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Abstract—Telemedicine for 3D images on mobile devices 
presents promising development opportunities. Being constrained 
by computing power and storage capacity on mobile devices, the 
processing performance of 3D medical images is insufficient for 
more demanding tasks. Using virtual mobile infrastructure 
technology to utilize cloud resources is a common solution. But it 
encounters the challenge of poor performance in data 
transmission, image rendering and image coding.  This paper 
presents a GPU and VPU enabled Open Virtual Mobile 
Infrastructure (OpenVMI) for 3D image rendering to solve the 
challenge. It makes two improvements. First, a bespoke GPU 
driver is developed in the Android Docker, optimizing the 
transmission workflow for data transmission and image 
rendering. Second, a Video Process Unit (VPU) is added to the 
hardware layer to code rendered results in H.264 format, 
replacing CPU coding which consumes a large amount of CPU 
resources. By adopting the OpenVMI, the telemedicine training 
system proposed in this paper presents an easy-to-set up, cheap 
and low latency solution that is particularly helpful for 
telemedicine training in remote and underdeveloped areas. 
Performance experiments suggest that the OpenVMI delivers 
better performance than existing state-of-the-art systems, even in 
mobile devices with weaker hardware capabilities. Concurrency 
experiment suggests that a single host server can support up to 24 
concurrent training sessions, which makes the OpenVMI very 
helpful for telemedicine training that demands high concurrency. 
The OpenVMI-based solution proposed in this paper is not 
restricted to the use of telemedicine training, but also suitable for 
other application areas such as Virtual Reality and Augmented 
Reality in mobile environments. 
 

Index Terms—3D Image, GPU, VPU, Graphic Rendering, 
Mobile Device, Telemedicine, VMI, Virtual Reality. 

I. INTRODUCTION 
EDICAL resources in China are unequally 
distributed and skills of medical professionals in 
remote areas often lag behind their urban peers. 

Medical staff from renowned hospitals often participate in 
exchange programs and go on secondments in less developed 
areas. These solutions are temporary and they require physical 
travelling, which may not be feasible during difficult times such 
as pandemic outbreaks. 

Telemedicine solutions such as remote consultation are 
commonly used to overcome these geographical constraints [1, 
2]. Facilitated by advancements in technologies such as 
artificial intelligence (AI), the fifth generation of wireless 
networks (5G) [3] and the Internet of Things (IoT), medical 
staff can also engage in more advanced implementations such 
as tele-surgery and tele-imaging [2]. Using telemedicine 
training as an example, the scope of training is no longer 
restricted to static data and images. Analysis of data of various 
dimensions, ranging from treatment records to complex time-
varying 3D image results also becomes feasible thanks to 
breakthroughs in information technology [4-8] that offers large 
storage capacity and high-performance computing power 
required by advanced telemedicine solutions [9]. 

Additionally, doctors increasingly rely on the use of 
smartphones and tablets in their work for the flexibility and 
portability of mobile devices [10-13]. As a result, there is also 
a growing demand for telemedicine on mobile devices [5, 6]. 
Despite significant improvements in computing power in recent 
years, the processing performance of complex data on mobile 
devices is still not sufficient for more demanding tasks [12, 14-
16] such as 3D scans of human organs and blood vessels in real 
time. The seamless display of medical 3D images in mobile 
environments therefore becomes a key challenge in the 
development of telemedicine. 

A possible workaround is the use of Virtual Mobile 
Infrastructure (VMI) technology, which refers to a client-server 
framework with a Virtual Mobile Operating System running on 
a cloud-based server [17]. Users can access the virtual system 
remotely from their local mobile devices. The telemedicine 
application will be initiated in the cloud and displayed on 
various mobile devices via wire/wireless transmission. In this 
way, all the computation of the medical 3D images will be 
implemented in the cloud and the mobile device is used for 
display and interactions only. This workaround makes use of 
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the high-performance computing capacity and large storage 
capability of the cloud servers. It provides an easy, low-cost and 
convenient solution for telemedicine systems that work with 3D 
images in mobile environments. 

But existing VMI solutions have three problems impeding 
the system performance. First, there are high transmission 
delays that slow down image rendering. Second, there is a lack 
of commercially developed GPU drivers adapted for mobile 
environments to invoke cloud GPU resources directly. Third, 
the coding capacity of open-source drivers is not sufficient for 
implementing image rendering and data coding at the same 
time. 

This paper proposes the OpenVMI, a VMI-based solution 
specifically designed for the display of interactive 3D images 
in mobile environments. To reduce transmission delays and the 
consumption of CPU resources, the OpenVMI solution makes 
two major improvements upon typical VMI systems. This 
includes developing a bespoke Graphics Processing Units 
(GPU) driver to invoke GPU resources directly for rendering, 
eliminating multiple stages of instruction translation between 
OpenGL ES and OpenGL. Also, a Video Process Unit (VPU) 
is added to the hardware layer to code rendered results in H.264 
format, replacing CPU coding which consumes a large amount 
of CPU resources.  

The contributions of this paper are the followings: 
● An improved VMI solution specifically designed for 

the display of 3D images in mobile environments, the 
OpenVMI, is proposed. The OpenVMI achieves better 
performance than existing VMI solutions by 
integrating the CPU, GPU and VPU.  

● In order to reduce transmission delays, a bespoke GPU 
driver is developed for Android Docker to invoke 
GPU directly. 

● A VPU is added to replace CPU to code rendered 
results. 

● The OpenVMI is used in a real-life   telemedicine 
training application. 

The rest of this paper is organized as follows. Section 2 
reviews the current literature. Section 3 introduces the structure 
and workflow of the OpenVMI. The improvements made in the 
OpenVMI are detailed in Section 4. An implementation of the 
OpenVMI, the Telemedicine Training System, is introduced in 
Section 5, followed by experiments of performance comparison 
and device concurrency in Section 6. Section 7 discusses 
system features, limitations and development prospects. 
Conclusion is made in Section 8. 

II. LITERATURE REVIEW  

A. Telemedicine Applications on Mobile Devices 
Telemedicine application on mobile devices has been 

growing in popularity in recent years [18-25, 40]. They are 
advantageous since the mobile devices act as a portable and 
widely accessible health data collector to assist Point-of-care 
(POC) diagnostics, offering an alternative to laboratory-based 
medical experiments [23]. 

Current POC applications on mobile devices cover a wide 

range of medical specialties. It is particularly useful during the 
Covid-19 pandemic for contact tracing and remote healthcare 
monitoring [1, 2, 26-28]. For example, Vedaei et al. [26] uses 
an IoT health tracking node that notifies users to maintain a safe 
physical distance during the pandemic. 

To obtain more comprehensive health data, one commonly 
adopted method is to wear a tracker on the human body that 
keeps tracking human activities and sending data to the mobile 
application. For example, Nornaim et al. [27] propose an IoT-
based Electrocardiograph (ECG) monitoring system, enabling 
users to monitor their ECG signals and share data with their 
caretaker and physician from the mobile application. Latha et 
al. [20] present the Wireless Body Area Network (WBAN), 
which monitors blood viscosity, blood pressure and blood sugar 
level in real time, enabling doctors to respond to emergencies 
promptly. Angelucci et al. [3] present a continuous home 
telemonitoring system, which features a wearable respiratory 
and activity monitor, an environmental sensor and a pulse 
oximeter. The monitoring system sends tracked data through a 
5G smartphone to a Multi-Edge computing server. Guo [29] 
uses the smartphone to power a medical dongle that analyzes 
blood glucose or uric acid from a test strip. 

Apart from wearing an external tracker, there are also 
attempts to utilize the built-in sensors and hardware in a mobile 
device. This approach often relies on machine learning to assist 
diagnosis. Lauraitis et al. [30] present a smartphone application 
to examine central nervous system motor disorders in patients 
suffering from Huntington’s, Alzheimer’s and Parkinson’s 
diseases. A patient will be asked to touch designated positions 
on the screen and the trajectory data is evaluated by a back-
propagation neural network classifier. Results will be used as a 
support for the patient’s medical evaluation. Qi et al. [31] utilize 
the inertial sensors in a smartphone to monitor human activities. 
The collected data will be subsequently analyzed by AI. 

The camera of a mobile device can be used to acquire 
medical image data. Askarian et al. [24] present a cataract 
detecting approach that uses a smartphone to capture the 
patients’ eye images. Gong et al. [32] use a smartphone to catch 
retinal images for teleophthalmology. Zhang et al. [33] use the 
smartphone to re-capture the scoliosis radiograph images. 

Mobile device can also be used as a voice acquirer. Hoyos-
Barcelo et al. [34] present a smartphone-based cough detector 
that uses a smartphone as a voice catcher to acquire audio 
signal. Cheffena et al. [35] develop an automated fall detection 
system based on audio features. 

Apart from being a data acquirer, mobile devices are used 
as a display device. For example, the MobileHeart application 
supports patients with ischemic heart disease by displaying a 
patient’s prescribed exercise programs and helping to track the 
patient’s medication adherence [36]. Estai et al. [18, 19] 
develop a cloud-based store-and-forward telemedicine platform 
called “Remote-I”, allowing the access of dental images 
remotely on an Android application. Similarly, Liu et al. [37] 
propose a smart dental health-IoT system that supports AI 
analysis of dental images in the cloud. 
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B. Image or Video Processing in Mobile Environments 

Existing mobile telemedicine applications use mobile 
devices simply as a data collector and an information display 
because of their constraints in computing and storage 
capabilities. When more complicated data types such as 
streaming data are acquired via mobile devices, the task of 
further data processing is often delegated to desktop computers 
with more powerful CPUs and GPUs or cloud servers instead. 
For example, Guo et al. [38] attempt to improve 3D face 
reconstruction by utilizing an iPhone X to capture RGB-D 
images. The data processing task is completed on a desktop PC 
with the help of GPU computing. Schwartz et al. [14] hope to 
use deep learning to provide an alternative to existing image 
signal processor (ISP) in mobile devices. The camera image 
processing pipeline they proposed handles tasks such as 
demosaicing, denoising and color correction. However, their 
solution is desktop-based and relies on the TITAN X graphics 
card. In terms of video data, mobile devices may struggle even 
with low-level tasks. Nie et al. [39] aims to improve the quality 
of videos captured by hand-held mobile devices, but the video-
stitching task is not handled on mobile devices. 

There is also a problem of transmitting a large amount of 
data. One of the solutions is to optimize the data selection 
process. For better data quality assessment, Korhonen [41] 
proposes a two-level approach that pre-selects videos based on 
low complexity features in the first level, reducing the amount 
of data processing in the subsequent level. Wu et al. [12] 
attempt to improve the data transmission process by setting up 
a set of criteria for the metadata of smartphones, enabling the 
cloud servers to select photos that are most useful to upload. 

Apart from improving the data selection process, Jang et al. 
[42] adopt the mobile ad hoc cloud technology, which connects 
multiple mobile devices together to create a virtual 
supercomputing node. An individual mobile device can thus 
have access to the high processing power and large storage 
space on the cloud. 

C. VMI Solutions 
VMI technology provides another promising solution to 

overcome problems of limited computing power in mobile 
devices. There are many attempts to improve performance in 
VMI-based solutions. 

Liu et al. [43] present a lightweight VMI platform named 
cMobiDesk which employs Linux Container to build multiple 
Android containers by leveraging a non-invasive method to 
avoid modifying the source code of the mobile OS. 

In order to improve the energy-efficiency ratio of VMI 
system. Anastasopoulos et al. [44] present a stochastic-
programming-based problem formulation that minimizes the 
VMI energy consumption and satisfies QOS specifications. 

For communication problems between identical 
applications on the local device and the remote VMI server after 
the same apps are being installed separately, Wang et al. [45] 

 
1 https://github.com/anbox/anbox 
2 https://github.com/waydroid/waydroid 
3 https://github.com/lag-linaro/robox 

propose a Unified Application Model named FUSION which 
classifies IPC (Inter Process Communication) events into two 
types: the IPC events without accessing local resources and the 
IPC events accessing local resources. 

For problems of large-scale services producing more socket 
system calls and greater network bridge CPU loads in the VMI 
system, Choi et al. [46] propose an improved Linux kernel-
based virtual machine (KVM) hypercall scheme, which reduces 
the host machine’s workload on data exchange, allowing the 
operation of more guest machines.  

In order to improve VMI performance, Su et al. [10] design 
a VMI-based solution named vMobiDesk, which optimizes the 
network transfer mechanisms for the display of virtualized data. 
The solution redirects users’ input events and supports remote 
audio and camera function with low virtualization overhead. 

Existing VMI-based solutions mainly focus on improving 
the transmission performance of the VMI [10, 45, 46]. Studies 
on the rendering and processing of 3D images in mobile 
environments have been scarce mainly because of the 
difficulties in utilizing GPU directly in mobile devices.  First, 
GPU manufacturers have yet to provide commercial drivers for 
mobile environments. Therefore, most image rendering tasks 
are still finished on a server or PC workstation. Second, existing 
open-source drivers are not sufficient for implementing image 
rendering and image coding at the same time.  

Among open-source VMI software, the popular ones 
include anbox 1 , waydroid 2 , and robox 3 .  Anbox meaning 
“Android in a box”, runs an Android under the GNU/Linux by 
using the container technology. The first version of anbox was 
released in April 2017 and the last version in February 2023. 
Anbox is no longer actively developed. The limitation of anbox 
is that, as a desktop application, only one anbox can run under 
a single GNU/Linux system. It works almost like an Android 
emulator, and it does not support the use of the GPU on the host 
computer. 

Waydroid, first released in September 2021, is another 
container-based Android emulator-like desktop VMI software 
under GNU/Linux. Waydroid is superior to anbox in terms of 
system performance and hardware compatibility. Nonetheless, 
Waydroid does not support the Nvidia GPU and a large number 
of the AMD GPUs, such as AMD RX6800.  

Robox, first released in April 2018, is built upon anbox and 
co-developed by Huawei and Linaro 4 , the latter being an 
international organization that develops Arm-based software 
and aims to foster the Arm software ecosystem. Robox 
improves upon anbox by introducing extra features like Arm-
supporting function and multi-instance virtualization function. 
Similar to anbox and waydroid, the use of the host server GPU 
is not supported by robox. Its commercial version, monbox, 
released in February 2020 by Huawei5, supports the use of the 
host GPU, but since it is proprietary, its access and testing are 
unavailable publicly. 

4 https://www.linaro.org/ 
5 https://www.huaweicloud.com/special/free-yunshouji-xsms.html 
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D. VDI Solutions Using GPUs 
In contrast to existing VMI-based solutions that seldomly 

use GPU acceleration, Virtual Desktop Infrastructure (VDI) 
solutions have been relying on cloud-based GPU to handle 
complicated rendering tasks, providing valuable insights into 
the use of GPU acceleration in VMI-based implementations. 
For example, Bentele et al. [47] summarize four approaches of 
virtualizing GPUs for virtual machines and presents a solution 
of GPU-accelerated open source VDI for OpenStack. Wan et al. 
[48] present a VDI framework that invokes GPU-accelerator in 
the graphics hardware abstraction layer. Fomito et al. [49] 
propose an infrastructure-as-code method that treats the GPU 
resource as software and presents a GPU-enabled VDI to 
provide media service in the cloud. In order to provide cheap 
GPU service for Virtual Reality and Augmented Reality, Wu et 
al. [50] present a VDI-based render farm platform that uses the 
VMware Horizon Client to provide 32 core vCPU, 8 GB of 
vGPU and 50 GB of RAM for each virtual desktop. The CMA 
Meteorological Observation Center [51] provides VDI system 
that contains NVIDIA vGPU to meet demand for 3D modeling 
and CUDA computing. 

Empirical studies show that GPU acceleration leads to better 
system performance. Li et al. [52] present a GPU-accelerated 
VDI-based platform for better teaching experience on a virtual 
desktop. In their comparison of three virtualization 
technologies with or without GPU for graphics computing 
acceleration, the cloud service performance improved 
significantly by using GPU accelerator. Empirical results of 
another study conducted by Chang et al. [53] further support 
this finding. Dong et al. [54] compare VDI capabilities on 
graphics processing for video playback tasks with or without 
GPU-virtualization. The result shows that when GPU-
virtualization is enabled, VDI even with the lowest 
specification can deliver videos of excellent quality to end-
users. 

III. THE OPENVMI SYSTEM 
Inspired by the development of VDI, mobile developers are 

also trying to develop applications on the cloud, which has 
prompted the rise of VMI. The key feature of VMI is that 
multiple virtualized mobile operating systems such as Android 
are created in the cloud using virtualization technology. After 
signing in to the cloud-based virtual operating system, a mobile 
client device can perform the normal functions expected in a 
smartphone. The key difference between a virtualized cloud-
based smartphone and a localized system is that the local device 
is used only for display and interaction in VMI-based 
implementation. Applications are stored and run in the cloud. 
Using a VMI-based solution in mobile environments has the 
advantages of high security, high convenience and high 
portability, which makes it increasingly popular in recent years 
[55, 56]. Inspired by this and built upon the current anbox 
system, we developed our own VMI software, called the Open 
Virtual Mobile Infrastructure (the OpenVMI), to solve the 3D 
medical image rendering problem in telemedicine. 

A. The Structure of the OpenVMI 
Until now, existing VMI schemes use KVM [10, 45, 46], 

VirtualBox [10], Xen [10], or Linux Container [43], few use 
Docker. This paper adds Multi-Instance Binder (the service 
process used for different Android processes to communicate 
with each other) and Ashmem (Anonymous Shared Memory, 
which is used for Android system to share memory) to the 
Linux kernel in the cloud operating system to support the 
Android operating system inside the Docker container. 

The structure of the OpenVMI system consists of six layers 
as illustrated in Figure 1. From top to bottom, these are the 
client SDK layer, the Android Docker layer, the K8S cloud 
layer, the DockDroid layer, the Cloud Operating System layer 
and the hardware server layer. The detailed functions of the 
Client SDK layer, the Android Docker layer, the DockDroid 
layer and the Cloud Operating System layer are as follows: 

1) The Client SDK layer 
The OpenVMI can be accessed under Android, the iPhone 

IOS and smart display with HTML5(H5) system. Therefore the 
OpenVMI mainly provides three types of client SDK to connect 
to the server, including the Android SDK, IOS SDK and H5 
SDK as shown in Figure 1. If a user uses an Android 
smartphone to access the OpenVMI, then the client application 
of the OpenVMI of Android SDK will be installed into the 
customer’s Android smartphone. 

2) The Android Docker layer 
The Android Docker layer, shaded in orange in Figure 1, 2, 

3 and 5, consists of multiple Android Dockers. The main 
function of Android Docker is to provide an Android-like 
running environment, so that Android application can run in 
this environment. In addition, Android Docker also provides 
services to process different tasks like rendering, streaming, 
coding and displaying. Each Android Docker runs with four 
modules as illustrated in Figure 2. These are the Android App 
module, the Basic Service module, the OpenGL ES module and 
the Streaming and Coding module. 

The OpenGL ES [57] module implements a subset of Open 
GL [58] specifically pruned for embedded/mobile system. The 
OpenGL ES API is a standard allowing individual and 
organizations to implement and import packages in the Android 
operating system. The OpenVMI system implements it into 
dynamic libGL_**.so DLLs. 

The Streaming and Coding Module, whose domain is 
com.gray.boxstream, is mainly used to capture the rendered 
result, encode it in H.264 format and send the encoded data to 
the VMI client device. 

3) The DockDroid layer 
The DockDroid layer, shaded in green in Figure 1, 2 and 3, 

consists of multiple DockDroid processes that execute in this 
layer. Each DockDroid process matches with one Android 
Docker in the Android Docker layer. This module is responsible 
for receiving OpenGL ES instructions, translating the 
instructions to OpenGL instructions, transmitting data between 
Android Docker and the Cloud Operating System, as well as 
enabling the Android application to invoke hardware resources 
such as GPUs for instruction execution.  

4) The Cloud Operating System layer 
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The Cloud Operating System layer, shaded in blue in Figure 
1, 2 and 3, provides the basic software environment. Typically, 
a GPU driver is installed in this layer to execute various GPU 
computing tasks. 

 

Fig. 1.  The structure of the OpenVMI 

 
Fig. 2.  The module structure of the OpenVMI 

 

B. The Workflow of the OpenVMI 
For the typical OpenVMI system, the workflow of a 

rendering task involves multiple layers and multiple modules. 
Workflow process ①②③④⑤ in Figure 3 shows the process 
of image rendering in the typical OpenVMI-based system. 
When an application requests for 3D image rendering, the 
Android Docker will load the render request in OpenGL ES 
instructions and send the instructions to DockDroid. DockDroid 
will translate the instructions in OpenGL format and send the 
instructions to GPU Driver for execution. 

The rendered results are pixels in RGBA format. They will 
be returned firstly back to DockDroid and subsequently back to 
the OpenGL ES module in Android Docker. The Streaming and 
Coding module then captures the rendered results frame by 
frame at a rate of 60 fps. It encodes the results in H.264 format 
and sends them to the VMI client. This is shown as workflow 
process ⑥-⑩ in Figure 3. 

 
Fig. 3.  The rendering workflow of data transmission in OpenVMI 

system 

IV. IMPROVEMENTS IN THE OPENVMI SYSTEM 
GPU acceleration is often used in VDI-based solutions for 

processing graphical data. However, there are still difficulties 
in using GPU accelerator directly in VMI, constraining the 
display of 3D images in VMI. There are mainly three 
challenges: 
 First, current literature demonstrates that the 

performance especially the transmission performance 
of existing VMI is not good enough for image 
rendering. 

 Second, there is a lack of commercially developed 
GPU drivers adapted for mobile operating system such 
as the Android Operating System. Few GPU 
manufacturers provide such adaptations. As a result, 
unlike VDI-based implementation, applications in 
Android Docker cannot invoke GPU resources 
directly.  

 Third, for AMD GPU with open-source drivers, their 
coding capacity is not sufficient to perform image 
rendering and data coding at the same time. 

To overcome the three challenges in the processing and 
rendering of 3D images in mobile environments, two important 
improvements are elaborated. In order to evaluate the 
effectiveness of each improvement, an experiment for each 
improvement is conducted. 

A. Direct GPU Invocation 
The workflow of the typical OpenVMI system in Figure 3 

shows that the data transmission process involves multiple 
layers and multiple modules, including the DockDroid layer, 
the OpenGL ES module and the Streaming and Coding module 
in the Android Docker layer. Preliminary test data of the 
unimproved VMI design showed a high transmission delay, 
possibly due to the multiple transmission nodes among different 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 
6                                                                              IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 

modules in different layers. Too much data transmission might 
also overburden CPU. 

A possible improvement could be transmitting the rendered 
results directly from DockDroid to the Streaming and Coding 
module in Android Docker, thus reducing transmission nodes 
involving the OpenGL ES module.  

For further investigation, performance experiments of data 
transmission including OpenGL ES (INCLUDED) and 
transmission omitting OpenGL ES (OMITTED) are performed. 
The parameters of interest are frame per second (fps) of the 
rendered results on display in a client device and CPU 
utilization of DockDroid. The upper limit of fps is set at 60 fps. 
Theoretically, the higher the value of fps and the lower the rate 
of CPU utilization, the more desirable a scheme is. The Huawei 
Kunpeng dual-CPU Server is used, which includes 48*2 cores, 
512GB RAM, 480GB SSD, 4000GB SATA, AMD Radeon 
W6800*2 GPU. The 96 CPU cores are serialized from 0 to 95. 
The performance parameters are tracked by Perfdog6, an fps 
performance test and analysis tool. The performance 
experiment is repeated separately for eight times with different 
number of CPU cores assigned to Android Docker and 
DockDroid. 

The results of the experiment are detailed in Table I. The 
number of CPU cores assigned to Android Docker and 
DockDroid is detailed in column 2 and column 3 respectively. 
The serial number of the CPU core used is specified within the 
square bracket. For example, 2[19,20] means that two CPU 
cores, namely the Number 19 core and the Number 20 core are 
assigned to the process. Key observations from Table I are:  
 For the INCLUDED scheme, the maximum, mean and 

minimum fps of the eight experiments are 51 fps, 46.9 
fps and 40 fps.  

 If converted to time taken to process a frame, the 
corresponding time per frame are 19.6 ms, 21.3 ms and 
25 ms for the INCLUDED scheme.  

 For the OMITTED scheme, the maximum, mean and 
minimum fps are 59 fps, 56.5 fps, 50 fps.  

 If converted to time per frame, they correspond to 16.9 
ms, 17.7 ms, 20 ms for the OMITTED scheme. 

The fps of the INCLUDED scheme is consistently lower 
than that of the OMITTED scheme by 8%-23% in the 8 
experiments. If converted to time per frame, data transmission 

with OpenGL ES is slower than without OpenGL ES by 2.5~5 
ms for each frame, which means each frame spends an extra 
2.5~5 ms on transmission through the OpenGL ES module.  

The last two columns in Table I show the CPU utilization of 
Dockdroid, which is used to infer CPU consumption of the 
OpenGL ES module, as the two are inversely related. The 
amount of data processing is the same for both schemes in 
DockDroid. Assuming the workload processed by DockDroid 
as 1 unit of workload, then the amount of total workload the 
CPU is burdened with is (1/CPU utilization of DockDroid). In 
experiment No.1, this corresponds to 1.92 units of workload 
(1/0.52 = 1.92) for the INCLUDED scheme, and 1.54 units of 
workload (1/0.65 = 1.54) for the OMITTED scheme. This gives 
a workload difference of 0.38 units. In other words, the CPU is 
about 25% more loaded in the INCLUDED scheme as more 
data transmission tasks are involved. The INCLUDED scheme 
consistently causes a greater amount of workload, ranging 
between 0.06 to 0.74 more units of workload, over the 
remaining seven experiments. The mean value of the 
INCLUDED scheme’s extra workload is 0.338 units, 
corresponding to about 25% more CPU workload of which is 
consumed by the OpenGL ES module. The experiment suggests 
that eliminating the OpenGL ES module thus reducing the 
number of transmission nodes can significantly reduce latency 
and CPU resource consumption.  

Over the eight experiments, experiment No. 3 gives the 
lowest fps value. This is because in the Huawei Kunpeng 
server, every four CPU cores are grouped as one CPU cluster. 
CPU core number 0-3 are grouped as one cluster and CPU core 
number 4-7 are grouped as another cluster and so on. CPU cores 
from the same cluster share one level 3 cache, whose cache 
access is much quicker than cache in other levels. In experiment 
No.3, three CPU cores, including core number 3, 4 and 5, are 
used by Android Docker. However, the three CPU cores come 
from different clusters. Core number 3 comes from one cluster 
whereas core number 4 and 5 come from another cluster. As a 
result, the three cores do not share the same level 3 cache so 
that fps performance is compromised. Furthermore, CPU core 
number 3 is shared between Android Docker and DockDroid so 
that it is more loaded, further undermining fps performance. 

 

TABLE I.  
COMPARISON OF TWO DIFFERENT DATA TRANSMISSION SCHEMES 

Experiment 
No. 

 

CPU Cores 
[Serial Number] 
used by Android 

Docker 

CPU Cores 
[Serial Number] 

used by 
DockDroid 

Rendered result 
with INCLUDED 

scheme (fps) 

Rendered result 
with OMITTED 

scheme (fps) 

CPU Utilization of 
DockDroid with 

INCLUDED 
scheme 

CPU Utilization of 
DockDroid with 

OMITTED scheme 

1 2[2,3] 1[20] 42 55 52% 65% 
2 2[2,3] 2[19,20] 45 57.6 56% 78.80% 
3 3[3-5] 1[3] 40 50 46% 70% 
4 3[3-5] 1[20] 46 59 53% 68.70% 
5 3[3-5] 2[20,21] 50 55 62.90% 77% 
6 4[4-7] 1[20] 50 58.4 66.80% 73.20% 
7 4[4-7] 2[20,21] 51 58.2 77.50% 81.10% 
8 4[4-7] 1[4] 51 59 66% 74% 

 
6 https://perfdog.wetest.net/ 
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Further improvements could be directly invoking GPU 
resources from Android Docker. This will reduce the number 
of transmission nodes as data no longer passes through the 
DockDroid layer. 

In classical design, render requests are sent to DockDroid 
for instruction translation from OpenGL ES format into 
OpenGL format that are recognizable by the GPU. After a 
rendering task is being finished, rendered results in RGBA 
format are sent by DockDroid to the Streaming and Coding 
module in Android Docker.  

Despite being simple and easy to set up, this compromised 
solution not only results in higher transmission delays but also 
undermines CPU performance, as extra CPU resources are 
consumed during the translation process. 

The instruction translation process is necessary due to an 
absence of commercially developed Android GPU drivers, 
preventing the Android environment from invoking GPU 
resources directly. As such, a bespoke GPU driver is developed 
and placed in Android Docker. The function of the bespoke 
GPU driver is that it can let the GPU recognize the OpenGL ES 
instruction and execute it directly in Android Docker. This 
helps to eliminate the need for the DockDroid module to 
translate the OpenGL ES instruction to OpenGL instruction.  
Instructions no longer need to pass through DockDroid. The 
classical GPU invocation method involving DockDroid is 
denoted as Scheme one where as the improved GPU invocation 
method is denoted as Scheme two in Figure 4. The data 
transmission workflow of the improved OpenVMI scheme is 
detailed in Figure 5. A render request goes through workflow 
process ①②③ , and the returns of rendered results are 
illustrated by workflow process ④⑤⑥. 

 

 
Fig. 4.  Two different GPU invocation methods 

 

B. VPU Coding 
The hardware layer is capable of executing the rendering 

and coding of the rendered results. However, the coding 

capability of the hardware is not utilized because existing open-
source GPU drivers are not powerful enough to handle a coding 
task. Instead, CPUs are often assigned the task of data coding. 
Under this arrangement, rendered results in RGBA format are 
sent from GPU to the Streaming and Coding module in Android 
Docker, which encodes the data into H.264 format. This 
compromised solution overloads CPU significantly. 
Preliminary analysis indicated that more than 90% of the CPU 
capacity is occupied by the stream coding task. 

To replace CPU coding, a Video Process Unit (VPU) is 
added to the hardware layer in the virtual server to code RGBA 
data into H.264 format, freeing up CPU resources for other 
tasks thus improving service performance. This improved 
workflow is shown as workflow process ⑤ in Figure 5. 

 
TABLE II. 

COMPARISON OF CPU CODING AND VPU CODING 
Server type GPU 

type 
Coding 

type 
CPU 

utilization 
GPU 

utilization 
Phytium 2000+ 

(64 core) Tesla T4 CPU 
coding 165% 32% 

Phytium 2000+ 
(64 core) Tesla T4 VPU 

coding 23% 19% 

Kunpeng 920 
(48 core* 2) 

AMD 
WX5100 

CPU 
coding 108% 3.3% 

Kunpeng 920 
(48 core* 2) 

AMD 
WX5100 

VPU 
coding 9% 3.0% 

 

 
Fig. 5.  The improved rendering workflow after direct GPU invocation 

and VPU coding 

In order to compare the system performance between CPU 
coding and VPU coding, an experiment of CPU and GPU 
utilization with respect to different types of coding and different 
server specifications is conducted. Two types of servers are 
used, they are the Phytium server which has 64 cores in one 
CPU and the Huawei Kunpeng dual-CPU server which has 
48*2 cores. The CPU utilization is measured in terms of 
utilization of a single CPU core. In Table II, the CPU utilization 
reaches 165% for the Phytium 2000+ server and 108% for the 
Kunpeng 920 server if the coding task is executed by the CPU, 
meaning that the CPU coding task consumes more than one 
CPU core. In contrast, VPU coding frees up significant CPU 
resources so that its CPU utilization is 7-12 times lower than 
CPU coding. The results of the experiment suggest that 
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adopting VPU coding has reduced CPU consumption and 
improved system performance significantly. 

After the two improvements, the workflow of the improved 
OpenVMI is illustrated as Figure 5. 

V. THE OPENVMI-BASED TELEMEDICINE TRAINING 
SYSTEM 

The OpenVMI system is deployed in a real-life 
implementation, the Telemedicine Training System, which is 
designed to live-stream telemedicine training for analyzing 
medical 3D images on mobile devices. The system supports low 
latency rendering of human bones, blood vessels and organs. It 
also supports interactive functions such as movements, 
rotations and scaling of medical images. 

A. The Topological Structure of the System 
The topological structure of the Telemedicine Training 

System is shown in Figure 6. It consists of an Intranet zone, a 
demilitarized zone (DMZ), a mobile network zone and multiple 
mobile clients. Unlike other telemedicine training applications 
that connect the mobile devices directly to a cloud server [25, 
59], a DMZ is added to the Telemedicine Training System for 
the virtualization of Android devices in the cloud server. The 
training system is a layered structure, rather than a mesh-like 
structure that integrates multiple applications such as the 
system in Attila et al. [60] that integrates the interconnection 
telemedicine systems, hospital information systems, legacy 
health care systems, smart health devices and health-related 
smartphone-apps into a unified service architecture.  

The Intranet zone is where the servers of the training 
application are located. Medical data of different types such as 
clinical records, CT/PET-CT imaging results and MRI results 
is stored here. 

The DMZ is mainly composed of cloud management servers 
and virtual Android servers. The module structure of each 
virtual Android server is as detailed in Figure 1. 

Clients refer to various mobile client devices that have the 
VMI client application installed to access the training 
application by connecting to the Mobile Network zone. They 
can be smartphones, tablets, and smart displays.  Each VMI 
training service can connect to multiple VMI clients 
simultaneously. For example, if three clients are online at the 
same time, one will be the trainer client and the other two will 
be the trainee clients. Demonstrations on the trainer client will 
be displayed on the trainee clients in real time. Communication 
between the VMI Client Application and the DMZ requires 
authentication. 

To ensure security, the Intranet Firewall is located between 
the Intranet zone and the DMZ to protect the servers of the 
Telemedicine Training System. The Internet Firewall is located 
between the DMZ and the Mobile Network zone to protect both 
the DMZ and the Intranet zone. Additionally, the system 
administrator can grant access only to mobile devices with 
registered MAC addresses. 

The system UI can be displayed on multiple clients at the 
same time. For example the UIs on a client smartphone and a 
client smart display are shown in Figure 7. An interface of the 

Telemedicine Training System is shown in Figure 8. 
 

APP Server

APP Server

Intranet 
Firewall

Virtual Android Server

Management 
Server

Internet 
Firewall

WiFi 4G/5G

Smart 
Display

Pad Smart 
Phone

Internet DMZ Intranet

Clients
Mobile Network

 
Fig. 6. Topological structure of the Telemedicine Training System 

 

  
Fig. 7. The Telemedicine Training System UI can be displayed on 

multiple clients at the same time, for example a smartphone and 
a smart display 

 
Fig. 8. An Interface of the OpenVMI-based Telemedicine Training 

System 

B. Achieved functionalities that are hard to achieve in a 
normal smartphone  

By operating in a cloud-based virtual Android and being 
accessed via the VMI client application installed in a physical 
mobile device, the OpenVMI-based Telemedicine Training 
System supports low latency 3D image rendering, which is 
hardly achievable in a local training application. Movements, 
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rotation and scaling of medical images are rendered in real time. 
The key features supported by the Telemedicine Training 
System include: 
 Multiple rendering modes. Multi-slice and multi-plane 

rendering are often required in a medical imaging 
training session for the clear demonstration of human 
structures. The different rendering modes available in 
the Telemedicine Training System helps to deliver 
high-quality training. 

 Customized textures. The Telemedicine Training 
System offers a selection of texture materials for a 
vivid display and a clear distinction between human 
organs. 

 Image transformation. A medical image can be 
transformed flexibly. The instructor is able to perform 
different functions including moving, scaling, rotating 
and resizing a specific selection of an image. 
Annotation in smartphone is also supported. 

VI. EXPERIMENTS 

A. Performance Comparison Experiment 
We compare the OpenVMI qualitatively with anbox, 

waydroid and robox, the other state-of-the-art open-source VMI 
systems mentioned in section II-C, in Table III. Anbox and 
waydroid are desktop applications and each host server can start 
only one instance. In contrast, each host server can start 
multiple cloud-based OpenVMI instances. In addition, the 
OpenVMI system also supports many functions not found in 
anbox and waydroid, such as GPU and VPU usage. As such, the 
performance of the OpenVMI system is not compared 
quantitatively with that of anbox and waydroid. 

Robox, the cloud-based VMI system co-developed by 
Huawei and Linaro, shares similar system structure with the 
OpenVMI. But unlike the OpenVMI, it does not support direct 
GPU invocation. Monbox, its proprietary commercial version, 
supports direct GPU invocation. But monbox is publicly 
inaccessible. As a result, a quantitative comparison is carried 
out only between the OpenVMI and robox. 

The structure of the comparison experiment is shown in Fig. 
9. Robox and the OpenVMI are installed separately on a host 
server of the same hardware and software configuration as 
detailed in Table IV. The host servers are named as the Robox 
Server and the OpenVMI Server. The Telemedicine Training 
Application, which accesses the Telemedicine App server, is 
installed on the Android Docker built in the Robox Server and 
the OpenVMI Server. When the telemedicine client application 
is initiated in the client device, performance of the system is 
tracked by Perfdog. We mainly focus on four performance 
parameters: the fps, the CPU utilization of the host server, RAM 
usage of the host server, and the initiation time of the 
Telemedicine Training System (time required between the 
initiation of the Client application and the display of the default 
UI). The CPU utilization is measured in terms of the CPU used 
by running processes as a percentage of a single CPU core. The 
host server is the Huawei TaiShan200-2280V2 multi-core CPU 
server, which has 96(48*2) CPU cores, so theoretically the 

maximum CPU utilization is 9600%. The experiment is 
repeated for ten times and the means of the parameter, as 
detailed in Table V, are used for comparison. 

 
TABLE III. 

COMPARISON BETWEEN ANBOX, WAYDROID, 
ROBOX AND OPENVMI 

 Anbox Waydroid Robox OpenVMI 
Time of first 

released Apr. 2017 Sep. 2021 Apr. 
2018 Sep. 2020 

Access mode Desktop Desktop Remote Remote 
Hardware 
support Limited Many Many Most 

Multi-instance 
support No No Yes Yes 

Multi-client 
support No No No Yes 

Direct GPU 
support No No No Yes 

Host VPU 
support No No No Yes 

 
TABLE IV. 

SYSTEM CONFIGURATION FOR PERFORMANCE 
COMPARISON 

Environment Configuration 

Server 

HuaWei TaiShan200-2280v2: CPU: Kunpeng 920, 
48Core *2; RAM: 512GB; SSD: 480GB; SATA: 
4000GB; Network: 4*GE; GPU: AMD Radeon 
W6800*2; VPU: Netint T432*2; Ubuntu 20.04 

Virtual 
Android 

CPU: 2 Core; RAM: 8GB; Frash Memory: 32GB; 
Resolution Ratio: 1920 * 1080; Frame Rate: 30 fps; 
Android 7.1.1, ZhongShan Telemedicine System. 

OpenVMI Version2.0 
Robox Version 2.3 

 

 
Fig. 9. The structure of the comparison experiment 

In Table V, the mean fps of the robox-based experiment is 
7.8, which means the robox-based system takes an average of 
128 ms to process and display one frame.  This is much higher 
than that of the OpenVMI-based experiment, which only takes 
32.2 ms to process and display one frame, based on a sample 
mean fps of 31.  In contrast to the OpenVMI’s direct invocation 
of GPU resources in Android Docker, the robox-based system 
does not support direct GPU rendering and VPU coding. Data 
has to be transmitted to the host operating system for rendering. 
The rendered results have to be transmitted back to Android 
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Docker and coded from RGBA to H.264 format before being 
transmitted to the client application. A large amount of CPU 
resources is consumed on data transmission between Android 
Docker and the host operating system, resulting in the robox-
based system’s prolonged frame handling. For the same reason, 
the mean CPU utilization of the robox-based experiment is 
921.8%, which is much higher than the 20% utilization in the 
OpenVMI-based experiment. Since OpenVMI has more 
modules to initiate than robox, more RAM space and time are 
needed for data processing. We therefore expect the OpenVMI-
based experiment to underperform in RAM usage and system 
initiation time. Results of the experiment show that the RAM 
usage of host server is 1.92GB in the robox-based experiment, 
which is 5% smaller than the 2.02GB in the OpenVMI-based 
experiment. Also, the system initiation time is 15.5 seconds for 
the robox-based experiment, almost two times faster than the 
OpenVMI-based experiment. 

 
TABLE V. 

THE RESULTS OF THE PERFORMANCE COMPARISON 
EXPERIMENT 

Performance parameter Robox-
based 

OpenVMI-
based 

Fps 7.8 31.0 
CPU utilization 921.8% 20.0% 

RAM usage (GB) 1.92 2.02 
Initiation time (s) 15.5 27.3 

 
TABLE VI. 

CPU UTILIZATION IN 10 DIFFERENT ROBOX-BASED 
EXPERIMENTS 

Test Number 1 2 3 4 5 
CPU 

Utilization 923% 934% 924% 926% 933% 

Test Number 6 7 8 9 10 
CPU 

Utilization 911% 920% 915% 907% 925% 

 

 
Fig. 10. A snapshot of the host server CPU utilization by using the “top” 

command for the robox-based experiment 

The mean CPU utilization of the host server reaches 921.8% 
in the robox-based experiment. This means that in the 96-core-
host server, the robox-based system consumes an average of 
more than 9 CPU cores to support the initiation of the 
Telemedicine Training Application. Table VI shows the CPU 
utilization of the host server in robox-based experiment for each 

experiment. Figure 10 is a snapshot of the real-time CPU 
utilization of the host server during an experiment of the robox-
based system. 

B. System Performance Experiment 
The Telemedicine Training Application is deployed locally 

and in cloud for a comparison of application performance. In 
cloud deployment, illustrated as test scheme 2 in Figure 11, the 
OpenVMI Client Application is installed in the client handset 
to start the OpenVMI-based Telemedicine Training System. 
Performance parameters including fps, CPU utilization of the 
client device, RAM usage of the client device and the required 
initiation time are tracked by Perfdog. In local deployment, 
illustrated as test scheme 1 in Figure 11, the Telemedicine 
Training Application is installed locally in the client handset. 
The same parameters are tracked. 

The Telemedicine Training Application is initiated for ten 
times for each deployment modality and the means of the 
parameters of interest are used for comparing application 
performance. The experiment is repeated in two different client 
devices. 

 

 
Fig. 11. The structure of the performance experiment 

 
TABLE VII. 

CONFIGURATION OF THE MOBILE PHONE 

Huawei mate30 
smart phone 

CPU: HuaWei Kirin 990 8 cores, 2.86GHz, 7nm; 
GPU: 16 cores Mali-G76; 
RAM: 8 GB 
Flash Memory: 256GB; 

Smartisan smart 
phone 

CPU: Qualcomm Snapdragon 625, 8 cores, 
2.0GHz, 14nm; 
GPU: Adreno 506; 
RAM: 4GB; 
Flash Memory: 64GB. 

Android Docker 
CPU: 2 Core; RAM: 8GB; Frash Memory: 32GB;  
Resolution Ratio: 1920 * 1080; Frame Rate: 30 
fps; 

 
A Huawei smartphone and a Smartisan smartphone are used 

as the client device. The Smartisan smartphone has weaker 
hardware configuration so that we can compare application 
performance across client devices of different capabilities. A 
dual-core CPU, 8GB of RAM and 32GB of Flash Memory are 
used in Android Docker, as early stage investigation suggested 
that such configuration is capable to run the Telemedicine 
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Training Application smoothly while minimizing resource 
usage. The configuration of the devices involved in the 
experiment is detailed in Table VII. 

The results of the experiment are detailed in Table VIII. 
Unlike the higher RAM usage of the host server as shown in 
Table V, which arises from the image rendering task and the 
coding task, RAM usage of the client device is much lower as 
the RAM of the client device is used only for displaying the 
rendered results.  

The fps of the OpenVMI-based application is only 0.91 fps 
higher than the local application in the Huawei smartphone. The 
fps of the local application is not compromised thanks to 
Huawei’s powerful hardward configuration. CPU utilization of 
the OpenVMI-based application in the Huawei smartphone is 
only 15% as the Huawei smartphone is used only for display 
and interaction. In contrast, the Huawei smartphone also 
executes the initiation of the Telemedicine Training 
Application so that more CPU resources are consumed, 
explaining the local application’s higher CPU utilization than 
the OpenVMI-based application. The RAM usage is 30% 
higher in the OpenVMI-based Telemedicine Training System 
because the OpenVMI Client Application consumes extra RAM 
space. Finally, the initiation time of the local Telemedicine 
Training Application is almost twice faster than the cloud-based 
application. There are three reasons. First, the Huawei 
smartphone is powerful so it can start a local application 
quickly. Second, extra data transmission occurs when the 
Telemedicine Training Application is initiated in cloud, leading 
to higher latency in the cloud-based initiation. Third, the 
OpenVMI Client application has to be initiated before it can 
initiate the Telemedicine Training Application in cloud, further 
adding to initiation time. In conclusion, for client devices of 

powerful hardware configuration, deploying the Telemedicine 
Training Application in cloud via the OpenVMI produces only 
slightly better performance compared to local deployment. 

In contrast, the Smartisan smartphone, with its weaker 
hardware capabilities, has 1.5 fps (666.7 ms taken per frame), 
1% CPU utilization, 390 MB RAM usage and an initiation time 
of over one minute when the Telemedicine Training 
Application is initiated locally. CPU utilization is low because 
the local Telemedicine Training Application cannot be initiated 
normally and it cannot work properly. Since the local initiation 
performed significantly better in the Huawei smartphone, the 
low performance in the Smartisan smartphone can be attributed 
to its weak hardware When the training application is initiated 
in cloud via the OpenVMI Client application in the Smartisan 
smartphone, average fps has significantly improved by a factor 
of 20 times and the average initiation time is reduced by half to 
under 30 seconds compared to local initiation. The CPU 
utilization increases from 1% to 15% and the RAM usage 
increased from 390 MB to 581 MB. Furthermore, performance 
of the OpenVMI-based initiation has been consistent across the 
Huawei smartphone and the Smartisan smartphone, suggesting 
that an OpenVMI-based application performs almost 
independently of the hardware configuration of a client device. 
The OpenVMI provides a feasible solution for devices of 
weaker hardware capabilities to access resource-demanding 
applications. 

In addition, once purchased, the hardware configuration of 
a smartphone is fixed, whereas the configuration of Android 
Docker can be easily upgraded on demand, giving a OpenVMI-
based application a greater degree of flexibility.  

 

TABLE VIII. 
THE RESULTS OF THE PERFORMANCE EXPERIMENT ON MOBILE PHONE AND VIRTUAL MOBILE PHONE 

 Fps CPU utilization RAM usage (MB) Initiation time(s) 
Huawei, Local app 30.12 18% 518 18.8 
Huawei, Cloud app 31.03 15% 675 27.7 

Smartisan, Local app 1.5 1% 390 69.5 
Smartisan, Cloud app 31.0 15% 581 28.0 

 

C. System Concurrency Experiment 
The OpenVMI-based solution proposed by this paper 

supports multiple Android Dockers hence multiple concurrent 
telemedicine training sessions on a host server. An experiment 
is             conducted to investigate the optimal number of 
concurrent Dockers on one single host server. First, 8, 12, 16, 
24, 32, and 48 concurrent Android Dockers are virtualized on 
one host server respectively. Second, for each virtualization, the 
server utilization performance is monitored. Finally, the server 
performance with different concurrency is compared for 
deciding on the optimal number of  concurrency. 

In the concurrency experiment, two Windows workstations 
(Workstation 1 and Workstation 2) are connected to the 
OpenVMI host server via the Internet as illustrated in Figure 
12. Workstation 1 acts as a client device simulator and 
Workstation 2 acts as performance tracker. Multiple Android 

Operating Systems are simulated in Workstation 1 for running 
multiple OpenVMI client devices at the same time. A single 
Android Operating System simulator is installed in Workstation 
2. PerfDog and the OpenVMI Client application are installed in 
the Android simulator in Workstation 2 to obtain the test result 
of the host server performance. The system configuration of the 
two workstations is detailed in Table Ⅸ. The system 
configuration of the host server is specified in Table Ⅹ. 

To test for the optimal number of concurrent Android 
Dockers, eight concurrent Android Dockers are created on a 
host server at first, each of which runs the training application. 
For test purpose only, each Android Docker is connected to one 
simulated client device in Workstation 1. Each client device 
will open the third file in default order, a 3D human head and 
neck anatomy, in the com.yysmart.volumerender data package, 
as shown in Figure 13. The system runs for two hours 
consecutively, with the average value of GPU utilization, 
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VRAM utilization and Docker CPU utilization being 
documented. 

 

 
Fig. 12.  Structure of concurrency experiment 

 
TABLE Ⅸ. 

SYSTEM CONFIGURATION ON CLIENT AND VIRTUAL 
ANDROID. 

Windows 
Workstation 1 

CPU: Intel(R) Xeon(R) W-2133 CPU @ 
3.60GHz 3.60 GHz; RAM: 192 GB; GPU: 
GTX1080 

Windows 
Workstation 2 

CPU: AMD Ryzen 7 4700U with Radeon 
Graphics 2.00 GHz; RAM: 16GB; GPU: AMD 
Radeon (TM) Graphics 

Virtualized 
Android 

CPU: 2 Core; RAM: 8GB; Flash Memory: 32GB; 
Resolution Ratio: 1920 * 1080; Frame Rate: 30 
fps; 

 
TABLE Ⅹ. 

SYSTEM CONFIGURATION OF THE CLOUD SERVER 

Server Operating 
System 

Software 
in cloud 

Software in 
application 

layer 
HuaWei TaiShan200-
2280v2: CPU: Kunpeng 
920, 48Core *2; RAM: 
512GB; SSD: 480GB; 
SATA: 4000GB; Network: 
4*GE; GPU: AMD 
Radeon W6800*2; VPU: 
Netint T432*2. 

Ubuntu 
20.04 

K8S 
1.22.3, 
OpenVMI 
2.0 

Android 
7.1.1, 
Telemedicine 
System  

 

 
Fig. 13. Main Interface using in the concurrency experiment 

 
The experiment is repeated for the virtualization of 16, 24, 

32, 48 concurrent Android Dockers. A single GPU is used when 
the number of virtualized smartphones is 32 and below. Dual-
core GPUs are used when 48 smartphones are virtualized. 
Figure 14 shows a screen snapshot of Workstation 1 when 
testing for the concurrency of 16 client devices. 

 

 
Fig. 14. Screen Snapshot of Workstation 1, 15 Simulated Client 

Devices 

 
TABLE Ⅺ. 

THE RESULTS OF THE PERFORMANCE EXPERIMENT ON DIFFERENT NUMBER OF CONCURRENT DEVICES 
Number of concurrent client 

devices 
AVG GPU 
utilization 

AVG VRAM 
utilization 

AVG Docker CPU 
utilization 

AVG Server CPU 
utilization 

AVG Server 
RAM usage 

8 32% 27.9% 23.2% 3.7% 28.3G 
12 44% 41.7% 28.5% 5% 33.8G 
16 54% 55.6% 28.9% 7.3% 40.8G 
24 70% 83.6% 27.83% 11.3% 55.4G 
32 76% 91.3% 26.1% 15% 71.5G 

48(dual-core GPU) 90%, 
85% 

89.3%, 
88.6% 28.2% 24% 100G 

The results of the experiment detailed in Table Ⅺ show that 
GPU utilization and VRAM utilization increased with the 
number of virtualized smartphones. GPU utilization reaches 
70% and VRAM utilization reaches 83.6% when the concurrent 
Docker number is 24. As a comparison, a relatively efficient 
use of GPU resources without overloading the GPU is at about 
80% GPU utilization. When the concurrent Docker number 
increases to 32, GPU utilization is 76% which is still below 

80%, but the average RAM utilization reaches 91.3%, which 
may undermine system performance at peak usage. When the 
Docker number further increases to 48, GPU utilization reaches 
90% and 85% respectively for the dual cores and the VRAM 
utilization reached 89.3% and 88.6% respectively. Despite with 
16 more concurrent Dockers, the VRAM usage in the dual-core 
GPU with 48 concurrent Dockers is actually slightly lower than 
that in the single-core GPU with 32 concurrent Dockers, as the 
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workload is shared between the dual cores. The experiment 
suggests that the optimal number of concurrent training 
sessions is 24 for a single host server. 

We have also tested for the optimal number of connected 
clients that one Android Docker supports. The test results show 
that each Android Docker can connect to five client devices 
without compromising system performance. 

Experiments of concurrency suggest that a single host server 
supports 24 concurrent Android Dockers, hence 24 concurrent 
live training sessions for cloud server configuration as detailed 
in Table Ⅹ. Each training session allows the connection of five 
client devices, with one client device being the trainer device, 
and four others being the trainee device. 

It should be noted that the number of optimal concurrent 
Android Dockers is influenced by the server’s CPU, ROM and 
GPU configuration. As CPU and ROM configuration improve, 
the optimal number of concurrent devices becomes increasingly 
driven by GPU configuration. The more powerful GPU is, the 
more concurrent Android Dockers the cloud server supports. 
However, there is a tradeoff between GPU configuration and 
financial cost. For example, the Nvidia Tesla V100 GPU costs 
61,000 RMB in China, whereas the less powerful AMD 
WX5100 GPU accelerator costs only 3100 RMB. Cost 
effectiveness is also an important factor determining the 
optimal server configuration hence the number of optimal 
concurrent Android Dockers. 

VII. DISCUSSION AND FUTURE WORK 

A. Technical Features of the System 
The technical features of the OpenVMI-based Telemedicine 

Training System for 3D images are as follows: 
● High efficiency. Direct GPU invocation leads to less 

transmission nodes and the elimination of multiple 
stages of instruction translation between OpenGL ES 
and OpenGL. In addition, as a Video Process Unit 
(VPU) is added to the hardware layer to code rendered 
results in H.264 format, a large amount of CPU 
resources can be spared for other tasks. 

● Multi-device concurrency. A large number of Android 
Docker can be started in parallel in a host server. A 
single virtualized client application in each Android 
Docker supports live streaming across multiple 
devices. It also allows real-time interactions between 
different devices. 

● High performance. Empowered by the powerful host 
server, the OpenVMI-based Telemedicine Training 
System has high-performance computing power, high 
rendering power and a large storage capacity such that 
it is able to perform resource-demanding graphic 
rendering. The physical client devices are used for 
display and interactions only, making the training 
system highly deployable. 

B. System Advantages 
The OpenVMI-based Telemedicine Training System has 

several advantages as follows: 

● High security. The training system is hosted in a 
cloud-based server. System functions and system 
updates are implemented on the server. The physical 
local mobile device is used only for display and 
interaction. As a result, any malfunctions of the local 
device will not impact server functioning and the data 
stored on the server remains intact. In this way, the 
system can ensure system stability and data security. 
Since user data is stored in the cloud, data can be 
retrieved even when the physical client device is lost 
or damaged. With security protection at the 
Management Platform, combined with well 
established authentication scheme, problems of data 
breach, data loss and data damage can be contained 
effectively. 

● High flexibility. By using the OpenVMI technology, 
the Telemedicine Training Application can be run 
seamlessly in client smartphones regardless of their 
hardware configuration. Furthermore, the 
configuration of Android Docker can be easily 
upgraded on demand, whereas the hardware 
configuration of a smartphone is fixed after being 
purchased. 

● Easy promotion. As the physical local device is used 
for display and interactions only, the technical 
requirements for it can be easily met by existing 
hospital-owned devices and personal devices. This 
helps to lower capital investment cost.  

● User privacy protection. Virtualized applications 
running in the virtual environment only have security 
access to the server location instead of the location of 
a physical client device, freeing data breach problem 
from a client device. 

C. Limitations and Future Work 
The performance of the local Telemedicine Training 

Application installed in a powerful Huawei smartphone is 
comparable to the OpenVMI-based version in terms of fps, 
CPU utilization and RAM usage. The Huawei smartphone even 
initiates the application faster than the OpenVMI-based 
application does. This implies that if the hardware configuration 
of a mobile device is powerful enough, it can also run resource-
demanding tasks like image rendering well. Nonetheless, there 
exists a tradeoff between hardware capabilities and financial 
cost, especially in less developed areas. 

The OpenVMI is applied in telemedicine training in this 
paper. We hope to explore a greater number of applications of 
the OpenVMI system as the demand for 3D image-based 
applications grow. 

The OpenVMI is highly deployable in devices of various 
hardware capabilities. It provides flexibility and it utilizes the 
high computing capabilities of the cloud, making it particularly 
useful in applications based on Virtual Reality (VR) and 
Augmented Reality (AR). The practicability of the OpenVMI 
in VR and AR will be studied in the future. 

The early version of the OpenVMI is hosted open source in 
the following address: https://github.com/DockDroid/openvmi. 
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The improvements mentioned in this paper have been 
integrated into the commercial version of the OpenVMI. It will 
also be hosted open source in the GitHub in the near future. 

VIII. CONCLUSION 
The OpenVMI system proposed by this paper presents a low 

cost solution for the display of interactive 3D images in mobile 
environments. It improves upon a typical VMI in two ways: 
direct invocation of GPU resources is achieved by developing 
a bespoke GPU driver installed in Android Docker; rendered 
results are coded in H.264 format by a VPU. Both 
improvements result in less transmission delays and a lower 
consumption of CPU resources, empowering the display of 
interactive 3D images via the cloud.  

By adopting the OpenVMI, the Telemedicine Training 
System is an effective way to overcome problems such as 
geographical immobility, limited computing power in mobile 
devices and capital under-investment that limits the scope of 
medical training in undeveloped areas. The results of various 
performance experiments suggest that an OpenVMI-based 
application is highly deployable across devices of different 
hardware capabilities and the OpenVMI supports 24 concurrent 
training sessions, each of which can connect with five client 
devices at the same time for a single host server. 

Finally, since the OpenVMI supports the display of 3D 
images across multiple devices concurrently, its application can 
be extended to other areas that rely on 3D image rendering 
heavily such as Virtual Reality and Augmented Reality. 
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