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Abstract—The rapid growth of the Federated Internet of
Things ecosystem has introduced new challenges in achieving
seamless connectivity and interoperability across heterogeneous
IoT networks. The presence of heterogeneous platforms and
protocols creates significant obstacles for effective communication
among cross-silos federated IoT nodes. To tackle this challenge,
we have developed Heterogeneous Federated Internet of Things
(Hetero-FedIoT), an innovative rule-based interworking architec-
ture enabling interoperability and seamless connectivity among
heterogeneous federated IoT networks (oneM2M, OCF and
EdgeX). Hetero-FedIoT offers a two-faceted solution to address
these challenges. Firstly, it incorporates a rule-based interwork-
ing mechanism that fosters effective collaboration among Hetero-
FedIoT networks. Additionally, it introduces a novel aggregation
function capable of achieving accelerated convergence, effectively
handling both system and statistical heterogeneity. By leveraging
device proxies, Hetero-FedIoT enables interoperability among
heterogeneous FedIoT networks by translating protocols from
platform-native formats to a common format and vice versa. As
a result, collaborative model training can be seamlessly conducted
without the need to consider underlying frameworks. Addition-
ally, the novel aggregation algorithm employed by Hetero-FedIoT
empowers nodes to customize the complexity of local models
according to their communication and computation capabilities.
This is accomplished through the dynamic adjustment of hidden
channel widths, ensuring that the overall performance of the
global model remains unaffected. This groundbreaking Hetero-
FedIoT architecture establishes a foundation for enhanced in-
teroperability and optimal performance. Extensive evaluation of
Hetero-FedIoT has demonstrated superior computational and
communication efficiency over baseline schemes. The Hetero-
FedIoT system revolutionizes decentralized training under het-
erogeneous conditions, fostering widespread adoption.

Index Terms—Federated Learning, Statistical Heterogene-
ity, System Heterogeneity, Interworking, Federated Internet of
Things.
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FEDIOT, short for Federated Internet of Things, represents
the concept of decentralized collaboration among multi-

ple IoT systems. This procedure involves consolidating and
synchronizing diverse IoT networks and platforms to facilitate
collaborative model training. Typically, in a centralized train-
ing scheme, the data generated by IoT devices is transmitted to
a central server, either by physical servers or cloud clusters for
further processing [1]. However due to the implementation of
Global Data Privacy Regulations (GDPR), there has been a rise
in the adoption of Federated Learning (FL) as an alternative
approach. FL introduces a fresh paradigm where IoT devices
collaborate to train a machine learning model, overseen by
a central server [2], [3]. Each device independently trains
the model using its own set of training data, and only the
local parameter updates are shared with the server. By keeping
the actual data on the devices, it ensures the preservation of
privacy for the edge nodes. This iterative process continues
until an optimal global model is achieved.

During federation, the edge nodes only send the local model
parameters, or gradients, instead of data for model aggregation,
which further reduces the communication overhead [4]. The
Google keyboard serves as a prominent example, as it effec-
tively utilize local data on the device to maintain contextual
relevance and track user engagement with each potential
recommendation displayed. The information obtained from
users is utilized to augment the intelligence of forthcoming G-
board recommendations [5]. However, the device usage pattern
of users varies, which leads to statistical heterogeneity and
imbalanced data and label distributions.

The current state of the IoT market exhibits substantial frag-
mentation, wherein a multitude of independently developed
solutions primarily emphasize vertical optimization rather than
horizontal integration [6]. This fragmented landscape has led
to a lack of interoperability and synergy among solution de-
ployments, hindering the realization of a unified and cohesive
ecosystem. According to [7] interoperability is required to
realize 40% of the potential benefits of IoT. Interoperability, in
the context of FedIoT systems, refers to the seamless connec-
tivity of multiple devices. However, the heterogeneous nature
of these systems, encompassing diverse protocols, platforms,
technologies, and hardware, presents a significant challenge
in achieving smooth and efficient connectivity among them
[8]. This gap can be attributed to the adoption of different
technological standards and protocols among edge networks.
Recently, several solutions have been devised for achieving
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interoperability between standard frameworks for IoT plat-
forms. The solutions presented are primarily centered on
bridging techniques that make use of proxies, gateways, and
middle-ware. However, in the context of data sharing and
transfer across platforms, it is imperative to take into account
communication protocols and data formats [9]. The primary
objective of standardization initiatives in the this realm is to
promote consistent service provision by means of standardized
interfaces. The implementation of specialized platforms is cru-
cial in order to guarantee the necessary performance efficiency
to satisfy the computational and communication limitations of
edge nodes.

For instance, the Machine-to-Machine (oneM2M) standard
is a globally recognized to facilitate interoperability among
various IoT systems. The provision of a shared service layer
facilitates the smooth transmission and exchange of data
across disparate platforms and devices. In order to enable
effective communication among diverse devices and platforms,
the oneM2M standard plays a crucial role by establishing a
comprehensive set of protocols and APIs. These standard-
ized mechanisms facilitate seamless interoperability, ensuring
transparent interaction between different entities involved in
the system. Despite the standardization efforts undertaken by
oneM2M to facilitate communication among heterogeneous
IoT platforms, the integration of this platform with other
systems may still encounter interoperability challenges arising
from differences in implementation and protocol preferences
[10], [11]. In this regard, The Open Connectivity Foundation
(OCF) provided an open-source platform that places a sig-
nificant emphasis on fostering interoperability and connectiv-
ity among edge devices. However, the integration of OCF-
IoTivity with non-OCF platforms poses challenges attributed
to inherent protocol variations. These obstacles impede the
communication with other platforms, consequently affecting
the realization of comprehensive interoperability within the
broader IoT landscape [12].

Despite their connection to the same middleware, the dispar-
ities in protocols between platforms such as oneM2M, Watson-
IoT by IBM, FIWARE, an open-source platform, and OCF
create interoperability challenges in FedIoT systems. Since
each platform uses its own set of protocols and communication
mechanisms, which results in incompatible data formats and
communication methods. As a result, devices and systems
operating on different platforms struggle to effectively ex-
change information and collaborate. Several researchers have
suggested the use of rule-based interoperability solutions.
The rules serve as a contextual structure that encompasses
information and enables the functioning of service scenarios
through the assessment of occurrences [13].

For rule and protocol translation via proxies, it is important
to ensure that the knowledge of rules is easily understood
by the heterogeneous Fed-IoT systems. The current situation
requires the development of a system to provide interworking
support for heterogeneous protocols, device identification,
well-defined semantic management, and processing of data
formats on heterogeneous platforms [14]. To comprehend the
information included within a rule context, the interworking
solution must have an interpreter that effectively sifts through

occurrences in line with the defined rule conditions [15]. As
a result, establishing a uniform rule context and interface that
can be easily applied across the FedIoT platforms is critical. In
order to comprehend the data encompassed by a set of rules,
the utilization of an interpreter becomes essential for efficient
event filtering based on the specified rule criteria. Hence,
establishing a standardized rule context and interface that
can be seamlessly implemented across the FedIoT networks
becomes imperative.

Within the current IoT frameworks incorporating rule sup-
port, two pivotal issues emerge: the communication protocol
and the format of the rule context. The rule context assumes
a pivotal role in facilitating the execution of rule scenarios by
the rule operator. The effective interpretation and utilization of
this contextual information require the rule operator to possess
a high level of skill in discerning the context and extracting
pertinent details. This proficiency enables informed decision-
making during the execution of rules, enhancing the overall
effectiveness of the rule-based system [16]. Furthermore, in
order to assure proper rule transmission and reception for
deployment, the rule client and server must use a unified com-
munication protocol. However, with heterogeneous FedIoT
networks established under different communication protocols
and rule context formats, existing frameworks struggle to
maintain a consistent rule model [17]. To address these issue,
the interworking proxy can be used to translate protocols
across two disparate FedIoT networks. To this aim proxy
serves as a crucial network element that plays a central role
in promoting coherence among IoT networks [18].

This is achieved by eliminating discrepancies, ensuring
uniformity in data formatting, and facilitating consistent ser-
vice interfaces. Therefore, using a proxy with rule-enabled
FedIoT platforms can help ensure that the same rules are
applied uniformly across all connected devices. For rule-
enabled FedIoT platforms, this connection also ensures the
smooth operation of rules across spatially distant and cross-
silos heterogeneous FedIoT networks.

Furthermore, there exists heterogeneity in terms of de-
vice resources, dynamic communication standards and device
types [19]. The devices within a FedIoT network possess
a broad spectrum of capabilities, which encompass diverse
processing, communication, and storage abilities. These ca-
pabilities include factors such as computing power, memory
size, network speeds (such as 4G, 5G, WiFi), and battery life
[20]. Existing solutions face a significant limitation due to
their assumption that all participating devices possess identical
computational and communication capabilities [21]. However,
in reality, the devices exhibit varying capabilities, leading to
inefficient weight updates. This issue becomes particularly
pronounced in synchronous federated learning, where the edge
server must wait for updates from all learning nodes, before
computing global updates [22]. Consequently, the presence
of a slow learning node also known as stragglers acts as a
bottleneck, causing delays in the overall decentralized training
process. To mitigate this challenge, researchers have proposed
asynchronous model training approaches [23]. However, the
scalability of such solutions is limited due to communication
overhead and non-deterministic convergence. As a result, it
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becomes crucial to optimize the local model complexity based
individual computation and communication capabilities of
edge nodes.

Our study focuses on improving interoperability in FedIoT
systems, with a special emphasis on the resolving challenges
posed by system and statistical heterogeneity. The objective
of this study is to develop an innovative FedIoT system that
can effectively handle statistical and system heterogeneity,
while ensuring fairness in federation. As well as establishing
seamless connectivity among cross-silo nodes. To achieve
this, we proposed a framework of common rules facilitation
framework to provide interworking among heterogeneous Fe-
dIoT networks. The proposed architecture for interoperability
effectively manages the diverse communication protocols and
rule models embedded within the frameworks, ensuring con-
sistent rule operations. In addition, this paper proposed a fair
aggregation approach that allows the server to dynamically
alter the width of hidden channels in a deep learning model
based on the processing and communication capabilities of
cross-silo nodes. Our developed system aims to collaboratively
train a thermal comfort prediction model. To establish a
heterogeneous FedIoT network, EdgeX, OCF and oneM2M
standard platforms networks are developed and established.
The proposed framework represents a novel approach to
addressing statistical and system heterogeneity in federated
learning systems, and is currently the most advanced solution
available. Our framework addresses the challenges arising
from heterogeneous statistical and system variations, thereby
facilitating improved collaboration and effective learning in
federated settings. The noteworthy contributions of the pro-
posed work are as follows:

1) Design and implementation of a common rule facili-
tation based interworking proxy for seamless connec-
tivity and interoperability among heterogeneous FedIoT
(oneM2M, OCF, EdgeX) platforms.

2) Hetero-FedIoT encompasses a protocol and rule trans-
lation framework, which incorporates a proxy layer be-
tween edge nodes, gateways, and federated server. This
framework serves as a bridge to connect heterogeneous
nodes, facilitating seamless communication.

3) The proposed framework allows participating nodes to
adapt global models with heterogeneous complexity lev-
els according to their computation and communication
abilities.

4) The learning outcome of developed Hetero-FedIoT
framework remains stable and effective even when the
system heterogeneity undergoes dynamic changes.

The remaining sections of the paper are organized as
follows: Section II discusses the related work. Section III
presents the proposed methodology, and detailed working of
the system as well as the operational and functional overview.
Section IV describes the experimental setup and implementa-
tion details. Section V presents the findings of the proposed
systems including comparative analysis with baseline schemes.
Lastly, Section VI provides the conclusion and outlines future
directions for research.

II. BACKGROUND AND RELATED WORK

Despite the inherent heterogeneity of FedIoT networks, the
existing solutions often assume a scenario where the edge
nodes participating in collaborative training are homogeneous.
In practical settings, decentralized training faces a range of
challenges including diverse device types and resources, vary-
ing network quality, communication protocols, and underlying
platforms. As a result, heterogeneity has proven to have
consequences for the efficiency and performance of FedIoT
networks. Therefore in order to make disparate FedIoT net-
works interoperable and seamlessly connected, it is imperative
to develop solutions to tackle the heterogeneity of protocols
and data transfer formats.

Generally, to send and receive data from disparate device
networks such as OCF [24], AllJoyn [25] and oneM2M [26]
various studies employed techniques such as service layer
proxy. Another study supported the use of an interworking
proxy to facilitate communication between OCF and non-
OCF device networks. In this regard, the interworking proxy
is used for bridging OCF clients and servers [27]. In similar
attempts, an OCF enabled multi-protocol gateway is developed
by [28] for semantic conversion and protocol translation for
accessing non-OCF services. Like wise [29] proposed a proxy
framework for communication between edge nodes to provide
interoperability among heterogeneous communication proto-
cols. In order to provide services, OCF devices have access
to OCF resources. The OCF rule server is built to support
condition-action based autonomous decision making, as per
the optional specification. Similarly [30], has suggested the
action triggering mechanism to automate the action command
execution based on conditions for the oneM2M systems.

Rules engines are often deployed in IoT edge systems to
support dynamic and autonomous operations. By automati-
cally performing actions in response to triggered conditions
based on a predefined set of rules, they promote autonomous
decision-making. In a similar manner, FedIoT systems may
more efficiently employ rule and protocol translation to re-
liably operate collaborative model training service [31]–[33].
Multiple rule-based systems have been proposed to provide
self-governing and adaptable service scenarios in IoT net-
works. For instance, [34] presented a semantic rule-based
approach for the automated administration of IoT devices in
built environments. This method identifies and executes events,
conditions, and actions to facilitate device management. In
another study, [35] introduced a rule-based event processing
mechanism that is suitable for heterogeneous sensing devices
using the Drools framework. The authors of [36] developed
a rule-based event processing mechanism for monitoring and
controlling nodes in real-time. The framework under con-
sideration utilize the functionalities of Drools for effective
rule-oriented processing, thereby ensuring optimal monitor-
ing and control operations in a real-time. The authors of
[37] introduced the Representational State Transfer (RESTful)
framework for rule administration. The framework offers a
variety of customizable and scalable options to support the
provision of IoT services. Luo et al. [38] have developed
another scalable Drools rule-engine for the edge gateway,
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focused on complex event processing using triggered condi-
tions and actions. To address real-time events at the edge of
networks, Choochotkaew et al. [39] developed a complex event
processing engine. Additionally, Chen et al. [40] designed a
real-time data-stream filtering engine using Drools framework.
These efforts highlight the significance of handling real-time
data and events efficiently at the edge of networks. Moreover,
within federated IoT systems, the rule and protocol translator
assumes a pivotal role, facilitating rule-based interoperability
across heterogeneous platforms.

EdgeX is an open-source platform that leverages microser-
vices to effectively manage edge nodes and their data. With its
micro-services architecture, it enables seamless management,
security, and accessibility of data across a diverse range of
edge systems [41]. Through the adoption of a micro-services
approach, the deployment of multiple device proxies on an
EdgeX-based gateway platform becomes feasible, thereby en-
abling efficient protocol and rule translation within FedIoT
networks [42]. Furthermore to enable flexible event processing
at the edge gateway, Kuiper, an open-source rules engine
for EdgeX, is utilized. Kuiper utilizes SQL-based rules and
employs rule profiles written in the JSON format to provide a
flexible and configurable framework for event processing and
action execution at the network edge.

The existence of heterogeneity poses challenges not only
in the development of software that operates on various
platforms with complex libraries and frameworks but also in
facilitating efficient communication among distinct protocols
within FedIoT networks. These aforementioned challenges
can be addressed by the adoption of transparent computing
[43], which guarantees that edge nodes can conveniently
access services through uniform interfaces, irrespective of the
protocols employed for communication [44]. This approach
enhances connectivity and fosters seamless interactions among
diverse components in FedIoT networks, playing a crucial
role in establishing cohesive and interoperable communication
across the network while overcoming the barriers imposed by
heterogeneous environments. The adoption of transparent com-
puting [45] enables edge nodes to make service requests inde-
pendent of the underlying protocol standards, data pipelines,
and formats, reducing complexity in service provisioning.
This concept is widely used by various edge applications
to facilitate data sharing across connected devices, ensuring
uninterrupted service delivery. Consequently, to support com-
munication between several protocols, an interworking proxy
must be deployed, which can be situated either at the network’s
edge or built into the device itself [46].

In the context of heterogeneous protocol integration, the
authors of [47] utilized a proxy, and their proposed approach
empowers FedIoT nodes to gain transparent access to edge
services. This seamless integration of protocols allows for en-
hanced connectivity and streamlined communication, enabling
efficient service provision in FedIoT networks.

The interworking proxy is a critical component for facil-
itating interoperability between OCF, and oneM2M device
networks. By integrating the capabilities of HTTP client
and server, as well as OCF and oneM2M client and server,
allowing for smooth communication via request and response

exchanges [48], [49]. The bridging specification for the OCF
platform defines an architecture that enables the delivery
of messages to disparate network environments by adapting
dynamically based on the destination protocols of the client,
server, and translator components. This adaptable architecture
guarantees efficient message routing, enabling better commu-
nication across heterogeneous network environments. Notably,
the aforementioned studies confirm that the proxy or gateway
allows transparent access to various network components.
Therefore, to enable communication between heterogeneous
FedIoT systems, the provision of a protocol and data translator
using a proxy becomes imperative. This translator offers a
unified development environment for applications, enabling
different frameworks to seamlessly communicate with each
other and share data. The interworking proxy serves as a
crucial component in bridging the gap across FedIoT networks,
ensuring the consistent application of collaborative training.

The suggested rule-based interworking approach is thor-
oughly tested by implementing a transparent rule deployment
and operation with EdgeX, oneM2M, and OCF. This com-
prehensive testing validates the effectiveness and reliability
of the proposed solution, providing seamless rule execution
and interoperability among the diverse frameworks within the
FedIoT system.

Federated IoT networks have limited applicability due to
heterogeneity challenges. Unfortunately, stragglers are not
taken into account in the design of early FL techniques [50]
nor are system and statistical heterogeneity. To guarantee
performance and a fair contribution from all nodes, a key
assumption is uniform involvement from all FedIoT nodes.
In heterogeneous network environments, existing solutions
often encounter challenges arising from unrealistic assump-
tions, leading to performance degradation. To mitigate the
communication bottlenecks in the aforementioned networks,
[51] proposed an adaptive averaging strategy. Additionally,
[52] tackled the resource optimization issue by performing
decentralized training at the network’s edge instead of relying
solely on a centralized server architecture.

Various studies [53]–[55] have attempted to find algorith-
mic solutions for the heterogeneity problem. Traditional ap-
proaches, however, are inadequate for large-scale IoT networks
for collaborative training. Moreover, heterogeneity in FL sys-
tems is not solely limited to device resources. Additional
system artifacts, such as label, class, and data distribution,
node sampling, and end user behavior, introduce statistical
heterogeneity into the network [56]. To resolve this issue,
personalized local models for non-IID data are becoming
increasingly popular in the scientific literature [57]. By in-
corporating techniques such as assisted learning [58], meta
learning [59], multi-task learning [60], transfer learning [61]
and knowledge distillation [62], the performance of collabo-
rative training can be enhanced. However, the aforementioned
techniques frequently incur unneeded processing and com-
munication complexity. To the best of our knowledge, this
study represents the pioneering effort in devising a solution
to tackle potential heterogeneity issues in multiple FedIoT
networks. This is accomplished by implementing a rule-based
interworking architecture, which enhances communication and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3308579

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF IEEE TRANSACTIONS 5

interoperability among the diverse frameworks within the
FedIoT system. In this study an interworking rule proxy
is developed for protocol translation at the edge gateway
to achieve seamless server and node communication during
federation. To address the impact of slow learners on overall
global model performance, the proposed system includes a
mechanism that allows edge nodes to train their respective
local models according to their system capacities. This method
seeks to mitigate the negative effects of slow learners on
overall system’s performance. Specifically, edge nodes with
limited system resources can train less complex model archi-
tectures by altering the width of hidden channels. This adaptive
approach ensures optimal performance and resource utilization
in the context of diverse system capabilities within the FedIoT
networks.

III. RULE-BASED INTEROPERABILITY FOR
HETER-FEDIOT NETWORKS

This section introduces the methodology for the proposed
heterogeneity-aware rule and protocol translation. The col-
laborative model training platform consists of three main
components: a network of nodes, an edge gateway, and a
server. To organize the edge nodes effectively, they are grouped
based on two widely adopted IoT platform standards: OCF
and oneM2M. The developed system comprise of a cluster
of nCube and OCF nodes on the device layer each forming
a FedIoT node network established upon their respective
protocol standards. The edge nodes comprise of an AI engine
and a Knowledge Agent (KA). The former is responsible for
important system tasks such as model training, management,
and data processing. It trains local models and facilitates
the exchange of model updates via the KA, which serves
as a means of communication for transmitting and receiving
updated models. It has has two sub-modules that perform
protocol and rule translation for making the heterogeneous
federated systems interoperate. The local privacy sensitive data
is stored in each node’s data repository, while the model up-
dates are stored in the model repository. The federated server,
which comprises an EdgeX platform, establishes a gateway
between the server and edge nodes. This gateway facilitates
the implementation of the EdgeX micro-services platform to
facilitate interworking among heterogeneous FedIoT networks.
This aims to enable the devices to communicate and exchange
data using the EdgeX framework, allowing them to participate
in the federation. The basic architecture of the developed
system is presented in Fig.1.

The proposed Hetero-FedIoT framework develops a rule
assisted interworking proxy mechanism. EdgeX Common Rule
Engine (CRE) Proxy is implemented as a micro-service within
the EdgeX architecture to provide APIs for managing and
executing rules. Rules indicate the specific conditions in which
a particular course of action is to be pursued. With the EdgeX
framework, rules specify the behaviour of the FedIoT system
in response to certain events. While the CRE Proxy serves
the purpose of regulating and coordinating the transmission of
both local and global parameter updates among edge nodes
and server according to predetermined criteria. The server
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Fig. 1. Architecture of proposed rule-based interworking mechanism for
collaborative training across heterogeneous FedIoT systems

transmits the global model to the FedIoT node networks during
the initial phase. To mitigate the communication overhead and
performance degradation caused by weak nodes in terms of
computation power, the server adjusts the size of the global
model based on node’s capacity. This is accomplished by
reducing the width of hidden channels within the deep learning
model. Following receipt of the initial global model, the data
handler is responsible for managing the data intended for local
training. The nodes then use privacy-sensitive data to train the
model for collaborative thermal comfort prediction. The local
model parameters are transmitted to the server for aggregation
after the training process. The local model parameters are
sent from the KA to the server via the edge gateway in
this transmission. Through rule and protocol translation, the
KA consists of a translator client and an agent server that
facilitate the transmission of local updates to the server and the
reception of global updates from the EdgeX server platform.
Protocol translator include proxy clients and proxy servers.
The operational overview of the proposed system is shown in
Fig. 2. The roles of agent server and client are switched while
sending local updates and receiving global updates.

The rule-based federated knowledge deployment architec-
ture in Hetero-FedIoT edge computing environment. Within
the realm of Hetero-FedIoT, the rule service encompasses var-
ious components that play integral roles in its functioning. The
fundamental constituents of the system are the rule handler,
event handler, action handler, rule proxy, and rule repository.
Together, they enable the automated implementation of FL.
The rule handler serves as a platform for rule clients (OCF
and oneM2M) to deploy rule contexts, which are subsequently
stored in the rule repository. Furthermore, the rule handler
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FedIoT

offers functionalities for the collaborative training. The event
handler evaluates local parameter updates from participating
nodes to determine if the criteria for triggering the correspond-
ing actions have been met.

The rule executor is responsible for assessing predetermined
conditions and events. The aforementioned evaluations prompt
the execution of corresponding actions, such as updating local
models through aggregation and initiating the next round of
training. The objecrive is to promote collaborative learning
through the facilitation of communication and coordination
among the distributed network. Subsequently, the action com-
mand is conveyed from the action handler to the AI engine,
leading to model aggregation, broadcasting global updates
to FedIoT nodes, and management of communication and
synchronization between server and nodes. When translating
from one protocol to another, a protocol translator employs
a proxy client and proxy server to offer an additional layer
of abstraction between the communicating parties. The proxy-
client mediates between the nodes and the server, and then
converts node requests into a language the server can com-
prehend. In response, the proxy server acts as a translator, by
translating the server response into a format the nodes can
comprehend. In cases where the nodes and server are using
heterogeneous protocols, this method facilitates communica-
tion and provides interworking among disparate frameworks.
The developed proxy components for Hetero-FedIoT do the
protocol conversions and mediate conversations between the
nodes and server for federated learning.

A Drools rule proxy is an interface that enables the defini-
tion and execution of rule-based on the Drools rule engine that
govern the collaborative training process, specifying how data
is partitioned and how and when to aggregate the model. After
model aggregation, the updated global model is then inserted
into Drools working memory and sent back to the nodes. It

provides a collection of methods for creating and modifying
rules as well as executing them against a set of data. The
proposed interworking architecture also consists of an OCF
rule proxy to specify rules for handling communication and
data exchange between OCF and non-OCF compliant systems
in a secure and controlled manner. The rule translators are
deployed on each platform to convert the incoming common
rule profile to a target network-specific format.

A. Operational overview of rules-based interworking mech-
anism among Hetero-FedIoT networks

This section presents the operational flow of the developed
rule proxy for dealing with system heterogeneity issue that
arise during collaborative learning of a global model in cross-
silo manner. Fig. 3 illustrates the rule-based interoperability
mechanism for collaborative training. The developed archi-
tecture consists of three layers: the device layer, an edge
gateway in the middle, and the server layer. The EdgeX-
based server platform incorporates oneM2M and OCF server
rule engines, which trigger rule actions based on specified
conditions. Additionally, a Mobius server is deployed for
the oneM2M platform, housing an AI engine, a Drools rule
engine, a Drools common-rule deploying agent, and a Drools
common-rule proxy. To implement a common service entity,
Mobius, an open-source IoT service platform for oneM2M, is
utilized. Mobius acts as middleware, catering to various IoT
application service domains, including registration, data man-
agement, subscription/notification, and security. In oneM2M
systems, all services are invoked from the Mobius platform.
Algorithm 1 and 2 present the process of the rule interworking
scheme.

The device proxies are used to deliver local model updates
to the server in the form of an event. The nCube device has a
HTTP/MQTT client, while the OCF node has an OCF client
for publishing the events to the server platforms. The nCube
begins model training using local privacy sensitive data and
gets local model parameters afterwards. The nCube device
then takes on the role of a MQTT Publisher and transfers
data to the Mobius server platform residing inside the server
through the HTTP Protocol. Subsequently, the information is
stored in a database, and a notification is transmitted to the
rule processing system. Based on the registered local updates
(model parametera) according to the rule profile, an action
related to collaborative model training is triggered. One of the
core contributions of the present study is that, previously in
oneM2M specifications, Drools is not invoked by oneM2M
specifically for the rule engine. The propose system develops
a Drools-based rule engine and a Drools rule proxy for
oneM2M node network. The Drools client communicates with
the common proxy for translation and conversion of Drool
rules to common format through the HTTP post handler, while
in the case of receiving common rules, they are translated to
Drools format and sent to the Drools rule engine for further
action.

For the oneM2M platform, there was previously no imple-
mentation of Drools engine. Furthermore, the proposed work
is the first attempt to implement the Drools rule engine on the
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Algorithm 1: Hetero-FedIoT rule translation mech-
anism for translating platform-native format rules to
common format

Data: Hetero-FedIoT Platform native format rules:
(OCF, oneM2M, EdgeX)

Result: Rule profile
initialization;
Hetero-FedIoT platform ← The Current Heterogeneous

platform ID;
Hetero-FedIoT profile ← Node initialization with a
JSON object;

Hetero-FedIoT conditions ← JSON-Array Node
Initialization;

Hetero-FedIoT actions ← JSON-Array Node
Initialization;

Hetero-FedIoT ruleConditionList ← parse platform
native format condition expression to
ruleConditionList;

while ruleConditionList.hasNext() do
Hetero-FedIoT condition ← JSON-Array Node

Initialization; Hetero-FedIoTruleCondition ←
ruleConditionList.next ();

Hetero-FedIoTcondition.put("parameter",
ruleCondition.getParameter());

Hetero-FedIoTcondition.put("operator",
ruleCondition.getOperator());

Hetero-FedIoTcondition.put("value",
ruleCondition.getValue());

Hetero-FedIoTcondition.put("option",
ruleCondition.getOption());

Hetero-FedIoTconditions.add(condition);
Hetero-FedIoT ruleActionList ← parse platform native
format actions to RuleActionList;

while criterion for stopping not met do
action ← initialize JSON-object node;
Hetero Fed-IoT ruleAction ← ruleActionList.next

() ;
while ruleActionList. hasNext() do

action ← JSON-Array Node Initialization;
Hetero-FedIoT ruleAction ←

ruleActionList.next () ;
Hetero-FedIoTaction.put("uri",

ruleAction.getUri());
Hetero-FedIoTaction.put("command",

ruleAction.getCommand());
Hetero-FedIoTactions.add(action);

Hetero-FedIoTaction.put("uri", ruleAction.getUri());
Hetero-FedIoTaction.put("command",

ruleAction.getCommand());
Hetero-FedIoTactions.add(action);

Hetero-FedIoTprofile.set("conditions", conditions);
Hetero-FedIoTprofile.set("actions", actions);
Hetero-FedIoTprofile.set("platform", platform);
Hetero-FedIoTprofile.set platform-specific properties
with values;

return profile;
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Fig. 3. Layered architecture of rule-based interworking approach for Heter-
FedIoT networks

Mobius platform. The Drools based rule engine comprises an
MQTT subscriber client to get data from the Mobius platform.
For instance, if local model updates are received by the Mobius
platform, they are subscribed to by the MQTT subscriber
client. Drool rule-proxy uploads Drools rule-profile to the rule
controller.

The OCF server platform offers resource-based services.
Specifically, the developed OCF rule proxy comprises two
main components: the OCF rule server and the OCF common
Rule proxy. To register a rule profile on the OCF platform, the
register function is utilized. This ensures proper integration
and management of rule profiles within the OCF server
platform. For deployment of rules on the OCF platform, the
rule action resource defines the actions to be performed. OCF-
IoTivity is configured on both the devices and the gateway for
receiving and sending data from and to other platforms. On
the server side, the Kuiper-based rule engine is deployed along
with data and device management functionalities, as shown
in Fig. 4. The Kuiper rule engine utilizes a straightforward
declarative syntax to define rules, which are then executed
against a given dataset to trigger specific actions. The server
platform incorporates a device configurator that facilitates
the registration process for participating nodes. Each node
registers itself and communicates its capabilities for both com-
munication and computation to the server. Based on the node
resources, the server decides the model complexity level to be
assigned. In the case of an EdgeX-based network, the EdgeX
Common Rule Proxy receives Kuiper-based rule profiles from
EdgeX clients, translates them into common format, and sends
them to OCF and oneM2M nodes. The Common rule deployer
performs translation to their own format and then registers
the rule profile. In the case of EdgeX, the common rules are
translated into Kuiper rules and then registered to the Kuiper
rules engine for performing further actions.

OCF device proxy receives the data using IoTivity, while
nCube device proxy receives the data through MQTT/HTTP.
The respective device proxies, after receiving the local pa-
rameters, parse the received local updates and send them to
the EdgeX data module, OCF, and oneM2M server platform.
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interactions for interoperable Hetero-FedIoT system

After the server receives the data, the rule-engine in the server
becomes active, and eventually rules events are triggered.
Based on the contents of the rule profile, the AI Engine
performs aggregation.

Fig. 5 presents the details of the interworking mecha-
nism among heterogeneous networks of devices and federated
servers. EdgeX, OCF, and Drools Rule Proxy all have two
main functional blocks, namely Common Rule Proxy and
Common Rule Deployer. The HTTP Post handler receives the
OCF, Drools, and EdgeX-specific rules and translates them
into common rules for interoperability. Subsequently the rule
is sent to the common rule translation module for translation
into a common format. Later, the HTTP client sends the data
to other platforms using OCF and Drools Rule Proxies. For
instance, for delivering messages to the OCF platform, the
receiving body is the OCF rule proxy, and in the case of
oneM2M, the Drools rule engine receives the data. Upon
receiving common rules, the rules are translated into OCF
and oneM2M. After conversion from common rule to OCF
format, the rules are deployed to OCF rule server. One of
the main contributions of the proposed interworking scheme
is the development of an OCF rule server using Java, which
was only partially implemented in C language previously.

Once the common rule profile has been transmitted to the
associated device proxy, the device proxy converts the rule
profile to the platform-native format to execute the federation
process. The rule conditions are initially processed to assign
condition values in line with the platform’s native format via

a common rule profile. Then, the rule actions are performed
according to the platform-native format using the common rule
profile’s action list. The following actions are performed: local
model updates and fine tuning, weight collection from nodes,
model aggregation, global model distribution and broadcast,
model deployment, and data transfer. The conditions and
actions for FedIoT nodes and server are specified in the fol-
lowing format: Whennode/server < condition >; then <
action >; end. The rules are specified using a number of
operators. These operators are used to describe the criteria
that should activate a rule and are combined to construct
more complicated rules. The operators specify the conditions
under which the local model is trained and when to perform
aggregation after receiving local updates from the nodes.

Algorithm 2: Hetero-FedIoT rule translation mecha-
nism for translating common format format rules to
platform-native
Data: Rule Profile: (OCF, oneM2M, EdgeX)
Result: platform specific data entity
initialization;
Hetero-FedIoT ruleConditionList ← parse profile

condition expression to RuleConditionList;
while ruleConditionList.hasNext() do

Hetero-FedIoT ruleCondition ←
ruleConditionList.next ();

handle platform specific actions;
Hetero-FedIoT ruleActionList ← parse profile actions

to RuleActionList;
while ruleConditionList.hasNext() do

handle platform specific actions;
if required properties are null then

required properties← deafault values;
else

required properties ← profile values;

if required properties are null then
required properties← deafault values;

else
required properties ← profile values;

return platform specific data

B. Proposed model consolidation scheme under system and
statistical heterogeneity

The primary objective of federation is to facilitate the
collaborative training of a global model by leveraging the lo-
cally available privacy-sensitive data denoted by {D1 . . . Dn}
owned by n number of nodes. The model parameters denoted
by {P1 . . . . . . Pn} serve as the parameterization for the local
models. The server receives local model updates and aggre-
gates them to acquire a global model after consolidation. The
process continues till multiple communication rounds until
optimal global model is formed that performs well across
all the nodes. The iterative process can be formulated as
Mk

g = 1/n
∑n

i=1 M
k
i at kth iteration. Afterwards updated

global model M t
g is shared with local nodes for retraining as
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follows, Mk+1
i = Mk

g . The objective of the proposed model
consolidation scheme is to reduce the communication and
computational complexity by assuming that the local models
possess an identical architecture to that of the global model.
However, the node can optimize its model complexity accord-
ing to its computational and communication abilities. In this
scenario, the local parameters are subset of global parameters
such that the following property holds true; Mk+1

i ⊆ Mk
g .

Our proposed aggregation scheme draws inspiration from the
following studies [63], [64] which demonstrated that the model
complexity can be adjusted by modifying the width and depth
of hidden channels in deep learning frameworks, all while
maintaining performance. We adopted this property of deep
neural networks to improve communication efficiency and
achieve stable model aggregation in the presence of nodes
with heterogeneous resources.

Firstly, the procedure for selecting subsets of global model
parameters is detailed as follows: The AI Engine selects
a subset of global model parameters, referred to as Mhl,
specifically for a single hidden layer, for which the param-
eters are determined by Mg ∈ Socg×icg . Where ocg and
icg are the output and input channel sizes, respectively. We
considered three possible levels of varied model complexity
denoted by p within the Hetero-FedIoT system defined as
Mp

hl ⊂ Mp−1
hl . . . ⊂ M1

hl. Considering the hidden channel’s
shrink ratio as sr, satisfying the condition ocphl = srp−1ocg
and icphl = srp−1icg . Given the aforementioned conditions,
the size of the local model parameters can be expressed as
|Mp

hl| = sr2(p−1) |Mg| while the shrink ratio of the model
is quantified as SR =

Mp
hl

Mg
= sr2(p−1). Subsequent to the

adaptive composition, the proposed technique effectively allo-
cates subsets of global model parameters to nodes according
to their heterogeneous resource capacities. For instance, if the
number of nodes according to computational complexity are
symbolized as {n1 . . . np} the server aggregates the parameters
based on the following scheme:

Mp
hl = 1/n

n∑
i=1

Mp
i ,

Mp−1
hl

Mp
hl

=
1

n− np

n−np∑
i=1

Mp−1
hl

Mp
hl

. . . (1)

In the above equations the notation MP
i represents

the tensor. Taking into account the upper left sub-matrix
Mk

g [: ocn, icn], which is a fixed size ocn and icn. Further,
elements set Mp−1,k+1

g \Mp,k+1
g refers to the collection of

elements that are contained within the set Mp−1,k+1
g however

omitted from Mp,k+1
g . While (1) demonstrates the aggregation

of model parameters from all local nodes at the lowest com-
putational complexity level, denoted as L3. In the latter part
of the equation, model parameters are collected from nodes
with lower computational complexity levels. Specifically, the
difference between the orange subset (p−1) and the red subset
(p) is considered.

M1
hl

M2
hl

=
1

n− n2:p

n−n2:p∑
i=1

M1
i

M2
i

(2)

Likewise, in (2), the model parameters corresponding to the
blue complexity level can be aggregated from a total of n −
n2;p = n1 FedIoT nodes

Mg = M1
hl = Mp

hl ∪

[
Mp−1

hl

Mp
hl

]
∪ . . .

M1
hl

M2
hl

(3)

In (3), the global parameters are obtained by combining
disjoint sets through their union operation. The aforementioned
equations are illustrated using Fig. 1. The detailed working of
these equations is depicted in Algorithm 3.

Algorithm 3: Hetero-FedIoT: Heterogeneity-Aware
Federated Learning Mechanism
Input: Local Data Di distributed on N edge nodes,

Number of local epochs E, batch-size BS, node
resources Nr, Learning-rate η global model
parameters Mg , shrink ratio S, Model
complexity level P, Server round SC

Function system executes:
Initialize global model parameters based on node
resources
for each communication round k=0,1... do

Wk(ActivenodesN, 1)
Sk←
randomlyselectafractionofactivenodesNk

for each node N ∈ Sk in parallel do
Determine model Complexity L:P

SrL ← Sr(p−1), ocL ← srLocg, icn ← Srnocg

Mk
L ←Mk

g [: ocn, : icn]

Mk+1
L ← NodeUpdate

(
L, srn,M

k
L

)
for each complexity level LP do

Mp−1,k+1
g \Mp,k+1

g ←
1

Nk−Np:P,k

∑Nk−Np:P,k

i=1 Mp−1,k+1
i \Mp,k+1

i

update Nr1:Z,η

Query representation statistics from local FedIoT
nodes (Optional)

Function NodeUpdate(L, SrL, ML)::
BS ← SplitlocaldataDL in batch-size BS
for each epoch (E) from 1-n do

for batch bL ∈BL do
ML ←ML − η∇ℓ (ML, SrL; bL)

Return local model parameters ML to server

The primary objective of the process is to perform parameter
averaging by considering specific edge nodes that possess the
corresponding parameters in their allocated parameter tensors.
As a consequence, the parameters of a model with medium
complexity are aggregated with both large models in their
entirety and partially with small models. To achieve this,
a fixed sub-network is assigned to each model complexity
level, ensuring a consistent and stable global model. This
approach facilitates the concept of global aggregation across
all local models belonging to the same sub-network. Moreover,
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a constant sub-network is allocated for each model complexity
level to mitigate node drift during the aggregation process,
effectively handling statistical heterogeneity.

Accordingly, nodes with less complex local models make
efficient use of resources by aggregating with models that
match their complexity level. Following the distribution of
global updates to the nodes, the parameters of local models
are optimised using their local private data. The proposed
approach chooses sub-networks directly from global model
parameter subsets. A scaling module is used for scaling
representations during training time, so a global model can be
deployed for dynamic edge inference without requiring to be
scaled. The proposed architecture incorporates a typical linear
hidden layer in the following form:

y = fact (γ ∗ (BN(sm (DnM
p
n + bpn − mean ) /std+ β))

(4)
where fact denotes the RELU activation function, sm

denotes a scaler module. The Parametric Layer and the sm
are introduced before the scaled Batch Normalization BN and
activation layers are applied. Whereas weights and biases for
the local model are represented by DnM

p
n and bpn respectively.

While γ and β are learn-able parameters, and y is the output.
The computation and communication abilities of the edge
nodes are defined as Ln. When the server receives this
information, it can determine the proper model complexity to
assign to the FedIoT node.

IV. EXPERIMENT SETUP

In this section, the specifics of the development environment
are detailed, the experimental setup is described, and the
research findings are presented.

A. Data Description

The proposed framework is evaluated using open-source
thermal comfort and digit classification data-sets namely
ASHRAE RP-884, Scales, Medium US and MNIST respec-
tively. The employed thermal comfort data has been widely
used in numerous studies such as [65], [66] making it one of
the most widely used public databases for examining human
thermal comfort. The ASHRAE RP-884 data set consists
of more than 25000 observations from 52 studies and 26
cities in various climate zones around the world. Further, the
data contains 70 features among which 10 are common to
three of them. Firstly, the data-set is pre-processed to remove
abnormalities, missing values are removed, and the 7-point
thermal sensation scale is re-classified to a 5-point scale (-2,
-1, 0, +1, +2) by merging the cold and very cold states. The
data distribution on the nodes is highly non-independent and
non-identically distributed, fostering statistical heterogeneity.
The common features selected for collaborative model training
are presented in Fig. 6. The features are classified in terms of
indoor and outdoor environments and occupant features.

For model training, Long Short-Term Memory networks
and Convolutional Neural networks (LSTM-CNN) are used,
The data is encoded into numerical values, and the missing
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Fig. 6. Selected features for thermal comfort prediction

Fig. 7. Implementation details of rule-based interworking architecture

values are filled using the datawig library. Afterwards, the data
is scaled and normalized in a specified range for improved
performance using Min-max scaler normalization. Table I
shows a comprehensive breakdown of the selected features.

B. Implementation Setup

Table II, IV and III provides overview of development
environment for interoperable FL. The development of the
framework is motivated by the heterogeneity observed in
statistical, system, platform, and device resources. For the
purpose of testing REST APIs, we make use of Talend’s API
tester as the web client. The rule registry and the device prox-
ies are both built on Jetty-based micro-services, facilitating
communication between the various parts of the rule platform.

The Spring-Boot Framework is utilized for constructing
graphical user interfaces that display the registered rule schema
and profiles. Additionally, the Jackson library, dedicated to
processing JSON format, is employed. The EdgeX-based rules
engine is responsible for rule enforcement in an EdgeX-
based edge network. For configuration purposes, the Hanoi
edition of the EdgeX framework is applied, while EMQ Kuiper
is leveraged for rule management on the EdgeX platform.
Detailed implementation specifics of the rule agent platform
are presented in Fig. 7. To facilitate the deployment of
OCF services, IoTivity 2.2.2 has been integrated into the
OCF network. Within this network, the developed rule server
allows for the automatic processing of rules. The EdgeX
platform, featuring rule functionality, is hosted on a Raspberry
Pi running Ubuntu server. For acquiring paramter updates
and data from FedIoT node networks, a Windows system is
configured as a proxy server running an OCF-server platform.

To verify the viability of the proposed Hetero-FedIoT ar-
chitecture and collect rule and protocol translated data, three
separate rule scenarios are set up. Firstly, EdgeX, oneM2M,
and OCF-based rule servers, along with an OCF device proxy,
are implemented. The OCF device network sends local model
updates via the OCF device proxy to the EdgeX, oneM2M,
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TABLE I
EXPERIMENTAL DATA DESCRIPTION

Attribute Types Attribute Name Attribute Description Measuring Units
Indoor variable IAT Indoor temperature ◦C

IRH Indoor relative humidity %
IAV Indoor air velocity m/s
IIRT Indoor radiant temperature C

Personal variable CL Clothing insulation CLO
MR Metabolic rate Met
SET Standard Effective Temperature SET index
PPD predicted percentage of dissatisfied %

Outdoor variable OAT Outdoor temperature ◦C
Target variable TS Thermal Sensation 5-point thermal scale

TABLE II
DEVELOPMENT AND IMPLEMENTATION ENVIRONMENT OF OCF DEVICE PLATFORM FOR RULE-BASED INTERWORKING

Entity Library and Framework
OCF Rule Server Iotivity-lite 2.2.2, Jackson 2.11.4, Jetty-9.4.40v20210413,

HTTP client-4.5.13, javax.servlet-api-2.11.4
OCF Rule Client Iotivity-lite 2.2.2, Jackson 2.11.4
OCF Rule Proxy (Java) Jetty (HTTP Server), Apache HTTP Client,

Iotivity (OCF Server/Client)
OCF Device Proxy (Java) Apache HTTP Client, Iotivity (OCF Server/Client)
OCF Device (Java) IoTivity (OCF Client)
Hardware, OS Raspberry Pi 3, 4, Model B, Ubuntu 20.10 Arch 64
AI Engine (Python) TensorFlow (Deep Learning)

TABLE III
DEVELOPMENT AND IMPLEMENTATION ENVIRONMENT OF EDGEX GATEWAY PLATFORM FOR RULE-BASED INTERWORKING

Platform Entity Library and Framework
EdgeX Rules Engine Deployer Iotivity-lite 2.2.2, Jackson 2.11.4,

jetty-9.4.40v20210413, HTTP client-4.5.13,
javax.servlet-api-2.11.4

EdgeX Gateway Platform EdgeX Rules Engine EMQX Kuiper for EdgeX Hanoi Framework
EdgeX Core Services EdgeX Framework Hanoi
Hardware, OS Raspberry Pi 3, 4, Model B, Ubuntu 20.10 Arch 64

and OCF-based rule servers, depending on the target platform.
Subsequently, rules are translated, and actions are performed
based on the triggered rules. In the case of the oneM2M
network, a oneM2M device proxy is developed to transmit
local model parameters from the oneM2M device network to
the EdgeX, OCF, and oneM2M rule servers.

C. Implementation of proposed rule-based interworking proxy
for Hetero-FedIoT networks

We developed a platform for rule translation that enables
the conversion of rules between platforms. The platform is
comprised of multiple components, including a device proxy,
a rule registry, rule repositories, and an interface for users. The
device proxy, located in the gateway node, receives schema
and rule profiles using format-specific protocols (OCF and
oneM2M). It translates the rules from the specific format to
a common format and performs format conversion on the
rule profiles before forwarding them to the nodes using the
platform’s native protocol. The device proxy also includes a
server to receive platform-native rule profiles and rule schema.

Rules are deployed to the FedIoT platform using the rule
schema, which specifies the conditions and procedures for
training collaborative models. The standardized rule profiles
and schema are stored in a central repository accessible
through rule registration. When the registry receives a rule
schema, it uses a schema parser and validator to extract and
verify the information before saving it to the repository using
a schema repository writer. The common rule profile includes
platform information, the rule profile, rule conditions, and
actions. The rule profile JSON data serves as the source for
this information. The conditions and actions of collaborative
model training are defined as JSON arrays, which are then
serialized into lists of rule conditions and actions.

To conduct the collaborative model training, the device
proxies for rule and protocol translation for OCF and oneM2M
devices are deployed on Raspberry Pi 3, 4, and Model B
devices. The OCF device services developed on the gateway
act as a proxy for OCF-based rule servers, translating rule
profiles from a common format into the platform-native format
required by OCF-based rule servers. The same is the case with
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TABLE IV
DEVELOPMENT AND IMPLEMENTATION ENVIRONMENT OF ONEM2M DEVICE PLATFORM FOR RULE-BASED INTERWORKING

Entity Library and Framework
Drools-Based Rules Engine (Java) Spring Boot (HTTP Server), Apache HTTP Client,

Drools (Rules Engine), KETI nCube Client
Drools Rule Proxy (Java) Jetty (HTTP Server), Apache HTTP Client
nCube Device Proxy (Java) Jetty (HTTP Server), Apache HTTP Client,

Iotivity-OCF Client
nCube Device KETI nCube (nCube Registration Client),

Apache HTTP Client
AI Engine (Python) TensorFlow (Deep Learning)
Hardware, OS Raspberry Pi 3, 4, Model B, Ubuntu 20.10 Arch 64

Drools rules proxy

EdgeX rules proxy:

OCF rules proxy

Drools rules Engine

OneM2M (Drools) Rule Deployment Test Case

Fig. 8. Implementation of Drools rule deployment

oneM2M device networks. For OCF and oneM2M networks,
the PC acts as federated server. Data from the device proxy
is passed on to the rules registry. Based on the registered rule
schema, the rule registry sends the common rule profile to the
OCF and oneM2M platforms, allowing them to distribute it
to the heterogeneous FedIoT networks. The implementation
results of the oneM2M, EdgeX, and OCF rule deployments
are presented in Fig. 8, 9 and 10.

By enforcing a condition-response logic structure, rules
serve as resources that can make decisions on their own.
In each case, if the rule expression evaluates to true, it
triggers the associated Rule Action. The participating devices
transmit their model updates to the device proxy, which then
combines them and transmits them to the server. The server
then utilizes these updates to update the global model and
returns the revised model to the proxy, which distributes
it to the participating devices. This procedure is performed
numerous times to train a more precise global model.

Fig. 8 shows the test result analysis of oneM2M (Drools)
Rule Deployment. Using Drools to deploy a rule in OneM2M
involves the creation of a rule file in the Drools language,
followed by the integration of the Drools rule engine into
the OneM2M platform. oneM2M client sends Drools rule-
profile to Drools Common Rule Proxy for translation. After
translating the rule profile into common format, the common
rule profile is sent to the rule proxy.

Afterwards It will be sent to oneM2M, EdgeX, and OCF

Run Edgex_rule_client

Result

EdgeX Rule Deployment Test Case

Drools rules proxy:

EdgeX rules proxy

Fig. 9. Implementation of EdgeX rule deployment

platform from rule proxy. Each of them handles and translate
it to their native format and then registers the rule in the rule
repository, when a given event or condition occurs within
the OneM2M system, the rule is triggered and action is
performed. This process is repeated for each platform. This is
accomplished by utilizing the Services Capability Layer (SCL)
of oneM2M, which provides a means to register, discover, and
access services.

The results of EdgeX based rule deployment are presented
in Fig. 9, where EdgeX Client sends Kuiper rule profiles to
the EdgeX Common Rule Proxy. EdgeX Common Rule Proxy
handles and translates the common rule. After translation, the
common rule profile is sent to rule proxy. From there it is then
sent to EdgeX, OCF, oneM2M platform. The Fig. 10 shows
the test result analysis of OCF Rule Deployment.

Fig. 11 depicts the rule agent platform, wherein each process
is distinctly identified by a process ID associated with individ-
ual FedIoT platforms; PID 2786156 presents the rule registry;
and PID 45398 shows the running EdgeX-based services. The
figure shows the execution results of operating and distributing
the local model via the EdgeX-based IoT edge computing plat-
form. In the EdgeX-based platform, core-data, core-metadata,
and core-command are modules that provide EdgeX services;
the Java module provides the protocol switching function
between HTTP and IoTivity; and the Python module provides

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3308579

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF IEEE TRANSACTIONS 13

OCF Rule Deployment Test Case

Drools rules proxy:

EdgeX rules proxy

Run ocf_rule_client

Fig. 10. Implementation of OCF rule deployment

Fig. 11. Process monitoring of EdgeX-based FedIoT edge computing platform

training and model transmission functions. Total memory
utilization is 1,515,836 KB, split as follows: core-data (15,960
KB), core-metadata (11,936 KB), and core-command (8,392
KB) for executing the EdgeX service; protocol switching rule
proxy (48,232 KB); and Python (373,808 KB).

Fig. 12 shows the execution results for deploying rules in
the oneM2M Mobius-based IoT edge computing platform .
In the Mobius-based platform, the Node JS-based module is
responsible for providing Mobius services, and the Python
module provides learning and fine-tuning operations. To run
the Mobius service, we run five Node JS-based modules,
occupying 80,788 KB, 77,976 KB, 72,388 KB, 56,932 KB,
and 77,560 KB, respectively. The Python module occupies
383,144 KB, and the total memory usage is 703,488 KB.

Lastly Fig. 13 shows the result stats for deploying rules.
OCF resources are developed using the IoTivity Framework;
rule agents based on Java modules provide protocol transla-
tion and conversion functions, and Python modules provide
learning and model transmission functions. The module for

Fig. 12. Process monitoring of Mobius-based FedIoT network

Fig. 13. Process monitoring of IoTivity-based FedIoT network

running the IoTivity service is excluded from the monitoring;
the protocol switching proxy occupies 50,436 KB, the Python
module occupies 383,040 KB, and the total memory usage is
389.3 MB.

V. RESULTS AND PERFORMANCE ANALYSIS OF THE
PROPOSED HETERO-FEDIOT SYSTEM

The developed system involves 12 edge nodes, with six
nodes located on each network. To evaluate the proposed ag-
gregation scheme, we constructed models with three different
complexity levels and a predefined shrink ratio for hidden
channels. Each node is initially assigned a complexity level
by the server depending upon the resources and capabilities
of the nodes. The server assigns the optimal level of model
complexity to each node depending on the reported communi-
cation and processing capabilities. To deal with nodes having
varied resource capabilities, we uniformly sampled nodes from
different combinations of computation complexity levels. For
instance, each network assigns three different levels of model
complexity to each of its nodes. Model L1:P1 has all the model
parameters, whereas models L2:P2 and L3:P3 have a fixed
shrink ratio of 0.5 and 0.25, respectively. Hetero-FedIoT edge
platforms with rule support filter events and take action in
response to rule triggers in real time. The architecture and
hyper-parameters of the model are comprehensively presented
in Table V. The hidden layers of the model are trained using
the Rectified Linear Unit (Relu) activation function, while
the output layer employs the Soft-Max function. During the
training process, the categorical cross-entropy loss function is
utilized. Furthermore, the optimizer employed is Adam, with
a learning rate set to 0.001. A predetermined random seed is
chosen for the purposes of training and shuffling the dataset.

During experiments, we assigned an initial level of compu-
tational complexity to each node. The word static is utilized
to denote the situation where the complexity assignment
remains constant throughout the experiments, whereas the
term "Dynamic" is employed to refer to the scenario where
edge nodes uniformly sample computation complexity levels
during each communication round. Extensive experiments are
carried out for both fixed and dynamic assignments in order
to comprehensively examine their effects. The results shown
in the figures are derived from the fixed complexity scenario,
which involves the evaluation of models with a predetermined
size for each node. Conversely, the tables offer valuable
perspectives on the dynamic scenario, wherein the distribution
of a node’s model complexity is randomly altered while
upholding a constant ratio of 50% for the quantity of weak
learners in each FedIoT network. Through an examination of
both fixed and dynamic assignment scenarios, our objective is
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TABLE V
DETAILS OF THE EXPERIMENT AND MODEL HYPER-PARAMETER SETTINGS

Optimal Model Parameters Values
Data ASHRAE, Scales, Medium US
Model Name LSTM-CNN
Activation Function Relu, SoftMax
Optimizer Adam
Learning rate 0.001
Filters (Conv layer) 128
Kernel size (Conv layer) 5
Server rounds 20
Momentum 0.9
Local Epochs 5
Local batch-size 128
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Fig. 14. Learning curves of FL nodes based on proposed Hetero-FedIoT
architecture

to conduct a comprehensive evaluation of the impact on the
system’s overall performance.

A comparative analysis is performed, incorporating bench-
mark techniques such as local training, Fed-Avg, and LG-
FedAvg [57]. The term local training refers to a situation
where there is no interaction between the nodes and the server.
Our experimental research encompasses more complex models
(LSTM-CNN) compared to those employed in previous stud-
ies, particularly the LG-FedAvg approach, which utilized Mul-
tilayer Perceptron (MLP) architecture on the MNIST dataset.
The global model results are derived by assessing the global
model’s performance on the validation data. Conversely, the
computation of the local results involved the cumulative aver-
aging of the performance results of individual data instances
over all nodes.

From the performance score analysis, we can verify that,
in comparison to the results achieved by baseline techniques,
Hetero-FedIoT performs well despite statistical heterogeneity.
The experimental results of the proposed system are depicted
in Fig. 14 and 15. The graphs illustrate the validation accuracy
and loss of edge nodes with fixed complexity assignments
against the thermal comfort data set. While the global accuracy
and loss are depicted in Fig. 16 and 17.

Upon closer inspection, it becomes clear that the edge nodes
converged well without getting stuck in the local optima. The
convergence is slow during the first few rounds; however, after
obtaining an updated model from the server in subsequent
iterations, their cumulative loss has been seen decreasing. The
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Fig. 15. Loss based performance analysis of edge nodes based on proposed
Hetero-FedIoT architecture
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Fig. 16. Accuracy based performance analysis of global model based on
proposed Hetero-FedIoT architecture

results also suggest that the performance of the CNN-LSTM
model is better at capturing the spatial-temporal features and
relations in the thermal comfort data. In Table VI we present
the results of our investigation using Non-IID data with three
complexity levels. In order to demonstrate the effects of het-
erogeneous computation and communication capabilities, we
utilize uniform sampling across various combinations of com-
putational complexity levels. The notation "L1-L2-L3" denotes
the uniform sampling of all available levels of complexity
for each node during each communication round. In order to
depict the computation and communication requirements of
our proposed system, we furnish details regarding the quantity
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TABLE VI
SUMMARY OF RESULTS OBTAINED UNDER VARYING LEVELS OF COMPUTATIONAL COMPLEXITY FOR THE THERMAL COMFORT DATASET

Model Complexity Model Ratio No. of Parameters Floating Point Ops. Model Space Req.(MB) Local Accuracy Global Accuracy
L1 1.00 100K 5.2M 0.36 88.50 86.45
L1:L3 0.54 54K 2.8M 0.19 88.79 86.27
L1:L2:L3 0.43 42K 2.5M 0.19 88.76 86.85
L2 1.00 26K 1.39M 0.10 88.86 86.86
L2:L3 0.56 17K 910K 0.05 88.63 86.70
L3 1.00 8K 401K 0.05 88.07 86.84
Local Training 1.00 635K 1.31M 2.42 85.22 NA
FL-FedAvg 1.00 635K 1.31M 2.41 80.39 77.24
FL-LG-FedAvg 1.00 635K 1.31M 2.41 81.26 79.68
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Fig. 17. Loss based performance analysis of global model based on proposed
Hetero-FedIoT architecture

of model parameters, FLOPs (Floating Point Operations), and
Model Space (MB). When complexity levels are uniformly
sampled, the computational metrics of models L1-L3 are
computed through the averaging of the metrics of models
L1 and L3. The ratio is determined through the comparison
of the parameter count of a specific model with that of
the complete global model, expressed as a percentage. The
outcomes demonstrate that the proposed scheme outperforms
baseline Federated Averaging (Fed-Avg), LG-FedAvg as well
as independently trained local models. Accuracy comparisons
between the proposed Hetero-FedIoT and baseline methods
show the superiority of our suggested method. The pro-
posed scheme achieved an accuracy of 86.85%. Also, when
comparing all performance indicators, Hetero-FedIoT based
collaborative thermal comfort model produces the best results.
According to the findings, our approach is just as effective as
the ones that use the same local model complexity for all
nodes. Our approach can be easily adapted to new contexts
and has little computational overhead.

For further experimental evaluation of the proposed system,
we conducted tests using the CIFAR-10 dataset to assess its
performance. The results, presented in Table VII, showcase the
effectiveness of our proposed system for image classification
tasks using a CNN model. The experimental findings reveal
that nodes with limited learning resources, which can only
train the lowest complexity model (L3), achieve a global
accuracy of 54.12% on CIFAR-10. However, by implementing
the L2-L3 and L1-L3 configurations, where half of the FedIoT

nodes are trained with larger models (L2:P2 and L1:P1) and
the other half with model L3:P3, the weaker learners signif-
icantly improve their performance. The accuracies obtained
for these configurations are 56.17% and 63.35%, respectively.
These results are remarkably close to the hypothetical situation
where all learners possess high proficiency levels, yielding
global accuracies of 61.21% (L2) and 55.11% (L1). These
findings illustrate the potential for significant performance
improvements among nodes with low learning capabilities
when the suggested method is used. Even weaker learners can
obtain accuracies comparable to competent learners by using
strategically designed model setups.

The obtained results demonstrate that our proposed strategy
attains comparable performance to strategies that employ
personalized local models. Our approach offers a high level
of customization, incurs minimal computational overhead, and
leverages a single global model for evaluating both local and
global performance.

For evaluating the performance of the developed rule-
enabled interworking proxy for Hetero-FedIoT networks, we
provided the average training time, waiting time, model trans-
fer time, model size, and latency comparisons to demonstrate
the performance results. The Fig. 18 presents the average
training and waiting times for edge nodes. Each node’s average
training time over all server rounds is shown in the graph.
During the first round of collaborative training, the recorded
time quantifies the time spent on model training, whereas
the rest of the time accounts for local retraining. In the
initial round, the server transmits the initial weights to the
nodes, while in the subsequent rounds, the server disseminates
aggregated weights. The duration of the training process is
susceptible to variations in hardware capabilities and model
sizes. Prior to generating the updated global model, the aggre-
gator server platform awaits the arrival of local models from
the participating nodes. The duration of this waiting period
is influenced by factors such as the size of the model, the
available resources on each node, the number of participating
nodes, the frequency and magnitude of updates, the volume
of data samples, and the latency within the network. Fig. 19
shows the sample size and average waiting time of each node.
In order to decrease waiting time and improve the global
model’s performance, the suggested method adjusts the size
of the local model based on the resources of FedIoT nodes.

From Fig. 18 it can be analyzed that nodes with shorter
training times also have longer waiting times due to the fact
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TABLE VII
A DETAILED SUMMARY OF THE RESULTS ACHIEVED USING MNIST DATASET UNDER VARYING LEVELS OF COMPUTATIONAL COMPLEXITY.

Model Complexity Model Ratio No. of Parameters Floating Point Ops. Model Space Req.(MB) Local Accuracy Global Accuracy
L1 1.00 610 K 5.2 M 2.30 91.08 55.11
L1:L3 0.54 322 K 2.8 M 1.22 91.81 63.45
L1:L2: L3 0.43 261 K 2.5 M 1.01 91.50 55.39
L2 1.00 150 K 1.39 M 0.58 90.76 61.21
L2:L3 0.56 97 K 910 K 0.35 90.91 56.17
L3 1.00 36 K 401 K 0.15 89.61 54.12
Local Training 1.00 1.81M 3.5M 6.79 87.90 NA
FL-FedAvg 1.00 1.81M 3.5M 6.79 59.01 58.12
FL-LG-FedAvg 1.00 1.81M 3.5M 6.79 91.48 60.67
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Fig. 18. Average training time of node with heterogeneous local models for
20 server rounds.
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Fig. 19. Average training time and sample size of participating edge nodes

that the server needs to wait for all nodes to complete the
training process before model aggregation. So the nodes that
finished the training earlier have to wait longer for the updated
global model.

Model transfer time and model size are also compared
among FedIoT networks to demonstrate the efficiency of
the OCF-IoTivity platform and the oneM2M platform. The
average model size for each node along with the model transfer
time are displayed in Fig. 20. From the graphical analysis,
it is verified that OCF IoTivity has a significantly faster
model transfer time compared to oneM2M because the latter
uses the MQTT/HTTP protocol for communication. If several
nodes complete training at the same time, the models can be

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Client Number

0

1

2

3

4

5

6

Av
er

ag
e 

M
od

el
 si

ze
(M

B)
1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

Tr
an

sf
er

 T
im

e 
(S

ec
)

oneM2M
OCF-IoTivity

Fig. 20. Average model transfer time comparison between OCF-IoTivity and
oneM2M FedIoT networks
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Fig. 21. Network latency for deploying oneM2M rules to Hetero-FedIoT
networks

transferred in parallel because they are all bound to a separate
server port. In addition, after the aggregation procedure is
complete, the server will send out a parallel broadcast across
the dedicated ports, sharing the aggregated weights with each
node.

Network latency for deploying a rule profile from an OCF
device proxy to multiple FedIoT platforms is depicted in Fig.
21. Deploying a rule profile to multiple IoT platforms through
an OCF device proxy uses a significant amount of memory.
Here, we employed an OCF device proxy to deploy rules to
OCF, EdgeX, and oneM2M platforms.

The Round Trip Time (RTT) of an OCF device proxy
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Fig. 22. Network latency for deploying OCF rules to Hetero-FedIoT networks

for cross-platform deployment has also been analyzed. The
RTT analysis suggests that the average delay of each rule de-
ployment increases as the number of heterogeneous platforms
increases, as shown in Fig. 21 and 22 respectively. Requests
are carried out asynchronously. The maximum network latency
is hence the total delay time for deploying rule profiles from
the OCF network to the OneM2M and EdgeX networks using
device proxy. For deploying rules profiles from an OCF client
to an OCF server, the minimum, maximum, and average dealay
times are 141 MS.

Fig. 22 shows that as the number of platforms increases,
network latency also increases. The experimental analysis
demonstrates how the performance of the device and underly-
ing platform influence network latency. Due to total memory
usage and network resource consumption, node performance
is affected, which in turn causes higher network latency. The
empirical investigations suggest that the rule deployment delay
of oneM2M proxy is higher than the OCF. On the other hand
oneM2M-oneM2M node networks have an average RTT of
168 milliseconds, which is marginally higher than OCF node
networks.

VI. CONCLUSION

The emerging FedIoT systems face significant challenges,
primarily concerning heterogeneity and a lack of interoperabil-
ity. These issues have become the leading causes of fragmen-
tation within FL ecosystems. The continuous technological
advancement necessitates cross-silo FL nodes to establish
seamless connections and communication. However, achieving
interoperability between heterogeneous FedIoT systems poses
an even more complex and challenging task. To solve this
issue, the proposed system develops a rule-based interworking
architecture to provide interoperability among heterogeneous
FedIoT platforms. Hetero-FedIoT is a comprehensive and
unified solution to resolve the potential challenges of system
and statistical heterogeneity in collaborative training. The
developed solution is predicated on a rule-based framework
that facilitates the cooperative training of heterogeneous lo-
cal models and provides smooth connectivity between silo-
spanning FL platforms. In our proposed architecture, the
edge gateway plays a pivotal role in providing translation

capabilities, effectively bridging the gap between disparate
communication protocols and data formats. This capability re-
duces vendor lock-in and significantly boosts interoperability.
The proposed rule-based strategy leverages device proxies to
convert rules between platform-specific and standard formats,
thereby enabling seamless collaboration between diverse plat-
forms in heterogeneous FedIoT networks. The obtained results
confirm the effectiveness of our method, as it demonstrates
improved global model performance, reduced communication
cycles, and enhanced connectivity. This efficient utilization of
computational and communication resources further enhances
the overall system performance. In our future work, we aim
to enhance the interworking proxy by decoupling it from
the IoT platform, transforming it into an independent entity
capable of serving multiple IoT frameworks. This separation
will empower the interworking proxy to efficiently manage
rules and translation operations across diverse IoT networks,
ensuring consistency in rule application. Additionally, we plan
to incorporate a general rule context into the translation pro-
cess, facilitating the seamless transfer of comprehensive rules
to the target FedIoT networks. By considering framework-
specific aspects, we can optimize the translation process and
enhance rule integration within various IoT settings.
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