

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 1

GPU and VPU Enabled Virtual Mobile Infrastructure
for 3D Image Rendering and Its Application in

Telemedicine*

Zhipeng Fu, Jun Zhou, Wanpeng Xu, Changguo Guo, Qingbo Wu

Abstract—Telemedicine for 3D images on mobile devices
presents promising development opportunities. Being constrained
by computing power and storage capacity on mobile devices, the
processing performance of 3D medical images is insufficient for
more demanding tasks. Using virtual mobile infrastructure
technology to utilize cloud resources is a common solution. But it
encounters the challenge of poor performance in data
transmission, image rendering and image coding. This paper
presents a GPU and VPU enabled Open Virtual Mobile
Infrastructure (OpenVMI) for 3D image rendering to solve the
challenge. It makes two improvements. First, a bespoke GPU
driver is developed in the Android Docker, optimizing the
transmission workflow for data transmission and image
rendering. Second, a Video Process Unit (VPU) is added to the
hardware layer to code rendered results in H.264 format,
replacing CPU coding which consumes a large amount of CPU
resources. By adopting the OpenVMI, the telemedicine training
system proposed in this paper presents an easy-to-set up, cheap
and low latency solution that is particularly helpful for
telemedicine training in remote and underdeveloped areas.
Performance experiments suggest that the OpenVMI delivers
better performance than existing state-of-the-art systems, even in
mobile devices with weaker hardware capabilities. Concurrency
experiment suggests that a single host server can support up to 24
concurrent training sessions, which makes the OpenVMI very
helpful for telemedicine training that demands high concurrency.
The OpenVMI-based solution proposed in this paper is not
restricted to the use of telemedicine training, but also suitable for
other application areas such as Virtual Reality and Augmented
Reality in mobile environments.

Index Terms—3D Image, GPU, VPU, Graphic Rendering,
Mobile Device, Telemedicine, VMI, Virtual Reality.

I. INTRODUCTION
EDICAL resources in China are unequally
distributed and skills of medical professionals in
remote areas often lag behind their urban peers.

Medical staff from renowned hospitals often participate in
exchange programs and go on secondments in less developed
areas. These solutions are temporary and they require physical
travelling, which may not be feasible during difficult times such
as pandemic outbreaks.

Telemedicine solutions such as remote consultation are
commonly used to overcome these geographical constraints [1,
2]. Facilitated by advancements in technologies such as
artificial intelligence (AI), the fifth generation of wireless
networks (5G) [3] and the Internet of Things (IoT), medical
staff can also engage in more advanced implementations such
as tele-surgery and tele-imaging [2]. Using telemedicine
training as an example, the scope of training is no longer
restricted to static data and images. Analysis of data of various
dimensions, ranging from treatment records to complex time-
varying 3D image results also becomes feasible thanks to
breakthroughs in information technology [4-8] that offers large
storage capacity and high-performance computing power
required by advanced telemedicine solutions [9].

Additionally, doctors increasingly rely on the use of
smartphones and tablets in their work for the flexibility and
portability of mobile devices [10-13]. As a result, there is also
a growing demand for telemedicine on mobile devices [5, 6].
Despite significant improvements in computing power in recent
years, the processing performance of complex data on mobile
devices is still not sufficient for more demanding tasks [12, 14-
16] such as 3D scans of human organs and blood vessels in real
time. The seamless display of medical 3D images in mobile
environments therefore becomes a key challenge in the
development of telemedicine.

A possible workaround is the use of Virtual Mobile
Infrastructure (VMI) technology, which refers to a client-server
framework with a Virtual Mobile Operating System running on
a cloud-based server [17]. Users can access the virtual system
remotely from their local mobile devices. The telemedicine
application will be initiated in the cloud and displayed on
various mobile devices via wire/wireless transmission. In this
way, all the computation of the medical 3D images will be
implemented in the cloud and the mobile device is used for
display and interactions only. This workaround makes use of

M

*Manuscript received ***, 202*; revised ****, 202*. This work is
supported in part by Key-Area Research and Development Program of
Guangdong Province under Grant No. 2020B010166001, Major Program
of Guangdong Basic and Applied Research under Grant No.
2019B030302002, Major Research and Development Program of PCL,
China under Grant No. PCL2021A09. Corresponding authors: Jun Zhou,
Wanpeng Xu.

Zhipeng Fu, Jun Zhou, Wanpeng Xu, Qingbo Wu are with the Industrial
Internet of Things Research Institute in Department of New Pattern
Network, Peng Cheng Laboratory, Shenzhen 518055, China (e-mail:
zhipengfu518@gmail.com, izhoujun@163.com,
Xuwanpengg@gmail.com, qingbo.wu@pcl.ac.cn).

Jun Zhou is also with the school of computer science and engineering,
Sun Yat-Sen University, Guangzhou 510006, China..

Changguo Guo is with the Yuzhou Big Data Laboratory, Chongqing
400050, China. He is also with the Advanced Institute of Big Data,Beijing
100195, China. (e-mail: guochangguo@yzbdl.ac.cn)

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Digital Object Identifier ****

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:zhipengfu518@gmail.com
mailto:izhoujun@163.com
mailto:Xuwanpengg@gmail.com

2 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

the high-performance computing capacity and large storage
capability of the cloud servers. It provides an easy, low-cost and
convenient solution for telemedicine systems that work with 3D
images in mobile environments.

But existing VMI solutions have three problems impeding
the system performance. First, there are high transmission
delays that slow down image rendering. Second, there is a lack
of commercially developed GPU drivers adapted for mobile
environments to invoke cloud GPU resources directly. Third,
the coding capacity of open-source drivers is not sufficient for
implementing image rendering and data coding at the same
time.

This paper proposes the OpenVMI, a VMI-based solution
specifically designed for the display of interactive 3D images
in mobile environments. To reduce transmission delays and the
consumption of CPU resources, the OpenVMI solution makes
two major improvements upon typical VMI systems. This
includes developing a bespoke Graphics Processing Units
(GPU) driver to invoke GPU resources directly for rendering,
eliminating multiple stages of instruction translation between
OpenGL ES and OpenGL. Also, a Video Process Unit (VPU)
is added to the hardware layer to code rendered results in H.264
format, replacing CPU coding which consumes a large amount
of CPU resources.

The contributions of this paper are the followings:
● An improved VMI solution specifically designed for

the display of 3D images in mobile environments, the
OpenVMI, is proposed. The OpenVMI achieves better
performance than existing VMI solutions by
integrating the CPU, GPU and VPU.

● In order to reduce transmission delays, a bespoke GPU
driver is developed for Android Docker to invoke
GPU directly.

● A VPU is added to replace CPU to code rendered
results.

● The OpenVMI is used in a real-life telemedicine
training application.

The rest of this paper is organized as follows. Section 2
reviews the current literature. Section 3 introduces the structure
and workflow of the OpenVMI. The improvements made in the
OpenVMI are detailed in Section 4. An implementation of the
OpenVMI, the Telemedicine Training System, is introduced in
Section 5, followed by experiments of performance comparison
and device concurrency in Section 6. Section 7 discusses
system features, limitations and development prospects.
Conclusion is made in Section 8.

II. LITERATURE REVIEW

A. Telemedicine Applications on Mobile Devices
Telemedicine application on mobile devices has been

growing in popularity in recent years [18-25, 40]. They are
advantageous since the mobile devices act as a portable and
widely accessible health data collector to assist Point-of-care
(POC) diagnostics, offering an alternative to laboratory-based
medical experiments [23].

Current POC applications on mobile devices cover a wide

range of medical specialties. It is particularly useful during the
Covid-19 pandemic for contact tracing and remote healthcare
monitoring [1, 2, 26-28]. For example, Vedaei et al. [26] uses
an IoT health tracking node that notifies users to maintain a safe
physical distance during the pandemic.

To obtain more comprehensive health data, one commonly
adopted method is to wear a tracker on the human body that
keeps tracking human activities and sending data to the mobile
application. For example, Nornaim et al. [27] propose an IoT-
based Electrocardiograph (ECG) monitoring system, enabling
users to monitor their ECG signals and share data with their
caretaker and physician from the mobile application. Latha et
al. [20] present the Wireless Body Area Network (WBAN),
which monitors blood viscosity, blood pressure and blood sugar
level in real time, enabling doctors to respond to emergencies
promptly. Angelucci et al. [3] present a continuous home
telemonitoring system, which features a wearable respiratory
and activity monitor, an environmental sensor and a pulse
oximeter. The monitoring system sends tracked data through a
5G smartphone to a Multi-Edge computing server. Guo [29]
uses the smartphone to power a medical dongle that analyzes
blood glucose or uric acid from a test strip.

Apart from wearing an external tracker, there are also
attempts to utilize the built-in sensors and hardware in a mobile
device. This approach often relies on machine learning to assist
diagnosis. Lauraitis et al. [30] present a smartphone application
to examine central nervous system motor disorders in patients
suffering from Huntington’s, Alzheimer’s and Parkinson’s
diseases. A patient will be asked to touch designated positions
on the screen and the trajectory data is evaluated by a back-
propagation neural network classifier. Results will be used as a
support for the patient’s medical evaluation. Qi et al. [31] utilize
the inertial sensors in a smartphone to monitor human activities.
The collected data will be subsequently analyzed by AI.

The camera of a mobile device can be used to acquire
medical image data. Askarian et al. [24] present a cataract
detecting approach that uses a smartphone to capture the
patients’ eye images. Gong et al. [32] use a smartphone to catch
retinal images for teleophthalmology. Zhang et al. [33] use the
smartphone to re-capture the scoliosis radiograph images.

Mobile device can also be used as a voice acquirer. Hoyos-
Barcelo et al. [34] present a smartphone-based cough detector
that uses a smartphone as a voice catcher to acquire audio
signal. Cheffena et al. [35] develop an automated fall detection
system based on audio features.

Apart from being a data acquirer, mobile devices are used
as a display device. For example, the MobileHeart application
supports patients with ischemic heart disease by displaying a
patient’s prescribed exercise programs and helping to track the
patient’s medication adherence [36]. Estai et al. [18, 19]
develop a cloud-based store-and-forward telemedicine platform
called “Remote-I”, allowing the access of dental images
remotely on an Android application. Similarly, Liu et al. [37]
propose a smart dental health-IoT system that supports AI
analysis of dental images in the cloud.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

B. Image or Video Processing in Mobile Environments

Existing mobile telemedicine applications use mobile
devices simply as a data collector and an information display
because of their constraints in computing and storage
capabilities. When more complicated data types such as
streaming data are acquired via mobile devices, the task of
further data processing is often delegated to desktop computers
with more powerful CPUs and GPUs or cloud servers instead.
For example, Guo et al. [38] attempt to improve 3D face
reconstruction by utilizing an iPhone X to capture RGB-D
images. The data processing task is completed on a desktop PC
with the help of GPU computing. Schwartz et al. [14] hope to
use deep learning to provide an alternative to existing image
signal processor (ISP) in mobile devices. The camera image
processing pipeline they proposed handles tasks such as
demosaicing, denoising and color correction. However, their
solution is desktop-based and relies on the TITAN X graphics
card. In terms of video data, mobile devices may struggle even
with low-level tasks. Nie et al. [39] aims to improve the quality
of videos captured by hand-held mobile devices, but the video-
stitching task is not handled on mobile devices.

There is also a problem of transmitting a large amount of
data. One of the solutions is to optimize the data selection
process. For better data quality assessment, Korhonen [41]
proposes a two-level approach that pre-selects videos based on
low complexity features in the first level, reducing the amount
of data processing in the subsequent level. Wu et al. [12]
attempt to improve the data transmission process by setting up
a set of criteria for the metadata of smartphones, enabling the
cloud servers to select photos that are most useful to upload.

Apart from improving the data selection process, Jang et al.
[42] adopt the mobile ad hoc cloud technology, which connects
multiple mobile devices together to create a virtual
supercomputing node. An individual mobile device can thus
have access to the high processing power and large storage
space on the cloud.

C. VMI Solutions
VMI technology provides another promising solution to

overcome problems of limited computing power in mobile
devices. There are many attempts to improve performance in
VMI-based solutions.

Liu et al. [43] present a lightweight VMI platform named
cMobiDesk which employs Linux Container to build multiple
Android containers by leveraging a non-invasive method to
avoid modifying the source code of the mobile OS.

In order to improve the energy-efficiency ratio of VMI
system. Anastasopoulos et al. [44] present a stochastic-
programming-based problem formulation that minimizes the
VMI energy consumption and satisfies QOS specifications.

For communication problems between identical
applications on the local device and the remote VMI server after
the same apps are being installed separately, Wang et al. [45]

1 https://github.com/anbox/anbox
2 https://github.com/waydroid/waydroid
3 https://github.com/lag-linaro/robox

propose a Unified Application Model named FUSION which
classifies IPC (Inter Process Communication) events into two
types: the IPC events without accessing local resources and the
IPC events accessing local resources.

For problems of large-scale services producing more socket
system calls and greater network bridge CPU loads in the VMI
system, Choi et al. [46] propose an improved Linux kernel-
based virtual machine (KVM) hypercall scheme, which reduces
the host machine’s workload on data exchange, allowing the
operation of more guest machines.

In order to improve VMI performance, Su et al. [10] design
a VMI-based solution named vMobiDesk, which optimizes the
network transfer mechanisms for the display of virtualized data.
The solution redirects users’ input events and supports remote
audio and camera function with low virtualization overhead.

Existing VMI-based solutions mainly focus on improving
the transmission performance of the VMI [10, 45, 46]. Studies
on the rendering and processing of 3D images in mobile
environments have been scarce mainly because of the
difficulties in utilizing GPU directly in mobile devices. First,
GPU manufacturers have yet to provide commercial drivers for
mobile environments. Therefore, most image rendering tasks
are still finished on a server or PC workstation. Second, existing
open-source drivers are not sufficient for implementing image
rendering and image coding at the same time.

Among open-source VMI software, the popular ones
include anbox 1 , waydroid 2 , and robox 3 . Anbox meaning
“Android in a box”, runs an Android under the GNU/Linux by
using the container technology. The first version of anbox was
released in April 2017 and the last version in February 2023.
Anbox is no longer actively developed. The limitation of anbox
is that, as a desktop application, only one anbox can run under
a single GNU/Linux system. It works almost like an Android
emulator, and it does not support the use of the GPU on the host
computer.

Waydroid, first released in September 2021, is another
container-based Android emulator-like desktop VMI software
under GNU/Linux. Waydroid is superior to anbox in terms of
system performance and hardware compatibility. Nonetheless,
Waydroid does not support the Nvidia GPU and a large number
of the AMD GPUs, such as AMD RX6800.

Robox, first released in April 2018, is built upon anbox and
co-developed by Huawei and Linaro 4 , the latter being an
international organization that develops Arm-based software
and aims to foster the Arm software ecosystem. Robox
improves upon anbox by introducing extra features like Arm-
supporting function and multi-instance virtualization function.
Similar to anbox and waydroid, the use of the host server GPU
is not supported by robox. Its commercial version, monbox,
released in February 2020 by Huawei5, supports the use of the
host GPU, but since it is proprietary, its access and testing are
unavailable publicly.

4 https://www.linaro.org/
5 https://www.huaweicloud.com/special/free-yunshouji-xsms.html

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

D. VDI Solutions Using GPUs
In contrast to existing VMI-based solutions that seldomly

use GPU acceleration, Virtual Desktop Infrastructure (VDI)
solutions have been relying on cloud-based GPU to handle
complicated rendering tasks, providing valuable insights into
the use of GPU acceleration in VMI-based implementations.
For example, Bentele et al. [47] summarize four approaches of
virtualizing GPUs for virtual machines and presents a solution
of GPU-accelerated open source VDI for OpenStack. Wan et al.
[48] present a VDI framework that invokes GPU-accelerator in
the graphics hardware abstraction layer. Fomito et al. [49]
propose an infrastructure-as-code method that treats the GPU
resource as software and presents a GPU-enabled VDI to
provide media service in the cloud. In order to provide cheap
GPU service for Virtual Reality and Augmented Reality, Wu et
al. [50] present a VDI-based render farm platform that uses the
VMware Horizon Client to provide 32 core vCPU, 8 GB of
vGPU and 50 GB of RAM for each virtual desktop. The CMA
Meteorological Observation Center [51] provides VDI system
that contains NVIDIA vGPU to meet demand for 3D modeling
and CUDA computing.

Empirical studies show that GPU acceleration leads to better
system performance. Li et al. [52] present a GPU-accelerated
VDI-based platform for better teaching experience on a virtual
desktop. In their comparison of three virtualization
technologies with or without GPU for graphics computing
acceleration, the cloud service performance improved
significantly by using GPU accelerator. Empirical results of
another study conducted by Chang et al. [53] further support
this finding. Dong et al. [54] compare VDI capabilities on
graphics processing for video playback tasks with or without
GPU-virtualization. The result shows that when GPU-
virtualization is enabled, VDI even with the lowest
specification can deliver videos of excellent quality to end-
users.

III. THE OPENVMI SYSTEM
Inspired by the development of VDI, mobile developers are

also trying to develop applications on the cloud, which has
prompted the rise of VMI. The key feature of VMI is that
multiple virtualized mobile operating systems such as Android
are created in the cloud using virtualization technology. After
signing in to the cloud-based virtual operating system, a mobile
client device can perform the normal functions expected in a
smartphone. The key difference between a virtualized cloud-
based smartphone and a localized system is that the local device
is used only for display and interaction in VMI-based
implementation. Applications are stored and run in the cloud.
Using a VMI-based solution in mobile environments has the
advantages of high security, high convenience and high
portability, which makes it increasingly popular in recent years
[55, 56]. Inspired by this and built upon the current anbox
system, we developed our own VMI software, called the Open
Virtual Mobile Infrastructure (the OpenVMI), to solve the 3D
medical image rendering problem in telemedicine.

A. The Structure of the OpenVMI
Until now, existing VMI schemes use KVM [10, 45, 46],

VirtualBox [10], Xen [10], or Linux Container [43], few use
Docker. This paper adds Multi-Instance Binder (the service
process used for different Android processes to communicate
with each other) and Ashmem (Anonymous Shared Memory,
which is used for Android system to share memory) to the
Linux kernel in the cloud operating system to support the
Android operating system inside the Docker container.

The structure of the OpenVMI system consists of six layers
as illustrated in Figure 1. From top to bottom, these are the
client SDK layer, the Android Docker layer, the K8S cloud
layer, the DockDroid layer, the Cloud Operating System layer
and the hardware server layer. The detailed functions of the
Client SDK layer, the Android Docker layer, the DockDroid
layer and the Cloud Operating System layer are as follows:

1) The Client SDK layer
The OpenVMI can be accessed under Android, the iPhone

IOS and smart display with HTML5(H5) system. Therefore the
OpenVMI mainly provides three types of client SDK to connect
to the server, including the Android SDK, IOS SDK and H5
SDK as shown in Figure 1. If a user uses an Android
smartphone to access the OpenVMI, then the client application
of the OpenVMI of Android SDK will be installed into the
customer’s Android smartphone.

2) The Android Docker layer
The Android Docker layer, shaded in orange in Figure 1, 2,

3 and 5, consists of multiple Android Dockers. The main
function of Android Docker is to provide an Android-like
running environment, so that Android application can run in
this environment. In addition, Android Docker also provides
services to process different tasks like rendering, streaming,
coding and displaying. Each Android Docker runs with four
modules as illustrated in Figure 2. These are the Android App
module, the Basic Service module, the OpenGL ES module and
the Streaming and Coding module.

The OpenGL ES [57] module implements a subset of Open
GL [58] specifically pruned for embedded/mobile system. The
OpenGL ES API is a standard allowing individual and
organizations to implement and import packages in the Android
operating system. The OpenVMI system implements it into
dynamic libGL_**.so DLLs.

The Streaming and Coding Module, whose domain is
com.gray.boxstream, is mainly used to capture the rendered
result, encode it in H.264 format and send the encoded data to
the VMI client device.

3) The DockDroid layer
The DockDroid layer, shaded in green in Figure 1, 2 and 3,

consists of multiple DockDroid processes that execute in this
layer. Each DockDroid process matches with one Android
Docker in the Android Docker layer. This module is responsible
for receiving OpenGL ES instructions, translating the
instructions to OpenGL instructions, transmitting data between
Android Docker and the Cloud Operating System, as well as
enabling the Android application to invoke hardware resources
such as GPUs for instruction execution.

4) The Cloud Operating System layer

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

The Cloud Operating System layer, shaded in blue in Figure
1, 2 and 3, provides the basic software environment. Typically,
a GPU driver is installed in this layer to execute various GPU
computing tasks.

Fig. 1. The structure of the OpenVMI

Fig. 2. The module structure of the OpenVMI

B. The Workflow of the OpenVMI
For the typical OpenVMI system, the workflow of a

rendering task involves multiple layers and multiple modules.
Workflow process ①②③④⑤ in Figure 3 shows the process
of image rendering in the typical OpenVMI-based system.
When an application requests for 3D image rendering, the
Android Docker will load the render request in OpenGL ES
instructions and send the instructions to DockDroid. DockDroid
will translate the instructions in OpenGL format and send the
instructions to GPU Driver for execution.

The rendered results are pixels in RGBA format. They will
be returned firstly back to DockDroid and subsequently back to
the OpenGL ES module in Android Docker. The Streaming and
Coding module then captures the rendered results frame by
frame at a rate of 60 fps. It encodes the results in H.264 format
and sends them to the VMI client. This is shown as workflow
process ⑥-⑩ in Figure 3.

Fig. 3. The rendering workflow of data transmission in OpenVMI

system

IV. IMPROVEMENTS IN THE OPENVMI SYSTEM
GPU acceleration is often used in VDI-based solutions for

processing graphical data. However, there are still difficulties
in using GPU accelerator directly in VMI, constraining the
display of 3D images in VMI. There are mainly three
challenges:
 First, current literature demonstrates that the

performance especially the transmission performance
of existing VMI is not good enough for image
rendering.

 Second, there is a lack of commercially developed
GPU drivers adapted for mobile operating system such
as the Android Operating System. Few GPU
manufacturers provide such adaptations. As a result,
unlike VDI-based implementation, applications in
Android Docker cannot invoke GPU resources
directly.

 Third, for AMD GPU with open-source drivers, their
coding capacity is not sufficient to perform image
rendering and data coding at the same time.

To overcome the three challenges in the processing and
rendering of 3D images in mobile environments, two important
improvements are elaborated. In order to evaluate the
effectiveness of each improvement, an experiment for each
improvement is conducted.

A. Direct GPU Invocation
The workflow of the typical OpenVMI system in Figure 3

shows that the data transmission process involves multiple
layers and multiple modules, including the DockDroid layer,
the OpenGL ES module and the Streaming and Coding module
in the Android Docker layer. Preliminary test data of the
unimproved VMI design showed a high transmission delay,
possibly due to the multiple transmission nodes among different

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

modules in different layers. Too much data transmission might
also overburden CPU.

A possible improvement could be transmitting the rendered
results directly from DockDroid to the Streaming and Coding
module in Android Docker, thus reducing transmission nodes
involving the OpenGL ES module.

For further investigation, performance experiments of data
transmission including OpenGL ES (INCLUDED) and
transmission omitting OpenGL ES (OMITTED) are performed.
The parameters of interest are frame per second (fps) of the
rendered results on display in a client device and CPU
utilization of DockDroid. The upper limit of fps is set at 60 fps.
Theoretically, the higher the value of fps and the lower the rate
of CPU utilization, the more desirable a scheme is. The Huawei
Kunpeng dual-CPU Server is used, which includes 48*2 cores,
512GB RAM, 480GB SSD, 4000GB SATA, AMD Radeon
W6800*2 GPU. The 96 CPU cores are serialized from 0 to 95.
The performance parameters are tracked by Perfdog6, an fps
performance test and analysis tool. The performance
experiment is repeated separately for eight times with different
number of CPU cores assigned to Android Docker and
DockDroid.

The results of the experiment are detailed in Table I. The
number of CPU cores assigned to Android Docker and
DockDroid is detailed in column 2 and column 3 respectively.
The serial number of the CPU core used is specified within the
square bracket. For example, 2[19,20] means that two CPU
cores, namely the Number 19 core and the Number 20 core are
assigned to the process. Key observations from Table I are:
 For the INCLUDED scheme, the maximum, mean and

minimum fps of the eight experiments are 51 fps, 46.9
fps and 40 fps.

 If converted to time taken to process a frame, the
corresponding time per frame are 19.6 ms, 21.3 ms and
25 ms for the INCLUDED scheme.

 For the OMITTED scheme, the maximum, mean and
minimum fps are 59 fps, 56.5 fps, 50 fps.

 If converted to time per frame, they correspond to 16.9
ms, 17.7 ms, 20 ms for the OMITTED scheme.

The fps of the INCLUDED scheme is consistently lower
than that of the OMITTED scheme by 8%-23% in the 8
experiments. If converted to time per frame, data transmission

with OpenGL ES is slower than without OpenGL ES by 2.5~5
ms for each frame, which means each frame spends an extra
2.5~5 ms on transmission through the OpenGL ES module.

The last two columns in Table I show the CPU utilization of
Dockdroid, which is used to infer CPU consumption of the
OpenGL ES module, as the two are inversely related. The
amount of data processing is the same for both schemes in
DockDroid. Assuming the workload processed by DockDroid
as 1 unit of workload, then the amount of total workload the
CPU is burdened with is (1/CPU utilization of DockDroid). In
experiment No.1, this corresponds to 1.92 units of workload
(1/0.52 = 1.92) for the INCLUDED scheme, and 1.54 units of
workload (1/0.65 = 1.54) for the OMITTED scheme. This gives
a workload difference of 0.38 units. In other words, the CPU is
about 25% more loaded in the INCLUDED scheme as more
data transmission tasks are involved. The INCLUDED scheme
consistently causes a greater amount of workload, ranging
between 0.06 to 0.74 more units of workload, over the
remaining seven experiments. The mean value of the
INCLUDED scheme’s extra workload is 0.338 units,
corresponding to about 25% more CPU workload of which is
consumed by the OpenGL ES module. The experiment suggests
that eliminating the OpenGL ES module thus reducing the
number of transmission nodes can significantly reduce latency
and CPU resource consumption.

Over the eight experiments, experiment No. 3 gives the
lowest fps value. This is because in the Huawei Kunpeng
server, every four CPU cores are grouped as one CPU cluster.
CPU core number 0-3 are grouped as one cluster and CPU core
number 4-7 are grouped as another cluster and so on. CPU cores
from the same cluster share one level 3 cache, whose cache
access is much quicker than cache in other levels. In experiment
No.3, three CPU cores, including core number 3, 4 and 5, are
used by Android Docker. However, the three CPU cores come
from different clusters. Core number 3 comes from one cluster
whereas core number 4 and 5 come from another cluster. As a
result, the three cores do not share the same level 3 cache so
that fps performance is compromised. Furthermore, CPU core
number 3 is shared between Android Docker and DockDroid so
that it is more loaded, further undermining fps performance.

TABLE I.
COMPARISON OF TWO DIFFERENT DATA TRANSMISSION SCHEMES

Experiment
No.

CPU Cores
[Serial Number]
used by Android

Docker

CPU Cores
[Serial Number]

used by
DockDroid

Rendered result
with INCLUDED

scheme (fps)

Rendered result
with OMITTED

scheme (fps)

CPU Utilization of
DockDroid with

INCLUDED
scheme

CPU Utilization of
DockDroid with

OMITTED scheme

1 2[2,3] 1[20] 42 55 52% 65%
2 2[2,3] 2[19,20] 45 57.6 56% 78.80%
3 3[3-5] 1[3] 40 50 46% 70%
4 3[3-5] 1[20] 46 59 53% 68.70%
5 3[3-5] 2[20,21] 50 55 62.90% 77%
6 4[4-7] 1[20] 50 58.4 66.80% 73.20%
7 4[4-7] 2[20,21] 51 58.2 77.50% 81.10%
8 4[4-7] 1[4] 51 59 66% 74%

6 https://perfdog.wetest.net/

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

Further improvements could be directly invoking GPU
resources from Android Docker. This will reduce the number
of transmission nodes as data no longer passes through the
DockDroid layer.

In classical design, render requests are sent to DockDroid
for instruction translation from OpenGL ES format into
OpenGL format that are recognizable by the GPU. After a
rendering task is being finished, rendered results in RGBA
format are sent by DockDroid to the Streaming and Coding
module in Android Docker.

Despite being simple and easy to set up, this compromised
solution not only results in higher transmission delays but also
undermines CPU performance, as extra CPU resources are
consumed during the translation process.

The instruction translation process is necessary due to an
absence of commercially developed Android GPU drivers,
preventing the Android environment from invoking GPU
resources directly. As such, a bespoke GPU driver is developed
and placed in Android Docker. The function of the bespoke
GPU driver is that it can let the GPU recognize the OpenGL ES
instruction and execute it directly in Android Docker. This
helps to eliminate the need for the DockDroid module to
translate the OpenGL ES instruction to OpenGL instruction.
Instructions no longer need to pass through DockDroid. The
classical GPU invocation method involving DockDroid is
denoted as Scheme one where as the improved GPU invocation
method is denoted as Scheme two in Figure 4. The data
transmission workflow of the improved OpenVMI scheme is
detailed in Figure 5. A render request goes through workflow
process ①②③ , and the returns of rendered results are
illustrated by workflow process ④⑤⑥.

Fig. 4. Two different GPU invocation methods

B. VPU Coding
The hardware layer is capable of executing the rendering

and coding of the rendered results. However, the coding

capability of the hardware is not utilized because existing open-
source GPU drivers are not powerful enough to handle a coding
task. Instead, CPUs are often assigned the task of data coding.
Under this arrangement, rendered results in RGBA format are
sent from GPU to the Streaming and Coding module in Android
Docker, which encodes the data into H.264 format. This
compromised solution overloads CPU significantly.
Preliminary analysis indicated that more than 90% of the CPU
capacity is occupied by the stream coding task.

To replace CPU coding, a Video Process Unit (VPU) is
added to the hardware layer in the virtual server to code RGBA
data into H.264 format, freeing up CPU resources for other
tasks thus improving service performance. This improved
workflow is shown as workflow process ⑤ in Figure 5.

TABLE II.

COMPARISON OF CPU CODING AND VPU CODING
Server type GPU

type
Coding

type
CPU

utilization
GPU

utilization
Phytium 2000+

(64 core) Tesla T4 CPU
coding 165% 32%

Phytium 2000+
(64 core) Tesla T4 VPU

coding 23% 19%

Kunpeng 920
(48 core* 2)

AMD
WX5100

CPU
coding 108% 3.3%

Kunpeng 920
(48 core* 2)

AMD
WX5100

VPU
coding 9% 3.0%

Fig. 5. The improved rendering workflow after direct GPU invocation

and VPU coding

In order to compare the system performance between CPU
coding and VPU coding, an experiment of CPU and GPU
utilization with respect to different types of coding and different
server specifications is conducted. Two types of servers are
used, they are the Phytium server which has 64 cores in one
CPU and the Huawei Kunpeng dual-CPU server which has
48*2 cores. The CPU utilization is measured in terms of
utilization of a single CPU core. In Table II, the CPU utilization
reaches 165% for the Phytium 2000+ server and 108% for the
Kunpeng 920 server if the coding task is executed by the CPU,
meaning that the CPU coding task consumes more than one
CPU core. In contrast, VPU coding frees up significant CPU
resources so that its CPU utilization is 7-12 times lower than
CPU coding. The results of the experiment suggest that

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

adopting VPU coding has reduced CPU consumption and
improved system performance significantly.

After the two improvements, the workflow of the improved
OpenVMI is illustrated as Figure 5.

V. THE OPENVMI-BASED TELEMEDICINE TRAINING
SYSTEM

The OpenVMI system is deployed in a real-life
implementation, the Telemedicine Training System, which is
designed to live-stream telemedicine training for analyzing
medical 3D images on mobile devices. The system supports low
latency rendering of human bones, blood vessels and organs. It
also supports interactive functions such as movements,
rotations and scaling of medical images.

A. The Topological Structure of the System
The topological structure of the Telemedicine Training

System is shown in Figure 6. It consists of an Intranet zone, a
demilitarized zone (DMZ), a mobile network zone and multiple
mobile clients. Unlike other telemedicine training applications
that connect the mobile devices directly to a cloud server [25,
59], a DMZ is added to the Telemedicine Training System for
the virtualization of Android devices in the cloud server. The
training system is a layered structure, rather than a mesh-like
structure that integrates multiple applications such as the
system in Attila et al. [60] that integrates the interconnection
telemedicine systems, hospital information systems, legacy
health care systems, smart health devices and health-related
smartphone-apps into a unified service architecture.

The Intranet zone is where the servers of the training
application are located. Medical data of different types such as
clinical records, CT/PET-CT imaging results and MRI results
is stored here.

The DMZ is mainly composed of cloud management servers
and virtual Android servers. The module structure of each
virtual Android server is as detailed in Figure 1.

Clients refer to various mobile client devices that have the
VMI client application installed to access the training
application by connecting to the Mobile Network zone. They
can be smartphones, tablets, and smart displays. Each VMI
training service can connect to multiple VMI clients
simultaneously. For example, if three clients are online at the
same time, one will be the trainer client and the other two will
be the trainee clients. Demonstrations on the trainer client will
be displayed on the trainee clients in real time. Communication
between the VMI Client Application and the DMZ requires
authentication.

To ensure security, the Intranet Firewall is located between
the Intranet zone and the DMZ to protect the servers of the
Telemedicine Training System. The Internet Firewall is located
between the DMZ and the Mobile Network zone to protect both
the DMZ and the Intranet zone. Additionally, the system
administrator can grant access only to mobile devices with
registered MAC addresses.

The system UI can be displayed on multiple clients at the
same time. For example the UIs on a client smartphone and a
client smart display are shown in Figure 7. An interface of the

Telemedicine Training System is shown in Figure 8.

APP Server

APP Server

Intranet
Firewall

Virtual Android Server

Management
Server

Internet
Firewall

WiFi 4G/5G

Smart
Display

Pad Smart
Phone

Internet DMZ Intranet

Clients
Mobile Network

Fig. 6. Topological structure of the Telemedicine Training System

Fig. 7. The Telemedicine Training System UI can be displayed on

multiple clients at the same time, for example a smartphone and
a smart display

Fig. 8. An Interface of the OpenVMI-based Telemedicine Training

System

B. Achieved functionalities that are hard to achieve in a
normal smartphone

By operating in a cloud-based virtual Android and being
accessed via the VMI client application installed in a physical
mobile device, the OpenVMI-based Telemedicine Training
System supports low latency 3D image rendering, which is
hardly achievable in a local training application. Movements,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

rotation and scaling of medical images are rendered in real time.
The key features supported by the Telemedicine Training
System include:
 Multiple rendering modes. Multi-slice and multi-plane

rendering are often required in a medical imaging
training session for the clear demonstration of human
structures. The different rendering modes available in
the Telemedicine Training System helps to deliver
high-quality training.

 Customized textures. The Telemedicine Training
System offers a selection of texture materials for a
vivid display and a clear distinction between human
organs.

 Image transformation. A medical image can be
transformed flexibly. The instructor is able to perform
different functions including moving, scaling, rotating
and resizing a specific selection of an image.
Annotation in smartphone is also supported.

VI. EXPERIMENTS

A. Performance Comparison Experiment
We compare the OpenVMI qualitatively with anbox,

waydroid and robox, the other state-of-the-art open-source VMI
systems mentioned in section II-C, in Table III. Anbox and
waydroid are desktop applications and each host server can start
only one instance. In contrast, each host server can start
multiple cloud-based OpenVMI instances. In addition, the
OpenVMI system also supports many functions not found in
anbox and waydroid, such as GPU and VPU usage. As such, the
performance of the OpenVMI system is not compared
quantitatively with that of anbox and waydroid.

Robox, the cloud-based VMI system co-developed by
Huawei and Linaro, shares similar system structure with the
OpenVMI. But unlike the OpenVMI, it does not support direct
GPU invocation. Monbox, its proprietary commercial version,
supports direct GPU invocation. But monbox is publicly
inaccessible. As a result, a quantitative comparison is carried
out only between the OpenVMI and robox.

The structure of the comparison experiment is shown in Fig.
9. Robox and the OpenVMI are installed separately on a host
server of the same hardware and software configuration as
detailed in Table IV. The host servers are named as the Robox
Server and the OpenVMI Server. The Telemedicine Training
Application, which accesses the Telemedicine App server, is
installed on the Android Docker built in the Robox Server and
the OpenVMI Server. When the telemedicine client application
is initiated in the client device, performance of the system is
tracked by Perfdog. We mainly focus on four performance
parameters: the fps, the CPU utilization of the host server, RAM
usage of the host server, and the initiation time of the
Telemedicine Training System (time required between the
initiation of the Client application and the display of the default
UI). The CPU utilization is measured in terms of the CPU used
by running processes as a percentage of a single CPU core. The
host server is the Huawei TaiShan200-2280V2 multi-core CPU
server, which has 96(48*2) CPU cores, so theoretically the

maximum CPU utilization is 9600%. The experiment is
repeated for ten times and the means of the parameter, as
detailed in Table V, are used for comparison.

TABLE III.

COMPARISON BETWEEN ANBOX, WAYDROID,
ROBOX AND OPENVMI

 Anbox Waydroid Robox OpenVMI
Time of first

released Apr. 2017 Sep. 2021 Apr.
2018 Sep. 2020

Access mode Desktop Desktop Remote Remote
Hardware
support Limited Many Many Most

Multi-instance
support No No Yes Yes

Multi-client
support No No No Yes

Direct GPU
support No No No Yes

Host VPU
support No No No Yes

TABLE IV.

SYSTEM CONFIGURATION FOR PERFORMANCE
COMPARISON

Environment Configuration

Server

HuaWei TaiShan200-2280v2: CPU: Kunpeng 920,
48Core *2; RAM: 512GB; SSD: 480GB; SATA:
4000GB; Network: 4*GE; GPU: AMD Radeon
W6800*2; VPU: Netint T432*2; Ubuntu 20.04

Virtual
Android

CPU: 2 Core; RAM: 8GB; Frash Memory: 32GB;
Resolution Ratio: 1920 * 1080; Frame Rate: 30 fps;
Android 7.1.1, ZhongShan Telemedicine System.

OpenVMI Version2.0
Robox Version 2.3

Fig. 9. The structure of the comparison experiment

In Table V, the mean fps of the robox-based experiment is
7.8, which means the robox-based system takes an average of
128 ms to process and display one frame. This is much higher
than that of the OpenVMI-based experiment, which only takes
32.2 ms to process and display one frame, based on a sample
mean fps of 31. In contrast to the OpenVMI’s direct invocation
of GPU resources in Android Docker, the robox-based system
does not support direct GPU rendering and VPU coding. Data
has to be transmitted to the host operating system for rendering.
The rendered results have to be transmitted back to Android

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

Docker and coded from RGBA to H.264 format before being
transmitted to the client application. A large amount of CPU
resources is consumed on data transmission between Android
Docker and the host operating system, resulting in the robox-
based system’s prolonged frame handling. For the same reason,
the mean CPU utilization of the robox-based experiment is
921.8%, which is much higher than the 20% utilization in the
OpenVMI-based experiment. Since OpenVMI has more
modules to initiate than robox, more RAM space and time are
needed for data processing. We therefore expect the OpenVMI-
based experiment to underperform in RAM usage and system
initiation time. Results of the experiment show that the RAM
usage of host server is 1.92GB in the robox-based experiment,
which is 5% smaller than the 2.02GB in the OpenVMI-based
experiment. Also, the system initiation time is 15.5 seconds for
the robox-based experiment, almost two times faster than the
OpenVMI-based experiment.

TABLE V.

THE RESULTS OF THE PERFORMANCE COMPARISON
EXPERIMENT

Performance parameter Robox-
based

OpenVMI-
based

Fps 7.8 31.0
CPU utilization 921.8% 20.0%

RAM usage (GB) 1.92 2.02
Initiation time (s) 15.5 27.3

TABLE VI.

CPU UTILIZATION IN 10 DIFFERENT ROBOX-BASED
EXPERIMENTS

Test Number 1 2 3 4 5
CPU

Utilization 923% 934% 924% 926% 933%

Test Number 6 7 8 9 10
CPU

Utilization 911% 920% 915% 907% 925%

Fig. 10. A snapshot of the host server CPU utilization by using the “top”

command for the robox-based experiment

The mean CPU utilization of the host server reaches 921.8%
in the robox-based experiment. This means that in the 96-core-
host server, the robox-based system consumes an average of
more than 9 CPU cores to support the initiation of the
Telemedicine Training Application. Table VI shows the CPU
utilization of the host server in robox-based experiment for each

experiment. Figure 10 is a snapshot of the real-time CPU
utilization of the host server during an experiment of the robox-
based system.

B. System Performance Experiment
The Telemedicine Training Application is deployed locally

and in cloud for a comparison of application performance. In
cloud deployment, illustrated as test scheme 2 in Figure 11, the
OpenVMI Client Application is installed in the client handset
to start the OpenVMI-based Telemedicine Training System.
Performance parameters including fps, CPU utilization of the
client device, RAM usage of the client device and the required
initiation time are tracked by Perfdog. In local deployment,
illustrated as test scheme 1 in Figure 11, the Telemedicine
Training Application is installed locally in the client handset.
The same parameters are tracked.

The Telemedicine Training Application is initiated for ten
times for each deployment modality and the means of the
parameters of interest are used for comparing application
performance. The experiment is repeated in two different client
devices.

Fig. 11. The structure of the performance experiment

TABLE VII.

CONFIGURATION OF THE MOBILE PHONE

Huawei mate30
smart phone

CPU: HuaWei Kirin 990 8 cores, 2.86GHz, 7nm;
GPU: 16 cores Mali-G76;
RAM: 8 GB
Flash Memory: 256GB;

Smartisan smart
phone

CPU: Qualcomm Snapdragon 625, 8 cores,
2.0GHz, 14nm;
GPU: Adreno 506;
RAM: 4GB;
Flash Memory: 64GB.

Android Docker
CPU: 2 Core; RAM: 8GB; Frash Memory: 32GB;
Resolution Ratio: 1920 * 1080; Frame Rate: 30
fps;

A Huawei smartphone and a Smartisan smartphone are used

as the client device. The Smartisan smartphone has weaker
hardware configuration so that we can compare application
performance across client devices of different capabilities. A
dual-core CPU, 8GB of RAM and 32GB of Flash Memory are
used in Android Docker, as early stage investigation suggested
that such configuration is capable to run the Telemedicine

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

Training Application smoothly while minimizing resource
usage. The configuration of the devices involved in the
experiment is detailed in Table VII.

The results of the experiment are detailed in Table VIII.
Unlike the higher RAM usage of the host server as shown in
Table V, which arises from the image rendering task and the
coding task, RAM usage of the client device is much lower as
the RAM of the client device is used only for displaying the
rendered results.

The fps of the OpenVMI-based application is only 0.91 fps
higher than the local application in the Huawei smartphone. The
fps of the local application is not compromised thanks to
Huawei’s powerful hardward configuration. CPU utilization of
the OpenVMI-based application in the Huawei smartphone is
only 15% as the Huawei smartphone is used only for display
and interaction. In contrast, the Huawei smartphone also
executes the initiation of the Telemedicine Training
Application so that more CPU resources are consumed,
explaining the local application’s higher CPU utilization than
the OpenVMI-based application. The RAM usage is 30%
higher in the OpenVMI-based Telemedicine Training System
because the OpenVMI Client Application consumes extra RAM
space. Finally, the initiation time of the local Telemedicine
Training Application is almost twice faster than the cloud-based
application. There are three reasons. First, the Huawei
smartphone is powerful so it can start a local application
quickly. Second, extra data transmission occurs when the
Telemedicine Training Application is initiated in cloud, leading
to higher latency in the cloud-based initiation. Third, the
OpenVMI Client application has to be initiated before it can
initiate the Telemedicine Training Application in cloud, further
adding to initiation time. In conclusion, for client devices of

powerful hardware configuration, deploying the Telemedicine
Training Application in cloud via the OpenVMI produces only
slightly better performance compared to local deployment.

In contrast, the Smartisan smartphone, with its weaker
hardware capabilities, has 1.5 fps (666.7 ms taken per frame),
1% CPU utilization, 390 MB RAM usage and an initiation time
of over one minute when the Telemedicine Training
Application is initiated locally. CPU utilization is low because
the local Telemedicine Training Application cannot be initiated
normally and it cannot work properly. Since the local initiation
performed significantly better in the Huawei smartphone, the
low performance in the Smartisan smartphone can be attributed
to its weak hardware When the training application is initiated
in cloud via the OpenVMI Client application in the Smartisan
smartphone, average fps has significantly improved by a factor
of 20 times and the average initiation time is reduced by half to
under 30 seconds compared to local initiation. The CPU
utilization increases from 1% to 15% and the RAM usage
increased from 390 MB to 581 MB. Furthermore, performance
of the OpenVMI-based initiation has been consistent across the
Huawei smartphone and the Smartisan smartphone, suggesting
that an OpenVMI-based application performs almost
independently of the hardware configuration of a client device.
The OpenVMI provides a feasible solution for devices of
weaker hardware capabilities to access resource-demanding
applications.

In addition, once purchased, the hardware configuration of
a smartphone is fixed, whereas the configuration of Android
Docker can be easily upgraded on demand, giving a OpenVMI-
based application a greater degree of flexibility.

TABLE VIII.
THE RESULTS OF THE PERFORMANCE EXPERIMENT ON MOBILE PHONE AND VIRTUAL MOBILE PHONE

 Fps CPU utilization RAM usage (MB) Initiation time(s)
Huawei, Local app 30.12 18% 518 18.8
Huawei, Cloud app 31.03 15% 675 27.7

Smartisan, Local app 1.5 1% 390 69.5
Smartisan, Cloud app 31.0 15% 581 28.0

C. System Concurrency Experiment
The OpenVMI-based solution proposed by this paper

supports multiple Android Dockers hence multiple concurrent
telemedicine training sessions on a host server. An experiment
is conducted to investigate the optimal number of
concurrent Dockers on one single host server. First, 8, 12, 16,
24, 32, and 48 concurrent Android Dockers are virtualized on
one host server respectively. Second, for each virtualization, the
server utilization performance is monitored. Finally, the server
performance with different concurrency is compared for
deciding on the optimal number of concurrency.

In the concurrency experiment, two Windows workstations
(Workstation 1 and Workstation 2) are connected to the
OpenVMI host server via the Internet as illustrated in Figure
12. Workstation 1 acts as a client device simulator and
Workstation 2 acts as performance tracker. Multiple Android

Operating Systems are simulated in Workstation 1 for running
multiple OpenVMI client devices at the same time. A single
Android Operating System simulator is installed in Workstation
2. PerfDog and the OpenVMI Client application are installed in
the Android simulator in Workstation 2 to obtain the test result
of the host server performance. The system configuration of the
two workstations is detailed in Table Ⅸ. The system
configuration of the host server is specified in Table Ⅹ.

To test for the optimal number of concurrent Android
Dockers, eight concurrent Android Dockers are created on a
host server at first, each of which runs the training application.
For test purpose only, each Android Docker is connected to one
simulated client device in Workstation 1. Each client device
will open the third file in default order, a 3D human head and
neck anatomy, in the com.yysmart.volumerender data package,
as shown in Figure 13. The system runs for two hours
consecutively, with the average value of GPU utilization,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

VRAM utilization and Docker CPU utilization being
documented.

Fig. 12. Structure of concurrency experiment

TABLE Ⅸ.

SYSTEM CONFIGURATION ON CLIENT AND VIRTUAL
ANDROID.

Windows
Workstation 1

CPU: Intel(R) Xeon(R) W-2133 CPU @
3.60GHz 3.60 GHz; RAM: 192 GB; GPU:
GTX1080

Windows
Workstation 2

CPU: AMD Ryzen 7 4700U with Radeon
Graphics 2.00 GHz; RAM: 16GB; GPU: AMD
Radeon (TM) Graphics

Virtualized
Android

CPU: 2 Core; RAM: 8GB; Flash Memory: 32GB;
Resolution Ratio: 1920 * 1080; Frame Rate: 30
fps;

TABLE Ⅹ.

SYSTEM CONFIGURATION OF THE CLOUD SERVER

Server Operating
System

Software
in cloud

Software in
application

layer
HuaWei TaiShan200-
2280v2: CPU: Kunpeng
920, 48Core *2; RAM:
512GB; SSD: 480GB;
SATA: 4000GB; Network:
4*GE; GPU: AMD
Radeon W6800*2; VPU:
Netint T432*2.

Ubuntu
20.04

K8S
1.22.3,
OpenVMI
2.0

Android
7.1.1,
Telemedicine
System

Fig. 13. Main Interface using in the concurrency experiment

The experiment is repeated for the virtualization of 16, 24,

32, 48 concurrent Android Dockers. A single GPU is used when
the number of virtualized smartphones is 32 and below. Dual-
core GPUs are used when 48 smartphones are virtualized.
Figure 14 shows a screen snapshot of Workstation 1 when
testing for the concurrency of 16 client devices.

Fig. 14. Screen Snapshot of Workstation 1, 15 Simulated Client

Devices

TABLE Ⅺ.

THE RESULTS OF THE PERFORMANCE EXPERIMENT ON DIFFERENT NUMBER OF CONCURRENT DEVICES
Number of concurrent client

devices
AVG GPU
utilization

AVG VRAM
utilization

AVG Docker CPU
utilization

AVG Server CPU
utilization

AVG Server
RAM usage

8 32% 27.9% 23.2% 3.7% 28.3G
12 44% 41.7% 28.5% 5% 33.8G
16 54% 55.6% 28.9% 7.3% 40.8G
24 70% 83.6% 27.83% 11.3% 55.4G
32 76% 91.3% 26.1% 15% 71.5G

48(dual-core GPU) 90%,
85%

89.3%,
88.6% 28.2% 24% 100G

The results of the experiment detailed in Table Ⅺ show that
GPU utilization and VRAM utilization increased with the
number of virtualized smartphones. GPU utilization reaches
70% and VRAM utilization reaches 83.6% when the concurrent
Docker number is 24. As a comparison, a relatively efficient
use of GPU resources without overloading the GPU is at about
80% GPU utilization. When the concurrent Docker number
increases to 32, GPU utilization is 76% which is still below

80%, but the average RAM utilization reaches 91.3%, which
may undermine system performance at peak usage. When the
Docker number further increases to 48, GPU utilization reaches
90% and 85% respectively for the dual cores and the VRAM
utilization reached 89.3% and 88.6% respectively. Despite with
16 more concurrent Dockers, the VRAM usage in the dual-core
GPU with 48 concurrent Dockers is actually slightly lower than
that in the single-core GPU with 32 concurrent Dockers, as the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

workload is shared between the dual cores. The experiment
suggests that the optimal number of concurrent training
sessions is 24 for a single host server.

We have also tested for the optimal number of connected
clients that one Android Docker supports. The test results show
that each Android Docker can connect to five client devices
without compromising system performance.

Experiments of concurrency suggest that a single host server
supports 24 concurrent Android Dockers, hence 24 concurrent
live training sessions for cloud server configuration as detailed
in Table Ⅹ. Each training session allows the connection of five
client devices, with one client device being the trainer device,
and four others being the trainee device.

It should be noted that the number of optimal concurrent
Android Dockers is influenced by the server’s CPU, ROM and
GPU configuration. As CPU and ROM configuration improve,
the optimal number of concurrent devices becomes increasingly
driven by GPU configuration. The more powerful GPU is, the
more concurrent Android Dockers the cloud server supports.
However, there is a tradeoff between GPU configuration and
financial cost. For example, the Nvidia Tesla V100 GPU costs
61,000 RMB in China, whereas the less powerful AMD
WX5100 GPU accelerator costs only 3100 RMB. Cost
effectiveness is also an important factor determining the
optimal server configuration hence the number of optimal
concurrent Android Dockers.

VII. DISCUSSION AND FUTURE WORK

A. Technical Features of the System
The technical features of the OpenVMI-based Telemedicine

Training System for 3D images are as follows:
● High efficiency. Direct GPU invocation leads to less

transmission nodes and the elimination of multiple
stages of instruction translation between OpenGL ES
and OpenGL. In addition, as a Video Process Unit
(VPU) is added to the hardware layer to code rendered
results in H.264 format, a large amount of CPU
resources can be spared for other tasks.

● Multi-device concurrency. A large number of Android
Docker can be started in parallel in a host server. A
single virtualized client application in each Android
Docker supports live streaming across multiple
devices. It also allows real-time interactions between
different devices.

● High performance. Empowered by the powerful host
server, the OpenVMI-based Telemedicine Training
System has high-performance computing power, high
rendering power and a large storage capacity such that
it is able to perform resource-demanding graphic
rendering. The physical client devices are used for
display and interactions only, making the training
system highly deployable.

B. System Advantages
The OpenVMI-based Telemedicine Training System has

several advantages as follows:

● High security. The training system is hosted in a
cloud-based server. System functions and system
updates are implemented on the server. The physical
local mobile device is used only for display and
interaction. As a result, any malfunctions of the local
device will not impact server functioning and the data
stored on the server remains intact. In this way, the
system can ensure system stability and data security.
Since user data is stored in the cloud, data can be
retrieved even when the physical client device is lost
or damaged. With security protection at the
Management Platform, combined with well
established authentication scheme, problems of data
breach, data loss and data damage can be contained
effectively.

● High flexibility. By using the OpenVMI technology,
the Telemedicine Training Application can be run
seamlessly in client smartphones regardless of their
hardware configuration. Furthermore, the
configuration of Android Docker can be easily
upgraded on demand, whereas the hardware
configuration of a smartphone is fixed after being
purchased.

● Easy promotion. As the physical local device is used
for display and interactions only, the technical
requirements for it can be easily met by existing
hospital-owned devices and personal devices. This
helps to lower capital investment cost.

● User privacy protection. Virtualized applications
running in the virtual environment only have security
access to the server location instead of the location of
a physical client device, freeing data breach problem
from a client device.

C. Limitations and Future Work
The performance of the local Telemedicine Training

Application installed in a powerful Huawei smartphone is
comparable to the OpenVMI-based version in terms of fps,
CPU utilization and RAM usage. The Huawei smartphone even
initiates the application faster than the OpenVMI-based
application does. This implies that if the hardware configuration
of a mobile device is powerful enough, it can also run resource-
demanding tasks like image rendering well. Nonetheless, there
exists a tradeoff between hardware capabilities and financial
cost, especially in less developed areas.

The OpenVMI is applied in telemedicine training in this
paper. We hope to explore a greater number of applications of
the OpenVMI system as the demand for 3D image-based
applications grow.

The OpenVMI is highly deployable in devices of various
hardware capabilities. It provides flexibility and it utilizes the
high computing capabilities of the cloud, making it particularly
useful in applications based on Virtual Reality (VR) and
Augmented Reality (AR). The practicability of the OpenVMI
in VR and AR will be studied in the future.

The early version of the OpenVMI is hosted open source in
the following address: https://github.com/DockDroid/openvmi.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

The improvements mentioned in this paper have been
integrated into the commercial version of the OpenVMI. It will
also be hosted open source in the GitHub in the near future.

VIII. CONCLUSION
The OpenVMI system proposed by this paper presents a low

cost solution for the display of interactive 3D images in mobile
environments. It improves upon a typical VMI in two ways:
direct invocation of GPU resources is achieved by developing
a bespoke GPU driver installed in Android Docker; rendered
results are coded in H.264 format by a VPU. Both
improvements result in less transmission delays and a lower
consumption of CPU resources, empowering the display of
interactive 3D images via the cloud.

By adopting the OpenVMI, the Telemedicine Training
System is an effective way to overcome problems such as
geographical immobility, limited computing power in mobile
devices and capital under-investment that limits the scope of
medical training in undeveloped areas. The results of various
performance experiments suggest that an OpenVMI-based
application is highly deployable across devices of different
hardware capabilities and the OpenVMI supports 24 concurrent
training sessions, each of which can connect with five client
devices at the same time for a single host server.

Finally, since the OpenVMI supports the display of 3D
images across multiple devices concurrently, its application can
be extended to other areas that rely on 3D image rendering
heavily such as Virtual Reality and Augmented Reality.

REFERENCES
[1] Smith A C, Thomas E, Snoswell C L, et al. Telehealth for global

emergencies: Implications for coronavirus disease 2019 (COVID-19) [J].
Journal of Telemedicine and Telecare, 2020, 26(5):309-313.

[2] Moglia A, Georgiou K, Marinov B, et al. 5G in Healthcare: from COVID-
19 to Future Challenges [J]. IEEE Journal of Biomedical and Health
Informatics, 2022:1-10.

[3] Angelucci A, Kuller D, Aliverti A. A Home Telemedicine System for
Continuous Respiratory Monitoring [J]. IEEE Journal of Biomedical and
Health Informatics, 2021, 25(4):1247-1256.

[4] Shuai Jiang. Design and Implementation of Telemedicine System Based
on Unity 3D [D]. Beijing Jiaotong University, 2017.

[5] Jin M L E, Brown M M, Patwa D, et al. Telemedicine, telementoring, and
telesurgery for surgical practices [J]. Current problems in surgery, 2021,
58(12):1-31.

[6] Li Y, Li Y, Deng Z, et al. A Collaborative Telemedicine Platform
Focusing on Paranasal Sinus Segmentation. proceedings of the
International Conference on Intelligent Interactive Multimedia Systems
and Services, 2018 [C]:238-247.

[7] Belgacem K, Kenoui M, Bouguerra F, et al. Collaborative Visualization
and Annotations of DICOM Images for Real-Time Web-based
Telemedicine System. proceedings of the 2021 International Conference
on Recent Advances in Mathematics and Informatics (ICRAMI), 2021
[C]:1-6.

[8] Elmoghazy S, Yaacoub E, Navkar N V, et al. Survey of Immersive
Techniques for Surgical Care Telemedicine Applications. proceedings of
the 2021 10th Mediterranean Conference on Embedded Computing
(MECO), 2021 [C]:1-6.

[9] Scott C K, Karem P, Shifflett K, et al. Evaluating barriers to adopting
Telemedicine worldwide: A systematic review [J]. Journal of
Telemedicine & Telecare, 2018, 24(1):4-12.

[10] Su K, Liu P, Gu L, et al. vMobiDesk: Desktop Virtualization for Mobile
Operating Systems [J]. IEEE Access, 2020, 8:213541-213553.

[11] Moazzami M, Phillips D E, Tan R, et al. ORBIT: A Platform for
Smartphone-Based Data-Intensive Sensing Applications [J]. IEEE
Transactions on Mobile Computing, 2017, 16(3):801-815.

[12] Wu Y, Wang Y, Hu W, et al. SmartPhoto: A Resource-Aware
Crowdsourcing Approach for Image Sensing with Smartphones [J]. IEEE
Transactions on Mobile Computing, 2016, 15(5):1249-1263.

[13] Cui H, Tu D, Tang F, et al. VidSfM: Robust and Accurate Structure-From-
Motion for Monocular Videos [J]. IEEE Transactions on Image
Processing, 2022, 31:2449-2462.

[14] Schwartz E, Giryes R, Bronstein A M. DeepISP: Toward Learning an
End-to-End Image Processing Pipeline [J]. IEEE Transactions on Image
Processing, 2019, 28(2):912-923.

[15] Katakol S, Elbarashy B, Herranz L, et al. Distributed Learning and
Inference With Compressed Images [J]. IEEE Transactions on Image
Processing, 2021, 30:3069-3083.

[16] Alakbarov R G, Alakbarov O R. Selection Virtual Machine in Mobile
Cloud Computing. proceedings of the 2018 9th International Conference
on Computing, Communication and Networking Technologies
(ICCCNT), 2018 [C]:1-4.

[17] Oh S-C, Kim K, Koh K, et al. ViMo (virtualization for mobile): a virtual
machine monitor supporting full virtualization for ARM mobile systems
[J]. Proc Advanced Cognitive Technologies and Applications,
COGNITIVE, 2010:48-53.

[18] Estai M, Kanagasingam Y, Xiao D, et al. End-user acceptance of a cloud-
based teledentistry system and Android phone app for remote screening
for oral diseases [J]. Journal of Telemedicine and Telecare, 2015:1-9.

[19] Estai M, Kanagasingam Y, Xiao D, et al. A proof-of-concept evaluation
of a cloud-based store-and-forward telemedicine app for screening for
oral diseases [J]. Journal of Telemedicine and Telecare, 2016.

[20] Latha R, Vetrivelan P, Geetha S. Telemedicine Setup using Wireless
Body Area Network over Cloud [J]. Procedia Computer Science, 2019,
165:285-291.

[21] Jin Qian. Analysis of Intelligent Telemedicine System Based on Internet
of Things [J]. Electronic Components and Information Technology, 2021,
5(7):9-10.

[22] Wei Luo, Xuelei Wang, Jin Xu, et al. Development of Telemedicine
System for Military Forces Based on WeChat Micro-Program [J]. China
Medical Device, 2019, 34(10):984-986.

[23] Xu X, Akay A, Wei H, et al. Advances in Smartphone-Based Point-of-
Care Diagnostics [J]. Proceedings of the IEEE, 2015, 103(2):236-247.

[24] Askarian B, Ho P, Chong J W. Detecting Cataract Using Smartphones [J].
IEEE Journal of Translational Engineering in Health and Medicine, 2021,
9:1-10.

[25] Chand R D, Kumar A, Kumar A, et al. Advanced Communication
Technologies for Collaborative Learning in Telemedicine and Tele-care.
proceedings of the 2019 9th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), 2019 [C]:601-605.

[26] Vedaei S S, Fotovvat A, Mohebbian M R, et al. COVID-SAFE: An IoT-
Based System for Automated Health Monitoring and Surveillance in Post-
Pandemic Life [J]. IEEE Access, 2020, 8:188538-188551.

[27] Nornaim M H, Abdul-Kadir N A, Harun F K C, et al. A Wireless ECG
Device with Mobile Applications for Android. proceedings of the 2020
7th International Conference on Electrical Engineering, Computer
Sciences and Informatics (EECSI), 2020 [C]:168-171.

[28] Wang R, Xu J, Ma Y, et al. Auxiliary Diagnosis of COVID-19 Based on
5G-Enabled Federated Learning [J]. IEEE Network, 2021, 35(3):14-20.

[29] Guo J. Smartphone-Powered Electrochemical Biosensing Dongle for
Emerging Medical IoTs Application [J]. IEEE Transactions on Industrial
Informatics, 2018, 14(6):2592-2597.

[30] Lauraitis A, Maskeliūnas R, Damaševičius R, et al. A Smartphone
Application for Automated Decision Support in Cognitive Task Based
Evaluation of Central Nervous System Motor Disorders [J]. IEEE Journal
of Biomedical and Health Informatics, 2019, 23(5):1865-1876.

[31] Qi W, Su H, Aliverti A. A Smartphone-Based Adaptive Recognition and
Real-Time Monitoring System for Human Activities [J]. IEEE
Transactions on Human-Machine Systems, 2020, 50(5):414-423.

[32] Gong C, Erichson N B, Kelly J P, et al. RetinaMatch: Efficient Template
Matching of Retina Images for Teleophthalmology [J]. IEEE Transactions
on Medical Imaging, 2019, 38(8):1993-2004.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

15
Fu et al.:GPU and VPU Enabled Virtual Mobile Infrastructure for 3D Image Rendering and Its Application in Telemedicine

[33] Zhang T, Li Y, Cheung J P Y, et al. Learning-Based Coronal Spine

Alignment Prediction Using Smartphone-Acquired Scoliosis Radiograph
Images [J]. IEEE Access, 2021, 9:38287-38295.

[34] Hoyos-Barceló C, Monge-Álvarez J, Shakir M Z, et al. Efficient k-NN
Implementation for Real-Time Detection of Cough Events in
Smartphones [J]. IEEE Journal of Biomedical and Health Informatics,
2018, 22(5):1662-1671.

[35] Cheffena M. Fall Detection Using Smartphone Audio Features [J]. IEEE
Journal of Biomedical and Health Informatics, 2016, 20(4):1073-1080.

[36] Frederix I, Sankaran S, Coninx K, et al. MobileHeart, a mobile
smartphone-based application that supports and monitors coronary artery
disease patients during rehabilitation. proceedings of the 2016 38th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2016 [C]:513-516.

[37] Liu L, Xu J, Huan Y, et al. A Smart Dental Health-IoT Platform Based on
Intelligent Hardware, Deep Learning, and Mobile Terminal [J]. IEEE
Journal of Biomedical and Health Informatics, 2020, 24(3):898-906.

[38] Guo Y, Cai L, Zhang J. 3D Face From X: Learning Face Shape From
Diverse Sources [J]. IEEE Transactions on Image Processing, 2021,
30:3815-3827.

[39] Nie Y, Su T, Zhang Z, et al. Dynamic Video Stitching via Shakiness
Removing [J]. IEEE Transactions on Image Processing, 2018, 27(1):164-
178.

[40] Zhipeng Fu, Jun Zhou, Wanpeng Xu. A GPU-Enabled Mobile
Telemedicine Training System for Graphic Rendering. In Proceedings of
International Conference On Mobile Computing And Networking
(MobiCom’22). ACM, Sydney, NSW, Australia.
https://doi.org/10.1145/3495243.3558269

[41] Korhonen J. Two-Level Approach for No-Reference Consumer Video
Quality Assessment [J]. IEEE Transactions on Image Processing, 2019,
28(12):5923-5938.

[42] Minseok J, Myong-Soon P, Shah S C. A mobile ad hoc cloud for
automated video surveillance system. proceedings of the 2017
International Conference on Computing, Networking and
Communications (ICNC), 2017 [C]:1001-1005.

[43] Liu P, Chen Y, Fu L, et al. cMobiDesk: A Lightweight Solution for
Android Desktop Virtualization. proceedings of the 2022 7th International
Conference on Cloud Computing and Big Data Analytics (ICCCBDA),
2022 [C]:234-239.

[44] Anastasopoulos M P, Tzanakaki A, Rofoee B, et al. Planning of dynamic
mobile optical virtual network infrastructures supporting cloud services.
proceedings of the 2014 European Conference on Networks and
Communications (EuCNC), 2014 [C]:1-5.

[45] Wang C-M, Wu Y-S, Chung H-H. FUSION: A unified application model
for virtual mobile infrastructure. proceedings of the 2017 IEEE
Conference on Dependable and Secure Computing, 2017 [C]:224-231.

[46] Choi E, Hong J. Design and implementation of virtual machine control
and streaming scheme using Linux kernel-based virtual machine
hypercall for virtual mobile infrastructure. proceedings of the Conference
on Research in Adaptive and Convergent Systems, 2019 [C]:57-60.

[47] Bentele M, Von Suchodoletz D, Messner M, et al. Towards a GPU-
Accelerated Open Source VDI for OpenStack. proceedings of the
International Conference on Cloud Computing, 2022 [C]:149-164.

[48] Wan F, Chang N, Zhou J. Design Ideas of Mobile Internet Desktop
System Based on Virtualization Technology in Cloud Computing.
proceedings of the 2020 International Conference on Advance in Ambient
Computing and Intelligence (ICAACI), 2020 [C]:193-196.

[49] Fornito K, Zembower C, Sneddon S. Using Infrastructure-As-Code and
the Public Cloud to Power On-air Media Creation Platforms. proceedings
of the SMPTE 2019, 2019 [C]:1-9.

[50] Wu J, Kuo C C, Hsiao S T, et al. A Cloud Experiment for Virtual Reality
and Augmented Reality in NCHC Render Farm. proceedings of the 2020
Nicograph International (NicoInt), 2020 [C]:78-81.

[51] Wang Y, Lv S, Li W. The Meteorological Cloud Desktop System of CMA
Meteorological Observation Center. proceedings of the 2019 International
Conference on Meteorology Observations (ICMO), 2019 [C]:1-3.

[52] Li J-Y, Kuo C-F, Wang Y-T, et al. The implementation of a GPU-
accelerated virtual desktop infrastructure platform. proceedings of the
2017 International Conference on Green Informatics (ICGI), 2017 [C]:85-
92.

[53] Chang C-H, Yang C-T, Lee J-Y, et al. On construction and performance
evaluation of a virtual desktop infrastructure with GPU accelerated [J].
IEEE Access, 2020, 8:170162-170173.

[54] Dong H, Kinfe A T, Yu J, et al. Towards Enabling Residential Virtual-
Desktop Computing [J]. IEEE Transactions on Cloud Computing, 2021:1-
18.

[55] Nguyen T-D, Hung P P, Dai T H, et al. Prediction-based energy policy for
mobile virtual desktop infrastructure in a cloud environment [J].
Information Sciences, 2015, 319:132-151.

[56] Adeliyi T T, Olugbara O O. Optimizing Remote Access Using Mobile
Cloud Virtual Desktop Infrastructure. proceedings of the 2021
Conference on Information Communications Technology and Society
(ICTAS), 2021 [C]:1-4.

[57] Ginsburg D, Purnomo B, Shreiner D, et al. OpenGL ES 3.0 programming
guide [M]. Addison-Wesley Professional, 2014.

[58] Kessenich J, Sellers G, Shreiner D. OpenGL Programming Guide: The
official guide to learning OpenGL, version 4.5 with SPIR-V [M].
Addison-Wesley Professional, 2016.

[59] Granot Y, Ivorra A, Rubinsky B. A new concept for medical imaging
centered on cellular phone technology [J]. Plos one, 2008, 3(4):1-7.

[60] Attila A, Á G, Péntek I. Common open telemedicine hub and
infrastructure with interface recommendation. proceedings of the 2016
IEEE 11th International Symposium on Applied Computational
Intelligence and Informatics (SACI), 2016 [C]:385-390.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

16 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

Zhipeng Fu received the B.S.
degree in Computer Science and
Technology with the School of
Computer, National University of
Defense Technology, Changsha,
China, in 2003, the M.S. degree in
2006, and the Ph.D. degree in 2014.
He is currently an Engineer with the
Industrial Internet of Things
Research Institute in Department of
New Pattern Network, Peng Cheng

Laboratory. His research interests include Mobile Operating
System, Computer Vision, Artificial Intelligence and Internet
of Things.

Jun Zhou, is studying for Ph.D.
degree at Sun Yat-sen University,
Guangzhou, China, and the
Industrial Internet of Things
Research Institute in Department of
New Pattern Network Peng Cheng
Laboratory, Shenzhen, China. His
research interests include Mobile
Operating System, Cloud
Computing, Graphic Computing and
Resource Scheduling.

Wanpeng Xu, received the B.S.
degree in Remote Sensing Science
and Technology from Space
Engineering University, Beijing,
China, in 2008, the M.S. degree in
2013, and the Ph.D. degree in
Information and Communication
Engineering with the School of
Aerospace Information, Space
Engineering University, Beijing,
China, in 2022. His research

interests include Computer Vision, Virtual Reality and
Automated Driving.

Changguo Guo, received the B.S.
degree in Computer Science and
Technology with the School of
Computer, National University of
Defense Technology, Changsha,
China, in 1996, the M.S. degree in
1998, and the Ph.D. degree in 2002.
He is currently a Professor, and the
Vice President of the Advanced
Institute of Big Data, the Director of
Yuzhou Big Data Laboratory. His
research interests include Big Data,

Internet of Things, Cloud Computing.

QINGBO WU, received the
Ph.D. degree in computer science
and technology from the National
University of Defense
Technology, in 2010. He is
currently a Professor and the
Director of the Basic Software
Engineering Research Center of
the Ministry of Education. His
research interests include
Operating System, Internet of
Things, and Cloud Computing.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3316698

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	I. INTRODUCTION
	II. LITERATURE REVIEW
	A. Telemedicine Applications on Mobile Devices
	B. Image or Video Processing in Mobile Environments
	C. VMI Solutions
	D. VDI Solutions Using GPUs

	III. THE OPENVMI SYSTEM
	A. The Structure of the OpenVMI
	B. The Workflow of the OpenVMI

	IV. IMPROVEMENTS IN THE OPENVMI SYSTEM
	A. Direct GPU Invocation
	B. VPU Coding

	V. THE OPENVMI-BASED TELEMEDICINE TRAINING SYSTEM
	A. The Topological Structure of the System
	B. Achieved functionalities that are hard to achieve in a normal smartphone

	VI. Experiments
	A. Performance Comparison Experiment
	B. System Performance Experiment
	C. System Concurrency Experiment

	VII. discussion and future work
	A. Technical Features of the System
	B. System Advantages
	C. Limitations and Future Work

	VIII. CONCLUSION
	REFERENCES

