on networking, vol. 20, no. 1, pp. 206–219,
2011.

[16] L. Wang, H. Qu, J. Zhao, and Y. Guo, “Virtual network embedding with
discrete particle swarm optimisation,” Electronics Letters, vol. 50, no. 4,
pp. 285–286, 2014.

[17] K. T. Nguyen and C. Huang, “Distributed parallel genetic algorithm for
online virtual network embedding,” International Journal of Communi-
cation Systems, vol. 34, no. 4, p. e4691, 2021.

[18] P. Zhang, Y. Hong, X. Pang, and C. Jiang, “VNE-HPSO: Virtual network
embedding algorithm based on hybrid particle swarm optimization,”
IEEE Access, vol. 8, pp. 213 389–213 400, 2020.

[19] L. Boyang, W. Muqing, and Z. Haosen, “Virtual network embedding
based on hybrid adaptive genetic algorithm,” in 2019 IEEE 5th Interna-
tional Conference on Computer and Communications (ICCC). IEEE,
2019, pp. 1197–1202.

[20] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang,
“Distributed virtual network embedding system with historical archives
and set-based particle swarm optimization,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 51, no. 2, pp. 927–942,
2019.

[21] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[23] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing,
vol. 284, pp. 1–9, 2018.

[24] M. He, L. Zhuang, S. Tian, G. Wang, and K. Zhang, “Multi-objective
virtual network embedding algorithm based on Q-learning and curiosity-
driven,” EURASIP Journal on Wireless Communications and Network-
ing, vol. 2018, no. 1, pp. 1–12, 2018.

[25] S. Wang, J. Bi, J. Wu, A. V. Vasilakos, and Q. Fan, “VNE-TD: A virtual
network embedding algorithm based on temporal-difference learning,”
Computer Networks, vol. 161, pp. 251–263, 2019.

[26] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “Evolutionary actor-
multi-critic model for VNF-FG embedding,” in 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC). IEEE,
2020, pp. 1–6.

[27] Y. Yuan, Z. Tian, C. Wang, F. Zheng, and Y. Lv, “A Q-learning-
based approach for virtual network embedding in data center,” Neural
Computing and Applications, vol. 32, no. 7, pp. 1995–2004, 2020.

[28] H. Afifi and H. Karl, “Reinforcement learning for virtual network
embedding in wireless sensor networks,” in 2020 16th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). IEEE, 2020, pp. 123–128.

[29] C. Wang, F. Zheng, G. Zheng, S. Peng, Z. Tian, Y. Guo, G. Li, and
Y. Yuan, “Modeling on virtual network embedding using reinforcement
learning,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 23, p. e6020, 2020.

[30] D. Andreoletti, T. Velichkova, G. Verticale, M. Tornatore, and S. Gior-
dano, “A privacy-preserving reinforcement learning algorithm for multi-
domain virtual network embedding,” IEEE Transactions on Network and
Service Management, vol. 17, no. 4, pp. 2291–2304, 2020.

[31] S. Zhang, C. Wang, J. Zhang, Y. Duan, X. You, and P. Zhang, “Network
resource allocation strategy based on deep reinforcement learning,” IEEE
Open Journal of the Computer Society, vol. 1, pp. 86–94, 2020.

[32] M. Elkael, M. A. Aba, A. Araldo, H. Castel-Taleb, and B. Jouaber,
“Monkey business: Reinforcement learning meets neighborhood search
for virtual network embedding,” Computer Networks, vol. 216, p.
109204, 2022.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[34] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph convo-
lutional networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1040–1057, 2020.

[35] A. Rkhami, T. A. Q. Pham, Y. Hadjadj-Aoul, A. Outtagarts, and
G. Rubino, “On the use of graph neural networks for virtual network
embedding,” in 2020 International Symposium on Networks, Computers
and Communications (ISNCC). IEEE, 2020, pp. 1–6.

[36] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu, “Dynamic
virtual network embedding algorithm based on graph convolution neural
network and reinforcement learning,” IEEE Internet of Things Journal,
vol. 9, no. 12, pp. 9389–9398, 2021.

[37] J. Cheng, Y. Wu, Y. Lin, E. Yuepeng, F. Tang, and J. Ge, “VNE-HRL:
A proactive virtual network embedding algorithm based on hierarchical
reinforcement learning,” IEEE Transactions on Network and Service
Management, vol. 18, no. 4, pp. 4075–4087, 2021.

[38] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slicing
in 5G using multi-agent correlated q-learning,” in 2021 IEEE 32nd
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC). IEEE, 2021, pp. 1179–1184.

[39] M. Sulaiman, A. Moayyedi, M. Ahmadi, M. A. Salahuddin, R. Boutaba,
and A. Saleh, “Coordinated slicing and admission control using multi-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, OCTOBER 2023 17

agent deep reinforcement learning,” IEEE Transactions on Network and
Service Management, pp. 1–1, 2022.

[40] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer Networks, vol. 30, pp. 107–117, 1998.
[Online]. Available: http://www-db.stanford.edu/ backrub/google.html

[41] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via
bootstrapped DQN,” Advances in neural information processing systems,
vol. 29, 2016.

[42] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in
reinforcement learning with deep predictive models,” arXiv preprint
arXiv:1507.00814, 2015.

[43] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” 2015.
[Online]. Available: https://arxiv.org/abs/1506.03134

[44] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.01783

[45] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” Advances in neural information processing
systems, vol. 29, 2016.

[46] Y. Ma, X. Hao, J. HAO, J. Lu, X. Liu, X. Tong, M. Yuan, Z. Li, J. Tang,
and Z. Meng, “A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems,” in
Advances in Neural Information Processing Systems, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021.

[47] A. S. Vezhnevets, S. Osindero, T. Schaul, N. M. O. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” ArXiv, vol. abs/1703.01161, 2017.

[48] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of rein-
forcement learning and control, pp. 321–384, 2021.

[49] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” Applied Intelligence, pp. 1–46, 2022.

[50] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[51] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” Advances
in neural information processing systems, vol. 29, 2016.

[52] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[53] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for deep
multi-agent reinforcement learning,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 7234–7284, 2020.

[54] D. Ha, A. M. Dai, and Q. V. Le, “HyperNetworks,” in International
Conference on Learning Representations, 2017.

[55] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

Hyun-Kyo Lim received the B.S. degree in com-
puter science and engineering and the M.S. degree in
computer science engineering from the Korea Uni-
versity of Technology and Education, in 2015 and
2017, respectively. And he received the Ph.D. degree
from the Department of Interdisciplinary Program
in Creative Engineering, Korea University of Tech-
nology and Education, South Korea. Since 2022, he
currently has been a postdoctoral researcher with the
Future Convergence Engineering, Korea University
of Technology and Education, South Korea. He

studied mobility management during his master course and he especially
researched distributed mobility management in software-defined networking.
He is studying deep learning and reinforcement learning during his doctoral
and postdoctoral studies. He is also exploring ways to apply deep learning
and reinforcement learning to the network and is working on applying deep
learning and reinforcement learning to a variety of applications.

hsan Ullah received the B.S. and M.S. degrees
in computer science from the University of Pe-
shawar, Pakistan, in 2001 and 2004, respectively,
and the Ph.D. degree in computer engineering from
Sungkyunkwan University, Suwon, South Korea, in
2019. From September 2019 to August 2020, he was
a Postdoctoral Research Fellow with the Ubiquitous
Computing Technology Research Institute (UTRI),
Sungkyunkwan University. Since 2020, he has been
a Research Professor with the School of Computer
Science and Engineering, Korea University of Tech-

nology and Education, Cheonan, South Korea. His research interests include
data aggregation, data fusion, virtual network embedding, network slicing
(5G), IoT (Internet of Things), artificial intelligence, Deep Reinforcement
Learning, cloud computing.

Ju-Bong Kim received the B.S. degree, the M.S.
degree and Ph.D. degree in computer engineering
from the Korea University of Technology and Edu-
cation, in 2017, 2019 and 2022, respectively. Since
2022, he currently has been a postdoctoral researcher
with the computer engineering, Korea University
of Technology and Education, South Korea. He
has been continuously conducting research applying
deep reinforcement learning to various applications
such as machine autonomous control, financial port-
folios, smart factory, since 2017. Particularly, during

his doctoral studies, he focused on research aimed at enhancing the exploration
performance of agents in multi-agent reinforcement learning.

Youn-Hee Han (Member, IEEE) received the B.S.
degree in mathematics and the M.S. and Ph.D.
degrees in computer science and engineering from
Korea University, Seoul, South Korea, in 1996, 1998,
and 2002, respectively. From 2002 to 2006, he
was a Senior Researcher with the Next Generation
Network Group, Samsung Advanced Institute of
Technology. Since 2006, he has been a Professor
at the School of Computer Science and Engineer-
ing, Korea University of Technology and Education,
Cheonan, South Korea. He also served as a visiting

professor in the Department of Computer Science, State University of New
York (SUNY) at Albany from Sept. 2013 to Jan. 2015. Since 2002, his
activities have focused on mobility management, media independent handover,
and cross-layer optimization for efficient mobility support. He has published
approximately 270 research articles on the theory and application of mobile
computing and has led 45 patents regarding the information and communica-
tion technology domain. His current research interests include the theory and
application of computer networks, including protocol design and mathematical
analysis, mobile sensor/actuator networks, social network analysis, machine
learning, deep learning, and reinforcement learning. Currently, he is very in-
terested in artificial intelligence technology, especially reinforcement learning,
and he has been in charge of many research projects regarding improving the
performance of reinforcement learning algorithms for various fields, such as
intelligent networking on 5G and 6G, IoT (Internet of Things), economics,
and financial engineering. He has made several contributions to IETF and
IEEE standardization. He actively participated in the IEEE 802.21 working
group, and was also an author of IETF RFC 5181, RFC 5270, and RFC 7864.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3319542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

