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Abstract—Split Computing has become a prominent resource-
efficient method to enable machine learning (ML) applications
on user-constrained edge devices, where compute-intensive ML
workloads can be delegated to remote cloud servers for processing.
However, the exposure of data to the cloud service providers
as such raises privacy alarms due to the possible leakage of
sensitive user information. On a relevant note, typical deep neural
network (DNN) design frameworks do not take into account
model splitting and its complications at the early design stages of
DNNs. Thus, a natural question arises on how to bridge this gap
and optimize the DNN design process such that split computing
operations can meet the requirements of accuracy, performance,
and privacy. In this paper, we strive to address this question
through adopting a privacy-by-design approach, where privacy is
characterized either as a constraint or an objective to realize privacy-
aware models tailored for split computing. Using the ϵ-differential
privacy standard for our case study, we conduct intensive empirical
analysis on the relation between architectural parameters and
intrinsic privacy budgets, and propose PrivyNAS – a privacy-aware
Neural Architecture Search framework for split computing. On
the CIFAR-10 dataset, our approach has demonstrated promising
results in providing DNN architectures that balance the required
design trade-offs.

Index Terms—Inference Privacy, Differential Privacy, Split
Computing, Neural Architecture Search, Edge-Cloud.

I. INTRODUCTION

W Ith the advent of the Internet of Things (IoT) and Big
Data era, Deep Neural Networks (DNNs) have become

recognized standard solutions for numerous IoT applications,
such as image recognition, Natural Language Processing,
and healthcare monitoring, given their impressive capacity
in handling large volumes of data and achieving remarkable
performances [1]–[3]. In order to enable the deployment of
compute intensive DNN models onto resource-constrained user
end devices, recent research works have proposed to adopt a split
computing approach in which DNN computations are divided
between the user’s edge device and a cloud server [4]–[7]. In
this scheme, inference can be offered by a cloud provider as an
online, on-demand remote inference service. Hence, the bulk (if
not all) of the computational workloads from the user’s model
can be relayed for processing on the provider’s cloud, enabling
on-device execution of DNNs from the constrained user devices.
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Nonetheless, the transmission of user’s data to the cloud poses
privacy concerns as users have no control over how the data is
used once it has been made available to the provider. Previous
incidents have already seen providers sharing users’ personal
information with other third parties (e.g., Facebook incident
in 2018 [8]). Another study has demonstrated that aggregate
user data at the cloud which are reused for model training
are liable to model inversion attacks, mainly due to the model
weights leaking users’ sensitive attributes (as was demonstrated
in a model inversion attack recovering images from a facial
recognition system [9]). Even more so in the mobile health
field, the transmission of time series physiological signals (e.g.,
ECG) for cloud processing can reveal user-private behavioral
patterns (e.g., e.g., smoking, stress) sensitive to the user.

Addressing this, researchers have proposed numerous tech-
niques to provide privacy guarantees under such remote infer-
ence model [10]–[13]. Despite their effectiveness, these methods
were applied to models originally targeted for single platform
deployment, that is, models whose design was not optimized
for edge-cloud system operation. As works in [14], [15] have
observed that varying a subset of architectural parameters
can impact privacy guarantees, the inherent privacy-preserving
capabilities of a model can be affected by the choice of
architectural parameters. Hence, an argument can be made that
architectural parameter choices can be optimized to enhance a
DNN model’s privacy preserving capabilities, giving rise to the
following questions from a DNN model designer’s perspective:

• How to assess candidate model architectural designs with
regards to upholding inference privacy guarantees given a
remote inference operational scheme?

• How to model the relationship between architectural design
choices and the inherent privacy-preserving capabilities
given a split computing model of computation?

• How to implement a design framework for non-
monolithic DNN models balancing the underlying accuracy-
performance-privacy trade-offs?

Figure 1 shows how application-level accuracy and hardware
performance (e.g., execution latency) have been the standard
objectives guiding the DNN design process to attain models that
achieve the most balanced trade-offs. In this work, we aim to
study the value of incorporating privacy as a design metric given
a remote inference deployment scheme. To achieve this, a formal
metric needs to be utilized for to quantify privacy as a design
objective such as the rigorous Differential Privacy (DP) standard
[16], [17] with its quantifiable privacy loss budget ϵ. In DP,
noise is added to user’s data for obfuscation and minimizing its
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Fig. 1. The evolution of DNN design objectives. The goal from multi-objective
optimization is to identify a Pareto-optimal set of model designs that balance
design trade-offs. Here, we also consider privacy as a design objective.

likelihood of revealing sensitive information before transmission
to the cloud. In other words, a differentially private algorithm
with the right amount of noise perturbation operates on aggregate
representations of users’ data items to avoid leakage of their
sensitive information within. In order to prevent noise injection
from destroying the a model’s utility, additive noise is sourced
from Gaussian or Laplacian distributions that are calibrated to
the data sensitivity (i.e., the max distance between any two data
inputs). These well-defined distributions represent a standardized
source of noise for differential privacy use-cases [10], [14], [18].

In this work, we study how DP for remote inference and
potential split-computing can be considered from the early DNN
architectural design stage. To asses our approach, we conduct
extensive experiments on well-known models to empirically
study the effect of varying architectural parameters and splitting
point position on the privacy budget ϵ. Next, we implement a
novel customized Neural Architecture Search (NAS) framework,
namely PrivyNAS, through which we are able to specify privacy
as either an objective or a constraint during the DNN design
stage. Accordingly, the processes of designing, partitioning,
and selecting additive noise levels for split DNN models are
all automated within PrivyNAS framework. In summary, the
paper’s key contributions are as follows:

• We propose a methodology to design DNNs for remote
inference applications in a privacy-aware fashion using the
Differential Privacy (DP) standard.

• We conduct extensive empirical evaluations on the well-
know VGG [19] and MobileNetv2 [20] DNN models to
analyze how inference privacy budget ϵ can vary according
to the choices of DNN architectural parameters.

• We develop a customized privacy-aware NAS framework
for remote inference to search for optimal architectural
designs with respect to accuracy, performance, and privacy.
The privacy budget ϵ can be specified as either a design
constraint or a minimization objective.

• Our experiments on the CIFAR-10 dataset have shown
promising results in the sense that our customized NAS
framework has provided a model that achieved 79.9% accu-
racy compared to 79.16% from the baseline ProxylessNAS
framework [21]. Moreover, our customized framework was
capable of realizing model designs that can balance the
accuracy-performance-privacy trade-offs more effectively
than conventional means.

II. PRELIMINARIES

A. Differential Privacy (DP)

Differential Privacy [16], [17] has been established as a
rigorous standard for providing quantifiable privacy guarantees

on users’ sensitive data. A formal definition for ϵ-DP is given:
Definition 1: A randomized mechanism A is ϵ-differential
private, iff for any adjacent inputs d and d’, and any output S
of A,

Pr[A(d) = S] ≤ eϵPr[A(d′) = S]

where ϵ is a measurable privacy budget, whereas d and d′

represent adjacent inputs differing by a single data item. d and
d′ are defined according to the application, where they can range
from entire datasets differing by a single entry [14], or acquired
signals instances differing in content by a single item (e.g.,
two sentences differing by at most i number of words) [10].
Generally, smaller ϵ values indicate stronger privacy guarantees.

For a deterministic function f , obtaining its ϵ-DP compliant
randomized mechanism Af entails the addition of noise cal-
ibrated to the global sensitivity of f . Global sensitivity, ∆f ,
represents the maximum absolute distance |f(d) − f(d′)| for
any adjacent input pairs d and d′, and the additive noise can
be incorporated as follows:

Af (d) = f(d) + u (1)

where u represents the noise tensor which can be sampled from
a Laplacian distribution Lap(0, ∆f

ϵ ) of mean 0 and scale ∆f
ϵ

to attain a privacy budget of ϵ [17].
Added to its quantifiability, DP is characterized by the two

essential properties of postprocessing immunity and composition
[17], [22]. The first ensures that after the data has been processed
through an ϵ-DP randomized mechanism to generate a specific
output, further handling or processing of this output by other
algorithms will not degrade the original privacy guarantee,
i.e., the output would still remain ϵ-DP. Whereas the latter
composition property characterizes aggregation of privacy losses
when similar or neighboring data are processed by two DP
algorithms [22], [23]. For instance, when k processing calls
are made to an ϵ-DP algorithm, an upper-bound on the privacy
drop (i.e., increase in the value of ϵ) equal to kϵ cab expected
as a result of this composition.

If noise perturbation is applied at the user’s device, this
resembles an instance of local differential privacy [23]. Owing
to its inherent property of immunity to post-processing, local
DP can ensure data privacy for remote inference models, where
Af represents the local model deployed on the user device,
and the privacy guarantee is associated with making each data
sample indistinguishable at the provider’s side [10].

B. Neural Architecture Search

The typical approach to design DNN model architectures
required considerable skill and expertise to effectively tune
the various architectural design knobs. Alleviating this burden,
neural architecture search (NAS) has emerged as a viable
technique to automate the design of DNN architectures that are
on-par or outperform their manually-crafted counterparts [21],
[24]–[26]. In a nutshell, the purpose of NAS is to effectively
navigate an enormous design space of neural architectural
parameters to identify optimal candidate model architecture
designs suited for the target objectives. Primarily, there are
three foundational pillars to any NAS framework:

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3311761

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Search Space. Through the coalescence of various combi-
nations of architectural design parameters, a pool of candidate
designs can be constructed for the NAS engine to access. Thus,
DNN architectural parameter choices such as the #layers, #
channels, type of layer operation, etc can all be encoded into a
single unified search string.

Search Controller. Due to the colossal size of typical DNN
architectural search spaces, NAS frameworks employ search
controllers adopting sophisticate search strategies to effectively
balance the exploration/exploitation of the search space. In
particular, search controllers learn to identify promising design
subspaces from which they can sample superior population of
architectural candidates, reducing the likelihood of considering
sub-optimal designs in the interim. These controllers are
typically adopt strategies that follow a learning-based approach
(e.g., reinforcement learning based [21], [24]) or a metaheuristic
approach (e.g., evolutionary algorithm [26]).

Performance Evaluation. In order to guide the search
controller on promising architectural design sub-spaces, per-
formance evaluations of the candidate model design on the
target objectives (e.g., accuracy and execution latency) are fed
back to the search controller for it to exploit optimizations
around the top-performing candidates in a progressive manner.

Traditionally, classical NAS frameworks [6], [24] relied on
training candidate models from scratch to determine the accuracy
scores needed for comparison. However, this approach was
deemed inefficient due to the substantial added timing overheads
from training each candidate only to have all trained weights
thrown away after evaluation. Addressing this, recent NAS
approaches [21], [25], [26] proposed a one-shot approach in
which all candidate models are trained simultaneously through
the concepts of supernet and shared weights. Briefly, the idea
relies on specifying the search space as a single, multi-path over-
parameterized network model (i.e., a supernet) that encapsulates
all candidate architectural designs within (i.e., subnets). In this
case, the sampling of a candidate model from the supernet
is achieved through selecting for each potential layer position
a particular path reflecting a specific architecture choice, as
in choosing a path representing a 3×3 convolution. Then, the
weights associated with the 3× 3 convolution are loaded within
the supernet, used for the candidate model evaluation, and are
updated in the next udpate step. Our approach builds on this
mature form of NAS frameworks detailed in Section V.

C. Related Work

Differential Privacy has been applied for privacy preservation
across 3 fields: data aggregation, model training, and remote
inference [18]. In data aggregation, the focus is on maintaining
privacy of user responses when collecting data for computing
statistics or dataset construction. Thus, techniques like random-
ized responses provide formal guarantees on users’ replies in
standardized systems, as Google’s RAPPOR [27]. In model
training, ϵ privacy guarantees are provided for each user data
item contributing to a training dataset. [23], [28]. Consequently,
the impact a single data item can have on a model’s parameters
is limited, preventing implicit storage of sensitive information
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Fig. 2. Inference Privacy Model of Computation for DNNs using ϵ-DP.

which can be compromised if attacks were conducted on the
model [14], [29], [30]. The last category is for remote inference
privacy [10], which is discussed in detail throughout this paper.

Inference Privacy can be achieved through techniques such as
homomorphic encryption [13], [31], [32] and Secure Multiparty
Computation (SMC) [33], [34], allowing computation using
encrypted data. However, encryption can be resource demanding
making it prohibitive to execute on constrained edge devices.
Alternatively, context-aware information theoretic approaches
were proposed to reduce the information content of any data
features that do not affect the accuracy of the primary inference
task [11], [12], [35]–[37]. For a DP approach, it provides a
formal measure on the degree of indistinguishability within the
“mechanism”, which is the inference model itself in this case.
Therefore, by bringing ϵ-DP into the models’ design process,
we can obtain baseline privacy guarantees which can be further
tightened through context-aware approaches if needed.

III. ϵ-DP REMOTE INFERENCE MODEL

Figure 2 illustrates the basic inference privacy model of
computation for deep neural network (DNNs) achieved through
ϵ-DP. As shown, additional computing blocks are added on the
user’s mobile-edge device following the local model, Ml, to
incorporate ϵ guarantees prior to offloading. These computing
blocks are described in further detail as follows:
Norm Clipping: Obtaining a precise estimate for global
sensitivity, ∆f , within DNN models can be a complicated
process [14]. Alternatively, ∆f is approximated by restricting
the effect of each input to an absolute maximum threshold. As
the privacy guarantee ϵ is to be associated with the local model’s
output a, each a first needs to be bounded according to the
∆f estimate at the data offloading point. Thus, each output a
is scaled down to become a← a/max(1, ∥a∥∞

B ), where ∥a∥∞
is the infinity norm of a and B is a clipping threshold leading
∆f to become 2B. The Bound B can be approximated based
on the median of infinity norms belonging to output activations
of public training data samples [10], [14].
Additive Noise: Next, perturbation is applied to the scaled
down activation a proportional to the desired privacy budget
ϵ (see equation 1). In particular, a noise tensor n of the same
dimensions as a is populated with random samples from the
distribution Lap(0, ∆f

ϵ ), and added to a to generate the noisy
representation a′, which can then be transmitted to the cloud.
In this scheme, the cloud-side DNN can be viewed as a post-
processing stage for the local-side DNN given how local DP
is applied at the client’s part of the model. Accordingly, the
DP composition property becomes primarily associated with the
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TABLE I
THE VARIATION OF ϵ WITH ARCHITECTURE AND NOISE INJECTION LAYER.

Layer DNN Architecture
VGG11 VGG13 VGG16 VGG19

MP C
Bound 0.8 0.775 0.825 0.625
Acc. 21.0 25.7 32.7 47.4
ϵ@b=0.5 3.2 3.1 3.3 2.5

Conv E1
Bound 0.175 0.15 0.15 0.275
Acc. 19.7 19.9 20.6 12
ϵ@b=0.5 0.7 0.6 0.6 1.1

local DNN side of the model, and from the cloud perspective,
its outputs can typically be only traced back to the noisy
intermediate representation a′.
DNN noisy retraining: As noise addition can lead the model’s
utility to deteriorate, retraining on publicly-available noisy data
representations is beneficial. Typically, the cloud-side model
Mr is retrained on perturbed representations of public data
instances to enhance the model’s resilience when dealing with
noisy representations a′. Meanwhile, local models Ml remain
unaltered [10]. The retraining loss function for Mr can be as:

Ltotal(wr; a, a
′) = λLclean(wr; a)+(1−λ)Lnoisy(wr; a

′) (2)

where wr represent Mr’s weight parameters while λ trades off
the contribution of the clean and noisy representations, taking
values in the range of [0, 1].

It should be noted that there are additional techniques to
further strengthen formal ϵ privacy guarantee, as the data
nullification technique in [10]. However, our analysis in the
following sections is conducted using the basic form of ϵ-DP
remote inference model to analyze in the vanilla form the relation
between a model’s architectural build and privacy budget.

IV. ANALYSIS OF THE RELATION BETWEEN DNN
ARCHITECTURAL PARAMETERS AND ϵ-DP

Through intensive empirical evaluations, we examine how
the ϵ-DP guarantees for remote inference can vary according
to the underlying DNN structure. The work in [15] similarly
investigated such a relation to identify an optimal topology for
Ml that enables cloud-based DNN training while protecting
data privacy. Nonetheless, their work neither targets inference
privacy nor is based on the DP standard. Throughout this paper,
our analysis is established based on the benchmark CIFAR-
10 image dataset for its role as a main evaluation dataset in
numerous relevant DP works [10], [14], [15], [23], [29].

Proposition 1: ϵ variability per layer. Within a model,
the strength of ϵ-DP guarantee varies depending on the
chosen noise injection layer. Across model variants, the
noise injection layer capacity to influence ϵ varies based
on its relative position within the computational graph.

In this experiment, we analyze how the sensitivity bounds and
the ϵ privacy guarantee vary when the position of noise injection
layer changes within and across different model architectures.
This first analysis is performed using pretrained models directly
with no cloud-side retraining after noise injection (we leave that
analysis for the immediate subsequent experiments). Briefly,

the choice of offloading (noise injection) layer influences the
amount of perturbation needed to achieve ϵ-DP guarantee, and
in turn affects the DNN model’s utility. As a motivational study,
We analyze how ϵ would vary across 4 pre-trained variants of the
VGG family of DNNs [19] under two potential injection layers:
MP C, which is the 3rd Max Pooling layer, and Conv E1, the
first Conv layer in the 5th block of the VGG architecture. We
assume additive noise tensors are sampled from a Laplacian
distribution with a scale of b = 0.5 (recall b = ∆f

ϵ in (1)). As
shown in Table I, we observe that not only do clipping bounds
B differ based on the choice of injection layer but also across
the distinct variants. This implies that ϵ budget computed would
be different under the same b for different layers. For instance,
the privacy guarantee in VGG16 at MP C is ϵ = 3.3 opposed
to ϵ = 0.6 at Conv E1. Also for the same layer across different
VGG variants, a stricter ϵ of 2.5 at MP C can be attained for
VGG19 compared to ϵ values from the other VGG variants.
More interestingly, despite providing ϵ = 2.5 budget at MP C
for VGG19, the model’s utility does not degrade as much as
that for the other variant models with looser ϵ budgets at MP C.
Contrarily, VGG19 model utility with ϵ = 1.1 deteriorates in a
worse fashion compared to other VGG models with tighter ϵ
budgets. These observations show that based on how a model
is structured (VGG variant) and partitioned (injection layer
position), knowledge is maintained discordantly and so is its
intrinsic resilience to noisy representations.

Key Takeaway. The noise injection layer position is to
be optimized alongside the design process of DNN model
architectures supporting ϵ-DP for inference privacy.

Proposition 2: Depth. For the same required ϵ budget,
the likelihood of a model sustaining severe drop in
accuracy decreases as the noise injection layer position
tends towards the model’s deeper layers.

Depth: In this analysis, we assume a tight privacy budget
requirement of ϵ = 2.8 based on results from [10], [29]. We
use two DNNs, VGG11 and VGG16 [19], trained to ∼ 94%
test accuracy on CIFAR-10 using the training hyperparameters
in [38]. These two architectures resemble architectural depth
variation since VGG16 possess one more Conv layer per
each block than VGG11, but they share other architectural
configuration parameters. Then for each layer, we evaluate how
the overall DNN utility would degrade when the layer applies
noise injection. We also retrain the cloud-side DNN on noisy
perturbations in each case, and re-evaluate the overall utility. The
two upper bar plots in Figure 3 demonstrate how the accuracy
is impacted for every potential injection layer for both DNNs.
At a first glance, we can observe that the deeper injection
layers generally offer better overall accuracy under a specific ϵ.
This is comprehensible given how they already deal with more
abstract representations of data. We also notice that the required
perturbation level b (shown in red) to achieve 2.8-DP differs
for each layer depending on the corresponding bounds, which
are estimated using infinity norms’ median at each respective
layer. We also notice that the model’s classification capability
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Fig. 3. The effect of varying architectural depth on utility illustrated through
VGG11 and VGG16 before and after retraining for each potential injection
layer (red values on top of the bars indicate b values).

suffers significantly when the injection layer is set prior to
MP C. On the other hand, we also note that the accuracy does
not degrade as much for the VGG16 as its counterpart does
across the latter layers for the same b requirement, indicating
how the architectural build affects the resilience of a model.
The other two bar plots show the accuracy of the DNNs after
the noisy retraining of the cloud-side DNN. The key insight is
that some of injection layers which initially led to a complete
loss of utility (e.g., Conv C1) can reach acceptable levels of
accuracy after retraining. We observe that the deeper VGG16
layers generally sustain better recovery of utility after retraining.

Key Takeaway. Retraining cloud-side DNNs on noisy repre-
sentations can enhance the inference privacy model’s accuracy.
Thus, the chosen depth of noise injection presents a trade-off
between privacy, accuracy, and computational complexity.

Proposition 3: Operation type. The choice of kernel
operations within a DNN model after ϵ-DP noise injection
affects its degree of utility drop.

Operation type: We compare the pretrained VGG16 against
a variant which possess 5 × 5 Conv layers at blocks A and
C (1st and 3rd) instead of the traditional 3 × 3 operations.
As shown in the top two entries in Table II, same layers

TABLE II
OPERATION AND WIDTH VARIATIONS EFFECT ON UTILITY FOR ϵ=2.8; ALL

ARCHITECTURES ARE PRE-TRAINED TO ∼ 94% TEST ACCURACY.
Architecture Layer b Eval. Acc. Ret. Acc.

VGG16
MP C 0.6 27.3% 63.9%

Conv D2 0.1 62.1% 91.1%
Conv D3 0.1 66.5% 91.2%

VGG16 MP C 0.5 51.4% 83.8%
5×5 ops.@ Conv D2 0.1 52.4% 90.2%
blocks A&C Conv D3 0.1 29.4% 42.2%

VGG16 MP C 0.6 26.5% 65.2%
0.5×#Cin@ Conv D2 0.2 68.6% 91.7%
blocks B&D Conv D3 0.1 27.9% 87.4%

with disparate operations affect the model’s utility differently.
Specifically, some injection layers can degrade utility severely
in one architecture but not the other. For example, when MP C
is set as the injection layer, performance drops significantly in
VGG16 but not in its variant even after retraining. The opposite
occurs when the injection layer is Conv D3, showing how the
operations’ type influence utility under privacy constraints.

Key Takeaway. The inference privacy-by-design approach for
DNN model architectures is to co-optimize the choice of DNN
operators alongside the noise injection position.

Proposition 4: Width (# Channels). Wider models with
larger #channels can leverage computational redundancy
to support inference privacy with tighter ϵ budgets.

Width (# Channels): We provide a VGG16 variant containing
half the number of output channels at its 2nd and 4th blocks, B
and D. Despite being more concise, the variant’s performance for
different injection layers, shown in the last entry of Table II, is
almost equivalent to that of the original VGG16 after retraining.
In principal, this experiment is analogous to an analysis of the
impact of channel pruning [39], except that the evaluation of
performance degradation is performed on a mixture of clean
and noisy samples. Thus, depending on the utility and privacy
requirements, compact architecture designs can be chosen.
Key Takeaway. Designing model architectures for ϵ-DP inference
privacy is to enable compensating for the accuracy drop incurred
from noise injection through including redundant computations
along the width dimensions that aid in recovering utility.

Proposition 5: Residual Models. To uphold the ϵ-
DP inference privacy guarantee for residual models, the
noise injection process must consider the model’s multi-
execution paths along its branches.

Residual Models: Modern DNNs employ residual connec-
tions to counter the effects of vanishing/exploding gradients
during training [40]. MobileNetV2 [20] is one such architecture
designed for opertaion on mobile devices. We perform the
same per-layer empirical performance analysis at ϵ = 2.8, and
evaluate the model’s utility before and after retraining. For space
considerations, we report the main takeaway from our analysis
which was that partitioning and noise injection options should
be restricted to the final concatenation/addition layer of every
residual block, i.e., on an inter-block basis, because from an
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inference privacy perspective, partitioning on an intra-block
basis (i.e., considering layers within residual block as potential
partitioning options) would entail adding noise twice to both
outputs from the layer and residual connection to satisfy ϵ-DP,
which can significantly impact utility.
Key Takeaway. The joining nodes that follow multi-path residual
blocks represent the most adequate candidates for noise injection
layers for a residual DNN model.

Building on these observations, we investigate in the following
Section how to parameterize privacy during the design stage of
DNNs through implementing a customized NAS framework.

V. PRIVYNAS: PRIVACY-AWARE NEURAL ARCHITECTURE
SEARCH FRAMEWORK FOR SPLIT COMPUTING

We establish our customized PrivyNAS framework over the
SOTA ProxylessNAS framework [21]. In brief, ProxylessNAS
belongs to the class of NAS frameworks adopting the supernet
and shared weights features as introduced in Section II-B. Orig-
inally, ProxylessNAS was implemented to design DNN model
architectures suited for deployment on resource-constrained
edge devices. In accordance, its supernet was constructed
as a generalized form of the resource-efficient MobileNetv2
architecture [20] where the different architectural parameter
choices are encoded at every residual block. Thus, contrary to the
original MobileNetv2 model having fixed choices of kernel size
and expansion ratios for its constituent layers, ProxylessNAS
enables these architectural parameters to be variable across
layers. To enable varying the depth of a candidate architecture,
ProxylessNAS also includes a skip option in its pool of candidate
operations for each MBConv layer. Regarding the controller’s
search strategy, a learnable gating mechanism is incorporated in
order to control the sampling of architectural parameters whose
combinations reflect diverse candidate architecture designs. As
will be detailed in Section V-C, the search controller adopts
a reinforcement learning approach to guide the gate selection
strategy, in which the strategy is progressively updated via a
reward function combining both accuracy and execution latency
objectives for a target hardware platform. In the following, we
breakdown the modifications and features we incorporate onto
ProxylessNAS to support ϵ-DP within the NAS process.

A. Bounds estimation within NAS

Estimating the global sensitivity ∆f through bounds B is
key for determining the amount of additive noise needed to
incorporate ϵ-DP (see (1)). In Section IV, bounds B were
determined for a pre-trained model using the infinity norms of
training data at the corresponding splitting layers. In a NAS
framework however, the final model architecture is not known
a priori, meaning that parameter weights – and accordingly B
estimates – are susceptible to changes as the search progress.
Moreover, it is impractical to train every candidate design in a
search space just to obtain estimates of B.

Hence, we propose a successive refinement approach for
the B estimates to enable the application of fine updates to
the Laplacian noise distributions as the search progresses. As
illustrated in Figure 4, this is motivated by the observed pattern

All Norms follow the same pattern

Norms can remain almost 

constant over long intervals

Major swings lasted ~ 10 epochs 

Fig. 4. The change in infinity norms (i.e., sensitivity bounds) and the training
accuracy for a MobileNetV2 network on the CIFAR-10 dataset.

in which infinity norm estimates for B change during the training
of a MobileNetV2 architecture on CIFAR10. In particular, we
notice that the norm values across the various layers progress in
the exact opposite manner of training accuracy, where the initial
sharp increase in accuracy is mirrored by a sharp decline in
infinity norms. Additionally, once training enters the fine-tuning
phase (after ∼ epoch 10), the rate of change of infinity norm
values remarkably drops until the training concludes, as shown
in the Figure through how the median and mean estimates
changes. Analogously, NAS approaches like ProxylessNAS
with the supernet and shared weights features can leverage
this proposed successive bounds refinement technique as the
supernet represent a generalized DNN model. Thus, all of its
weights are trained and updated simultaneously providing the
same progression pattern of infinity norms as in Figure 4.

From here, we implement our approach to entail an initial
warmup training phase using clean data representations until the
large swings in the early training stage is bypassed. Afterwards,
preliminary B estimates are computed to construct Laplacian
noise distributions that meet ϵ for every candidate operation
in the supernet. As the search progresses, noise tensors are
sampled to be injected at a selected noise injection layer for a
candidate architecture (subnet). An additional periodic pass on
the clean data representations is invoked for the successive
bounds refinement process in order to update B and the
Laplacian scale values. In our experiments, a uniform periodic
invocation frequency every 30 epochs was sufficient.

B. Joint Training

For inference privacy, cloud-side DNN retraining on noisy
data representations is needed to maintain a model’s utility (see
Section III). In NAS, this is infeasible as neither the architecture
nor the splitting layer are known beforehand. Alternatively, we
propose to jointly train the supernet from the start on clean and
noisy data representations where the injection layer is to be
chosen dynamically as the search progresses. This is feasible
in one-shot NAS techniques as all candidate architectures
are trained simultaneously, and noisy representations can be
provided through pre-specified ϵ budgets. Hence, the formulation
of the training loss function in equation 2 is to be modified to
include the entire weights of the supernet w rather than only
the cloud-side parameters.
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TABLE III
TRAINING AND TEST ACCURACY (%) ACROSS MOBILENETV2 RETRAINING

TECHNIQUES AT ϵ=2.8 AND λ=0.5 OVER 200 EPOCHS.

Technique Traintotal Testtotal Testclean Testnoisy

Fixed MB5 92.48 88.65 89.7 87.6
Inter-Block 85.72 76.92 88.7 65.1

As the final position of the noise injection layer is also not
known aprioi, We examine how the training of a model under
a dynamic assignment of the noise injection layer position can
affect its accuracy. We use the MobileNetV2 architecture with
92.5% test accuracy on clean data representations. The dynamic
assignment approach selects injection layers from the set of
inter-block positions (recall the residual blocks in Section IV),
and is compared to a fixed assignment approach with noise
injection applied at the 5th residual Block, namely MB5. As
shown in Table III, the fixed assignment approach sustains an
overall test accuracy after retraining on a clean/nosiy data mix
of 88.65%, whereas the mean accuracy from training under all
potential injection layers is 76.92%. The drop is comprehensible
as we have shown in Section IV that different injection layer
candidates do not preserve utility equally. Consequently, the
NAS search would need to “learn how to filter out” such
underperforming candidates, and concentrate the training effort
to be conducted uner the most promising injection candidates.
For concreteness, we also notice in Table III that the clean
test accuracy suffers < 4% degradation, which represents the
trade-off cost for training a MobileNetV2 at inference DP ϵ=2.8.

C. Search Parameters Setup

The processing of an input through the layers of a DNN
model can be depicted as a directed acyclic graph (DAG)
with the source node at the input and the sink node at the
final output prediction. In between, each directed edge within
the DAG represents an operation (e.g., convolution, pooling,
etc) applicable to the intermediate feature representations at a
particular layer position. Formally, the DNN model can be
denoted as M(e1, ..., en), with each edge, ek, representing
the kth layer operation. In the context of NAS, the supernet
represents a more generalized form of the DNN model, where
instead of a singular operation, a set of all possible N operations,
O = {oi}, becomes associated with each edge at layer k. Thus,
ek represents a mixed operation edge, mk

O, with N parallel
paths. Hence, the overall supernet DAG can be characterized
as M(m1

O, ...,m
n
O).

To sample a candidate model design (i.e., subnet) from within
the supernet, a single path is to be selected out of the |O|
choices from mk

O for every kth layer to form a subnet. To
guide the selection of paths, recent works [21], [41], [42] have
adopted a learning-based approach where for each kth layer, N
learnable architectural parameters, {αi}, are specified for the N
edge paths in order to guide the selection of oi, and ultimately
provide the output features from the mixed operation mk

O. To
elaborate, the application of mk

O on an input x can be seen as
mk

O(x) =
∑N

i=1 gioi(x), where gi ∈ {0, 1} represents a binary
gate associated with each oi, and only one gi can be active at a
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Fig. 5. Sampling of operations and the injection layer. MBx y×y are candidate
operations from our experiments’ search space inspired by [21]

time. In this case, αi is used to determine the probability of gi
being the active gate through the Softmax activation probability
given by pi=

exp(αi)∑N
j exp(αj)

. From here, through the designated
search strategy and defined performance evaluation scheme,
the NAS search progresses to update architectural parameter
weights, αi, each iteration to increase the sampling probabilities
of the top performing operations at each mk

O (which accordingly
leads to better performing subnets).

In the context of our edge-cloud inference privacy use-case,
the NAS search is also to be responsible for identifying the
optimal splitting/noise injection layer between the edge and
cloud. Similar to candidate architecture sampling, we define
additional customized K injection parameters, denoted as {γk},
that are associated with the K possible injection layer positions
in the supernet. Hence, the activation of an injection layer
becomes also governed by a separate set of gates, {µk}, where
only a single µk can be active at any time with a Softmax
probability qk= exp(γk)∑K

j exp(γj)
. Given the active noise injection

layer at position k, the output from mk
O is perturbed via a noise

addition function, ρk as follows:

m̂k
O = ρk(m

k
O) = mk

O + uk (3)

where uk represents a noise tensor to be added to the output of
mk

O at the kth. For concreteness, we depict the full operational
sequence in Figure 5 as follows: a candidate submodel is
sampled within the NAS with layer k as the noise injection layer
and operation oki as the kth layer active operation. As shown,
additive noise injection is applied through the noise tensor uk

sampled from a Laplacian distribution Lap(0, ∆fki

ϵ ) constructed
for operation oki , where ∆fki represents the model’s global
sensitivity when the ith operation and the kth layer are selected
for the layer’s operation and noise injection, respectively (recall
Section V-A). Hence, the evaluation of candidate submodels
under given ϵ-DP inference privacy guarantees becomes feasible.

D. Architecture and Injection Parameters Updates

The main objective from this customized NAS implementation
is to jointly optimize the supernet’s architecture α, injection γ,
and weight w parameters. Consequently, this bi-level optimiza-
tion problem can be formulated as follows:

min
α,γ
Lval(w

∗(α, γ), α, γ) (4)

s.t. w∗ = argminw Ltrain (5)
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Fig. 6. Basic workflow for the privacy-aware NAS for split computing.

where the search is for the optimal parameters α∗ and γ∗

which minimize a validation loss Lval given optimal parameter
weights w∗ that minimize the training loss Ltrain. Here, Ltrain

is defined based on the hybrid loss function in 2 except that it
is jointly training all the weight parameters w of the supernet
as discussed in Section V-B. In terms of Lvalid, ProxylessNAS
leveraged REINFORCE [43] to update the architectural param-
eters α so as to find optimal gates g which maximize a reward
R. We reuse their update rule for our α parameters, and adopt
a similar approach for injection parameters γ to identify the
optimal injection gates µ. Specifically, we also use REINFORCE
and define Lval(γ) = −J(γ) to specify an update rule for γ
parameters as follows:

J(γ) = Eµ∼γ [R(Mg,µ)] =
∑
k

qkR(Mg(ρ = ρk)) (6)

∇γJ(γ) ≈
1

S

S∑
s=1

R(Mgs,µs)∇γ log(q(µ
s)) (7)

wheres S is the total number of samples, µs is the selected
injection layer gate for sample s, q(µs) is the probability of
sampling µs, and Mgs,µs is the sampled sub-model given the
active gates g and µ in sample s.

E. Privacy-Aware NAS Workflow

From here, we conceptualize a privacy-aware NAS workflow
in Figure 6 for designing DNN models suited for split-computing
operation under a desired privacy budget ϵ. As shown, the
warmup phase first trains the supernet on clean data represen-
tations to obtain initial estimates of Bk

i for each candidate
operation oki at the kth layer within the supernet. Subsequently,
their corresponding Laplacian distributions Lap(0,

2Bk
i

ϵki
) are

constructed to maintain the ϵ guarantee across all possible
operations and injection layers. Next, the main search procedure
can be invoked to train the shared parameter weights, w, each
iteration. As stated in Section V-B, training is based on a
mix of clean/noisy public data representations. For validation,
sampled models’ accuracy on a clean/noisy validation data
mix are used to estimate the reward R, and update the α and
γ parameters accordingly. In the background, the successive
bounds refinement is invoked periodically for each oki to
update their Laplacian distributions. Finally, the best performing
submodel architecture and its optimal noise injection layer

e0
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Fig. 7. Numbered step-by-step privacy-accuracy co-search (detailed in text)
are identified for the latter post-design stages. We provide an
analysis of the added search overhead complexity is provided
in the experiments section.

F. Extension to Privacy-Accuracy co-search
We further include support for a privacy-accuracy co-search

feature within PrivyNAS to facilitate the minimization of ϵ as
an optimization objective. As such, rather than defining a single
Laplacian distribution per each oki given a predetermined ϵ,
we associate a multitude of distributions with each operation
satisfying different ϵ guarantees. Consequently, a dictionary of Z
Laplacian distributions for each operation would be continuously
updated as part of the successive bounds’ refinement. To restrain
selecting trivial distributions that could lead to a complete loss
of utility, we further define distribution parameters θkϵ at each k
layer to be associated with each prospective ϵ value that can be
sampled from Z at layer k. That way, θkϵ parameters would be
able to learn which ϵ values, and in turn distributions, to select
for layer k when k is sampled as the noise injection layer.

We provide an illustrative example with numbered steps in
Figure 7 on how this co-search progresses during a single epoch:
(1) In the forward pass, a single operation oki is activated at layer
k outputting an intermediate data representation. (2) At active
noise injection layer k, parameters θkϵ are used to select privacy
budget ϵ, and its corresponding set of distributions through
setting its corresponding gate Γk

ϵ to 1. (3) Based on the sampled
ϵ and active operation oki , the corresponding Lap(0,

2Bk
i

ϵ ) is
retreived. (4) Samples are drawn from the selected distribution to
populate a noise tensor which is to be added to the intermediate
representation. (5) The output noisy tensor is used to compute the
output. (6) Gradients from the loss function are backpropagated
to update θk parameters. The distribution parameters are updated
in a manner similar to that for the architectural α parameters
using R, except that only the subset of θk parameters belonging
to the current active k layer are updated at a time.

G. Reward definition and privacy-accuracy co-search support
For remote inference models, there exists an inherent trade-off

between accuracy, performance, and privacy guarantees. Hence,
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we define the search’s reward function, R, as:

R = acc(m)× (
Ltarget

L(m)
)ωL × (

ϵtarget
ϵ(m)

)ωϵ (8)

where acc(m), ϵ(m)1 , and L(m) are the respective clean/noisy
test accuracy, privacy budget, and latency achieved by model m.
ϵtarget and Ltarget resemble the desired target privacy budget
and latency by the designer. ωϵ and ωL are configurable design
trade-off parameters. As we are only concerned with resource
efficiency from the edge devices’ perspective, we breakdown
L(m) to its dominant components as follows:

Lm = Lexec + LTx; LTx =
Data Size

Throughput
(9)

where Lexec is the execution latency on the edge device for
the local submodel Ml, while LTx is the data transmission
latency from the edge to the cloud dependent on the experienced
wireless throughput at the edge and the transmissible data size.

VI. EXPERIMENTS

Experimental Settings. We implement our PrivyNAS on top
of ProxylessNAS [21] where we keep their default architectural
search hyperparameter settings with the MobileNetV2 backbone
except for the stride of the first stage blocks which is reduced
from 2 to 1. We keep the same set of candidate operations
{oi}: mobile inverted bottleneck convolutions (MBConv) of
kernel sizes ∈ {3, 5, 7} and expansion ratios ∈ {3, 6} in
addition to the skip operation to control network depth. The
backbone comprises 6 search blocks with a maximum number
of 4 MBConv layers per block, followed by one last block
with a single MBConv layer. This arrangement enables having
21 potential candidate positions for the noise injection layer
following each searchable residual block. We use initial learning
rates of 0.15, 1×10−3, 1×10−3, and 5×10−4 to train w, α, θ,
and γ, respectively. For the main procedure, we set λ= 0.5 and
#epochs=200. For the privacy-accuracy co-search experiment,
we assign 30 Laplacian distributions for each injection layer
uniformly covering the ϵ choices within the range of [0.1,3].

Performance Characterization. We use the Nvidia Jetson
TX2 (TX2) as our target edge hardware platform. The TX2
is capable of 1.33 TFLOPs and a power budget of 15 W. In
order to provide accurate estimation of the models’ performance
during the PrivyNAS search process. We benchmark every
operation from the supernet on the actual hardware device using
the standard caffe framework. Using these measurements, we
construct a lookup table that can be instantiated during the search
in O(1) complexity. Thus, a performance characterization of the
candidate client model designs can be determined conditioned
on the underlying architecture and the chosen split layer.For
the communication model, we set Throughput=10 Mbps and
use int8 format for transmissible data size.

1We slightly abuse the ‘ϵ‘ notation and reuse it for the privacy objective
function in addition to the privacy budget. Purpose can be inferred from context.

TABLE IV
COMPARING MODELS’ ACCURACY (%) AT ϵ=2.8. FOR THE NAS MODELS,

WE SET ωe=0, AND Ltarget = 50MS WHEN ωl ̸= 0. (c) INDICATES
TRAINING USING ONLY CLEAN DATA WHILE (ret.) STANDS FOR RETRAINED.

Model Total Clean Noisy Total
Train Test Test Test

MobileNetv2 98.9 (c) 92.5 27.9 60.24
MobileNetv2 (ret.) 85.72 88.7 65.1 76.92

ProxylessNAS (ωl = 0) 91.1 (c) 80.35 65.58 72.23
ProxylessNASret (ωl = 0) 85.86 80.05 78.36 79.16

Privacy-aware (ωl = 0) 90.76 80.44 79.22 79.90
Privacy-aware (ωl = 0.05) 88.99 79.36 76.99 78.11

A. Privacy-aware Search Analysis

We first assess the privacy-aware NAS in comparison to a
conventional privacy-agnostic NAS decoupling the architectural
design from privacy considerations. Here, the conventional ap-
proach is emulated through a regular search from ProxylessNAS
[21], followed by a separate independent process to integrate
ϵ-DP inference privacy onto the final model. We also compare
against the MobileNetV2 from section IV since it shares the
same backbone architecture as ProxylessNAS [21]. Note that
performance evaluations for MobileNetv2 and ProxylessNAS
are estimated based on their best accuracy scores by choosing
their optimal splitting layer (the 5th residual block and layer
13, respectively). A privacy budget of ϵ = 2.8 is used for all
implementations. The Reward function R used to update α and
γ is determined here through the validation accuracy of a model
acc(m) (i.e., ωL = 0, ωϵ = 0).

As shown in Table IV, a pretrained MobileNetV2 on clean
data samples achieves the best accuracy on clean test data by
92.5%. However, it fails to do the same for the noisy test data,
degrading the average accuracy to 60.24%. After noisy retraining,
the MobileNetV2 average classification accuracy increases by
∼16% as it generalizes better to noisy samples, where noisy
classification accuracy is improved by 37.2% at the expense of
3.8% degradation in clean test accuracy. The model from the
conventional ProxylessNAS achieves an overall test accuracy of
72.23%, with a 14.8% variance in accuracy between clean and
noisy representations. After noisy retraining for 150 epochs, the
variance in accuracy is reduced to 1.69%, reaching an average
accuracy of 79.16%. Our privacy-aware search renders a model
which outperforms others in terms of average overall accuracy
with 79.9%, indicating the value of the joint training during the
search itself (Section V-B). Also, the variance between the clean
and noisy test accuracies for the privacy-aware search reached
1.22%, indicating how the supernet is trained during the search
to generalize its classification performance to samples perturbed
in proportion to the desired ϵ budget.

B. Injection Parameters γ Analysis

We further analyze the accuracy of both our privacy-aware
and the retrained ProxylessNAS models for each potential
injection layer position to assess the merit of the γ parameters.
In Figure 8, the two DNNs are compared over the 21 potential
injection layer positions from the search space. Note that not
only does the Figure compare optimal noise injection layer
choices, but all potential choices including suboptimal ones.
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Fig. 8. Accuracy estimates of ProxylessNASret and our Privacy-aware (ωl = 0)
across every potential injection layer at ϵ = 2.8.

This is to demonstrate how the γ parameters of PrivyNAS
learn to sample more frequently the most promising splitting
layer candidates, and subsequently focus the supernet’s training
around them. As such, we find that the ProxylessNAS model
outperforms PrivyNAS at subopitmal noise injection layer
choices as the former randomly samples candidate injection
layers with the same probability. However, ProxylessNAS
does not outperform PrivyNAS at the latter’s best injection
positions (layers 12, 16, 17, 18, and 19) which provide the
highest accuracy overall under ϵ guarantees. As mentioned,
this is attributed to the γ parameters that learn to optimize
the model architectural design around these most promising
injection layer positions as a result of their higher rewards
compared to sub-optimal candidates.

C. Optimizing for performance and inference privacy

Since one motivation of split computing is to reduce com-
putational overheads on user edge devices, we conduct another
experiment in which both our privacy-aware model (ωl = 0.05,
Ltarget = 50ms and the ProxylessNAS architectures from
Table IV) are first trained from scratch on clean data samples.
Afterwards, their cloud-side parameters are trained on noisy
samples at ϵ = 2.8. Our analysis of accuracy and latency is
performed at layers 8 and 12, which were the respective optimal
noise injection layers for our privacy-aware model and the
conventional ProxylessNAS one, respectively. As illustrated in
Figure 9, the latency-agnostic ProxylessNAS model achieved
the highest accuracy scores at its best injection layer, 12. This
is because its architecture was only optimized for accuracy
without any consideration of performance overheads, and thus
it incurs a high execution latency for its local DNN components
reaching 101.09 ms. Whereas at injection layer 8 (our model’s
best), we find that our model, designed with an Ltarget=50 ms,
takes 53 ms latency to execute its local DNN components (Ml)
– a 35.2% reduction from that of ProxylessNAS model. Though
such performance improvement comes at the expense of 2.2%
accuracy drop from the layer 12 accuracy of ProxylessNAS
model, our model improves accuracy by 3.4% in the scope of
layer 8 only. This analysis showcases the inherent trade-offs
existing between various conflicting design objectives.
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Fig. 9. Comparing noisy accuracy, total accuracy, and latency between our
Privacy-aware (ωl = 0.05) and ProxylessNASret after cloud-side DNN
retraining, where injection layers, 8 and 12, are the respective bests for each
architecture. (Note legend patterns hold for both accuracy and latency bars
colored in blue and brown, respectively)

TABLE V
COMPARING CO-SEARCH MODELS OVER ϵ AND UTILITY. THE CONVNET [10]
DID NEITHER SPECIFY THE POSITION OF THE NOISE INJECTION LAYER (INJ.)

NOR THE BREAKDOWN OF TOTAL ACCURACY.
ϵ Inj. Clean Noisy Total

ConvNet [10] 3.5 - - - 79.52
Privacy-aware (ωl = 0) 2.8 19 80.44 79.22 79.90

Co-search(ωϵ = .5) 0.1 12 78.68 22.97 46.27
Co-search(ωϵ = .1) 1.5 12 78.78 75.17 76.96
Co-search(ωϵ = .1) 1.6 13 80.94 77.26 79.08

D. Privacy-Accuracy Co-search

Next, we analyze the privacy-accuracy co-search from Section
V-F. We set ωl = 0 and ϵtarget to 2.8 from the reward function
in (8). We compare the final model from this search against the
previously obtained privacy-aware model. We also compare
against the model from [10] where ϵ-DP was adopted for
inference privacy using a ConvNet architecture which is less
dense than the MobileNetV2 variants. As shown in Table V, the
ConvNet achieves 79.52% accuracy with an ϵ guarantee of 3.5,
which is on the same accuracy level as the privacy-aware DNN
of a stricter ϵ guarantee of 2.8 from the previous experiment.
We conducted the co-search experiment initially for ω = 0.5
which was biased towards minimizing ϵ leading to a complete
loss of the model’s utility. We re-ran the experiment for an
ω = 0.1 which provided a reasonable trade-off between the
accuracy and privacy. The final model achieved 76.96% overall
accuracy, 2.94% less than that of the privacy-aware approach
but providing a more tighter privacy guarantee of ϵ = 1.5.

To better visualize the accuracy-privacy trade-off, we contrast
the test accuracy for both the privacy-aware and co-search
models across different ϵ values in Figure 10. It can be observed
that their accuracies remain close even at ϵ = 1.5 with 1.16%
difference in accuracy in favor of the co-search. Below ϵ = 1.5,
we can see that the accuracy degradation is steeper for the
privacy-aware model compared to its counterpart, which is
reasonable given how the privacy-aware model was not trained
on privacy guarantees ϵ < 2.8. However, this serves the privacy-
aware model at the looser ϵ budgets where we observe that it
outperforms the co-search model for values greater than the
turnover point at ϵ = 1.7.

The co-search model was superior at tighter ϵ budgets
considering how its search process performed a fair amount
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Fig. 11. Reward progress and privacy budget ϵ convergence for our co-search
(ωϵ = 0.1).

of exploration to determine the suitable ϵ values around which
the design would be fine-tuned. For a better visualization,
we demonstrate the progression of the reward for the co-
search process in Figure 11 with its respective accuracy and ϵ
components. In the first 50 epochs of the experiment, the swing
of ϵ values is bigger than that in the latter stages, implying
how the search spends time initially learning which values of
ϵ to operate around. Furthermore, the selection of ϵ values
< 1.5 highlights the attempts made by the co-search process to
optimize the design to operate under such tight constraints, and
hence the reason it performed better at tighter privacy budgets.

E. Hyperparameter Analysis

We conduct multiple searches using different values of ωL

for the the reward function R in equation (8) to analyze
the different performance trade-offs offered by the resulting
models. All the searches are performed at fixed values of
ωϵ=0.1, ϵtarget = 2.8, and Ltarget=50 ms. The results are shown
in Figure 12. The search at ωl=0.1 provided a model with an
early splitting layer at the 5th splitting layer candidate. As such,
the model incurs a low local execution latency below the the
intended target value of Ltarget at 43 ms. Not without demerits,

@ =2.3

@ =1.6

@ =1.6

79.1%
78.7%

67%

Fig. 12. A comparison of PrivyNAS co-searches conducted under different
values ωl (0, 0.01, 0.1) given a fixed ωϵ = 0.1. The ϵ values satisfied by the
model in each search are displayed on top of each bar chart.

updates over clean

and noisy samples  

bounds tracking

ours

Fig. 13. Analyzing search time overheads of PrivyNAS. Left: a breakdown
of the components for a reference clean NAS strategy (i.e., ProxylessNAS)
compared to the lower (lb) and upper (ub) bounds of noisy updates experienced
within PrivyNAS per batch. Right: Comparing the overall search times for the
noisy PrivyNAS search when varying the number of noisy epochs. The clean
baseline is scaled to the same number of samples as that of the noisy search.

the early noise injection layer leads the model to sustain a
considerable drop in its accuracy at 67%. Given the limited
accuracy score, the search attempted to maximize the reward
by opting for a more aggressive privacy budget at ϵ=1.6. On
the other extreme, an ω = 0 does not consider any performance
speedups, leading the search to realize a latency-intensive model
through prioritizing maximizing accuracy and privacy objectives
(79.1% and 2.3, respectively). The larger weight assigned to the
accuracy objective has led the search in this case to prioritize
at the expense of a slightly more relaxed ϵ=2.3 compared to
the previous ϵ=1.6. The search at ωL=0.01 strikes a reasonable
balance across all objectives, realizing a model design with
layer 12 as its splitting layer, providing an acc=78.7%, ϵ=1.6,
and L=109 ms. Based on the values, it can be inferred that the
search maximized R by prioritizing acc and ϵ over L due to
their larger weights in the formula. This analysis and the one
in VI-D has shown that values between 0 and 0.1 for the ωL

and ωϵ are sufficient to skew the search towards one objective
without drastically affecting the other objectives.

F. Search Time Analysis

In this experiment, we compare the timing overheads incurred
by the noisy search of PrivyNAS against that of the clean
baseline of ProxylessNAS. We run each search strategy for 12
epochs, and record the average per-batch processing time across
all epochs. Given the preiodic application of successive bounds
refinement, we specify lower and upper bounds on the PrivyNAS
search times to reflect when B updates were being performed,
denoted by noisy (lb) and noisy (ub), respectively. Figure 13
(left) depicts the comparison results normalized to noisy (ub)
times. From this Figure, two key observations can be made:
(i) the noisy search operates on both clean and perturbed data
representations, leading the search to incur double the number
of architectural (α) and w parameter updates. (ii) the average
time per batch for clean w update (i.e., updating weights using
unperturbed samples) in a noisy (ub) epoch is 7.15× more than
that of its counterpart in a noisy (lb). This is due to the added
sensitivity bounds computation overhead based on the forward
passes of the clean data samples on a moving average basis,
contributing an additional non-linear overhead to the overall
inference cost of the clean samples.

To further analyze this non-linear increase in timing overheads
resulting from periodic bounds update, we conduct an additional
experiment in the right Figure 13 in which the update period,
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TABLE VI
COMPARISON WITH RELEVANT PRIVACY PRESERVING METHODS. ‘◦’ INDICATES PARTIAL CONSIDERATION AS AN ANALYTICAL EXPERIMENT.

PrivyNAS PrivyNet [15] Arden [10] mSieve [44] LATENT [23] Shredder [11] Cloak [12] DPFE [36] C2PI [34]
Inference Privacy ✓ ✓ ✓ ✓ ✓ ✓ ✓
ϵ-Differential Privacy ✓ ✓ ✓ ✓
Context-aware ✓ ✓ ✓ ✓
Encryption-based ✓
Noise layer co-optimize ✓ ✓ ◦ ◦ ◦ ✓
Architecture co-design ✓ ✓
Performance optimize ✓ ◦ ◦ ◦ ◦ ◦ ✓

k, is varied to compare the overall search time overheads in
seconds over the course of the 150 epochs (which are preceded
by 50 clean warmup epochs). For instance, A value of 30 on the
x-axis indicates that we perform one noisy (ub) every 30 epochs,
and the rest incur the overhead of noisy (lb). The reference time
is that of a clean baseline with double the number of samples to
match that of the noisy search. Visibly, as the period of updates
increases, the noisy search timing overhead reverts back at k ≥
20 epochs to values close to that of the reference baseline. In
numbers, Performing an update at k = 1 takes 23.58 × 103

seconds compared to 19.04× 103 seconds at k = 30, whereas
clean reference time takes 18.56× 103 seconds.

For the most part, this timing analysis holds for both the
privacy-aware and co-search classes of search supported by
PrivyNAS. The only difference lies in the added time due to
the distribution parameters ϑ updates in a noisy(ub) epoch. In
our experiments, the cost per epoch in the constraint-aware was
≈0.04 seconds compared to ≈0.16 seconds in the co-search
one. Still, these update costs are relatively negligible compared
to other components since they are only incurred in noisy (ub)
epochs. Ultimately, the extent of the effect of these non-linear
costs on the search times would vary depending on the supernet
structure, the noisy injection layer candidates, and the number
of Laplacian distributions associated with each layer.

G. Comparing Relevant Privacy Works

In Table VI, we compare PrivyNAS against its most relevant
privacy preserving works in terms of the supported features
of interest. Apart from PrivyNet [15] and LATENT [23], all
other works targeted the inference privacy problem setting.
Nonetheless, we include these works as the former considered co-
optimizing privacy and certain architectural parameters, whereas
the latter is another privacy work instance adopting local
differential privacy. As shown in the Table, context-awareness
and encryption are two features that are not provided natively
through PrivyNAS. Still, the integration of additional privacy-
preserving techniques on top of the ϵ-DP guarantee from
PrivyNAS is feasible if stronger measures are needed for the
application. For instance, privacy measures can be maximized
through encrypting transmissible data from a model with
base ϵ-DP guarantees using a Secure Multi-party Computation
(SMC) approach [34]. PrivyNet [15] represents one work
that has considered architectural parameter optimization when
incorporating privacy measures. Their approach is different from
PrivyNAS in that their use-case targets DNN model training
in an edge-cloud setting, and in that they characterize privacy

loss through peak-signal-to-noise ratio of reconstructed images.
Regarding performance optimization, PrivyNAS and C2PI [34]
are two works that actively consider performance optimization
costs when integrating their privacy measures.

VII. DISCUSSION

Key Findings. In our experiments, we found that model
splitting around the middle layers 8-13 achieved the best trade-
offs amongst the accuracy, privacy, and latency objectives. This
means that performance efficiency can roughly be doubled
without drastically influencing other target objectives. Even
so, PrivyNAS practitioners are still able to tune the weight
hyperparameters, ωL and ωϵ, to prioritize one objective over
the other based on their needs. One research direction to soften
the trade-off impacts is to devise new search spaces within
PrivyNAS that are better suited to the edge-cloud deployment
setting with the aim of providing shallower splitting candidates
that improve on existing trade-offs.

Inference Privacy and ϵ-DP Composition. Through this
ϵ-DP inference privacy model of computation leveraging local
differential privacy, the composition property of DP becomes
predominantly associated with the local DNN model. As such,
an adversary with access to the cloud-side DNN outputs would
find it extremely complicated to exploit the DP composition
property. This is due to the low likelihood of encountering a
‘linear-like‘ drop in the privacy budget as the number inference
calls increases. One key reason being that the cloud operates
and is trained directly on the already perturbed ϵ-DP data
representations received from the client and not on the original
inputs. Even if the unlikely scenario of an adversary having
access to the local model is to be considered, ϵ privacy budget
can be characterized according to the composition property from
the early design stage. For instance in PrivyNAS, setting a tight
privacy budget of ϵ

k would in theory lead to a model design
with at least k inferences before privacy budget becomes ϵ,

ϵ-DP Inference and DL architecture: The consideration
of inference privacy during the architectural design phase of
DL models can be perceived as analogous to building a model
that generalizes well to inputs from a different data distribution.
For ϵ-DP inference, generalization is targeted towards samples
experiencing randomized perturbations according to a formal
measure of noise injection [45]. Subsequently, a privacy-aware
design approach exhibits in essence a behavior similar to
its conventional counterpart. That is, a more complex DNN
architecture would generally lead to a better model utility under
privacy considerations. Still, fine tuning the architectural design
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well-characterization of the desired privacy budget can lead to
a good balance between generalization and overfitting.

Scalability: We have tested our hypothesis to consider ϵ-DP
inference at design time using Convolutional Neural Networks
(CNN) for image classification task. In practice, application
providers in practice are more likely to reuse an existing state-
of-the-art CNN architecture, and augment it with a privacy-
preserving technique for remote inference if only to avoid going
through the model design phase. Nonetheless, new classes of
DNN solutions have been constantly materializing, and the
application of AutoML techniques becomes more relevant in
these early adoption phases. For instance, recent hardware-aware
NAS targeted the design of novel transformer architectures for
Natural Language Processing (NLP) in [46], [47]. It is for these
emerging classes the impact of new concepts, like the inference
privacy-aware design methodologies, can be maximized.

Study Limitations and Future Directions. Our focus in this
paper was to empirically study how model architectural design
can affect inference privacy given a standard dataset and task
(i.e., image classification on CIFAR-10 dataset). The choice of
CIFAR-10 was motivated by both the seminal works in [14] and
PrivyNet [15] whose analysis focused on an image classification
task with CIFAR-10 being their most challenging dataset. Still,
further experimentation and analysis are needed beyond ours
to assess the advantages of PrivyNAS in practical application
settings. One way to achieve this is to scale the inference privacy
problem setting to practical application domains entailing
the edge-cloud architecture. An example is a mobile health
application through which sensitive time-series data can be
processed on the cloud [44]. Another direction is to study
how the quality of a privacy leakage attack (e.g., membership
inference or model inversion) degrades when applied to models
provided by PrivyNAS compared to the baselines [34].

VIII. CONCLUSION

Accounting for inference privacy during the DNN design
phase can be perceived as analogous to building a model that
generalizes well to inputs from a different data distributions.
Through a characterization of the formal ϵ-DP guarantees from
the early design stages, a measure on the degree of indistinguishi-
bility within the neural network itself can be promoted for the
inference privacy use-case. In more realistic settings, knowledge
of an architecture’s inherent privacy-preserving capabilities can
aid in making more informed decisions about which models to
utilize in accordance with the desired privacy budget. Future
research directions can investigate the applicability of privacy-
aware AutoML for various other tasks, larger datasets, and
evaluate the models resilience against known privacy attacks.
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