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Beyond IoT Analytics

Naser Hossein Motlagh, Martha Arbayani Zaidan, Lauri Lovén, Pak Lun Fung,
Tuomo Hänninen, Roberto Morabito, Petteri Nurmi and Sasu Tarkoma

Abstract—Smart spaces, physical spaces that are integrated
with sensor-enabled IoT devices, are a powerful paradigm for
optimizing the operations of the space and improving its qual-
ity for the occupants. Managing the applications and services
running in the space is a complex task as the operations of the
devices and services are dependent on the physical characteristics
of the space, the occupants of the space, and the technologies
that are being integrated. Digital twinning, the combination of
physical representations with a virtual counterpart, is a potential
technology for facilitating the management of smart space devices
and services. While digital twins are increasingly adopted in
industry, their use in everyday environments remains low due to
difficulties in creating and linking the virtual representation with
the physical environment. In this paper, we propose our vision
for the adoption of digital twinning as a pathway to improve
the functions of smart spaces. We derive a generic reference
architecture that comprises four layers, covering the physical
space, the sensing infrastructure, the network interfaces, and
the underlying computational infrastructure. Next, we identify
and address key requirements for the uptake of digital twins in
smart space and assess their benefits using the ascendancy model
of business analytics. Finally, to demonstrate the practicality of
digital twinning, we present a proof-of-concept digital twin for
the TellUs smart space at the University of Oulu in Finland and
use it to highlight the potential benefits of different ascendancy
levels.

Index Terms—Digital twin, Smart spaces, LoRa networks,
Internet of Things, Sensor networks.

I. INTRODUCTION

Digital twins refer to systems that couple physical entities
with virtual counterparts, leveraging the strengths of both
the virtual and the physical environments for the advantage
of the entire system [1]. The virtual representation of the
environment is referred to as the digital twin. A digital twin
relies on sensor-enabled Internet of Things (IoT) devices that
synchronize the state of the virtual object with that of the
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physical object. This requires monitoring the physical twin
and its interactions and potentially integrating actuators that
directly influence it [2]. A digital twin thus provides an
endpoint for data acquisition from the physical counterpart
and supports the efficiency of the physical part by optimizing
its operations throughout its life-cycle [3]. Digital twins are
particularly relevant for industry and society [1] with examples
of domains adopting digital twins including manufacturing,
healthcare, and construction industry. Indeed, digital twins and
the underlying IoT and other technologies are a key step in
the next-generation transformation of industry [4], [5], [6].

Smart spaces – physical spaces that integrate sensor-enabled
IoT devices – are emerging as a powerful solution to opti-
mize operations and improve the quality of experience for
occupants. Smart spaces build on the increasing availability
of sensors in physical spaces, e.g., for monitoring energy use,
thermal comfort of occupants, social distancing, air quality,
and general well-being [7], [8], [9]. These sensor-enabled
devices enable various applications, which help, among other
things, to reduce electricity usage, optimize Heating, Ventila-
tion, and Air Conditioning (HVAC) use, improve the safety of
the space, and offer services that support the occupants [10],
[11]. Indeed, smart spaces aim to enhance the functions of
these environments and overall elevate the user experience
[12], [13]. Currently, most smart spaces implement this func-
tionality by relying on analytic platforms and hub-type IoT
architectures. These offer a single point to collect information
and to interact with the space [14] but lack a mechanism
to evaluate and interact with services and devices from the
outside. Digital twins can help overcome this bottleneck,
offering a unified architecture for integrating and managing
devices and services while at the same time offering a platform
that supports the development and evaluation of new services.
The potential and promise of digital twin technology in
smart spaces are supported by existing research. However,
this research has been mostly limited to building management
systems. It has not often focused on smaller, dedicated areas of
space [15]. Improving the situation calls for a re-investigation
of the concept of digital twins for smart spaces together
with architectures and technical solutions that can build and
link virtual representations of the space with its physical
counterpart.

This paper contributes a vision for the adoption of digital
twins in smart spaces. The overall vision is illustrated in Fig. 1
and provides a unified view of how to integrate sensors,
actuators, network interfaces, and computing capabilities with
the physical space and the occupants residing in it. Currently,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3287032

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



these capabilities are mostly used for standalone applications
that attempt to improve specific aspects of the space, but
they can also be harnessed for digital twinning to offer a
unified view that supports different applications and services
and that facilitates management of the capabilities available
for the space. Building on this vision, we first derive a generic
reference architecture that comprises four layers: the physical
space, the sensing infrastructure responsible for establishing
the digital representation used by the digital twin, the network
infrastructure for linking the digital data with a virtual rep-
resentation, and the computing infrastructure that controls the
actuators in the space and offers an interface for applications
and services; see Fig. 1(b). We then proceed to identify and
address requirements for creating digital twins of smart spaces
and highlight their potential benefits using the ascendancy
business analytics model [16]. Finally, to demonstrate the
practicality and the benefits of digital twinning, we present
a proof-of-concept digital twin for the TellUs smart space at
the University of Oulu in Finland [17]. Our proof-of-concept
builds on a rich set of sensors from different modalities, as
shown in Fig. 2. We also use our example to highlight the
potential benefits of different ascendancy levels.

II. DIGITAL TWINS OF SMART SPACES

Digital twinning of a smart space starts from the sensor
infrastructure that operates in the physical space and processes
following a general model of IoT applications that integrates
networking and computing on top of the sensor layer serving
as input; see Fig. 1(b). First, sensors must be installed into
the space, and actuators need to be fitted to allow control over
the environment. Second, the connectivity of sensors and ac-
tuators must be ensured by deploying appropriate networking
infrastructure. Finally, computational resources (either cloud,
local, or edge/fog-based) must be provided to process sensor
data. Fig. 1(a) details our envisioned digital twin architecture
for smart spaces. The architecture includes four layers, corre-
sponding to those on Fig. 1(b), and each is responsible for a
specific task. In the subsections below, we take a detailed look
at each of the layers, survey the most relevant technologies,
and highlight the functionality provided by different types of
digital twins.

A. Sensing Infrastructure

The sensing infrastructure includes physical devices such as
sensors that observe the environment and generate data, actu-
ators that trigger and actuate the operations of the sensors, as
well as software-based (i.e., virtual) sensors and actuators. A
variety of low-cost sensing solutions are available for building
digital twins for smart spaces. However, while many of these
sensors can be considered as viable solutions for smart space
deployments, they may still have technological and method-
ological limitations. Hence, it is often recommended to deploy
more than one type of sensor so that they can complement
each other and offset these limitations. Such heterogeneous
deployments also allow for a better understanding of the events
occurring in the environment. In the following, we review and
address some of the most popular sensor solutions, covering

(a) Digital twin architecture for smart spaces.

Physical twin

Sensing infrastructure

Networking infrastructure

Computing infrastructure

Digital twin

(b) An overview of the digital twinning of smart spaces.

Fig. 1. From IoT analytics to digital twin of smart spaces.

their limitations and suitability for creating a digital twin of a
smart space.

1) Passive infrared (PIR) sensors: These sensors focus on
the infrared radiation changes caused by movements in the
spaces. While the main advantage of these sensors includes
their low cost and low energy requirements, the limitations of
PIR sensors is their low accuracy and their inability to directly
detect people. PIRs are widely used in real implementations,
and they are considered as an important candidate in physical
infrastructure. Indeed, digital twin-based analytics of PIR
sensors allow occupancy counting and identifying mobility
patterns such as the direction of movements.

2) Environmental sensors: These sensors provide informa-
tion, e.g., on temperature, humidity, pressure, CO2, PM2.5,
and the presence of volatile organic compounds (VOC). Thus,
these sensors provide an overall view of the conditions in the
space and can be used to provide indications of the air quality
and potential problems inside the data. While environmental
sensors are becoming cheaper and easier to deploy, the less
expensive variants often have lower accuracy and require
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either periodic manual re-calibration or software-based re-
calibration, which can be achieved using machine learning
methods. Environmental sensors can also provide indications
of the presence, movements, and even activities of occupants
even if these can only be detected with a delay [11].

3) Cameras: Cameras, including those focusing on specific
wavelengths such as thermal cameras monitoring infrared
radiation, can be used to visually monitor the events in the
spaces. The main drawback with the use of cameras is their
invasiveness in terms of privacy. Deploying infrared cameras in
large quantities in smart spaces can also be expensive. Lower
resolution sensors, such as thermal array sensors, can be used
as an alternative to capture data that is useful for analyzing
the presence of people without violating privacy [10].

4) Light and noise sensors: Ambient light and sound levels
are essential for ensuring visual and hearing comfort. These
sensors are often affordably priced, allowing deploying them in
high numbers. However, their sensing accuracy may decrease
over time. Both types of sensors can also be used as proxies
for occupancy counting. Additionally, noise sensors can be
used to identify the types of activities occurring in indoor
environments.

5) Wireless sensing: Wireless sensing takes advantage of
the wireless channel to detect activities taking place in space.
In its simplest form, wireless sensing can simply estimate
occupancy by counting the number of active connections,
whereas in the more complex case, the wireless channel can
be used to monitor vital signals by looking at fluctuations in
the wireless channel between a transmitter and receiver [18].
As most devices have wireless interfaces, the devices can
technically be of any type, including laptops, mobile phones,
and tablets, and the wireless technology can be IEEE 802.11
(Wi-Fi), Bluetooth, or another short-range technology. How-
ever, advanced wireless sensing can only be run on devices
that provide detailed information about the wireless channel
(so-called channel state information) and typically require
dedicated devices that can capture the relevant information.

6) Other sensing technologies: These include, for exam-
ple, electricity smart meters, geophone sensors, and micro-
switches. Electricity smart meters can be utilized to monitor
energy consumption levels. Moreover, by training energy con-
sumption models specific to the smart space, they can also
be used to estimate the number of users there. Moreover,
Geophone sensors can be used to detect vibration on the floors
caused by stepping, and micro-switches can be attached to
seats to identify which seat is in use.

B. Networking Infrastructure
Networking infrastructure includes all the necessary com-

ponents to interface physical infrastructure and computing
infrastructure and transfer data between them. These include
those directly embedded in and used by the physical infras-
tructure components (e.g., devices’ radio access technologies
and communication protocols), as well as those that form the
backbone of our architecture (e.g., access points, switches,
routers, etc.). Sensor data as well as actuator instructions are
transmitted through the networking infrastructure with appro-
priate wireless technologies and IoT communication protocols.

1) Wireless Communication Technologies: Various wireless
communication technologies may be utilized by sensors and
actuators within the smart space, facilitating their interaction
with the computing infrastructure via the network infrastruc-
ture. A range of technologies can provide reliable commu-
nication. In addition to reliability, several factors must be
considered when determining the most appropriate connectiv-
ity method: (i) application requirements, (ii) communication
range, (iii) bandwidth, (iv) power consumption, and (v) se-
curity. Given these requirements, three wireless technologies
stand out for meeting these needs and for their broad com-
patibility with diverse sensors: Bluetooth Low Energy (BLE),
Long Range (LoRa), and cellular IoT (LTE-M and NB-IoT).
We emphasize that these are not the sole solutions; individual
sensors may employ other methods. For instance, wireless M-
bus is often utilized by smart meters for measurement trans-
mission. As wireless M-Bus, and other related technologies,
are focused on specific devices or sensors we omit them
since they cannot offer a generic interface for integrating
all computing aspects of the space into a digital twin. We
also note that most of these technologies operate within
the ISM frequency band which means that using multiple
different technologies can cause significant cross-technology
interference and degrade network performance. The choice of
network technology is also significant because it affects where
the computations are expected to reside. Specifically, BLE
usually assumes connecting to a separate device that resides
in the same space, whereas cellular IoT and LoRa connect
to a hub or base station that allows edge-type of computing
without having the computing support reside inside the space.
While most smart spaces come equipped with WiFi networks,
sensor-enabled IoT devices rarely use WiFi due to their high
power usage, and thus other technologies are usually used to
connect to a device which can then take advantage of the WiFi
or other communications infrastructure available in the space.

BLE is a widely used short-range wireless communication
technology particularly suited for being used in the IoT land-
scape because of its low power requirements, low installation
costs, and high pervasiveness. It enables data exchange using
a 2.4 GHz license-free (ISM) frequency band, ensuring a
nominal max range of above 100 meters in open space. The
bit rate is 1 Mbit/s (with an option of 2 Mbit/s in Bluetooth
5), and the maximum transmit power is 10 mW (100 mW in
Bluetooth 5). The BLE’s design decision results in low energy
consumption, cost, and dimensions of the chipset, making
this technology especially popular for sensors that interact
with a higher-end device, e.g., wearables interacting with a
smartphone or computer.

Cellular IoT (NB-IoT, LTE-M) technologies have been de-
fined in the context of 3GPP (3rd Generation Partnership
Project) and designed to enable more streamlined machine-
type communication (MTC). The main advantages of this
type of technology is its seamless coexistence with 5G access
technology and the support of IP-based end-to-end traffic. The
suitability of cellular IoT deployments stems from various as-
pects including the high interoperability with mobile telecom-
munications standards and the lower power usage compared
to broadband cellular technologies (e.g., conventional LTE or
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5G) when related to the performance in terms of data rate
(0.2–1 Mbps) and range (up to several kilometers).

LoRa is a wireless communication technology specifically
designed for IoT. The data rates of LoRa are lower compared
to the other technologies we have introduced (0.3 Kbit/s to 27
Kbit/s) but it enables a greater coverage (due to operation in
sub-GHz bands) allowing transmission range of up to dozens
of kilometers in line of sight and very low power usage and
installation costs. Due to its design, the technology is well-
fitted for the IoT applications that mostly report measurements,
i.e., transfer data predominately in uplink, and which can
tolerate packet losses.

2) Communication Protocols: Communication protocols
for IoT usually build on either a publish-subscribe model
where clients publish data that applications or devices can
subscribe to or a request-response model where a server or
a proxy queries devices for information. Popular examples of
these types of protocols are the Message Queuing Telemetry
Transport Protocol (MQTT) for the former and the Constrained
Application Protocol (CoAP) for the latter.

MQTT is an IoT protocol originally designed to work on top
of TCP, which follows the publish/subscribe model. MQTT
client publishes messages to an MQTT broker, which are
subscribed by other clients or may be retained for future
subscriptions. Every message is published to an address,
known as a topic. Clients can subscribe to multiple topics
and receive every message published on each topic. The
TCP nature of MQTT, which also uses TLS for securing the
data transfer, makes this protocol connection-oriented. Still
related to its reliability capabilities, MQTT allows using three
different levels of QoS. With the lowest level of QoS, MQTT
operates in a best-effort message delivery fashion. A QoS of
one guarantee that a message is delivered at least one time
to the receiver, while the highest QoS guarantees that each
message is received only once by the intended recipients.

COAP is a lightweight IoT protocol that has originally been
defined in the context of the Constrained RESTful Environ-
ments (CoRE) working group of IETF (Internet Engineering
Task Force). CoAP is developed to interoperate with RESTful
systems and protocols (e.g., HTTP), through an architecture
that can alternatively follow both request/response and re-
source/observe paradigms. Different from MQTT and although
inspired by HTTP, the original CoAP standard uses UDP as
a transport protocol and DTLS for security. Despite being
connectionless datagrams protocol, reliability and QoS defi-
nition are ensured through the use of ”confirmable” messages
(which must be acknowledged by the receiver with an ACK
packet) and ”non-confirmable” messages (which do not require
to be acknowledged by the receiver). Unlike MQTT, CoAP
uses Universal Resource Identifier (URI) instead of topics.
The publisher publishes data to the URI and the subscriber
subscribes to a particular resource indicated by the URI. When
a publisher publishes new data to the URI, all subscribers are
notified about the new value as indicated by the URI.

We highlight these two application layer protocols in favor
of alternatives (e.g., Hyper Text Transport Protocol - HTTP
and Advanced Message Queuing Protocol – AMQP) due to the
favorable trade-offs that CoAP and MQTT can offer in terms

of power consumption vs. resource requirements, bandwidth
vs. latency, and message size vs. message overhead.

On top of these application layer protocols, we use
Lightweight M2M (LwM2M). LwM2M is a REST-based
protocol from the Open Mobile Alliance (OMA) for M2M
and IoT device management that defines the application layer
communication protocol between an LwM2M server and an
LwM2M client running on an IoT-embedded device. Although
LwM2M was originally built to work on top of CoAP, its
latest versions (from 1.2 on) started to support additional
application layer protocols including MQTT and HTTP. The
main advantage of using this kind of device management
protocol on top of different application layer protocols is the
possibility of ensuring interoperability and addressing all the
challenges raised by the heterogeneous nature of IoT devices
and of the applications that are executed on top of them. The
possibility of managing a plethora of devices in a unified
fashion brings several advantages, further emphasized by the
fact that LwM2M’s device management capabilities include,
inter alia, remote provisioning of security credentials, firmware
updates, connectivity management (e.g. for cellular and WiFi),
remote device diagnostics and troubleshooting.

C. Computing infrastructure

Computing infrastructure, placed in the cloud, locally, or
at the edge of the network, performs analytics of the data
received from the network infrastructure, provides real-time
virtual representation from the events in the smart space, and
generates virtual data as input for analytics. As described
previously, the location of the computing infrastructure can
also depend on the underlying network technology as BLE
effectively assumes a hub that resides inside the space whereas
cellular IoT and LoRa communicate with base stations that can
be outside of the space. The hub can either integrate processing
directly on itself or rely on data centers accessed through
cloud interfaces. While the cloud provides access to significant
computational capacity, concerns about latency, privacy, and
bandwidth may require using computational capacity in closer
proximity to the physical twin. Indeed, the architecture should
consider the computational resources as a continuum, ranging
from the lightweight sensor and actuator devices, through edge
and fog nodes placed in nearby computing hotspots or network
hubs, all the way to cloud-based data centers [19]. Deployed
upon this computing infrastructure are the components, often
encapsulated into microservices, of the application providing
the digital twin. These microservices, as well as the tasks
running upon them further require orchestration and life-cycle
management. These services are often provided by middleware
such as Kubernetes or Docker Swarm [19].

The Devices, Services, and Connectivity (DSC) Manage-
ment module gathers data from the sensing infrastructure
using LwM2M. The aim is to gain insights into the sensing
and actuation operations on the devices, as well as other
telemetry tasks. The DSC Management module also controls
the accuracy of the sensed data, and the amount of data
to be sent in up-link, aiming to reduce data redundancy
and unnecessary data transmission. It additionally collects
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telemetry information from each sensing infrastructure device
(e.g., device ID, device model, running service, percentage of
remaining battery, memory, and CPU/MCU utilization) and
of the connectivity technology used for the data upload (e.g.,
Signal to Noise Ratio – RSSNR, Reference Signal Received
Power – RSRP, Received Signal Strength Indicator – RSSI,
Cell Identity – NCI).

The set of information collected is used for performing
AI-powered analytics to infer, for example: (i) how devices
and running applications are using energy and under what
circumstances, (ii) how to improve the sensing capabilities
through AI-powered sensors’ re-calibrations, and (iii) how to
optimize the end-to-end data transfer in an energy-efficient
fashion. Some of the analytics results performed by the
Computing Infrastructure are then sent back to the Sensing
Infrastructure devices, which execute the analytics actionable
insights. Analytics results can enable the devices to improve
their battery life and sensing capabilities and ensure more
optimized and energy-efficient end-to-end communication.

D. Applications
The applications block presents the applications developed

using analytics data. These applications can be for instance
used for occupancy detection, space utilization, energy con-
sumption, and air quality monitoring in order to improve the
environment or optimize resource utilization.

The analytics required by the application can be categorized
according to Gartner’s analytics ascendancy model [16]. The
model identifies four different analytics levels, ordered by the
value of their results as well as the complexity of the methods.
Descriptive analytics offers a view into the current status of
the observed system, as well as its recent history, answering
the question “what happened”. Diagnostic analytics looks for
the causes and effects behind the system status, answering the
question “why did it happen”. Predictive analytics projects
system status into the future, finding out “what will happen
next”. Finally, prescriptive analytics looks for means of affect-
ing future outcomes: “how can we make it happen?”

The ascendancy levels describe also digital twins, providing
a measure of capability and utility. In particular, in the context
of smart spaces, a digital twin can help facility managers to
know (descriptive) and understand (diagnostic) the past and
current status of the space, assess potential future trajectories
(predictive), or even find ways of changing those trajectories
or selecting the most beneficial (prescriptive).

Different types of smart space digital twins, categorized
with Gartner’s analytics ascendancy model [16], along with
sample use cases, are listed below.

1) Descriptive twins: present the current status and situa-
tion in the smart space, relying on data from physical sensors
and software systems, such as meeting room reservation tools,
linked to the space. Presented data can include, for example,
the occupancy or reservation status of spaces, the temperature
or CO2 level at sensor locations, or the number, location,
and possibly even identity of the people in the smart space.
Techniques used at this level may include data aggregation,
visualization, and summary statistics, such as calculating the
average temperature, humidity, or CO2 levels for each zone.

2) Diagnostic twins: further analyze the descriptive data.
Results from the analysis can, for example, find the correlation
between the CO2 level and the occupancy of a room, or
the temperature and the number and location of people, or
possible discrepancies between meeting room reservations and
their actual occupancy. Methods employed at this stage may
include correlation analysis, root cause analysis, and data
mining, such as assessing the relationship between CO2 levels
and occupancy (using PIR sensors) and investigating reasons
behind unusually high humidity levels in a particular zone.

3) Predictive twins: provide insights into the future status
of the smart space. Potential use cases include, for example,
the expected occupancy of meeting rooms, or projected energy
costs of the smart space, based on expected occupancy, energy
price projections, and external weather forecasts. Approaches
utilized at this tier may include machine learning algorithms
such as Random Forests or Support Vector Machines, time-
series analysis techniques such as ARIMA or Exponential
Smoothing, and forecasting models to predict future conditions
in the smart space.

4) Prescriptive twins: build upon the insights offered by
analytics on lower ascendancy levels. They provide means for
the operator on how to control the space, or even control the
smart space autonomously. Examples of use cases include, for
example, controlling the heating or ventilation of the space,
based on predictive analysis of occupancy, temperature, and
CO2 levels, and projected energy costs. Procedures used at
this stage may include optimization algorithms to determine
optimal settings for lighting and HVAC systems, decision
trees, and simulation models to test the impact of different
control strategies on overall energy consumption and air qual-
ity, recommending the most efficient strategy for managing the
smart space.

Our proposed digital twin architecture (shown in Figure 1)
offers automated decision-making and enables actuating sen-
sors and adjusting systems in the smart space to meet the users’
needs. Indeed, at the application layer, the automated decision-
making can for example use the data analytics results of the
occupancy detection to adjust the operations of the ventilation
and lighting systems to optimize energy consumption as well
as to provide visual and thermal comfort for the space users.

III. THE EXPERIMENT

We use measurements of the wireless sensor network de-
ployed in the TellUs smart space at the University of Oulu,
Finland, to explain the benefits of the digital twin of smart
spaces.

Physical twin: The floor plan of the TellUs space is shown
in Fig. 2. The TellUs space is located on the first floor of the
University campus and has an area size equal to approx 66.856
m × 36.446 m. TellUs includes different spaces planned
for various purposes. These spaces include the closed spaces
used as meeting rooms shown by numbers 1, 7, 8, and 11,
large meeting rooms (shown by 5) are designed for students’
collaborative works, and open study areas are depicted by
numbers 2, 6, and 10. The Nest space (shown by 3) is
a relaxation and thinking space, Cafe TellUs shown by 4
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Fig. 2. Sensor deployment at the TellUs smart space at the University of
Oulu, Finland. For simplicity, the space names are labeled with numbering 1
– 11 (i.e., different zones). The CO2 and microphone icons show the locations
where the multisensor devices and noise sensors are installed.

provides cafeteria facilities, and the small closed spaces (at
9, and partly at 10) that host up to four people are used for
individual use or small group meetings [17].

Sensing and networking infrastructure: In order to design
our sensor deployment, we conducted a test phase experiment
prior to the current sensor deployments. During this phase,
we deployed 352 LoRaWAN sensor nodes at the TellUs smart
space [8]. To deploy sensors permanently and in order to iden-
tify the optimal number of sensors and find proper locations
for installing sensors, in our experiment, we implement a test
phase by deploying a total of 352 LoRa Wide Area Network
(LoRaWAN) of the same sensor nodes (Elsys ERS sensors
[20]) in Tellus space. We collected a total of 9,917,848 lines
of data for 410 continuous days of measurements from June
2017 to November 2018. We further use the data that includes
temperature, humidity, CO2, motion, and light to test the
reliability of measurements and sensor operations. We carried
out a comprehensive data analysis using different visualization
such as sensor measurements during weekdays and weekends,
time-series measurements, and correlation studies between PIR
and CO2 concentrations. Indeed, the test phase allowed us
to identify the hotspots and areas necessitating continuous
monitoring. Through the insights gained from this experiment
and expert advice, we managed to optimize the sensor count to
68 devices, a number deemed appropriate for the TellUs space,
even in terms of calibration and maintenance. Therefore, in
the current operation phase, we deployed 68 sensor nodes
in the TellUs space. While 23 units of these sensors are
noise sensors (shown with microphone icons in Fig. 2) that
can only measure sound, the other 45 sensor units shown
by CO2 can measure temperature, humidity, CO2, motion,
and light. These sensors have been calibrated in the factory
by the manufacturer prior to their deployment [21]. Before
we embarked on the sensor deployment, we calibrated each
sensor in a laboratory setting using a reference sensor. This
was done to ensure the highest possible accuracy in our
measurements. Each sensor is powered by two 3.6 V AA
lithium batteries. Based on experts’ suggestions, the sensors
are attached to the ceiling frames of the TellUs space with
a specific minimum distance between each other. Using the
LoRaWAN technology, every 15 minutes, the sensor units

transmit data on the 868 MHz ISM band to a LoRAWAN
gateway manufactured by Multitech. While the performance
of the LoRaWAN deployment is documented in [22], in our
case, none of the sensors had more than 25% of their packets
lost, while for some of the nodes less than 0.5% of packets
were lost. The gateway is connected to an external biconical
D100–1000 antenna with a gain of 2dBi, and transfers the
data to the ThingWorx commercial cloud platform using the
MQTT protocol.

Computing infrastructure and platform: Data is stored
on a local campus server via Python scripts querying the
ThingWorx commercial cloud platform1. The local campus
server is equipped with an RDBMS PostgreSQL server for
data storage, R, Shiny Server, and Django REST Framework.
In-depth technical details regarding deployment setup and
analysis are provided elsewhere [23]. Moreover, the computing
infrastructure allows implementing of management tools and
functions and deploying virtual counterparts. These tools,
available online2, include the following: a “Device manage-
ment” function, which allows managing the installations and
adding new devices; “Bootcamp”, which allows us to check
the status of the installed sensors; a “map view”, that provides
location information about the installed sensor devices; “API
key”, that provides real-time data stream from sensors on
request for API and obtaining a key. “Open data” is also
another virtual element offered by our system, providing open
data freely under the CC BY 4.0 license in the form of static
.csv-files. Furthermore, the system provides real-time “data
visualization” using Grafana which is an open-source software
platform for visualizing time-series data.

Datasets and pre-analysis: The sensor network’s measure-
ments were collected from 1.7.2020 to 31.5.2021, which
yielded a total of 8040 data points, recorded hourly. The data
is collected on a cloud-based service and is openly available
for further study3. We also use our previous dataset collected
from June 2017 to November 2018. Then, first, we process
both datasets for the test phase (T ) and implementation phase
(I) by removing outliers and anomaly data points, and then
we perform a pre-analysis. We carry out this step to ensure
that the data collected by sensors are reliable and can be
further utilized for further analytics. Table I summarizes the
key statistics, which are mean and standard deviation (STDV),
of the datasets for the test phase (T ) and the implementation
phase (I).

TABLE I
KEY STATISTICS OF THE DATASETS FOR THE TEST PHASE (T ) AND THE

IMPLEMENTATION PHASE (I).

Measurement Mean STDV
T I T I

CO2 459.05 444.59 161.17 100.28
Humidity 30.60 41.93 16.25 4.63

Light 215.41 361.90 302.41 342.36
Temperature 20.65 23.57 8.71 15.56

PIR 44.76 39.95 37.79 41.30

1”Alvar”, 2018, [online] Available: http://alvar.erve.vtt.fi.
2https://smartcampus.oulu.fi/manage/
3https://etsin.fairdata.fi/dataset/98ff83ec-96fb-45d2-af82-c041200a3fb2
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Our observations indicate that the area is frequently oc-
cupied, as suggested by the mean values of the variables
(CO2 mean exceeds 400, and PIR mean is above zero). The
mean temperature, humidity, and light values conform to the
standard thermal and comfort levels for indoor environments.
For example, the typical indoor temperature in Finland is
defined to be 20◦C [24]. As demonstrated in Table I, key
statistics, namely mean and STDV, exhibit similarity between
T and I. This consistency validates the reliability of the
collected datasets.

Furthermore, a crucial benefit of our current sensor im-
plementation phase (I) is the use of an optimized quantity
of sensors, which, compared to the test phase (T ), does not
compromise the quality of spatial coverage. Figure 3 presents
the comparison of CO2 concentrations in the form of violin
graphs at eleven zones between T (red on the left) and I
(blue on the right). A violin graph depicts distributions of
CO2 concentration data for eleven zones using density curves.
The white dots represent the median while the tails represent
dispersion (i.e., the confidence intervals) in CO2 concentration
data in different zones. The width of each curve corresponds
with the approximate frequency of data points in each zone.
Note that, in the test phase (T ) our dataset does not have
the CO2 data for Z11, as we had not deployed CO2 sensor
during the test measurement for that zone. The consistency of
measurements between both phases, I and T , substantiates the
viability and rationality of our implementation (I). There is a
greater dispersion in T than in I due to the larger volume of
sensory data in the T phase. Nevertheless, the medians of each
violin plot (the white dots) are in close proximity between T
and I. The medians for both phases are within the acceptable
ranges of indoor CO2 concentration [25]. This observation
demonstrates that the installation of an optimized number of
sensors at hotspot locations can effectively provide coverage
for each zone within the TellUs Smart Space. In conclusion,
the illustrated results suggest that the sensor deployment in I
is an improvement over T . Despite the optimized number of
sensors installed in the space, the quality of spatial coverage
remains consistent.

Fig. 3. Violin graphs − the comparison of CO2 concentrations at eleven
zones during the test phase (T , red) and the implementation phase (I, blue).

IV. RESULTS

In this section, we present the outcomes of our experiment
in the TellUs smart space, concentrating on the construction

of a digital twin. Our study illustrates three distinct types of
digital twins: descriptive, diagnostic, and predictive. We also
use Table II and Fig. 4 to present the results of our experiment.
Finally, we discuss possible avenues for a prescriptive twin.

A. Descriptive twin

A descriptive digital twin provides information on the
current and past state of the physical twin. An implementation
of a descriptive twin, Table II describes the current status
in the TellUs smart space in terms of temperature, humidity,
air quality, occupancy, light, and noise. Table II also shows
the median (med) and standard deviation (std) of the mea-
surements from the sensors in 11 zones in the TellUs smart
space. The measurements include temperature (Temp in ℃),
relative humidity (RH in %), carbon dioxide (CO2 in ppm),
Passive Infrared sensor (PIR), Lux, and Noise (in dbA). The
findings displayed in Table II affirm that the environmental
conditions within the TellUs smart space align with typical
indoor environments. Furthermore, these results actualize a
descriptive twin, elucidating the events within the smart space
and offering insight into its dynamics. For example, the median
temperature varies between 19°C and 21°C (with std. hovering
around 1.5°C), and the median of RH varies between 25% and
29% (with the average of std of 15%). These are typical indoor
conditions for buildings in Finland.

The median values for the three highest concentrations of
CO2 align with the maximum PIR measurements, observed
in zones Z1 to Z3. However, the median CO2 concentration
for Z9 is also high, while the Z9 is small – this is a
cubic closed space where the CO2 is trapped and the effect
of the ventilation system is almost none. Consequently, the
measurements from the passive infrared sensor (PIR), which
detects movement, are notably small. As such, the descriptive
results imply a correlation between CO2 and PIR. The max
and min of the medians of light sensor readings are 190
lux and 163.5 lux, respectively. These values are considered
acceptable for the TellUs smart space, given that the lights are
switched off during the night and during periods of inactivity.
Based on the American Society of Heating, Refrigeration and
Air Conditioning Engineers (ASHRAE), for open plan office
spaces, the acceptable noise level range between 49-58 dBA.
In TellUs, in most of the zones, the noise level is equal to
34 dbA. Z4 and Z7, corresponding to the cafeteria and the
meeting room 7, show the highest median noise (at 37 dbA
and 41 dbA). The cafeteria accommodates numerous visitors
daily, and the meeting room records the highest occupancy
rate. Despite this, the maximum median noise level stands
at 41 dbA, which remains below the threshold defined by
ASHRAE.

B. Diagnostic twin

Diagnostic analytics examine the correlations, causative
factors, and effects underlying the phenomena observed at
TellUs. Fig. 4(a) shows the heatmap of the Spearman correla-
tion coefficients between CO2 and all variables in all zones.
The heatmap plot aids in comprehending the relationships
between high CO2 concentration levels and other variables.
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TABLE II
DIAGNOSTIC TWIN, PROVIDING READINGS IN THE 11 ZONES IN TELLUS.

Metric Temp (◦C) RH (%) CO2 (ppm) PIR Lux Noise

Z1
med. 21 25 422.5 84 115 34
std. 1.31 15.73 73.33 40.68 130.47 3.34

Z2
med. 19.6 28 429.5 85 150 34
std. 1.71 12.98 58.52 40.07 189.33 1.53

Z3
med. 20 27 420 86.5 190 34
std. 1.58 13.26 36.84 40.78 275.18 0.92

Z4
med. 19.85 28 411.5 49.5 166 37
std. 1.77 13.79 38.43 32.65 173.31 3.35

Z5
med. 19.85 28 418 76.5 115.5 34
std. 1.55 14.38 40.24 36.59 64.16 2.39

Z6
med. 20 28 416 78 139 34
std. 1.89 12.49 57.17 37.94 131.07 1.78

Z7
med. 21 26 367.5 81 143 41
std. 1.47 15.13 143.25 40.45 99.09 5.38

Z8
med. 20.1 29 399 84.5 163.5 34
std. 1.74 15.61 52.49 39.46 60.9 3.03

Z9
med. 20.15 30 426 4 80.5 NaN
std. 1.58 13.50 622.05 4.39 35.74 NaN

Z10
med. 20.5 28 415.5 75.5 162 34
std. 1.40 13.06 488.71 31.06 71.35 1.60

Z11
med. 20.95 25 404 82 162 35
std. 1.54 16.14 51.97 40.94 42.72 3.30

For example, PIR and noise levels are positively correlated to
the CO2 concentration, especially in Z6, Z8, and Z10. This
correlation is particularly evident in Z9, which showcases
a high correlation between CO2 and PIR, given its small,
enclosed spaces devoid of external influences like ventilation
systems. Moreover, Fig. 4(b) shows the diurnal cycles of CO2

concentration (blue) and the values of the PIR sensors (red)
for Z9 and Z10. The blue and red shaded areas indicate the
standard deviation of CO2 and PIR diurnal cycles, respectively.
In the figure, the overlap in patterns of blue and red lines and
the shaded area confirms that the two variables are indeed
correlated in Z9 and Z10. These results suggest that the
presence of humans (indicated by high values of PIR and
noise) influences the amount of CO2 concentration in TellUs.
Therefore, by controlling the number of human movements in
different zones in the office, the level of CO2 may also be
controlled.

C. Predictive twin

Predictive analytics offer insights into the potential future
state of the smart space, or the anticipated value of specific
variables in areas where no corresponding sensors are de-
ployed. For example, Fig. 4(c) interpolates the CO2 sensor
readings to cover the whole TellUs smart space, including
areas with no CO2 sensors. The small enclosed spaces at
Z9 and Z10 are clearly visible as areas with high CO2

concentration. Elsewhere, CO2 levels across the TellUs space
remain relatively low, suggesting effective ventilation or sparse
occupancy.

Moreover, another predictive model can estimate the amount
of CO2 concentration in places where CO2 sensors are not
available, but PIR sensors are. In fact, as indicated by descrip-
tive and diagnostic analytics, a correlation exists between CO2

concentration and PIR values, the latter serving as a proxy for
the number of individuals present in the observed area [26].
A predictive model of CO2 concentration can thus take inputs
of PIR sensors and estimate CO2 by, for example, a linear
model, with |CO2| = α+ PIRβ + ϵ.

(a) Heatmap of Spearmann correlation coefficients between CO2 and other
parameters in different zones.

(b) The median (line) and standard deviation (shaded area) of the
diurnal cycle of CO2 and pir in Z9 and Z10.

(c) Predictive twin, interpolating CO2 sensor observations to locations where
sensor data is not available.

Fig. 4. Diagnostic and Predictive twins: analyzing and estimating different
sensor modalities

In this formulation, |CO2| is the concentration of CO2 (in
ppm) and PIR is the number of movements recorded. β is the
model coefficient, α is the bias, and ϵ is the model error.

D. Prescriptive twin

Prescriptive analytics offer mechanisms for regulating the
TellUs smart space to sustain a healthy and productive envi-
ronment. For example, according to diagnostic and predictive
analytics, CO2 may be caused by the number of people
present. Thus, a prescriptive digital twin can calculate the
maximum occupancy for a meeting room at a given time,
based on the highest estimated CO2 values in that room, and
accordingly adjust room reservations.

V. LESSONS LEARNED

We now turn to discuss the lessons, limitations, challenges,
and crucial considerations we have encountered in deploying
sensors in smart spaces for digital twin creation, drawing on
our own experiences.
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Traditional set-up vs. Digital Twin. When transitioning
from our previous TellUs setup, which lacked digital twin ca-
pabilities, to the newly established digital twin-enabled model,
we evaluated our system from several key perspectives. These
aspects include resource utilization, energy efficiency, latency,
and scalability. We hypothesize that integrating digital twin
technology can lead to improvements in resource utilization,
as it enables real-time monitoring and control over various
resources, ensuring their efficient use. In contrast, traditional
smart spaces without digital twins may rely on manual ad-
justments or pre-defined schedules, which often do not align
with actual usage patterns and requirements. Additionally, we
believe that the digital twin model has the potential to signif-
icantly enhance energy efficiency by intelligently controlling
systems based on occupancy levels, ambient conditions, and
other factors, while traditional smart spaces may lack the
necessary data and control mechanisms to achieve the same
level of optimization. Transitioning to a digital twin can also
potentially reduce latency, as real-time data processing and
decision-making are facilitated. Traditional smart spaces may
experience delays in processing and respond to events due
to the lack of a unified data and control platform. We also
suggest that the digital twin simplifies the integration of new
devices and services, making it easier to scale the smart
space as needed. In comparison, traditional smart spaces may
face challenges in adapting to changing requirements and
integrating new technologies.

User satisfaction in the loop. In the future, we plan to
focus on empirically validating the hypotheses mentioned in
the previous point and further enhancing user satisfaction by
leveraging methodologies that extend the digital twin capa-
bilities with the possibility of relying on fast-feedback user
satisfaction. This approach will allow us to create an even
more personalized and comfortable environment for users,
addressing individual preferences and needs more effectively.
Moreover, we advocate for the need to introduce well-defined
and standardized metrics that enable researchers and prac-
titioners to fairly evaluate and compare their digital twin-
based systems with traditional smart spaces across all key
aspects. The development, for example, of a digital twin
benchmarking suite would facilitate more accurate assessments
and encourage further advancements in the field.

Sensing accuracy. Any sensor that is used for measuring
environmental variables should be calibrated at the factory.
For our experiment, we performed an additional calibration
of the sensors prior to deployment to ensure the capture
of reliable data. However, in real-life sensor deployments,
one-time calibration of sensors before deploying them does
not guarantee data accuracy as these low-cost sensors drift
over time and generate anomalous data. Thus, an alternative
solution to ensure data accuracy is the periodic calibration
of individual sensors or the sensor network in an automated
fashion using reference sensors or implementing an automated
method that calibrates the sensors opportunistically.

Sensor deployment. To generate sufficient and appropriate
data from smart spaces for digital twin creation, we must
strategically deploy the right number of sensors, ensuring they
are properly spaced at designated locations. In our experiment,

we have deployed 68 LoRa Wide Area Network (LoRaWAN)
sensor nodes in our TellUs smart space. To achieve this
number, we carried out an earlier test by deploying 352 of
these sensors in TellUs space and carried out one year of
measurements (2017-2018) [8]. Thus, based on our earlier data
analysis and the engineers’ new sensor deployment design,
the number of sensor deployments was optimized and the
unnecessary sensors were removed.

Data management. A digital twin necessitates a real-time
data stream. Therefore, data needs to be consumed in real-
time and also stored for further analytics. Typically, the data
generated by the sensors in smart spaces do not require storage
capacity compared to other applications, e.g., hyperspectral
imaging. For example, in our experiment, the sensors measure
every 15 minutes and produce 8040 lines of data for each
sensor. We collected data from 1 Jul 2020 to 31 May 2021
(11 months of data), and our dataset has a .csv file size of
780MB. Using MQTT protocol, we transmitted the data to
the ThingWorx commercial cloud platform and also queried
the data by Python scripts and stored it on local servers.
Hence, deploying a large number of sensors of even different
varieties may not challenge data storage, thus any form of a
data storage system including on the edge or cloud may be an
appropriate solution. Integrating new sensors into the digital
system presents another challenge due to potential differences
in data formats. However, to establish interoperability, thus,
the use of unique standards such as ONEDM or IPSO Smart
Objects is necessary to obtain a similar data format.

Network management. Within our TellUs smart space,
we set up a wireless sensor network consisting of 68 sensor
devices, each transmitting data packets on the 868 MHz ISM
band to a remote server via LoRaWAN radio access network
technology. To collect data from the sensor nodes, we used
a LoRA gateway that is connected to an external biconical
D100–1000 antenna which has a gain of 2dBi. Then, using the
MQTT protocol the data was relayed from the LoRA gateway
to the ThingWorx cloud platform and also stored the data on
our local servers. Thanks to the advances in communication
technologies that offer a wide variety of networking solutions
that are appropriate for IoT deployment in smart spaces as
sufficiently addressed in earlier sections.

Security and privacy. Typically, the sensors which are
used in smart spaces such as motion detectors, environmental
and thermal array sensors, and wireless sensing systems due
to their application purposes do not capture information that
includes people’s identities. In our deployment, we used envi-
ronmental and PIR sensors which did not involve any sort of
security and privacy concerns. However, in case cameras are
used for occupancy detection, recent studies introduce methods
(e.g., by reducing the video frame resolution) that mitigate
possible security and privacy concerns that might threaten
people’s privacy.

Lifecycle management. Sensors may decay, break, or be
dislodged from their locations due to indoor human activities.
This mandates continuous monitoring of the operation of the
sensors. In our deployment, each sensor device is powered by
two 3.6 V AA lithium batteries. With a sampling frequency
of 15 minutes and two batteries for each sensor, the devices
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are expected to have power for about 24 months. In theory,
the batteries are depleted after prolonged use powering the
sensors. Thus, it is necessary to ensure a continuous power
supply for sensors. Indeed, one important advantage of Digital
Twin is its automated management which enables the detection
of silent sensors that do not transmit data, enabling fixing
the problem. Moreover, life-cycle management also concerns
the Software-over-the-air (SOTA) and Firmware-over-the-air
(SOTA) capabilities of IoT deployment. Our deployment did
not encompass any SOTA/FOTA capability. This is a big
limitation because, when SOTA/FOTA are needed, we are
forced to perform such operations device by device or by
a group of devices (usually from the same manufacturer).
We aim to overcome such limitations by relying on the
FOTA/SOTA capabilities of LwM2M, which is already used
in our system for performing device bootstrapping and device
management.

VI. CONCLUSION

Smart spaces are progressively becoming commonplace,
as new sensor-enabled devices grow more affordable, easier
to deploy, maintain, and operate. The growing pervasiveness
of IoT-enabled devices is amplifying the potential to build
services and applications that benefit occupants, optimize
the space’s functionality, and manage various aspects of the
space. Currently, these applications and services are primarily
implemented using dedicated IoT analytics platforms, to which
sensor-enabled devices connect, providing a single interface
for applications and services. Regrettably, this approach is
not scalable and tends to result in a siloed manner where
capabilities are optimized for individual use cases, rather than
offering a unified view that could better manage, maintain, and
leverage capabilities across a broad range of applications and
services.

In this paper, we argue that smart spaces have matured
to a point where dedicated IoT analytics platforms alone are
no longer sufficient. Instead, digital twinning, the process of
linking the physical space with a virtual representation, serves
as a more fitting paradigm for managing and supporting the
space. Indeed, we propose that the sensor, communication, and
computing infrastructure have reached sufficient maturity to
integrate the operations of the space through digital twinning.
We presented a generic reference architecture for implement-
ing digital twins for smart spaces using a layered architecture
that integrates four different levels (physical space, sensing
infrastructure, communications, and computations). We also
provided an overview of the key technologies that are cur-
rently available and used the analytic ascendancy model to
highlight benefits for different stages of implementation. We
also presented a proof-of-concept implementation using the
TellUs smart space at the University of Oulu in Finland to
highlight the benefits digital twins can bring to smart spaces,
as well as how different levels of technological maturity affect
these benefits. In sum, our work paves the way for tran-
sitioning beyond IoT analytics platforms, harnessing digital
twin technology to improve smart space quality and offer a
unified approach to accessing computing capabilities, thereby
enhancing the benefits these spaces offer to the occupants.
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[22] R. Yasmin, J. Petäjäjärvi, K. Mikhaylov, and A. Pouttu , “Large
and dense lorawan deployment to monitor real estate conditions and
utilization rate,” in 2018 IEEE 29th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), 2018,
pp. 1–6.

[23] R. Yasmin, M. Salminen, E. Gilman, J. Petäjäjärvi, K. Mikhaylov,
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