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PPMM-DA: Privacy-Preserving Multi-dimensional
and Multi-subset Data Aggregation with Differential

Privacy for Fog-based Smart Grids
Shuai Zhao, Shuhua Xu, Song Han, Siqi Ren, Ye Wang, Zhixian Chen, Xiaoli Chen, Jianhong Lin and Weinan Liu

Abstract—The smart grid (SG) is a new type of grid that
integrates traditional power grid with the Internet of Things (IoT)
to make the entire grid system more compatible, controllable
and self-healing. However, the flourishing of SG still faces
some challenges in term of privacy-preserving data aggregation.
Previous multi-dimensional data aggregation schemes need heavy
computation operations, cannot support multi-subset data aggre-
gation, and resist neither collusion attack among the gateway
(GW) and control center (CC) nor differential attack. To solve
these issues, we propose a privacy-preserving data aggregation
scheme for fog-based smart grids to achieve multi-dimensional
and multi-subset data aggregation. The parallel composability of
differential privacy is used to reasonably allocate the privacy bud-
get, which can provide higher data utility in multi-dimensional
data aggregation. In addition, each user’s multi-dimensional
power consumption data will be structured as a composite data by
utilizing Chinese Remainder Theorem (CRT), which will further
reduce the computational overhead. Security analysis shows that
our scheme can resist differential attack, eavesdropping attack,
collusion attack and active attack. Evaluation of the performance
also demonstrates that our scheme is more efficient in terms of
computational overhead and communication overhead.

Index Terms—Data utility, privacy-preserving, smart grid, fog
computing, Industrial Internet of Things, multi-dimensional and
multi-subset data aggregation, differential privacy.

I. INTRODUCTION

THE SG is an advanced digital two-way flow power
system, especially in Industrial Internet of Things, with

self-healing, adaptive and resilient [1]–[3]. In order to achieve
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the real-time monitoring and optimal control of the power grid,
the SG needs to collect a large number of power consumption
data from users via IoT devices such as smart meters (SMs).
The collection and transmission of power consumption data
for SMs bring risks of individual user’s privacy leakage [4].
How to protect the security and privacy of power consumption
data has become a major concern [5]. Hence, the collaborative
interaction and cooperation among users, devices, and environ-
ments are critical [6]. We need to ensure the security of data
exchange and the privacy of the computation, etc [7], [8].

Existing works [9]–[15] allow SMs to report one type of
data, and the CC can only obtain the total power consump-
tion data for all users. However, the fog-based smart grid
system has different types of devices such as refrigerator,
microwave, oven, TV, etc. In order to analyze the data more
deeply and optimize the data more finely, the CC needs
more detailed power consumption data for each device. Some
solutions [16]–[22] are dedicated to solving the fine-grained
problem of multi-dimensional data aggregation. However,
these schemes use heavy computation operations to encrypt
the multi-dimensional data, and the collusion attack is not
explicitly addressed. In addition, one of the key challenges for
data aggregation is how to achieve multi-subset aggregation of
multi-dimensional data in the SG, which is expected to reduce
the peak-to-average ratio, balance energy supply and demand.

Another challenging issue for data aggregation is differential
attack [23]–[26]. Specifically, even if an aggregation scheme
is secure, once adversary obtains the sum of n and n − 1
users’ power consumption data, the private data of different
user will inevitably be obtained. This issue has been studied
in [27]–[34], but they only achieve differential privacy for one-
dimensional data. Therefore, it remains a critical challenge
for multi-dimensional data aggregation to resist differential
attack, offer provable differential privacy guarantees on the
aggregated statistic and improve the utility of data.

Futhermore, the above literatures adopt the traditional SG
model, that is, the GW aggregates the data reports from SMs
and transmits them to CC for further analysis. However, these
SMs generate a large amount of data every 15 minutes, which
will put a heavy burden on the cloud, cause huge network
delay and endanger the privacy and security of personal
data [37], [38]. Actually, the fog computing model can extend
cloud computing functions from the network center to the
network edge, optimize local computing capacity and make
the collection, transmission and processing of big data more
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efficient [39]–[41]. Using the fog computing model in data
aggregation schemes can improve computational efficiency
and reduce transmission delay [42], [58], [59].

In sum, in this paper, we present a Privacy-Preserving Multi-
dimensional and Multi-subset Data Aggregation (PPMM-DA)
scheme with differential privacy for fog-based smart grids. Our
major contributions are summarized as below:

• First, in order to analyze the power consumption data
more deeply and implement effective grid monitoring
and management, our scheme achieves multi-dimensional
and multi-subset data aggregation by employing the CRT,
super-increasing sequence and Paillier cryptosystem.

• Second, each user’s multi-dimensional power consump-
tion data will be structured as one composite data by CRT.
We can extract aggregated results of power consumption
for each dimension from the aggregated ciphertext, which
makes computational overhead be independent of the di-
mension of power consumption data, results in significant
saving in computational overhead. Besides, our scheme
also can resist collusion attack among the GW and CC.

• Third, in order to realize privacy-enhanced multi-
dimensional data aggregation and offer provable dif-
ferential privacy guarantees on the aggregated statistic,
we propose two methods to achieve differential privacy,
which extracted noise from Geometric distribution and
Laplace distribution, respectively. Meanwhile, the parallel
composability of differential privacy is used to reasonably
allocate the privacy budget, which can provide higher
data utility. Then the data utility of these two methods
is compared and analyzed.

The roadmap of this paper is as follows. The related
works are given in Section II. The problem formalization
is introduced in Section III. Then we recall the Paillier
cryptosystem, differential privacy, CRT as the preliminaries
in Section IV. In Section V, we introduce our PPMM-DA
scheme. To achieve privacy-enhanced multi-dimensional data
aggregation, we propose the scheme with differential privacy
in Section VI. In Section VII, the correctness and security of
our scheme are analyzed. Section VIII presents performance
comparison, experimental results and differential privacy com-
parison. Finally, we conclude this paper in Section IX.

II. RELATED WORK

Research on privacy-preserving is conducted on all phases
of the information life cycle, including information collection,
storage, processing, publication and destruction [9]. As a key
phase of data collection and processing, data aggregation has
become one of the research hotspots, and many methods have
arisen. In [16], Lu et al. presented the first multi-dimensional
data aggregation scheme utilizing super-incremental sequence
and Paillier cryptosystem. Chen et al. [17] proposed a data
aggregation scheme that enables the SM to report more than
one type power consumption data, and allows the CC to
perform variance analysis and one-way analysis of the variance
on the power consumption data. However, they can only
provide the result of global aggregation for the CC, and can
not satisfy more fine-grained requirements. At the same time,

they do not solve the collusion attack between the GW and
CC. In [23], Lu et al. first tried to divide users into two
subsets based on power consumption according to an additive
homomorphism of composite order cipher set, but it does not
support multi-subset data aggregation. From the perspective
of multi-subset data aggregation, Li et al. [24] proposed a
PPMA scheme, where the CC can obtain the power consump-
tion data of users in different ranges, but the approximate
result is obtained instead of accurate aggregated result and
it does not support multi-subset data aggregation of multi-
dimensional data. Furthermore, data integrity verification [57]
and fault tolerance are not considered. In [25], Chien et al.
improved PPMA scheme to support fault tolerance, but it still
obtains approximate results and the computational overhead
is expensive. In addition, the collusion attack is not explicitly
addressed. Zuo et al. [56] proposed a scheme for addressing
the collusion attack, but it can not resist differential attack.

Recently, many researchers have worked with differential
privacy technology to resist differential attack. Bao et al. [30]
proposed a data aggregation scheme using differential privacy,
where aggregated data is interfered by random noise from
Geometric distribution to resist differential attack. They design
a novel data aggregation scheme that can flexibly support
fault tolerance of malfunctioning SMs. However, their scheme
require assigning random values via bi-directional interac-
tion. Ni et al. [31] proposed a new privacy-preserving smart
metering scheme for SGs, which supports fault tolerance,
differential privacy and range-based filtering simultaneously.
Lu et al. used CRT, Paillier encryption and one-way hash chain
technique to present a lightweight privacy-preserving data
aggregation scheme [36]. Shi et al. [32] presented a diverse
grouping-based aggregation scheme to achieve grouping-based
private stream aggregation and utilized differential privacy
technique to resist differential attack. Through normalizing
and modifying the confidence score vectors with a differential
privacy mechanism, Ye et al. [53] proposed a one-parameter
defense method to against both model inversion and mem-
bership inference attacks. Based on randomized responses,
Gai et al. [51] presented an efficient data aggregation scheme
satisfying local differential privacy with privacy-preserving for
smart grids. However, they only achieve differential privacy
for one-dimensional data. With the development of SG, we
need to focus on how multi-dimensional data aggregation
can resist differential attack and improve the utility of data.
Lately, some new results in [52], [54], [55] achieved privacy-
preserving multi-dimensional data aggregation via differential
privacy and resisted differential attack. However, they do not
take into consideration other attacks, such as eavesdropping
attack, collusion attack and active attack.

The above schemes solve the problems for SGs in dif-
ferent aspects, but there are still many weaknesses. Moti-
vated by the above-mentioned, we are aiming to design an
effective privacy-preserving data aggregation scheme for fog-
based smart grids, which can achieve multi-subset aggregation
of multi-dimensional data, fault tolerance, resist differential
attack and collusion attack, and minimize privacy leakage,
network latency and loss of data availability.
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III. PROBLEM FORMALIZATION

A. System Model

We consider a fog-based smart grid system that consists of a
trusted authority (TA), a CC, some fog nodes (FNs) and SMs.
The architecture of our system model is shown in Figure 1.

Fig. 1: System model.

• TA: In our system model, the TA is a only globally-
trusted entity, whose duty is to bootstrap the whole
system, manage and distribute key materials to other
entities. After that, the TA will turn to offline.

• CC: The CC performs Paillier decryption, utilizes CRT
and super-increasing sequence to analyze the data more
deeply based on the power consumption data of each
device and the corresponding number of users within
specific power consumption range.

• FN: The FN is located in the middle layer between
the Cloud layer and the IoT layer, and transfers the
computing and storage functions of cloud to the edge
of terminal equipment. In our system model, the FN acts
as an aggregator to aggregate encrypted data from users
within its coverage area.

• User: Each user equips with a SM (i.e., IoT node)
which encrypts the collected power consumption data and
transmits the encrypted report to the nearby FN.

B. Threat Model

In our threat model, we assume that the TA is trustable
and other entities are honest-but-curious [35], which means
that the CC, FN and users will strictly execute the protocol,
but remain curious about other users private information (such
as individual users private key and power consumption data).
In addition, an external adversary may be lurking in the
residential area, eavesdropping on the communication links
between various entities or invading the database of the FN to
obtain private information. In this paper, we mainly consider
the following four types of security threats, i.e., the differential
attack, eavesdropping attack, collusion attack and active attack,
and other threats are beyond the scope of this paper.

• Differential attack: The adversary can analyze the ag-
gregated difference between each multi-dimensional data

TABLE I: Main notations

Notation Definition
G1, G2 Two multiplication cyclic groups

g A generator of G1

e The bilinear map e: G1 × G1 −→ G2

H Hash function H : {0, 1}∗ → Z∗
N

H1 Hash function H1 : {0, 1}∗ → G1

G(i), Yi, σi Private key, public key and signature of useri

xfn, Yfn, σfn Private key, public key and signature of FN

x0 Private key of CC

Ci The ciphertext of the i-th user
C Aggregated ciphertext

Mk The sum of the k-th dimensional power consumption data

|Uj | The number of users in the j-th subset

[Rj , Rj+1) The j-th subset

set to infer device-specific power consumption data for
an individual user in the fog-based smart grid.

• Eavesdropping attack: The adversary can eavesdrop
on the communication links from the IoT layer to the
Fog layer or from the Fog layer to the Cloud layer
to obtain the transmitted power consumption data, and
try to compromise the individual users private power
consumption information.

• Collusion attack: The FN is allowed to collude with
some users and the CC is able to collude with the FN or
some users by sharing and analyzing their private infor-
mation, which consists of private key, public parameters,
and ciphertext of power consumption data, to obtain an
individual users private information, i.e., individual power
consumption data.

• Active attack: The adversary may invade into the FN to
steal users private information. By intercepting messages,
the adversary can also forge the identities of trusted users
to transmit false power consumption data to compromise
the integrity of data in the fog-based smart grid.

C. Design Goal

• Multi-dimensional and Multi-subset: To conduct fine-
grained analysis and achieve effective grid monitoring
and management, the CC should obtain power consump-
tion data of each dimension and the corresponding num-
ber of users within specific power consumption range.

• Privacy and Security: The power consumption data
of individual user should be protected in the system.
The proposed data aggregation scheme should meet the
security requirements and can resist differential attack,
eavesdropping attack, collusion attack and active attack.

• Efficiency: Due to the limited resource of terminals, the
proposed data aggregation scheme should be extremely
efficient at each phase of the system.

IV. PRELIMINARIES

In this section, we give an overview of Paillier cryptosys-
tem [43], differential privacy [44] and CRT [49], all of which
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serve as the basis of our proposed scheme. The main notations
of this paper and their definitions are summarized in Table I.

A. Paillier Cryptosystem

Paillier cryptosystem is composed of three algorithms: key
generation, encryption and decryption.

• Key generation: Given the security parameter κ, two
large and independent prime numbers p, q are first chosen,
where |p| = |q| = κ. Then, the RSA modulus N =
pq and λ = lcm(p − 1, q − 1) are computed. Define a
function L(φ) = φ−1

N , after choosing a generator g =
(1 + N), φ = (L(gλ mod N2))−1 mod N is further
calculated. The public key is (N, g), and the private key
is (λ, µ).

• Encryption: Given a message m ∈ ZN , first, we choose
a random number r ∈ Z∗

N , and the ciphertext can be
calculated as follow:

c = E(m) = gm · rN mod N2. (1)

• Decryption: Given the ciphertext c ∈ Z∗
N2 , the corre-

sponding plaintext message can be computed as

m = D(c) = L(cλ mod N2

) · µ mod N. (2)

In our proposed scheme, we utilized another form of
Paillier cryptosystem. As the generator g = (1 + N)
and ϕ(N2) = N · ϕ(N) = N · λ, we can conclude the
following equations according to Euler theorem:

c = (1 +N)m · rN ·λ mod N2

= (1 +N)m · rϕ(N
2) mod N2

= (1 +N)m mod N2.

(3)

We can expend the power (1 + N)m with Binomial
theorem:

(1 +N)m =
m∑
i=1

(
m

i

)
N i

= 1 +mN mod N2,

(4)

as all items with i ≥ 2 turn to zero.

B. Differential Privacy

In 2006 [44], Dwork first proposed a differential privacy
model, which can achieve the privacy-preserving effectively
by adding appropriate noise to the query or analysis result. In
addition, parallel composability was proposed in [45].

Definition 1 (Differential Privacy): The aggregation func-
tion A gives ϵ−differential privacy if for any data sets D1

and D2 differing by at most one element, and for any
O ∈ Range(A), have

Pr[A(D1) ∈ O] ≤ exp(ϵ) · Pr[A(D2) ∈ O], (5)

where the probability is taken over the randomness of A. The
privacy parameter ϵ called the privacy budget, represents the
privacy degree offered by the mechanism. In general, a larger
perturbation noise is required for a smaller ϵ, which implies
stronger privacy guarantee but worse utility of data set.

Definition 2 (Parallel Composability): Generally, when the
data set is relatively complex, the parallel composability of
differential privacy will be used to reasonably allocate the
privacy protection budget to the algorithm, whose goal is
to keep the level of privacy protection within the priva-
cy budget and ensure the security of data. Assuming that
D is a privacy database, which can be divided into n
disjoint subsets {D1, D2, ..., Dn}. Let {A1, A2, ..., An} be
a series of mutually independent differential privacy algo-
rithms, and the corresponding privacy protection budgets
of these algorithms are {ϵ1, ϵ2, ... ϵn}. Then, the com-
bined algorithm A(A1(D1), A2(D2), ..., An(Dn)) will satisfy
max{ϵ1, ϵ2, ..., ϵn}-differential privacy.

C. Chinese Remainder Theorem

The Chinese Remainder Theorem can uniquely solve any
pair of congruences that have relatively prime moduli [36],
[49]. In our PPMM-DA scheme, we can use CRT to integrate
each user’s dimension of power consumption data into one
composite data, which is described in Section V(B).

Definition 3 (Chinese Remainder Theorem): Assume that
{d1, d2, ..., dl} are l integers and {q1, q2, ..., ql} are pairwise
relatively prime positive integers. Then, the system of congru-
ences m ≡ dk mod qk for 1 ≤ k ≤ l, has a unique solution

m ≡ d1Q1y1 + d2Q2y2 + ...+ dlQlyl mod Q, (6)

where Q =
∏l

k=1 qk, Qk = Q
qk

and yk · ( Q
qk
) = 1 mod qk

for 1 ≤ k ≤ l. Therefore, l integers {d1, d2, ..., dl} can be
integrated into one composite integer m.

V. THE PPMM-DA SCHEME

In this section, we expound the PPMM-DA scheme, which
includes the following phases: system initialization, user report
generation, privacy-preserving report aggregation and secure
report reading, the flowchart of PPMM-DA scheme is shown
in Figure 2. Then, we apply differential privacy to enhanced
this scheme to against differential attack in the next section.

A. System Initialization

Similar to [56], the power consumption range is classified
into s continuous subsets [R1, R2), [R2, R3), ..., [Rs, Rs+1),
where R1 = 0, Rs+1 = E and mi ∈ [Rj , Rj+1) (j ∈ [1, s])
indicates that mi is equal or greater than Rj but less than
Rj+1, where E denotes the maximum power consumption.

1) Step 1: The TA selects system parameter κ and two
large primes p, q that satisfy |p| = |q| = κ, and gets a
bilinear mapping tuple (G1, G2, g, N = pq, e) by running
the algorithm Gen(κ). The public key of Paillier encryption
system is (N, g) and the corresponding private key is (λ, µ).

2) Step 2: The TA generates a random number θ ∈ ZN ,
and calculates

θ + xfn + x0 = 0 mod λ. (7)

To share the secret key θ with n users under the coverage area
of FN, the TA distributes sub-secret keys to all users with a

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3309132

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

Fig. 2: Flowchart of the PPMM-DA scheme.

polynomial function of degree d as

G(x) = θ + α1x+ α2x
2 + ...+ αdx

d (8)

through employing Shamir’s Secret Sharing [46]. Then, the TA
computes G(i), distributes G(i) to useri as his private key and
computes useri’s public key Yi = gG(i). In the secure report
reading phase, θ can be recovered when the message is held
by d + 1 (d + 1 ≤ n) or more participants. Lastly, the TA
forwards x0 to CC, sends xfn to FN through a secure channel
and computes the public key of FN as Yfn = gxfn .

3) Step 3: Considering that there are l different kind-
s of devices in the fog-based smart grid system, which
means that useri’s power consumption data is l dimension
{di1, di2, ..., dil}, where each dimensional data dil ≤ X . To be
noted, X denotes the maximum value of power consumption
data of each dimension. Then, the TA chooses l prime numbers
{q1, q2, ..., ql} and computes

Q =

l∏
k=1

qk,

Qk =
Q

qk
, yk · (Q

qk
) = 1 mod qk,

νk = Qk · yk.

(9)

4) Step 4: The TA generates a set of super-increasing
sequence {b1, b2, ..., bs}, which satisfies

bi > b0 + bi−1 · n,

b0 > n ·X ·
l∑

k=1

νk.
(10)

In addition, the TA selects two hash functions H : {0, 1}∗ →
Z∗
N and H1 : {0, 1}∗ → G1, and sends {b1, b2, ..., bs} to CC.
5) Step 5: For k ∈ [1, l], the TA publishes parameters

{G1,G2, e, g,N,H,H1, qk, νk, (R1, ..., Rs+1), (g
b1 , ..., gbs)}.

B. User Report Generation

In this phase, assuming that there are n users in a FN
covered area, each useri (i ∈ [1, n]) collects and encrypts
l dimensional power consumption data {di1, di2, ..., dil}, and

reports them to the corresponding FN periodically, e.g., every
15 minutes. The specific steps as follows:

1) Step 1: useri periodically collects power consumption
data {di1, di2, ..., dil}, and computes

m
′

i = di1 + di2 + ...+ dil. (11)

If useri’s total power consumption data m
′

i ∈ [Rj , Rj+1),
useri is denoted to lie in the subset Uj . Then useri integrates
these power consumption data {di1, di2, ..., dil} by computing

mi =
l∑

k=1

dik · νk. (12)

Next, useri first computes ϱi =
∏n

t=1,t ̸=i
t

t−i and the hash
value H(T ), where T denotes the current timestamp, then
utilizes the private key G(i) and gbj to compute ciphertext

Ci = gmi · gbj ·H(T )G(i)·ϱi·N mod N2. (13)

2) Step 2: useri generates a signature σi with G(i) as

σi = H(Ci||RA||T )G(i), (14)

where RA represents the residential area.
3) Step 3: Finally, useri reports < Ci||RA||T ||σi > to the

corresponding FN.

C. Privacy-preserving Report Aggregation

After FN receiving n
′

reports < Ci||RA||T ||σi > from
useri (i ∈ [1, n

′
]), where n

′
represents the number of users

working normally. Then, the FN performs the following steps:
1) Step 1: The FN firstly checks the timestamp T , then

verifies n
′

signatures by

e(g,

n
′∏

i=1

σi) =

n
′∏

i=1

e(Yi,H(Ci||RA||T )). (15)
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2) Step 2: After successfully verifying users’ signatures,
the FN aggregates all ciphertexts to obtain the aggregated
ciphertext.

If d+ 1 ≤ n
′ ≤ n, the FN computes

C =
n
′∏

i=1

Ci ·H(T )xfnN

=g
∑n

′

i=1 mi · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn)·N mod N2.

(16)

Note that, if n
′
< d+1, the FN requests that TA randomly

selects the private key G(i) of d+ 1− n
′

users Û and sends
them via a secure channel. Subsequently, the FN calculates∑

i∈Û G(i) · ϱi and

C =
n
′∏

i=1

Ci ·H(T )(xfn+
∑

i∈Û G(i)·ϱi)N

=g
∑n

′

i=1 mi · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn+
∑

i∈Û G(i)·ϱi)N mod N2.

(17)

3) Step 3: The FN generates signature σfn with the private
key xfn as

σfn = H(C||RA||T )xfn . (18)

Finally, the FN sends report < C||RA||T ||σfn > to CC.

D. Secure Report Reading

Upon receiving < C||RA||T ||σfn > from FN, the CC
verifies the integrity and source authentication of aggregated
ciphertext, uses Paillier decryption algorithm and CRT to
process C. The detailed process is as follows:

1) Step 1: The CC first examines timestamp T , then
computes and verifies signature by

e(g, σfn) = e(Yfn,H(C||RA||T )). (19)

2) Step 2: After successfully verifying the signature of FN,
the CC uses its private key x0 to compute

C
′
=C ·H(T )x0·N mod N2

=g
∑n

′

i=1 mi · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn+x0)·N mod N2

∑n
′

i=1 G(i)·ϱi+xfn+x0=0 mod λ
−−−−−−−−−−−−−−−−−−−−−→

=g
∑n

′

i=1 mi · g
∑s

j=1 bj |Uj | mod N2

=g
∑l

k=1(
∑n

′

i=1 dik·νk) · g
∑s

j=1 bj |Uj | mod N2

=gV mod N2,

(20)

where V =
∑l

k=1(
∑n

′

i=1 dik ·νk)+(
∑s

j=1 bj |Uj |). The CC can
recover V as follows:

V =
C

′ − 1

N
mod N2. (21)

3) Step 3: By executing the Algorithm 1, the CC can
recover |Uj | (j ∈ [1, s]) and M

′
from V , where |Uj | denotes

the number of users in the j-th subset, and

M
′
=

n
′∑

i=1

mi mod Q =
l∑

k=1

(
n
′∑

i=1

dik · νk) mod Q. (22)

4) Step 4: Based on the CRT, the CC can obtain

Mk =M
′
mod qk

=
l∑

k=1

(
n
′∑

i=1

dik · νk) mod qk

=
n
′∑

i=1

dik, (k ∈ [1, l])

(23)

where Mk is the sum of power consumption data of the k-th
dimension in the area covered by FN.

Algorithm 1: The algorithm to recover the number of
users in each subset and M

′

Input: bj (j ∈ [1, s]) and V ;
Output: |Uj |,M

′
;

1 for j = s; j ≥ 1; j −− do
2 |Uj | = V−V mod bj

bj
;

3 V = V − (bj · |Uj |);
4 M

′
= V mod Q;

5 Return {|U1|, |U2|, ..., |Us|,M
′};

6 End procedure

VI. PRIVACY-ENHANCED SCHEME WITH DIFFERENTIAL
PRIVACY TECHNIQUE

In PPMM-DA scheme, although users’ multi-dimensional
power consumption data are encrypted by Paillier cryptosys-
tem, the adversary still can launch differential attack to threat-
en their privacy. For example, the adversary launches two
queries on two datasets Dk and D

′

k, which represent the k-
th dimensional datasets and these two datasets differing on
useri’s data. Let A be a sum aggregation query operation, the
corresponding results are A(Dk) and A(D

′

k) = A(Dk) + dik,
and it is possible for the adversary to gain useri’s k-
th dimensional power consumption data dik by computing
A(Dk)−A(D

′

k). To avoid device-specific power consumption
data of individual user leaking, we use differential privacy
technique [44] to enhance privacy. Moreover, each dimension
of power consumption data under the FN coverage area is
regarded as an independent set, and the power consumption
data in different sets have no intersection, which satisfies
the parallel composability of differential privacy mentioned
in Section IV(B). In order to realize privacy-enhanced multi-
dimensional data aggregation, we propose two methods to
achieve differential privacy, which extracted noises from Ge-
ometric distribution and Laplace distribution, respectively.
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A. Geometric Distribution

Applying Geometric distribution to generate noises was first
put forward by Ghosh et al. [50]. Specifically, noises are
chosen from a symmetric Geometric distribution Geom(α)
with 0 < α < 1, where α can be seen as a discrete approxi-
mation of Laplace distribution Lap(λ̃), i.e., α ≈ exp(− 1

λ̃
).

The probability density function of Geometric distribution
Geom(α) is

Pr[x] =
1− α

1 + α
α|x|. (24)

Formally, the sensitivity of aggregation function A is

△A = maxD,D′ ||A(D)−A(D
′
)||1, (25)

for all datasets D and D
′

differing on at most one ele-
ment, then by adding geometric noises r1, r2, which are
randomly chosen from Geom(exp(− ϵ

△A )), to the original
aggregated result, the perturbed aggregated result can achieve
ϵ-differential privacy, i.e., for any integer O ∈ Range(A),

Pr[A(D) + r1 = O] ≤ exp(ϵ) · Pr[A(D
′
) + r2 = O]. (26)

The specific steps, which extracted noise from Geometric
distribution to achieve differential privacy, are as follows:

1) Step 1: As shown in the user report generation phase,
each useri computes Ci and σi. Then, useri sends report
< Ci||RA||T ||σi > to FN.

2) Step 2: The FN calculates the aggregated data C̃ as
follows. Due to A(Dk) =

∑n
′

i=1 dik, which Dk represents
the k-th dimensional dataset in the area covered by FN, then
|A(Dk) − A(D

′

k)| ≤ X holds for any two datasets Dk and
D

′

k differing on at most one element.
Therefore, we can set △Ak = X . The FN chooses random

noises d̃k (k ∈ [1, l]) from Geom(exp(− ϵk
△Ak

)) to implicitly
add them to C.

C̃ =C · g
∑l

k=1(d̃k·νk)

=g
∑n

′

i=1(
∑l

k=1 dik·νk)+
∑l

k=1(d̃k·νk) · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)ϱi+xfn)N mod N2

=g
∑l

k=1((
∑n

′

i=1 dik+d̃k)·νk) · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)ϱi+xfn)N mod N2

=g
∑l

k=1(M̃k·νk) · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)ϱi+xfn)N mod N2.

(27)

3) Step 3: The FN generates signature σfn and returns
report < C̃||RA||T ||σfn > to CC.

4) Step 4: Upon receiving the report < C̃||RA||T ||σfn >
from FN, the CC verifies the signature of FN and decrypts
the aggregated data C̃ as shown in the secure report reading
phase. Finally, the CC obtains the sum of power consumption
data of each dimension after perturbing M̃k =

∑n
′

i=1 dik + d̃k
(k ∈ [1, l]) and the number of users |U1|, |U2|, ..., |Us| in each
subset, where M̃k is the sum of power consumption data of
k-th dimension after perturbing.

B. Laplace Distribution

The Laplace distribution has been widely used to achieve
ϵ-differential privacy by adding Laplace noise Lap(λ̃) to the
output of a query. The noise Lap(λ̃) is sampled from Laplace
distribution, whose probability density function is

Pr[x] =
1

2λ̃
exp(−|x|

λ̃
). (28)

We assume that the differential privacy aggregation function
A answers a query on two datesets D and D

′
, which are

different on one single element. Then, we have

Pr[A(D)=O]

Pr[A(D′)=O]
=

1
2λ̃
exp(− |O−A(D)|

λ̃
)

1
2λ̃
exp(− |O−A(D′ )|

λ̃
)

≤ exp(
|A(D)−A(D

′
)|

λ̃
) ≤ exp(

△A

λ̃
).

(29)

Here ∆A denotes the global sensitivity of A, which is the
maximum change of A between two neighboring datasets D
and D

′
, that is, ∆A = maxD≃D′ |A(D) − A(D

′
)|, where

D ≃ D
′

denotes that D and D
′

are neighboring. Let ϵ = ∆A
λ̃

,
we have Pr[A(D) ∈ O] ≤ exp(ϵ) · Pr[A(D

′
) ∈ O], i.e.,

adding Laplace noise Lap(λ̃) to a query result for achieving ϵ-
differential privacy, where λ̃ denotes noise scale and λ̃ = ∆A

ϵ .
Furthermore, the distribution of Lap(λ̃) is infinitely divisible.
Specially, for every integer ξ ≥ 1,

Lap(λ̃) =

ξ∑
i=1

Gi(ξ, λ̃)−
ξ∑

i=1

G
′

i(ξ, λ̃), (30)

where Gi(ξ, λ̃) and G
′

i(ξ, λ̃) are two random variables having
Gamma distribution with probability density function:

Pr(x, ξ, λ̃) =
1
λ̃

1/ξ

Γ( 1ξ )
x

1
ξ−1exp(−x

λ̃
), (31)

where x > 0 and Γ( 1ξ ) is the Gamma function evaluated
at 1/ξ. In our scheme, Ak is a aggregation function which
calculates the sum of power consumption of k-th dimension in
the area covered by FN, and ∆Ak is the maximum power con-
sumption change of Ak in the k-th dimension. If the number of
users is n, for each useri, we can add Gik(n, λ̃k)−G

′

ik(n, λ̃k)
to its measurement dik before reporting, where λ̃k = ∆Ak

ϵk
.

Thus, the sum of power consumption of k-th dimension is
n∑

i=1

dik +
n∑

i=1

(Gik(n, λ̃k)−G
′

ik(n, λ̃k))

=

n∑
i=1

dik + Lap(λ̃k) (k ∈ [1, l]).

(32)

In this way, ϵk-differential privacy is satisfied.
The process of extracting noise from Laplace distribution

to achieve differential privacy is as follows:
1) Step 1: Each useri generates Laplace noise d̃ik =

Gik(n
′
, λ̃k)−G

′

ik(n
′
, λ̃k) (i ∈ [1, n

′
], k ∈ [1, l]), which is ran-

dom value independently sampled from the Gamma distribu-
tion, and adds this noise to dik. The perturbed power consump-
tion data can be expressed as m̃i =

∑l
k=1(dik+d̃ik)·νk. Next,
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the useri computes C̃i = gm̃i ·gbj ·H(T )G(i)·ϱi·N mod N2 and
σi following the same processes as shown in the user report
generation phase. Then, the useri reports < C̃i||RA||T ||σi >
to FN.

2) Step 2: The FN verifies signatures of n
′

users following
the same processes as shown in the privacy-preserving report
aggregation phase. After verifying users’ signatures, the FN
computes the aggregated data C̃. Especially, we let d̃k =∑n

′

i=1 d̃ik and the FN aggregates all the received ciphertexts
C̃i (i ∈ [1, n

′
]) as

C̃ =
n
′∏

i=1

C̃i ·H(T )xfnN

=g
∑n

′

i=1

∑l
k=1(dik+d̃ik)·νk · g

∑s
j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn)·N mod N2

=g
∑l

k=1((
∑n

′

i=1 dik+d̃k)·νk) · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn)·N mod N2

=g
∑l

k=1 M̃k·νk · g
∑s

j=1 bj |Uj |·

H(T )(
∑n

′

i=1 G(i)·ϱi+xfn)·N mod N2.

(33)

3) Step 3: The FN generates signature σfn and returns re-
port < C̃||RA||T ||σfn > to CC following the same processes
as shown in the privacy-preserving report aggregation phase.

4) Step 4: Upon receiving the report < C̃||RA||T ||σfn >
from FN, the CC verifies the signature of FN and decrypts
the aggregated data C̃ following the same processes as shown
in the secure report reading phase. Finally, the CC obtain-
s the sum of power consumption of each dimension after
perturbing M̃k =

∑n
′

i=1 dik + d̃k and the number of users
|U1|, |U2|, ..., |Us| in each subset.

VII. CORRECTNESS AND SECURITY ANALYSIS

A. Proof of Correctness

1) Formula (20): With the CC’s private key x0 as well
as the Lagrange interpolation polynomial [46], this formula
eliminates the term containing H(T ) in C. We assume that

V =
n
′∑

i=1

mi +
s∑

j=1

bj |Uj | (34)

and obtain

C = gV ·H(T )(
∑n

′

i=1 G(i)·ϱi+xfn)·N mod N2. (35)

According to the Lagrange interpolation polynomial, we have

G(x) =
d+1∑
i=1

(
d+1∏

t=1,t̸=i

t− x

t− i
)G(i). (36)

Therefore, when d+ 1 ≤ n
′ ≤ n,

n
′∑

i=1

G(i)ϱi =

d+1∑
i=1

(

d+1∏
t=1,t ̸=i

t− 0

t− i
)G(i) = G(0) = θ, (37)

n
′∑

i=1

G(i)ϱi + xfn + x0 = 0 mod λ. (38)

We assume θ + xfn + x0 = β · λ, and then we can get

C
′
= C ·H(T )x0·N = gV ·H(T )β·λ·N mod N2

= gV · (H(T )β)N ·λ mod N2

r=H(T )β−−−−−−→
= gV · rN ·λ mod N2.

(39)

Therefore, we have C
′
= gV mod N2.

2) Formula (21): From the description in our preliminaries,
we can get

C
′
= gV mod N2

= (1 +N)V mod N2

= 1 +N · V mod N2

=⇒ V =
C

′ − 1

N
mod N2.

(40)

3) Algorithm 1: This algorithm has one for loop, which
recovers |Uj | and M

′
. Since

n
′∑

i=1

mi =
n
′∑

i=1

l∑
k=1

dik · νk <
n
′∑

i=1

l∑
k=1

X · νk < b0 (41)

and

b1 · |U1|+ b2 · |U2|+ ...+ bs−1 · |Us−1|
< bs−1 · |U1|+ bs−1 · |U2|+ ...+ bs−1 · |Us−1|
≤ bs−1 · n,

(42)

we can get

n
′∑

i=1

mi + b1 · |U1|+ b2 · |U2|+ ...+ bs−1 · |Us−1|

< b0 + bs−1 · n < bs.

(43)

Therefore, we can obtain (V − V mod bs)/bs = (bs ·
|Us|)/bs = |Us|, and by using the same method, we can
recover all |U1|, |U2|, ..., |Us|. Then, we can obtain

M
′
=

n
′∑

i=1

mi mod Q =

l∑
k=1

(

n
′∑

i=1

dik · νk) mod Q, (44)

Mk = M
′
mod qk =

n
′∑

i=1

dik (k ∈ [1, l]). (45)

B. Security Analysis

In this subsection, we analyze and prove that our proposed
scheme can achieve all security goals, that is, our scheme
is secure against the differential attack, eavesdropping attack,
collusion attack and active attack.
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1) The privacy of individual user’s power consumption
data is protected from differential attack: According to the
threat model mentioned above, the adversary may intend to
learn the private power consumption data of individual user
through differential attack. Our proposed schene can guarantee
differential privacy for avoiding leakage of fine-grained private
power consumption data. On the one hand, with the differential
privacy technique, we demonstrate that the aggregated data for
k-th dimension, which adds noise extracted from Geometric
distribution, can achieve ϵk-differential privacy. For example,
assuming the adversary obtains two perturbed aggregated data
A(Dk) = v + d̃k and A(D

′

k) = w + d̃
′

k, where v and w are
two adjacent aggregation, d̃k and d̃

′

k are the corresponding ge-
ometric noises from Geom(exp(− ϵk

△Ak
)). Since |v−w| ≤ X ,

for integer O, we have

η =
Pr[v + d̃k = O]

Pr[w + d̃
′
k = O]

=
Pr[d̃k = O − v]

Pr[d̃
′
k = O − w]

=
1−α
1+α · α|O−v|

1−α
1+α · α|O−w| = α|O−v|−|O−w|.

(46)

Because

−|v − w| ≤ |O − v| − |O − w| ≤ |v − w|, (47)

and 0 < α < 1, α ≈ exp(− ϵk
X ), we can obtain

αX ≤ α|v−w| ≤ η ≤ α−|v−w| ≤ α−X

(exp(− ϵk
X

))X ≤ η ≤ (exp(− ϵk
X

))−X

exp(−ϵk) ≤ η ≤ exp(ϵk).

(48)

On the other hand, we demonstrate that the aggregated
data for k-th dimension, which adds noise extracted from the
Laplace distribution, can also achieve ϵk-differential privacy.
For example, assuming the adversary obtains two perturbed
aggregated data A(Dk) = v + d̃k and A(D

′

k) = w + d̃
′

k,
where v and w are two adjacent aggregation, d̃k and d̃

′

k are
the corresponding noises from Laplace distribution with the
scale of λ̃k = ∆Ak

ϵk
. Therefore, we have

Pr[A(Dk) = O]

Pr[A(D
′
k) = O]

=

1
2λ̃k

exp(− |O−A(Dk)|
λ̃k

)

1
2λ̃k

exp(− |O−A(D
′
k)|

λ̃k
)

= exp(
|A(Dk)−A(D

′

k)|
λ̃k

)

≤ exp(
∆Ak

λ̃k

) = exp(ϵk).

(49)

In both methods, converting the perturbed power consump-
tion data into ciphertext C̃i can also satisfy ϵk-differential
privacy. According to the differential privacy axiom proposed
by Daniel Kifer in [47], differential invariance is defined:
transformation invariance, which shows dataset that satisfies
ϵ-differential privacy can satisfy ϵ-differential privacy after
encryption. Therefore, M̃k achieves ϵk-differential privacy in
these two methods. Additionally, we regard each dimension of
power consumption data as an independent set, and the power
consumption data in different sets have no intersection, which
satisfies the parallel composability of differential privacy men-
tioned in Section IV. Consequently, the perturbed aggregated
result of multi-dimensional data after adding noise satisfies
max{ϵ1, ϵ2, ..., ϵl}-differential privacy.

2) The privacy of individual user’s power consumption data
is protected from eavesdropping attack: The adversary may
obtain the private power consumption data of individual user
by eavesdropping on communication links, such as the com-
munication links from users to FN or from FN to CC. Due to
users’ private power consumption data are transmitted on each
communication link in ciphertext, even if the adversary obtains
Ci or C, he cannot obtain private power consumption data of
individual user. On the one hand, we consider an adversary
who has obtained a report by eavesdropping on the communi-
cation between users and FN and obtains < Ci||RA||T ||σi >,
where Ci = gmi ·gbj ·H(T )G(i)·ϱi·N mod N2. Let m = mi+bj
and ri = H(T )G(xi)·ϱi , then ciphertext Ci = gm ·rNi mod N2

is still a legal ciphertext of Paillier cryptosystem. Since Paillier
cryptosystem is indistinguishable under the chosen plaintext
attack (IND-CPA) secure, the adversary cannot decrypt useri’s
ciphertext Ci and get his private data mi, let alone obtain
useri’s fine-grained data, such as the power consumption data
of k-th dimension dik.

On the other hand, we consider that the adversary has
obtained the report by eavesdropping on the communication
from FN to CC. However, he can only get the aggregated
data and ciphertexts of all users’ power consumption data.
Similarly, the FN aggregates these ciphertexts and computes
the aggregated ciphertext C, which has the same form as
individual report Ci. Since C is still a valid ciphertext of
Paillier cryptosystem, and

∑n
′

i=1 mi and dik are transparent
to the adversary. Therefore, our proposed scheme can protect
the private power consumption data of individual user from
eavesdropping attack.

3) The privacy of individual user’s power consumption data
is protected from collusion attack: On the one hand, if the
FN colludes with some users, they can obtain their secret
parameters {G(i), ϱi}. In our scheme, the TA employs the
Shamir’s Secret Sharing and computes a polynomial function
of degree d, which is

G(x) = θ + α1x+ α2x
2 + ...+ αdx

d, (50)

and then divides θ into n shares G(i) to n users as their private
keys, and any d users or fewer than d users cannot obtain θ.
Supposing an extreme situation occurs, the adversary success-
fully compromises d+1 users and obtains their corresponding
private keys {G(1), G(2), ..., G(d+ 1)}. However, due to

θ + xfn + x0 = 0 mod λ, (51)

and private key x0 is kept secretly by CC, even if the FN
colludes with d+1 users, x0 cannot be recovered. Therefore,
we can conclude that no matter how many users collude with
FN, they cannot obtain the private data of other users. On
the other hand, the private key of Paillier cryptosystem λ is
kept secretly by TA, and even if the CC colludes with FN or
some users by sharing and analyzing their information (such as
ciphertexts, private keys and public information), they cannot
obtain the private data of other users. Hence, we can conclude
that our proposed scheme can protect the privacy of individual
user’s power consumption data from collusion attack.

4) The privacy of individual user’s power consumption data
is protected from active attack: It is important to protect
users’ private data from active attack, such as message forgery
and replay attack. We will elaborate that the report can be
authenticated by FN and CC, which is indeed sent by a
legitimate entity and cannot be changed during transmission.
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Source authentication. The FN needs to verify the identity
of user before aggregating the data to ensure that the report
was sent by the legitimate user who has not been tampered
with. Similarly, the CC must perform identity verification
before decrypting data. Therefore, our scheme can guarantee
that the received message actually come from the legitimate
entity and resist message forgery attack.

Data integrity and Replay attack. On the one hand, we
consider the communication link from IoT layer to Fog
layer. When useri sends a report < Ci||RA||T ||σi > to
nearby FN, the FN verifies if e(g, σi) = e(Yi,H(Ci||RA||T ))
holds. Only legitimate useri can generate valid ciphertext
Ci = gmi · gbj · H(T )G(i)·ϱi·N mod N2 and signature σi =
H(Ci||RA||T )G(i) by G(i) and timestamp T . At the same
time, an external adversary cannot make any modifications on
the encrypted data Ci and report < Ci||RA||T ||σi >, which
can be guaranteed by FN to detect whether the report has been
tampered during transmission or not based on the equation
e(g, σi) = e(Yi, H(Ci||RA||T )). On the other hand, the data
integrity of the report from FN to CC can also be achieved.
The FN generates signature σfn = H(C||RA||T )xfn with
xfn and timestamp T . In addition, the T is used in the report
< C||RA||T ||σfn >. After the FN and CC receive the report,
they check T to detect replay attack. Therefore, our scheme
can satisfy data integrity and resist message replay attack.

VIII. PERFORMANCE EVALUATION

In this section, we compare our proposed scheme with [13],
[17], [24], [25], [31], [51]–[56] from functions, computational
and communication overheads, and errors in the fog-based
smart grid system.

A. Functional Comparison

The functional comparison is shown in Table II. As shown in
Table II, our proposed scheme achieves multi-dimensional and
multi-subset data aggregation, supports fault tolerance, resists
differential attack, eavesdropping attack, collusion attack and
active attack. The scheme [13] can against eavesdropping
attack and active attack using Boneh-Goh-Nissim public key
cryptography. In the scheme [17], the CC can only obtain
aggregated results of multi-dimensional data. The scheme [31]
combines differential privacy technology to resist differential
attack for one-dimensional data, realizes fault tolerance and
resists eavesdropping attack. The scheme [53] can against
both differential and active attacks with a differential privacy
mechanism. The scheme [51] achieves fault tolerance and
resists differential attack via randomized responses. However,
these schemes [31], [51], [53] can only obtain aggregated
result of one-dimensional data and cannot perform multi-
subset data aggregation. Some schemes [52], [54], [55] realize
privacy-preserving multi-dimensional data aggregation via d-
ifferential privacy and resisted differential attack. However,
these schemes [52], [54], [55] cannot resist eavesdropping
attack, collusion attack and active attack. In schemes [24],
[25], the CC can perform the multi-subset data aggregation,
but SMs only report one type of data to CC. Also, they
cannot resist differential attack. Zuo et al. [56] come up with
a privacy-preserving multi-dimensional and multi-subset data
aggregation for addressing the collusion attack. However, this
scheme also cannot resist differential attack.

B. The Comparison of Computational Overhead

In this subsection, we compare the computational overhead
of our proposed scheme with these of [17], [24], [25], [56] in
terms of each user, GW, CC and the total. As authentication
is not considered in schemes [24], [25], we will not discuss
the computational overhead of signature here. Let Te be the
time of exponential operation in ZN2 , and Tmul be the time of
multiplication operation in ZN2 . Our experiment is conducted
on a laptop with 64-bits Windows 10 Enterprise operating
system, the Intel(R) Core(TM) i7-4510U CPU and 8 GB
memory. The experiment results show that Te = 1.7 ms and
Tmul = 0.16 ms. In addition, we assume that there are n users
and each user’s power comsumption data is l dimension. The
comparison of computational overhead for [17], [24], [25],
[56] and ours is depicted in Table III.

Chen et al.’s scheme [17]: In the user report generation
phase, each user requires (l+1)Te+ lTmul to generate the
ciphertext. In the privacy-preserving report aggregation phase,
GW requires (n−1)Tmul to generate the aggregated ciphertext.
In the secure report reading phase, the CC requires Te to
decrypt the aggregated data. Thus, the computational overhead
of scheme [17] is (nl+n+1)Te+(nl+n−1)Tmul in total.

Li et al.’s scheme [24]: In the user report generation phase,
each user requires 2Te+Tmul to generate the ciphertext. In the
privacy-preserving report aggregation phase, the GW requires
(n−1)Tmul to generate the aggregated ciphertext. In the secure
report reading phase, the CC requires Te + Tmul to decrypt
the aggregated data. Therefore, the computational overhead of
scheme [24] is (2n+ 1)Te + 2nTmul in total.

Chien et al.’s scheme [25]: In the user report generation
phase, each user requires 4Te +2Tmul to generate the cipher-
text. In the privacy-preserving report aggregation phase, the
GW requires 2(n− 1)Tmul to generate the aggregated cipher-
text. In the secure report reading phase, the CC requires 2Te

to decrypt the aggregated data. Therefore, the computational
overhead of scheme [25] is (4n+2)Te+(4n−2)Tmul in total.

Zuo et al.’s scheme [56]: In the user report generation
phase, each user requires 3Te+Tmul to generate the ciphertext.
In the privacy-preserving report aggregation phase, the GW
requires 2(n − 1)Tmul to generate the aggregated ciphertext.
In the secure report reading phase, the CC requires nTe+Tmul

to decrypt the aggregated data. Therefore, the computational
overhead of scheme [56] is 4nTe + (3n− 1)Tmul in total.

Our proposed scheme: In the user report generation phase,
each user requires 2Te + Tmul to generate the ciphertext.
Particularly, we structure multi-dimensional data as a com-
posite data, which can reduce the computational overhead
of encryption significantly. In the privacy-preserving report
aggregation phase, the GW requires (n − 1)Tmul to gener-
ate the aggregated ciphertext. In the secure report reading
phase, the CC requires Te + Tmul to decrypt the aggregated
data. Therefore, the computational overhead of our proposed
scheme is (2n+ 1)Te + 2nTmul in total.

On the one hand, we compare our proposed scheme with
[17], [24], [25], [56] for different number of dimensions l in
Figure 3. Specifically, we vary the dimension of power con-
sumption data from {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and
assume there are 100 users in the system. From the Figure 3,
we can find that the computational overhead of scheme [17]
increases linearly with l increases, while that of our proposed
scheme is independent of l in the user report generation phase.
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TABLE II: Functional comparison
Feature [13] [17] [24] [25] [31] [51] [52] [53] [54] [55] [56] Ours

Multi-dimensional ×
√

× × × ×
√

×
√ √ √ √

Multi-subset × ×
√ √

× × × × ×
√ √ √

Multi-dimensional and multi-subset × × × × × × × × ×
√ √ √

Differential privacy × × × ×
√ √ √ √ √ √

×
√

Fault tolerance × × ×
√ √ √

× × × ×
√ √

Eavesdropping attack
√ √ √ √

× × × × × ×
√ √

Collusion attack × ×
√

× × × × × × ×
√ √

Active attack
√ √

× ×
√

× ×
√

× ×
√ √

TABLE III: The comparison of computational overhead
Participant Scheme in [17] Scheme in [24] Scheme in [25] Scheme in [56] Our scheme
Each user (l + 1)Te + lTmul 2Te + Tmul 4Te + 2Tmul 3Te + Tmul 2Te + Tmul

The GW (n − 1)Tmul (n − 1)Tmul 2(n − 1)Tmul 2(n − 1)Tmul (n − 1)Tmul

The CC Te Te + Tmul 2Te nTe + Tmul Te + Tmul

The total (nl+n+1)Te+(nl+n−1)Tmul (2n+1)Te+2nTmul (4n+2)Te+(4n−2)Tmul 4nTe+(3n−1)Tmul (2n+1)Te+2nTmul
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Fig. 3: The variation of computational overheads for different number of dimensions when n = 100.
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Fig. 4: The variation of computational overheads for different number of users when l = 10.
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bution and Laplace distribution under different ϵk.
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On the other hand, we compare our proposed scheme
with [17], [24], [25], [56] for different user numbers n
in Figure 4. Specifically, we vary the the number of user-
s from {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} and
assume each user’s power comsumption data is 10 dimensions.
Figure 4 demonstrates that the computational overhead of our
proposed scheme is lower than these of [17], [25], [56].

C. The Comparison of Communication Overhead

The communication overhead is closely related to the size of
messages transmitted between entities. We utilize the Paillier
encryption algorithm to encrypt users’ power consumption
data and use the bilinear aggregate signature [48] to realize
authentication between entities. Consequently, the size of a
ciphertext is 2048 bits, if we choose the security parameter
κ = 1024 bits.

Chen et al.’s scheme [17]: In the user report generation
phase, useri generates a ciphertext Ci and sends it to FN,
where Ci ∈ ZN2 . Therefore, the communication overhead
from useri to FN is Si = 2048 bits, and the communication
overhead from FN to CC is SFN = 2048 bits in the privacy-
preserving report aggregation phase.

Li et al.’s scheme [24]: In the user report generation phase,
useri generates a ciphertext Ci and sends it to FN, where Ci ∈
ZN2 . Therefore, the communication overhead from useri to
FN is Si = 2048 bits, and the communication overhead from
FN to CC is also SFN = 2048 bits in the privacy-preserving
report aggregation phase.

Chien et al.’s scheme [25]: useri generates two ciphertexts
C1i, C2i ∈ ZN2 and sends them to FN in the user report
generation phase. Therefore, the communication overhead
from useri to FN is Si = 4096 bits, and the communication
overhead from FN to CC is also SFN = 4096 bits in the
privacy-preserving report aggregation phase.

Zuo et al.’s scheme [56]: useri generates two ciphertexts
Ca

i , C
b
i ∈ ZN2 and sends them to FN in the user report

generation phase. Therefore, the communication overhead
from useri to FN is Si = 4096 bits, and the communication
overhead from FN to CC is also SFN = 4096 bits in the
privacy-preserving report aggregation phase.

Our proposed scheme: useri generates a ciphertext Ci and
sends it to nearby FN in the user report generation phase,
where Ci ∈ ZN2 . Therefore, the size of useri’s report is
calculated as Si = 2048 bits. Subsequently, in the privacy-
preserving report aggregation phase, the aggregated result C
is sent to CC. As a result, the size of FN’s report is calculated
as SFN = 2048 bits.

From the above comparison, we can draw the conclusion
that our proposed scheme achieves privacy-preserving multi-
dimensional and multi-subset data aggregation in lower com-
munication overhead than [25], [56].

D. The Comparison of Error

We use the relative error to analyze the error caused
by extracting noise from Geometric distribution or Laplace
distribution. This error can be measured by comparing the
difference between the original aggregated data Mk and the
perturbed aggregated data M̃k. The mathematical expectation
of relative error is calculated as E(error) = E|M̃k−Mk|

Mk
. We

take the k-th dimensional power consumption of a user as an

example, and set the failure rate of SMs is 0.8%. The error
analysis is as follows.

1) Geometric distribution error analysis: In the privacy-
enhanced scheme, we add noise d̃k extracted from Geometric
distribution to the original aggregated result Mk in the k-th
dimension. Then, the perturbed aggregated data after adding
noise is Mk + d̃k, denoted as M̃k. According to the mathe-
matical expectation of relative error, we can obtain

Ẽ(ζk) =
E|M̃k −Mk|

Mk
=

E|d̃k|
Mk

, (52)

where d̃k ∼ Geom(exp(− ϵk
∆Ak

)) and

E|d̃k| =
∞∑

d̃k=−∞

|d̃k| · Pr[d̃k]

=
∞∑

d̃k=−∞

|d̃k| ·
1− α

1 + α
αd̃k

=
2

1 + α
·

∞∑
d̃k=1

d̃k(1− α) · αd̃k

=
2

1 + α
· (

∞∑
d̃k=1

d̃k · αd̃k −
∞∑

d̃k=1

d̃k · αd̃k+1)

=
2

1 + α
·

∞∑
d̃k=1

αd̃k =
2

1 + α
· α

1− α

=
2α

1− α2
. (∵ 0 < α < 1)

(53)

As α = exp(− ϵk
∆Ak

), therefore, the mathematical expectation
of relative error of Geometric distribution is

Ẽ(ζk) =
E|d̃k|
Mk

=
2exp(− ϵk

∆Ak
)

Mk(1− exp(− 2ϵk
∆Ak

))
. (54)

2) Laplace distribution error analysis: In the privacy-
enhanced scheme, we add noise d̃ik extracted from Laplace
distribution to dik. Then, the perturbed aggregated data after
adding noise is Mk + d̃k, denoted as M̃k. According to the
mathematical expectation of relative error, we can obtain

Ẽ(ζk) =
E|M̃k −Mk|

Mk
=

E|d̃k|
Mk

, (55)

where d̃k ∼ Lap(∆Ak

ϵk
) and

E|d̃k| = 2

∫ +∞

0

d̃k · Lap(∆Ak

ϵk
)d(d̃k)

= 2

∫ +∞

0

d̃k · ϵk
2∆Ak

· e−
d̃k·ϵk
∆Ak d(d̃k)

=
∆Ak

ϵk
.

(56)

Therefore, the mathematical expectation of relative error of
Laplace distribution is

Ẽ(ζk) =
E|d̃k|
Mk

=
∆Ak

ϵk ·Mk
. (57)
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3) The comparison of utility: The utility of privacy-
preserving data aggregation scheme with differential privacy is
mainly affected by the relative error of the aggregated result.
Therefore, from the perspective of utility of privacy-preserving
data aggregation scheme, we conduct experiment to evaluate
and compare the utility here.

On the one hand, we compare relative errors of Geometric
distribution with these of Laplace distribution under different
ϵk. We extract noises from Geometric distribution and Laplace
distribution, respectively, and add them to the real power
consumption data in the fog-based smart grid. Specifically,
we vary the privacy budgets of the k-th dimension ϵk
from {0.1, 0.2, 0.3}, and vary the number of users n from
{1000, 2000, 3000, 4000,5000,6000,7000, 8000, 9000, 10000}.
The comparison of relative errors on Geometric distribution
and Laplace distribution under different ϵk are depicted in
Figure 5. As shown in Figure 5, when the number of users
is n = 5000, the privacy budget is ϵk = 0.2, the relative
error of privacy-preserving data aggregation scheme which
extracted noise from Geometric distribution is 0.192307564%,
and the relative error of privacy-preserving data aggregation
scheme which extracted noise from Laplace distribution is
0.192307692%. The relative errors of these two methods are
very close and are difficult to distinguish. At the same time,
we can find that a higher level of privacy needs sacrifice more
data utility as a cost. That is, for the same number of users
n, the increase of privacy-preserving intensity will introduce
more noise resulting in a greater loss of data utility.

On the other hand, we compare our proposed scheme with
the state-of-the-art schemes [51]–[55] in term of relative
error. We set ϵk = 0.2 and vary the number of users n from
{1000, 2000, 3000, 4000,5000,6000,7000, 8000, 9000, 10000}.
The comparison of relative errors for schemes [51]–[55] and
ours when ϵk = 0.2 are depicted in Figure 6. According to the
Figure 6, when the number of users n increases, the relative
error will decrease while the data utility will grow, and the
relative error is kept within 0.2% when n ≥ 5000. Therefore,
we can draw the conclusion that our proposed scheme can
maintain higher data utility under the same privacy budget,
which means that our proposed scheme introduces lower
noises while resisting differential attack.

IX. CONCLUSION

In this paper, for fog-based smart grids, we proposed a
privacy-preserving multi-dimensional and multi-subset data
aggregation scheme with differential privacy. Even if the user’s
power consumption data is multi-dimensional, users can also
be divided into different subsets according to their power
consumption. As a result, the CC can perform fine-grained
analysis on user’s power consumption data. Security analysis
demonstrates that our proposed scheme can resist differential
attack, eavesdropping attack, collusion attack and active attack.
The experiment results show that our proposed scheme is
more efficient at computational overhead and communication
overhead. In future, we will study tariff problem [60], general
transactive energy (TE) retailing problem [61], user access
control using lightweight face verification [62], trusted entities
problem by leveraging the Trusted Execution Environment
(TEE) [63] to meet the requirements of fair pricing, intelligent
electronic devices and user trust.
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