
25782 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

GS3: A Lightweight Method of Generating Data
Blocks With Shuffling, Scrambling, and Substituting

Data for Constrained IoT Devices
Francisco Alcaraz-Velasco , Jose M. Palomares , Senior Member, IEEE, and Joaquin Olivares

Abstract—The enabling devices and sensors of the Internet
of Things (IoT) are characterized by devices with limited
resources, where the computation and the energy consumption
should be optimized. Application fields, such as healthcare
or multimedia content, bring up security and privacy issues.
Therefore, data security is critical. However, to obtain it, high-
computing resources are required. To avoid it, in this work,
we propose a lightweight method to protect data transmissions
in sensor devices. We present the GS3 method, it is based
on a procedure set by Generating the data block, Shuffling,
Scrambling, and applying Substitution boxes on the data. Our
experimental results will show that GS3 introduces a minimal
overhead, of just two bytes corresponding to the cyclic redundant
control 16 (CRC16) integrity control in the length of the messages
concerning the original data. According to the execution time
with respect of other encryption–based methods, even a 50%
less than Chacha20 algorithm, as fewer steps and simpler
computation procedures are required.Therefore, GS3 is a good
choice to be used in resource-constrained IoT devices in which
data integrity and security are required, taking into account the
data freshness.

Index Terms—Chaotic system, integrity, Internet of Things
(IoT), scrambling, security, shuffling, wireless sensor networks
(WSNs).

I. INTRODUCTION

NOWADAYS, the evolution and growing up of the Internet
of Things (IoT) is allowing those smart and small devices

with reduced resources to share, send data, and be connected
to the Internet. However, these advantages may conduce
to security gaps. So, on the one hand, it is necessary to
develop lightweight cryptographic methods to protect private
information and guarantee the integrity of the exchanged
information on the network. On the other hand, it is a
challenge the selection of the proper lightweight cryptographic
algorithm [1]. As a consequence, there is a tradeoff between

Manuscript received 25 October 2023; revised 11 January 2024 and 24
April 2024; accepted 27 April 2024. Date of publication 30 April 2024;
date of current version 25 July 2024. This work was supported in part
by the Spanish Ministry of Science, Innovation, and Universities Grant
Intelligent Distributed Processing Architectures in Fog Level for the IoT
Paradigm (Smart-Fog) under Grant RTI2018-098371-B-I00, and in part by
the FoCRA Project (FEDER Andalucia 2014–2020) under Grant 1380974-F.
(Corresponding author: Jose M. Palomares.)

The authors are with the Department of Electronic and Computer
Engineering, Universidad de Córdoba, 14071 Córdoba, Spain (e-mail:
francisco.alcaraz.velasco@juntadeandalucia.es; jmpalomares@uco.es;
olivares@uco.es).

Digital Object Identifier 10.1109/JIOT.2024.3395543

implementation performance and security [2]. The security and
performance of IoT will be a balancing act [3].

Examples of devices where lightweight cryptography should
be considered are the following: radio frequency identification
(RFID), wireless sensor networks (WSNs), and industrial
control equipment, among many other fields. WSN [4] are
networks which are created ad-hoc. They are composed of
hundreds of sensors, interconnected by lightweight wireless
protocols, such as Zigbee, IEEE 802.15.4 [5], or others, to
sense the environment. The collected data are sent to base–
stations from where data could be sent to the Internet through
a gateway using a lightweight protocol, such as LoRa [6].
Afterward, data can be processed and analyzed by computers
with more resources using the cloud computing paradigm.
Finally, IoT devices, such as smartphones or tablets, can access
and request this information. Fig. 1 represents this scheme of
data transmission and the interconnection between WSNs and
IoT world.

Nevertheless, this technology is exposed to threats.
Lata et al. [7] presented a comprehensive analysis of security
threats against WSN and IoT. Also, they describe strate-
gies for preventing, detecting, and mitigating those threats.
Ahmad et al. [8] carried out a case use of underwater WSN
(UWSN). They analyze the threats that UWSN are exposed to
and some of the countermeasures for those threats. Wand and
Chen [9] researched on data security immunity in WSN based
on trust management, clustered communication, and LEACH
protocol. Other recent cases of use are: Rezaeibagha et al. [10]
presented an efficient and provably secure scheme, which
is a novel cryptographic accumulator based on their novel
authenticated additive homomorphic encryption which can col-
lect and accumulate data from IoT wireless wearable devices.
According to Manjula et al. [11] a major limitation to the use
of WSNs in asset monitoring applications is the privacy of
source location information. For this reason, they develop two
phantom routing-based solutions to provide source location
privacy for the case of multisource/asset scenario, which is
a case that has received very little attention in the literature.
Another problem presented in WSN and IoT is related to
processing delay and energy efficiency. Peng et al. [12]
proposed a multifunctional and multidimensional secure data
aggregation (DA) scheme to strike the balance between data
availability and privacy.

The number of connected IoT devices is estimated to be
about 125 billion by 2030 year. Thus, data security is a

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-2664-785X
https://orcid.org/0000-0001-5564-7889
https://orcid.org/0000-0003-2584-5491

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25783

Fig. 1. General scheme of communication between sensors and cloud.

required feature With such a big scope along with related
threats and security issues. Besides, these devices usually send
sensitive data.

Thus, security solutions are necessary to protect private data.
Although, there are security mechanisms focused on (WSN
and IoT) devices, not all of these solutions are suitable for
them due to the computational overhead introduced [13]. For
example, classical cipher algorithms, such as the advanced
encryption standard (AES) [14], which is included as a
reference in the IEEE 802.15.4 standard [15], the PRESENT
cipher [16], or even newer ciphers, such as Salsa20 [17]
and Chacha20 [18], have very demanding memory and com-
putational requirements that cannot be assured by most IoT
devices. Therefore, it is necessary to research developing
lightweight secure protocols and mechanisms. Our working
environment is a communication model where the data are
sensed and sent to a base station, where a decision is made
using the received data. After that, those data are discarded
within a small time window and have no further utility.
For example, IoT applications to detect thieves or sound
alarms and face recognition of people to prevent situations
where armed people appear. All of these events only have
a brief period of validity. Encryption techniques and cipher
algorithms provide extremely high privacy at the expense of
large computing consumption. A tradeoff between security
and computing power must be found. Therefore, a lightweight
security protocol that assures the integrity, confidentiality, and
authenticity of data, is interesting.

In this work, we propose the GS3 method. This new
method is an evolution from our earlier research [19] on
the same subject because of the following three features: 1)

a pseudo-random shuffle method using a chaotic system as
pseudo-random number generator enhances the generation of
the data block proposal described in [19]; 2) a scrambling
method to achieve the confusion rule is included; and 3)
finally, it is added a third confusion step through S-boxes
substitutions. All of these procedures do not require any
special hardware or functional units, as most operations are
memory movement–related and basic mathematical operations.
Therefore, GS3 is very suitable in resource–constrained IoT
devices.

Thus, our main contribution is a lightweight security
method, which does not use encryption as the global
information obfuscation method. Our proposal uses some
computational operations which are much lighter than the
encryption, in terms of processing time.

This article is presented as follows: we first present an
introduction about these issues in Section I. Section II presents
a brief vision of the lightweight block and stream ciphers along
with their operation modes. In Section III, the proposed GS3
method is described. Then, Section IV shows the hardware
and software platform used in this project. Our approach
is evaluated through several statistical tests, described in
Section V. In Section VI, the results of our proposal are
shown together with the algorithms reviewed previously in
foundations. Section VII includes a comparative analysis of
the results. Finally, Section VIII concludes this scientific work.

II. FOUNDATIONS

This section presents the cipher algorithms that have been
reviewed to develop our proposal. Fig. 2 represents a general

25784 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 2. Categories of cipher algorithms.

classification of these cipher algorithms. On the one hand, in
public key ciphers, each entity has a pair of keys (one public
and the other public). This scheme provides confidentiality, no-
repudio, integrity, and authenticity. The keys are in the order
of thousands of bits (1024 bits or more), providing a high-
security level. However, the computational costs are also very
high. Therefore, it makes this scheme less suitable for sensor
devices. Nevertheless, some research based on electric curves
cryptography (ECC), [20] or more recently based on Quantum
Cryptography [21], have reduced the computational costs, but
require highly specialized hardware.

On the other hand, private key ciphers ensure confidentiality,
integrity, and authenticity. The sender and the receiver share a
key, which is in the range between 80 and 256 bits. These two
issues are the main drawbacks of private key cryptography.
However, the main advantage is that the cipher is much faster
and requires fewer computational resources than the public
key ones. For these reasons, our proposed method is based on
private key or symmetric cryptography [1].

Besides, symmetric cryptography can be classified into two
types of operations: 1) block and 2) stream cipher, respectively.
In the first one, plain data are divided into blocks of the same
size (64 bits or more) and processed using some of these
structures: substitution–permutation network (SPN), feistel
network (FN), add rotate XOR (ARX) operations, or a hybrid
structure.

In a stream cipher, the plain text is ciphered bit–by–
bit or byte–by–byte with an encryption sequence, which
should have a random-like appearance. The main issue in the
stream cipher is how the encryption sequence is generated.
There are some methods below the pseudo random number
generators (PRGNs) paradigm, such as linear feedback shift
register (LFSR) or no linear (NLFSR), Chaotic Systems,
Numerical Methods, or cellular automata (CA). The final result
is obtained by a XOR operation between the plain text and
the encryption sequence. This function is chosen because is

balanced, so there is exactly a 50% chance for any value
of the input bits (0 or 1) to be changed. Besides, it is an
invertible function, so that the decryption process can be
carried out.

A. Lightweight Stream Ciphers

The security provided by a cryptographic algorithm is
directly related to the randomness of the generated out-
put. A PRNG algorithm should produce an indistinguishable
sequence of bits, given an initial seed. Therefore, there must
not be any algorithm executable in polynomial time, which
can decide if the given sequence was random or calculated.
There are some empirical tests to assess the randomness of
a given sequence. Some examples of randomness tests are
Solomon [22] or the 800-22-rev1 statistical suite test [23]
published by the national institute of standards and technology
(NIST).

1) Feedback Shift Register Sequences: One of the mech-
anisms to generate a key stream is LFSR. Regarding the
required hardware, it is composed of a clock storage element
(such as a flip-flop) with 0 or 1 value and a feedback
path that connects the output to certain flip-flops and to
the input through an XOR function. LFSRs are often spec-
ified by polynomials, which should be primitives to get
the maximum period. However, its linearity is a security
drawback. For example, a known plain-text attack based
on Berlekamp–Massey’s algorithm [24] allows to obtain the
polynomial.

To reduce the linearity, several LFSRs are combined to
get a non-LFSR. The A5/1 stream cipher uses three LFSR.
This cipher is used in global system for mobile communica-
tion (GSM) phones for secure communication. However, this
cipher can be attacked with several different methods [25].
We have tested this algorithm based on a Python implemen-
tation [26].

Another algorithm based on three LFSRs is Geffe CITA.
Also, we have tested this algorithm based on the implemen-
tation of [26].

Although the schemes based on LFSRs are not new,
proposed methods recently use LFSR. In [27], the output of a
LFSR is XOR with the output of a chaotic system. Trivium [28]
is a synchronous stream cipher based on 288 circular flips–
flops, the length of each feedback shift register (FSR) is 93,
84 and 111 shift registers. This algorithm has more hardware
than software profile and it was a finalist in phase 3 of the
project the ECRYPT Stream cipher Project [29]. We test this
cipher based on the released source code [30].

2) Cellular Automata: CA are mathematical models for
a dynamic system that progresses in discrete steps.
Cryptography is an application field of the CAs. Wolfram [31]
was the first to propose CAs to generate PRNG. Poornima
et al. [32] presented a survey of CA. A CA consists of an
array of cells each of which can be in one of a finite number
of possible states that are updated synchronously according to
a rule. A simple example of CA is known as rule 30, 1-D and
with a radio = 1 of the surrounding (adjacent) cells. In this
case, there will be 28 = 256 rules, but some of them show

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25785

chaotic behavior. The evolution of the rule 30 is given by (1),
where si(t) is the state of cell i at time t

si(t + i) = s(i−1)(t) ⊕ (
si(t) + s(i+1)(t)

)
. (1)

An improved CA, named Pentavium [33], is proposed.
It is a 1-D CA-based which makes use of the strength of
greater radii CA. In this case, a 5–neighborhood is used to
improve the cryptographic properties of the Trivium stream
cipher. The diffusion and randomness of the cipher are
also increased but at the cost of increased computational
complexity. There are 232 possible rules. Pentavium uses the
rule set (1452976485, 1721342310, 2523490710, 1520018790,
1721342310, 1452976485, 1520018790, 2523490710), some
of which are linear, and others nonlinear rules which have
shown good cryptographic properties.

3) Chaotic Systems: The analysis of the dynamical prop-
erties of the chaotic systems through tools, such as the
bifurcation diagrams and Lyapunov’s exponents, is considered
an essential security analysis, allowing the designer to discover
regions of the parameters of design where the chaotic system
shows windows of periodic-like behavior. Therefore, initial
conditions of the chaotic system must avoid values where the
system should conduct in a periodic-like behavior because it
would reduce the randomness of the output, which is the most
crucial issue of a PRNG.

An example of a 1-D chaotic system is the logistic map
(LM). The discrete mathematical model of the LM system is
defined by

x(n+1) = bxn(1 − xn), b ∈ (0, 4] (2)

x(n+1) = f (xn). (3)

The general expression of a chaotic system is defined by (3).
The bifurcation diagram is shown in Fig. 3 and Lyapunov’s
exponent in Fig. 4. Three relevant intervals can be observed
in Fig. 3, independently of the initial value xn.

1) Stable Interval: When b = [0, 1), f (xn) values converge
quickly to 0. If b = (1, 3], f (xn) values tend to a stable
value, which is b − 1/b. Therefore, observing Fig. 4,
Lyapunov’s exponent takes negative values because f (xn)

converges to a value.
2) Periodic Interval: As b increments the value, the

system’s behavior is more chaotic. If b = 3, a first
bifurcation emerges with period 21, therefore f (xn)

generates two different values alternatively. Around b =
3.449, it appears another bifurcation with period 22. In
these intervals, Lyapunov’s exponent is zero or negative.

3) Chaotic Interval: This region appears when b > 3.569.
f (xn) generates aperiodic values, so a chaotic behavior
is shown. Therefore, Lyapunov’s exponent takes values
higher than zero. Nevertheless, periodic windows can
appear in this interval, for example, when b = 3.8339
or b = 3.4704.

Lee et al. [34] studied that there is a correlation between
positive sign Lyapunov’s exponents (λ) and good chaotic ran-
dom number sequences. This exponent provides information
about how the chaotic system is sensitive to initial conditions.
So, for two similar (but not equal) initial conditions, the

Fig. 3. Bifurcation diagram.

Fig. 4. Lyapunov’s exponent.

output of (3) should be different. Therefore, there is a diver-
gence between close initial conditions, x0. This divergence is
defined by

d(n) = |f (xn+ε) − f (xn)|. (4)

It is expected that this divergence is large, although ε → 0.
Therefore, (4) can be expressed by

d(n)/ε = |f (xn+ε) − f (xn)|/ε (5)

where (5), can be approximated by

eλn. (6)

Finally, (7) is used to calculate λ value when ε → 0 and
n → ∞. It is the average of the logarithm of the derivatives
of f (xn)

λ = lim
n→∞ 1/n

n∑

i=0

ln|f ′(xi)|. (7)

In Fig. 4, λ evolution with respect Lyapunov’s Exponent
is shown. If f (xn) is evaluated with two close values and
f (xn) generates different paths or orbits, then |f ′(xn)| > 1
and therefore ln|f ′(xn)| > 0, so we can conclude that λ in

25786 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 4 is positive and the system presents a chaotic behavior.
In both Figs. 3 and 4, when control parameter b > 3.5 in
f (xn), pseudo-random outputs are generated.

Some related research on chaos-systems has been published
recently. Dridi et al. [27] proposed an encryption/decryption
procedure operating in cipher block chaining (CBC) mode.
The system is produced by a pseudo-random key stream
generated by a PRGN based on a chaotic system. First, in
the confusion phase, S-boxes are generated by combining four
1–D chaotic systems, (PWLCM, skew tent, logistic, and 3-D
Chebyshev maps) and LFSR, which are weakly coupled by a
predefined coupling matrix. Second, in the diffusion phase, a
three steps process is carried out. This second phase consists
of a permutation layer based on the modified 2–D–Cat map
and a horizontal–vertical addition diffusion.

Alshammari et al. [35] modified the well–known AES with
a new S-box generated by the Lorenz chaotic map [36]. Its
software implementation is done on TelosB hardware.

Zhu et al. [37] proposed a cipher schema based on a
combined chaotic system between logistic–map and tent–map
to generate two chaotic sequences, which are used in the
confusion and diffusion steps, respectively. Combining both
types of maps (Logistic and Tent), Lyapunov’s Exponent and
bifurcation diagram improve.

4) Numerical PRNG: In this section, stream ciphers
based on different techniques than the ones from
Sections II-A1, II-A2, or II-A3 are shown.

The first of them is the well–known Rivest cipher (RC4) or
(ARC4) cipher [38]. It was designed in 1987 by Ronald Linn
Rivest. The use of RC4 in thetransport layer security (TLS)
was prohibited in February 2015. This algorithm is initialized
with a key in the range 1 <= key < 256 bytes. It works
to the byte level in each cycle. RC4 has two subproccesses
called Key-scheduling algorithm (KSA) and Pseudo-random
generation algorithm (PRGA). It is a simple and fast cipher.

Several improvements of RC4 have been published. The
modified ARC4 (MARC) is one of them [39]. It enhances the
security of RC4 by modifying its key scheduling algorithm
(KSA) and improves the performance by modifying the PGRA
process, because four bytes of keystream are generated in each
cycle.

In [40], a combination of elliptic curve cryptography (ECC),
RC4, and SHA–256 hash is presented to protect sensitive data
of IoT–based irrigation systems. The ECC is used to encrypt
the key of the KSA subprocess and the result of the PRGA
subprocess.

The Salsa20 [17] algorithm was proposed by Daniel J.
Bernstein and presented in the eSTREAM project in 2005.
Salsa20 has 512-bits internal state, which is initialized with 8-
bytes arbitrary numbers, 16-bytes constants, 8-bytes counters,
and 32-bytes keys. Then the algorithm generates 512-bits
key–stream in each cycle, iterating 20 times the quarter–
round (QR) function, which only uses the Add–XOR–Rotate
operations.

The Chacha20 [18] cipher is similar to Salsa20. It was
proposed by Daniel J. Bernstein in 2008. Chacha20 modifies
each word twice in each QR while the Salsa20 modifies only
once per QR. Besides, the QR function operates with the

columns and diagonals of the internal state; whilst, Salsa20
operates by rows and columns.

B. Lightweight Block Ciphers

This section presents the lightweight block ciphers that have
been revised and classified according to every operation mode
in Fig. 2.

1) Substitution–Permutation Networks: The AES is one of
the most well–known and important encryption algorithms in
use due to its high–level security and reduced execution time.
The NIST announced the Rijndael algorithm [14] in the 2000
year as the winner among the finalists. AES divides messages
into 16-bytes size blocks with keys of 128, 192, or 256-bits
sizes. Moreover, AES works with 28 Galois Field polynomials.

Another cipher based on SPN is PRESENT [16]. It was
developed in 2007. It has a block size of 64 bits, a key
length of 64 or 128 bits, and 31 rounds. It was developed
having in mind devices with reduced computational resources.
In each round, the internal state (64 bits) is XORed with the
key, then a confusion step is carried out with a defined S-box
S : F4

2 → F4
2. Finally, a permutation layer moves the i-bit of

the state according to a permutation table. Its source code is
very compact, about the 50% smaller than AES cipher

2) Feistel Networks: The data encryption standard
(DES) [41] was published as a standard in 1977 and developed
by the international business machines (IBM) Corporation.
In 1998, it was broken in 56 h. DES is the reference cipher
operating in FN balanced mode, with blocks with 64-bit size,
and keys of 56 bits during 16 rounds. Its strength resides in
a confusion step with 8 S-Boxes. To break these S-Boxes by
brute force attack, it would require 2256 operations. However,
to break the key it would be necessary only 256 operations.
New Light-Weight Crypto Algorithms for RFID (DESL) [42]
cipher has been proposed. It is a reduced version of DES
using only one S-box. It tries to reduce the execution time
and the amount of gate equivalents, GE.

Simon [43] is also based on balanced FN with n-bits
words and 2 · n-bit block size. It can operate with different
combinations of blocks sizes ([32–128] bits), key sizes ([64–
256] bits), and rounds ([32–72]) to get more flexibility taking
in mind constrained devices, where the simplicity of design
is important. Its design was optimized for performance in
hardware implementations. It was developed by the national
security agency (NSA) in 2013.

3) Add–Rotate–XOR Operations: Speck [43] is a software–
orientated cipher and it is based on ARX operations. Speck was
released by the NSA in June 2013. It can work with different
combinations of block size ([32–128] bits), key size ([64–256]
bits), and number of rounds ([32–72]). These combinations
provide a variety of implementations in order to get flexibility.
A block is formed with two words and in each round the key
is expanded by rotating the left word to the right, adding the
right word to the left word, XORing the key into the left word,
rotating the right word to the left, and finally, XORing the left
word into the right word.

4) S-Boxes: A Substitution–box, S-box, is a component
of the symmetric key algorithms that changes the values of

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25787

TABLE I
DATA BLOCK

the data with substitutions. Its objective is to obfuscate the
relationship between the key and the ciphertext, thus provid-
ing Shannon’s property [44] of confusion. S-box must pass
several tests, such as bijectivity, nonlinearity, strict avalanche
criteria, and equiprobable input/output XOR distribution, to
resist linear and differential cryptanalysis. Farah et al. [45]
presented a mechanism based on two chaotic maps and
Teaching–Learning-Based-Optimization, TLBO. The results of
the performance test show that their method presents good
cryptography properties and can resist several different attacks.
The mechanism proposed by Artuǧer and Özkaynak [46]
defined a technique to provide S-box with the best performance
criteria for all chaotic system classes. Islam and Liu [47]
used a 4D 4-wing hyperchaotic system to construct S-boxes,
which is proven to have good cryptographic strength. These S-
boxes constructions are an alternative to the classical algebraic
techniques.

III. METHODOLOGY

In this section, the proposed method is represented in Fig. 5.
Section III-A process is called Generating Data Block, where
the messages are transformed in data block structures. In
Section III-B phase, every data block is shuffled, therefore
the initial positions bytes are modified. Then, in the Internal
State, shown in Section III-C phase, data are scrambled with
a pseudo-random sequence of bits. Section III-D phase, which
is the last one, is called Applying S-boxes, where our method
introduces a nonlinear substitution mapping function.

In all these phases, we take into account the tradeoff
between the provided security level and the consumption of the
computational sources. Since the main parts are Generating the
data block, Shuffling, Scrambling, and applying Substitution
boxes, we propose GS3 as the name for this method.

A. Generating the Data Block

As input, each message can store several different environ-
ment variables r, which are divided into n data chunks c with
equal byte size. Equation (8) defines it mathematically

M = (m11, . . . , m1c, . . . , mr1, . . . , mrc). (8)

The logical organization of these data messages it is shown
in Table I. We name this organization b data block.

This b block is defined in (9), as a M matrix with (n × m)

values, which includes (n − 1) × (m − 1) data of b block.
The row (n − 1) and column (m − 1) include frame control
sequence (FCS) values of (b − 1) data block to reduce the
internal correlation between data and FCS values

Mb
n,m =

⎛

⎜
⎝

Mb
1,1 . . . Mb

1,m
...

. . .
...

Mb
n,1 . . . Mb

n,m

⎞

⎟
⎠ (9)

TABLE II
SHUFFLED DATA BLOCK

mb
i,m = CRC16b−1

hi
∀i = 1 . . . n − 1 (10)

mb
n,j = CRC16b−1

vj
∀i = 1 . . . m − 1 (11)

mb
n,m = CRC16b−1

hv . (12)

Our method includes an integrity data control for each
row and column, Frame Check Sequence FCS is calculated.
Specifically, the Cyclic Redundant Code is computed, in (11)
and (12). It allows the detection of errors in data transmission
and attacks, such as tampering or forgery of data. These issues
have already been studied in deep [19].

B. Shuffle Algorithm

The objective of this phase is to get Shannon’s property [44]
of diffusion. It is obtained using a permutation S-box (P-Box),
to swap the data position. At the end of this phase, a new data
block is produced. Table II shows a shuffled data block, where
the highest amount of data chunks is expected to change from
their initial original positions. This issue will be examined in
Section V-C.

Table II is defined as a S matrix in

Sb
n,m =

⎛

⎜
⎝

Sb
1,1 . . . Sb

1,m
...

. . .
...

Sb
n,1 . . . Sb

n,m

⎞

⎟
⎠. (13)

Each element of the Sb
ij matrix is calculated by applying the

Sb
n,m =

n∑

i=1

m∑

j=1

(
mb

(i,j) · �(i,j)

)
. (14)

These � permutation matrices have the following properties:
a unique 1 for each (i, j) position. Besides the sum of these
permutation matrices is the matrix with all elements equal to
1 value. Equation (15) defines � matrices

n∑

i=1

m∑

j=1

�(i, j) =
⎛

⎜
⎝

1 . . . 1
...

. . .
...

1 . . . 1

⎞

⎟
⎠. (15)

Nevertheless, the product of matrices is a mathematical oper-
ation with computational requirements. Therefore, we propose
a lightweight shuffle method represented in Fig. 6, which has
the following steps.

1) Sender and receiver must share private seed values. The
value of the b parameter in (2) must avoid ranges of
values where the LM shows periodic behavior.

2) The data block is transformed into a data array.
3) Our shuffle method uses a chaotic system to calculate

two pseudo-random values. More specifically, we have
selected the known discrete LM because it is simple,

25788 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 5. Proposed method.

requires low-computational resources, and has a large
enough period. These pseudo-random values are used to
find out three points of cutting the data array. Therefore,
four subarrays are obtained P1, P2, P3, P4.

4) The previous subarrays are swapped with four
possible sequences, (P4, P1, P2, P3), (P2, P1, P4, P3),
(P3, P1, P4, P2) and (P4, P3, P2, P1). The sequences are
selected according to a pseudo-random number that the
chaotic LM generates. It is represented in the fourth step
in Fig. 6.

5) In step 5, the data block is read diagonally. There are
four options for reading, which are chosen depending on
the sequence number of the data block and the generated
pseudo-random value provided by the chaotic system.
Therefore, the way of reading is pseudo-random. This
issue is shown in Fig. 6 with the key symbol.

6) After reading the data block diagonally, it is created a
new data array.

7) Finally, the data array obtained from the previous step
is converted into a data block structure as the original to
get the shuffled data block. It will be used as the input
for the “3. Scrambling Process” step described in Fig. 5.

8) The steps 1–7 may be repeated to achieve higher obfus-
cation levels. This issue is evaluated in Section V-C.

9) Values of the initial conditions in (2) are updated
between each data block sent.

C. Scrambling Process

This section describes the proposed method to scramble the
previously shuffled data block. Fig. 7 represents the general
scheme. It has the following steps.

1) The internal state IS generates a 288-bit pseudo-random
value in each iteration. This IS has the following input
parameters: pseudo-random values generated by the
chaotic system, constants, and keys. The value of the b
parameter in (2) must avoid ranges of values where the
LM shows periodic behavior. A complete description of
this IS is shown in Fig. 8. The initial state is organized
as follows.

a) Each Xi element of the IS has a size of 4 bytes.
b) In the initial state I0, several bytes are reserved:

16 bytes for the four key values, (K1, K2, K3, K4),

Fig. 6. Lightweight shuffling method.

8 bytes for storing two constants (C1, C2), and
12 bytes to store three pseudo-random values
(S1, S2, S3) generated by a chaotic system.

2) The shuffled data block is subdivided into 288-bit
chunks, which are scrambled using XOR operation with
a 288-bit pseudo-random value generated by the Internal
State.

3) The scrambled bits are stored in a data array.
4) The 288-bit pseudo-random value of the Internal State

is generated with the followings operations:

Yi3 = Xi3 ⊗ (Xi1 + Xi2)

Yi2 = Xi2 ⊗ (Yi3 + Xi1)

Yi1 = Xi1 ⊗ (Yi2 + Yi3). (16)

After generating the 288-bit pseudo-random value and
scrambling 288 bits of the data block, the (Y11, Y22, Y33)

elements are updated with pseudo-random values gen-
erated by a chaotic system according to the following
operations:

Y11 = Y11 + ChaoticMap

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25789

Fig. 7. Internal state.

Fig. 8. Generating the internal state.

Y22 = Y22 + ChaoticMap

Y33 = Y33 + ChaoticMap. (17)

With the operations described by (17), we are, including
the concept of key expansion, which is common in block
ciphers to avoid repeating the same key in each round.

5) The steps 2–4 are iterated until the data block is
completely scrambled.

6) Finally, the obtained scrambled array is converted into a
scrambled data block, which is the input to the (S-boxes
Process), as it is shown in Fig. 5.

7) Values of the initial conditions in (2) are updated
between each data block sent.

D. Applying the S-Boxes

To increase the security level with a nonlinear transfor-
mation and get Shannon’s property [44] of confusion, the
scrambled data block is obtained in the Scrambling Process
described in Fig. 5. In this section, it is described how
the proposed method uses the S-Boxes substitutions. The
proposed mechanism takes advantage of the S-boxes designed
by Farah et al. [45], Artuǧer and Özkaynak [46], and Islam
and Liu [47]. Fig. 9 represents the S-boxing Process, which
has the following steps.

1) The process has the following input parameters: pseudo-
random values generated by the chaotic system, an array
of S-Boxes (four S-Boxes), and the scrambled data block

Fig. 9. S-boxes process.

obtained in the (Scrambling Process) step, as it is shown
in Fig. 9. The value of the b parameter in (2) must
avoid ranges of values where the LM shows periodic
behavior. Each S−Boxi is a data array with a size of 256
bytes. In (18), the first second values and the last second
ones of the S-Box designed by Farah et al. [45] are
shown

[
0 1 · · · 254 255

150 189 · · · 39 206

]
. (18)

2) Every 288 bits of the scrambled data block are substi-
tuted by the values of a S − Boxi. The specific S-Box
is selected depending on the pseudo-random values
generated by the chaotic system.

3) Finally, once the S − Boxi is selected, each byte of the
value of the data block (valuei) is used to index inside
of the S − Boxi, then this value is changed by the input
of S − Boxi[valuei].

4) Values of the initial conditions in (2) are updated
between each data block sent.

E. Decrypt Process

In this section, the decrypt process is described. Fig. 10
depicts this process. It has the following steps.

1) Sender and receiver must share private seed values. The
value of the b parameter in (2) must avoid ranges of
values where the LM shows periodic behavior.

2) First, the receiver transforms the ciphered data stream
into a ciphered data block.

3) Second, the Inverse-SBoxes Process is executed. The
receiver selects the specific S − Boxi depending on the
pseudo-random values generated by the chaotic system.
Then, each byte of the value of the ciphered data block
(valuei) is used to index inside of the S − Boxi. This
value is changed by the input of S−Boxi[valuei]. In (19)
it is shown the inverse S-Box of (18). For example, the
39 value should be substituted by the 254 value

[
.. 39 .. 150 .. 189 .. 206 ..

.. 254 .. 0 .. 1 .. 255 ..

]
. (19)

25790 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 10. Decrypt process.

4) In the third step, the Inverse Scrambling Process is run.
The Interval State must be iterated according to (16)
and (17). After that, each 288-bit is decrypted with the
invertible XOR operation.

5) Inverse Shuffling: In Fig. 11 it is shown this process.
First, the chaotic Logistic-Map is run to find out the
four options for diagonally reading the data block and
the points of cutting the data array. These pseudo-
random values are stored in a Pseudo-Random Array.
We highlight that this array is accessed in reverse
order by the 3. Reading Diagonally, 4. Unroll Shuffled
Data Block, and 5. Swapping Data Array subprocesses.
These last subprocesses are computed according to the
stabilized number of the shuffled iterations. After that,
the plain data block is obtained.

6) Verify Integrity Data: the last step verifies the integrity
data using the FCS by rows and columns.

7) Values of the initial conditions in (2) are updated
between each data block received.

F. Performance Parameters

In order to test the performance and the security of
the proposal, some experiments will be carried out using
images as input data. Images are highly suitable for the
proposal, as they have high spatial and value correlation.
Thus, partitioning, shuffling, and scrambling the pixel values
provide a good experimental setup to test the security of
the proposal. Besides, it allows a quick visual review of the
results. In particular, the image used for the test was the
well-known Lake [48] image in its grayscale version. Three
sizes of image (642, 1282, 2562) bytes with 8-bit resolution
were used. We named these images as Lake_64, Lake_128,
Lake_256.

The performance parameters and security results selected to
assess and compare the proposed method with the reviewed
ciphers in Section II, are the following.

1) Visual Analysis: The original image is compared after
shuffling and scrambling, using some well-known and
synthetic images for the comparison.

Fig. 11. Lightweight inverse shuffling method.

2) Histogram: The histogram of the scrambled image is
computed. The ideal result should be a uniform his-
togram.

3) Shuffle Process: The proposed shuffling method is ana-
lyzed to get a tradeoff between the number of iterations
and the number of swapped bytes.

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25791

TABLE III
SOME OF THE TYPICAL SENSOR PLATFORMS

4) Sensitive Analysis: The proposed method should be
sensitive to light changes in both bits of plain data
and key. To detect this behavior, two parameters are
calculated number of pixel change rate (NPCR), unified
average changing intensity (UACI).

5) Entropy: The entropy indicator is calculated to measure
the randomness.

6) χ2 Value: This statistic is calculated to test the unifor-
mity of the ciphered data.

7) Randomness Tests: To check the randomness of the
internal state, the 800-22-rev1 and Ent tests are used.

8) Execution Time: The main parameter to test and compare
our method with other ciphers is the execution time. It
is the mean time of 100 executions for each cipher.

IV. IMPLEMENTATION

In this section, the common hardware and software of sensor
platforms are presented. From the older, such as (TelosB or
MicaZ), to newly realized (Pycom or Raspberry Pi). The last
they allow to design and create WNS with a smaller size
footprint, low cost, better energy efficiency, and computing
power. Most of the previous papers used simulations to assess
the efficiency and strength of their algorithms. However, the
real implementation of encryption algorithms on real nodes
provides more realistic results.

Table III shows some examples of sensor platforms. The
Raspberry and PyComs platforms have more computing power
and memory than the rest of the analyzed devices. However,
all the involved platforms have limited resources. Therefore,
the development of any security protocol or algorithm should
take into account both the computing power and the energy
consumption. A comparison between Raspberry Pi platform
and (TelosB, MicaZ, and Iris) platforms is presented in [49],
showing that Raspberry Pi devices have some strengths:
processing power, memory, connectivity, and flexibility. Two
recent use cases to design a WSN using Raspberry Pi as a
sensor platform are: in [50], it is created a low-cost WSN for
monitoring and measuring the leaf area index (LAI), which is
an important parameter for forestry vegetation canopy struc-
ture investigation and ecological environment model study.
In [51], it is analyzed the performance of the deep learning
algorithms in compressing medical images and the efficiency
of the Raspberry Pi WSN in transmitting the compressed
images across the WSN nodes. Another recent platform is
the PyCom ecosystem which makes IoT development easier.
An IoT prototype device is presented in [52], using Pycom

as a sensor platform and data shipped with LoRa and Sigfox
communication protocol.

The CM5000 mote is an IEEE 802.15.4 [15] compliant
wireless sensor node based on the original opensource TelosB
platform [53] using TinyOs as an operative system and nesC
programming language [54]. An accurate energy model (EM)
for wireless sensor devices (WSDs) [55] based on power con-
sumption measurement having a TelosB device is presented.
Also, a procedure for the characterization and optimization of
the power consumption and reliability in sensor networks [56]
is presented. Another platform is Arduino. This platform is
proposed together with sensors and cameras in Smart Farming
IoT [57].

Finally, we select the following hardware and software.
1) Hardware: Raspberry Pi platform described in Table III

is used as the IoT device due to the reasons expose
in [49]. A laptop with an i3 CPU with 6 GB of
RAM, running a Debian 9 operating system is used to
develop the source code and the Visual Studio as IDE
programming.

2) Software: Python [58] is used. The selection of this
language is because of its large support of IoT platforms
and its versatility, lightweight consumption resources,
and growing-up use.

V. EXPERIMENTATION

In this section, we describe the experiments (or benchmark
tests) to assess and validate our proposed method. First, we
suppose that our IoT devices transmit multimedia data, such
as the use cases in [50] or [51]. Therefore, some of the
tests that we carried out are histogram analysis, X2, and
Entropy tests. These tests are commonly used when images
are studied statistically. Second, a visual analysis to make a
graphic understanding of the method is carried out. Third, it
is shown the histograms of the original and the scrambled
images. In the fourth place, the shuffle process is evaluated
either from a visual perspective and also from an analytic point
of view. Then, the proposed method is tested against plain–text
attacks with the values of NPCR and unified average change
in intensity (UACI). In the fifth step, the computation time of
the shuffle and scramble process is shown. Then, the entropy
values of the original and scrambled images are computed.
Next, the X2 test is calculated. Also, the Env test and 800–22-
rev1 suite randomness tests are executed to analyze the bits
sequence of the internal state. Finally, the proposed method is
studied in resistance to brute force attacks.

A. Visual Analysis

The analysis of the proposed method from the point of
view of the performance and the cryptography properties is
done using well-known and synthetic images rather than using
environmental data, which is harder to manage and compare
visually. In this section, the results of applying the proposed
method to the grayscale version of the Lake image are
shown.

25792 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 12. Image of Lake.

Fig. 13. Image of lake after running GS3 method.

Fig. 14. Histogram of the image of Lake.

Fig. 15. Histogram of the scrambled image of Lake.

Fig. 12 is the original image of Lake. Fig. 13 shows the final
result after applying all the processes of shuffling, scrambling,
and S-boxes as described in Section III.

B. Histogram

In this section, the histograms of both the original well-
known image of Lake and the scrambled version of it are
shown. Fig. 14 shows the histogram of the image. Fig. 15 is
the histogram of the ciphered image of Lake.

C. Shuffled Bytes

First, we are going to study the proposed mechanism of
shuffling from a visual point of view using the gray-scale

Fig. 16. Image of Lake after shuffling with one iteration.

Fig. 17. Image of Lake after shuffling with two iterations.

Fig. 18. Image of Lake after shuffling with three iterations.

version of the well-known Lake image. Second, the number
of pixels that were not swapped by the shuffling algorithm is
computed using a synthetic image.

Fig. 12 is the 256 × 256 size image of Lake. Fig. 16 shows
the achieved image after executing the shuffling algorithm with
just one iteration. From a visual point of view, this image is
completely different from the initial one. Nevertheless, as the
number of iterations increases, the degree of obfuscation rises
up. This behavior is shown in Figs. 17 and 18, with 2 and
3 shuffling iterations, respectively.

To calculate the number of snowcapped pixels, a synthetic
image with 65536 pixels is created. Each one has a different
value (representing a color) in the range of [0 − 65535]. This
method allows us to find out easily which pixels have not
been shuffled. The original image is represented in Fig. 19. In
Fig. 20, the shuffled image after just one iteration is presented.
In that, it can be observed that the obtained image differs
completely from the original one. However, it is detected that
the pixels have been shuffled within a short distance among
them. For this reason, some forms of waves appear in the
shuffled image. Nevertheless, those waves are reduced as the

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25793

Fig. 19. Color scale image.

Fig. 20. Shuffling with one iteration.

Fig. 21. Shuffling with two iterations.

Fig. 22. Shuffling with three iterations.

iteration number increases. This can be observed in Figs. 21
and 22 with 2 and 3 shuffled iterations.

Table IV shows the quantitative results for the number of
nonshuffled bytes and the percentage of nonshuffled values
of the shuffling step, depending on the size of the image (in
bytes) and the applied number of iterations, [1 − 3].

D. Small Input Variation Analysis

The first analysis is going to test the strength of the proposed
method against plain–text attacks, which are based on the
differential analysis between plain and cipher data. Therefore,
small changes in plain data must provoke greatly different
ciphered data. To measure this sensibility, two indicators are
calculated, the NPCR and UACI. These indicators are fre-
quently used in image encryption schemes [59]. The Formulas

TABLE IV
QUANTITATIVE RESULTS OF SHUFFLING

TABLE V
NPCR AND UACI. PLAIN DATA. IN BOLDFACE, BEST RESULT

FOR (NPCR) AND (UACI)

TABLE VI
NPCR AND UACI. SENSIBILITY KEY. IN BOLDFACE, BEST RESULT

FOR (NPCR) AND (UACI)

of both terms are defined in (20) and (22), respectively. The
optimum values of these parameters are 99.61%, 33.46% for
(NPCR) and (UACI), respectively

NPCR = 1

(N × M)

N∑

i=1

M∑

j=1

D(i, j) × 100% (20)

D(i,j) =
{

1 C1(i, j)
= C2(i, j)
0 C1(i, j) = C2(i, j)

(21)

UACI = 1

(N × M)

N∑

i=1

M∑

j=1

|C1(i, j) − C2(i, j)| × 100%.

(22)

First, a byte is randomly chosen to carry out the tests. Using
that random byte, the four more significant bits (MSbs) of it
are modified. They are indicated in Table V as 1 bit, 2 bits,
3 bits, and +3 bits, respectively. Table V shows the obtained
results. We have highlighted in boldface the best results for
(NPCR) and (UACI).

The second analysis is to test the behavior of the proposed
method when the same data block is scrambled with small
changes in the seeds or keys. In this case, the most significant
1 bit, 2 bits, 3 bits, and + 3 bits of the initial value of the
parameter b in (2) are modified. The b parameter operates like
a private key. Table VI shows the obtained values.

E. Execution Time

In this section, the execution times of the proposed mech-
anism are shown. Table VII presents the results. The first
column, size, represents the data block size: four different sizes
of data block have been used, ranging from 4906 to 65 536
bytes. The second column shows the overhead of the shuffling
process, computed using one, two, and three iterations. The

25794 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

TABLE VII
EXECUTION TIME (SECONDS). IN BOLDFACE, THE LOWEST

RESULT FOR EACH SIZE OF DATA

Fig. 23. Execution time (seconds).

third column is the computation time taken to execute the
scrambling process. The last column is the sum of all the
previous times.

The results of Table VII are represented in Fig. 23. The X-
axis is shown in the logarithm scale. The Y-axis represents the
computation time of shuffling, and scrambling processes, and
the sum of all the previous times from each data block size2.

F. Entropy Values

The Entropy is an indicator to measure the randomness or
unpredictability level of a data source [44]. It is defined by

H(S) = −
N∑

i=1

P(si)log2P(si) (23)

where S variable is random and it produces output values
between (s1, .., sN) and P(si) is the probability of the occur-
rence of the si output. For example, in the case of data
with 8-bit precision, such as the grayscale images, there are
28 = 256 possible different values. In this case, an ideal value
of Entropy should be 8, which represents that all pixels are
equally probable, and, therefore, the probability is completely
random.

In Table VIII, the Entropy values are shown for the Lake
image according to four different sizes of data and three
different data structures: 1) plain (unmodified); 2) shuffled;

TABLE VIII
ENTROPY VALUES. IN BOLDFACE, THE HIGHEST

RESULT FOR COLUMN Scrambled

Fig. 24. χ2 values.

and 3) scrambled data. We have highlighted in boldface the
highest Entropy values after the Scrambling process.

G. χ2 Test

A way to test quantitatively the uniformity of the ciphered
data is the χ2 test. It is defined by (24). As a data block, we
consider a grayscale image with 8-bits per pixel. Therefore,
k = 28, oi is the observed probability and ei is the expected
probability of the level gray ki, respectively. The null hypoth-
esis H0 is to consider the histogram of the ciphered data block
to be uniform and the H1 hypothesis, on the contrary case. The
significance level is α = 0.05, so the percentage of acceptance
of the null hypothesis is 95%. According to the 255 degrees
of freedom χ2 table and α = 0.05, the critical value of χ2 is
χ2 = 293.247

X2 =
k∑

i=1

(oi − ei)
2

ei
(24)

X2 :

{
Yes, χ2

test < 293.24
No, χ2

test >= 293.24.
(25)

Fig. 24 shows the computed χ2 values for four different
sizes of a gray-scale image, concretely: 1) (642; 2) 1282;
3) 2562; and 4) 5122). The orange line is the value of reference
in this example 293.247, the blue line represents the results
after scrambling the data. In all the cases, the null hypothesis
stands as the χ2 values are below the critical value.

H. Randomness Tests Ent Test

A Statistical Test Suite for Random and Pseudo-random
Number Generators for cryptographic applications is the Ent
test suite [60]. Table IX shows the randomness of the gen-
erated sequence by the proposed internal state. It has been

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25795

TABLE IX
ENT TEST

TABLE X
800-22-REV1 TEST

generated with a binary file about 106 bits, which represents
five data blocks of size 5122 bytes.

The output of this test is the following.
1) Entropy = 1.00 bits per bit. Optimum compression

would reduce the size of this 10484640 bit file by 0%.
2) χ2 distribution for 10484640 samples is 0.10, and

randomly would exceed this value 75.70% of the times.
3) Arithmetic mean value of data bits is 0.50, where 0.5

means random.
4) Monte Carlo value for Pi is 3.138799615 (error 0.09%).
5) Serial correlation coefficient is 0.000069 (totally uncor-

related should be 0.0).

I. Randomness Tests 800-22-Rev1

Another test suite is the 800-22-rev1 suite, published by
NIST [23]. To use this test with our proposal, 100 sequences
of 100 000 bits, as suggested by [23], have been generated.
Afterward, each sequence has been shuffled and scrambled.
Finally, these shuffled and scrambled sequences have been
tested in the 800-22-rev1 suite. The results are shown in
Table X.

Only 2 out of the 15 tests that compose the suite fail to
assess the randomness of the proposal.

J. Key Space Analysis

Key space is defined as the total number of different
keys that can be generated to encrypt data. The recom-
mendations [61], [62] for minimal length key for symmetric
algorithms is 112 bits. The proposed method achieves the
following key space.

1) Chaotic System: The subprocesses Shuffling Algorithm,
Scrambling, and S-Boxes of the proposed method,
Section III, makes use of the LM. This chaotic system
has two parameters, b and X0 in (2), which are consid-
ered private keys. These parameters are initiated with
different values in each subprocess. If it is considered
a precision of 64 bits for each parameter in (2), there
are 2384 total possible permutations. Therefore, each LM
would achieve 2128 permutations.

2) Internal State: The Internal State size is 288 bits in
Fig. 8. Although the initial state is set up with 128
bits for the key values, depending on security level
requirements, it is possible to use 288 bits for key values.
Therefore, the possible permutations are bounded by
2128 and 2288.

So, taking into account previous issues, we can evaluate
that the key space could reach 2544 ≈ (5.75 × 10163) that is
much larger than 2112, which makes a brute-force attack to be
unfeasible.

K. Brute Force Attack

In this section, it is studied an attack scenario against Shuffle
Process from two perspectives. The first one is named Brute
Force Attack by full matrices and the second Brute Force
Attack with 1-D Data Vectors. Also, we suppose that the
intruder is able to crack the security of Scrambling and S-
boxing processes.

1) Brute Force Attack by Full Matrices: The attacker does
not have any knowledge about the sent data. Therefore, the
positions of the cells are unknown and the only way to
break the privacy is by guessing the ordering. Besides, the
cycle redundant control 16 (CRC16) value is used as integrity
control FCS. First, the intruder must save on memory all the
possible combinations of the Sb

(n×m) shuffled data block, in
(9). Second, CRC16 values by each row and column must be
calculated. Finally, when the intruder receives the S(b+1)

(n×m) data,
must compare the calculated CRC16 values with the received
CRC16 values. In the case of finding out a coincidence, the
intruder could guess that has discovered a correct combination
of the value data by row or column. The number of possible
combinations is defined by the following equation:

V(n.m),(n−1.m−1) = (n.m)!

(n + m − 1)!
. (26)

An example of a brute force attack is shown in Table XI.
We suppose 2-bytes size for each element Sb

i,j in (9). The
second column represents the matrix size (bytes). The third
column is the number of different matrices. The fourth column
is the memory consumption to save these matrices. Finally,
the execution time is measured with an enhanced software
implementation of the CRC16 value in [63], which is indicated
in the fifth column.

The results of Table XI are displayed in Fig. 25. It can
be observed comparatively the memory consumption and the
execution time of the CRC16 value depending on the number
of matrices. The Y-axis is represented in a logarithmic scale.

For example, for an 8 × 8 matrix sending 128 bytes,
this payload fits in a single message for common WSN and

25796 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

TABLE XI
BRUTE FORCE ATTACK BY FULL MATRICES

Fig. 25. Brute force attack by full matrices.

IoT protocols. An attacker would calculate 9.776 matrices.
However, this immense number of matrices would require
a huge amount of memory, about 24.1 × 106 exabytes. For
instance, a 4-GHz computer running an efficient CRC16
software implementation would take more than 39.52 × 106

years of computation.
2) Brute Force Attack With 1-D Data Vectors: In this case,

although the attack is done by brute force attack, the intruder
has a bit more intelligence, with the objective being to reduce
the execution time and memory consumption. The procedure
is the following.

1) All possible combinations of data rows are generated,
instead of generating all combinations of matrices.
Equation (27) defines the number of combinations of
data rows

V(n.m),(m−1) = (n.m)!

(n.m − m − 1)!
. (27)

2) The CRC16 value is calculated for each ri row. When
the (b+1) data block is received, the CRC16 calculated
in the previous step are sought in the (b+1) data block.
If there is a success, it can be supposed that the ri data
row appeared in the b data block.

3) To find out the correct order of each found ri row, it
is necessary to calculate the CRC16 by columns. The
number of these combinations is given

V(n−1),(n−1) = (n − 1)!. (28)

TABLE XII
BRUTE FORCE ATTACK WITH 1-D DATA VECTORS

Fig. 26. Brute force attack with 1-D data vectors.

In Table XII it is shown the number of data vectors, number
of matrices, memory consumption (bytes), and execution time
(seconds) for different data block sizes.

The memory (bytes) and execution time (seconds) columns
of Table XII are shown in Fig. 26. Y-axis is represented in
a logarithmic scale. Taking as an example a data block with
(8 × 8) size, the memory consumption would be about 45
terabytes to save vectors and matrices. The execution time
could be about 23 min.

VI. COMPARISON

The proposed method is evaluated in this section by compar-
ing it with the ciphers presented in Section II. This comparison
is based on the following metrics.

1) Execution Time: This parameter is commonly used to
compare the consumption of resources of different algo-
rithms. However, it is crucial in resource-constrained IoT
devices.

2) Entropy Test: This value measures the randomness of the
ciphered data. Therefore, if all value data have the same
or similar probability, the entropy value is maximum.

3) χ2 Test: This metric is used to confirm the results
of the entropy test. The higher the uniformity of the
ciphered data is, the harder an intruder could obtain
useful knowledge about those data.

A. Execution Time

The execution timings have been calculated taking into
account: 1) the Raspberry IoT device, named RPi described

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25797

TABLE XIII
EXECUTION TIME (SECONDS). IN BOLDFACE, THE LOWEST

RESULT FOR EACH PLATFORM AND IMAGE SIZE

Fig. 27. Comparing execution time of stream ciphers.

in Table III shows its model and characteristics and 2) three
different sizes of data blocks and using gray-scale images.

Table XIII shows the execution timings in seconds. The first
column is called Method, and it represents the analyzed cipher
algorithm. The second, third, and, fourth columns represent the
execution time regarding the data block size in bytes. Three
subgroups are represented in Table XIII. The first of one is the
execution time of the proposed GS3 method. The second group
is the Lightweight Stream ciphers, described in Section II-A.
The third group is Lightweight Block ciphers, reviewed in
Section II-B. We have highlighted the lowest result for each
image size in boldface.

The results indicated in Table XIII are shown with a bar
chart in Fig. 27 comparing GS3 with the stream ciphers, and
in Fig. 28 making the comparison with block ciphers. The
execution time in seconds is represented in logarithmic scale
in the X-axis, and the size of images in bytes (642, 1282, 2562)

are represented with three colors, whilst the reviewed ciphers
are indicated in the Y-axis. For each cipher and size of the
data block, the execution time is depicted with a bar. The GS3

Fig. 28. Comparing execution time of block ciphers.

TABLE XIV
COMPARING ENTROPY. IN BOLDFACE, THE BEST RESULTS

FOR EACH IMAGE SIZE

proposed method has also been executed in the platform to
develop the source code, Intel i3, obtaining an execution time
of 0.11, 0.51, and 1.57 s for each image size, respectively.
Therefore, comparing these times with Table XIII, it can
be figured out the computing power of the Raspberry Pi
platform.

B. Entropy Test

This section compares the entropy values. According to
Section III-F, three sizes of data blocks are used. The initial
entropy values for these images are 7.41, 7.45, and 7.44,
respectively, as shown in Table XIV. In this case, the optimum
results should be close to 8.00. We have highlighted the
highest results for each image size in boldface.

For each cipher and size of the image, the entropy is
calculated. After that, it is calculated the percentage of ciphers
that provide that same entropy value. Table XIV is graphically
depicted in Figs. 29 and 30, splitting the Stream and the Block
ciphers for the sake of clarity. In the Y-axis, the entropy

25798 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

Fig. 29. Percentage of stream ciphers by entropy values.

Fig. 30. Percentage of block ciphers by entropy values.

values are represented. They are classified in six intervals. The
percentage value of ciphers for each given entropy value is
represented in the X-axis.

It is worth remarking that the entropy value for the Lake_64
image is lower than the ones from Lake_128 and Lake_256
images in both Figs. 29 and 30.

C. χ2 Test

This section compares the χ2 values obtained by the ciphers
and the GS3 method, taking into account the Performance
Parameters and the χ2 test, described in Sections III-F
and V-G. We have highlighted in boldface the lowest results
for each image size.

A visual representation of Table XV it is shown in
Figs. 29 and 32, for Stream and Block ciphers, respectively.
For each cipher and size of the image, the χ2 test is computed.
After that, the χ2 values are grouped and the percentage of
ciphers in a given interval is computed. In the Y-axis, the
χ2 values are depicted and classified into four intervals [0 −
199], [199 − 230.3], [230.3, 261.3], [261.3, 293]. The X-axis
shows the percentage of ciphers with χ2 test values laying in
these intervals.

TABLE XV
COMPARING χ2. IN BOLDFACE, THE LOWEST RESULTS

FOR EACH IMAGE SIZE

VII. DISCUSSION

After the exposition of the results provided in Section VI,
in this section, we make a more in-depth analysis of them,
comparing the results, and trying to determine all the facts
affecting them. First, all the ciphers based on NLFRS described
in Section II-A1 (A5/1, Geffe, Trivium, and Pentavium) take
extremely large execution times. Second, the RC4 and RC4-
Marc are the stream ciphers with the lowest execution time,
followed by our proposed GS3 method and by the Chacha20
cipher. Nevertheless, RC4 cipher should not be used as it was
prohibited in TLS by RFC 7465 published in February 2015,
due to the identified vulnerabilities, such as brute force and
statistical attacks [64]. Besides, RC4 does not take into account
Shannon’s cryptography principle of diffusion. On the other
hand, GS3 takes into consideration this principle. Moreover,
GS3 performs a double confusion phase, the first of them is
done in the scrambling process and the second is carried out
with the S-box process. Concerning the ChaCha20 encryption
algorithm, although it was designed to provide a combination
of speed and security, it uses 10 iterations of the double round
with a state size of 512 bits. On the other hand, Scrambling
subprocess of the GS3 uses only 3 iterations of the simple
round with a state size of 288 bits. Besides, GS3 executes the
lightweight Shuffling and S-Boxing subprocesses to enlarge its
cryptographic strength.

Related to the block cipher category, Speck, Simon, and AES
ciphers require much less execution time than Present and
DES ones. Both of them take extremely large execution times
on IoT environments. Our proposed GS3 method requires
about 31% less time than AES in the RPi platform. However,
Simon and Speck take less execution time than GS3 using RPi
platform. Nevertheless, GS3 holds a key space that can reach
more than 2320, which is large enough to make brute-force
attacks infeasible. Besides, it is larger than the key space of
all analyzed ciphers in Section VI.

Analyzing the results of Table VIII for the Entropy test and
Figs. 29 and 30, after the scrambling process, all the stream,

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25799

Fig. 31. Percentage of stream ciphers by χ2 values.

Fig. 32. Percentage of block ciphers by χ2 values.

block, and GS3 ciphers provide entropy values very close to
8. Therefore, the obtained randomness level is close to the
maximum. If we compare GS3 method with stream ciphers
for the Lake_256 image, it is classified at the top with an
entropy value of 7.99. For the smallest size image, Lake_64,
the proposed GS3 method provides the greatest entropy value,
7.96. In this case (Lake_64), GS3 obtains the highest entropy
value among all the block ciphers. Moreover, for Lake_128
and Lake_256 images, the GS3 method is classified in the
top percentages where entropy values are maximum in their
ranges, (7.98, 7.99) respectively. Thus, it can be confirmed
that the proposed GS3 method provides the highest level of
entropy among either the Lightweight Stream ciphers or the
Lightweight Block ciphers.

We are analyzing the results of the χ2 test in Table XV
and Figs. 31 and 32. The initial χ2 values for these images
are much greater than 293.247, therefore, the null hypothesis
H0 should be rejected. However, after the scrambling process,
only two ciphers fail the test. The Salsa20 cipher fails the test
for Lake_128 and Lake_256. Besides, the Present cipher does
not pass χ2 test for the Lake_256 image. On the contrary, the

proposed GS3 method passes the χ2 tests for all the image
sizes. Furthermore, GS3 provides better test values than AES,
Salsa20, DES, and Simon ciphers for the three image sizes. In
most cases, the GS3 method has better χ2 test values than the
rest of the ciphers.

In Fig. 31, the proposed GS3 method versus stream ciphers
are assessed for χ2 test values. Only 22% of the ciphers are
classified in the [190, 230.1) range for Lake_64 image. It is
worth remarking that, for the χ2 test, the lower the value, the
better. Our proposed GS3 method stays in that lowest interval.
In the case of Lake_128 image, 33.3% of the ciphers provide
χ2 values in the second–level quality interval, which is in the
range of [230.3, 261.3). GS3 method is located in that interval
for Lake_128 image. For Lake_256 images, 55% of the ciphers
get a χ2 value between [230.3, 261.3), where our proposed
method is located. However, about the 11% of the ciphers
do not pass the test. In particular, Chacha20 cipher cannot
guarantee the fulfillment of the null hypothesis, an therefore,
the randomness test is rejected for Lake_128 and Lake_256
images.

The analysis of the key space determines that the GS3
method can reach at minimal the amount of 2320, which is
suitable with the recommendations in [61] and [62], 2112.
Besides, supposing the attacker has broken the Scrambling
and Sboxing processes, the analysis of the brute force attack
for the Shuffle subprocess in the worst case for an attacker,
reveals that computation time would overcome millions of
years. Nevertheless, a smarter attacker would execute the
attack Brute Force Attack with 1-D Data Vectors described
in Section V-K2. Taking as an example a data block size of
(8×8), the memory consumption would be about 45 terabytes.
This amount of memory could be available in super-computers
or cloud-computing paradigms. An execution time of 23 min
is a low value, if the nodes sent data with intervals of less
than 23 min, although the attacker would achieve original data,
the freshness property of data is not accomplished. Therefore,
these data would not have utility.

VIII. CONCLUSION

In this research, a lightweight shuffling and scrambling
method, named GS3, is proposed, which is strong enough to
keep data safe meanwhile the data is used and takes less time
than the most secure encryption mechanisms. This method
fulfills Shannon’s cryptography principles of diffusion and
confusion [44] in IoT environments. Because IoT devices have
constrained computational resources, GS3 introduces minimal
overhead either in the length of the message or the execution
time to provide privacy to exchanged data. Besides, using the
Raspberry Pi platform, the proposed GS3 method can shuffle
and scramble data taking about 30% less time than using AES
cipher, and about 50% less than using the Chacha20 cipher.

On the one hand, the analysis of the statistic parameters
Entropy, χ2, Histogram, NPCR, UACI, and Randomness tests
exposes that our proposal passes all of these tests. On the
other hand, our pseudo-random number generator (PRNG) of
the Internal State, described in Section III-C, has been proved
with the “Ent Test” and the 800-22-rev1 tests, described in the

25800 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

sections H and I, respectively. In both cases, the results reveal
the good behavior of the proposed method.

Both, the key space in Section V-J and the brute force attack
in Section V-K studies reveal the strength of the security GS3.

To summarize, the proposed method is a lightweight soft-
ware mechanism suitable for IoT environments, which can
protect the communications between end–nodes and the sink
node, taking into account the tradeoff between the security
level and the consumption of computational resources. This
research improves the approach described in [19], introducing
a confusion step with scrambling and substitution steps.

IX. FUTURE WORKS

GS3 has a clear weakness if a hacker captures the initial
seed value. Therefore, two modifications will be considered in
the following version of the GS3 method: use a (previously
shared) symmetric key encryption to share the seed between
each sender and receiver, and to send a new seed after a
given number of interchanged messages. Although we avoid
using the encryption operation for all the data in the message,
because of the computational complexity of this method, it will
be applied to a few data. Therefore, the time penalization is
very limited and can be affordable for a resource–constrained
device.

Shortly, we will test our proposal on Jetson One and ESP32
platforms. Besides, we will implement the GS3 method in a
different programming language than Python because metrics,
such as execution time or memory consumption, are highly
influenced by interpreted programming languages.

Data transfer usually represents the main part of energy
consumption in IoT. So, data reduction should always be
applied if possible. In future works, we will combine data
reduction techniques [65] with the GS3 obfuscation method
in a real deployment, analyzing energy consumption and
computation on distributed scenarios [66].

ACKNOWLEDGMENT

Funding for open access charge: Universidad de
Córdoba/CBUA.

REFERENCES

[1] N. Homma, K. Aoki, and T. Iwata, Cryptographic Technology Guideline.
Cryptogr. Res. Eval. Comm., Tokyo, Japan, 2017.

[2] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight
cryptography algorithms for resource-constrained IoT devices: A
review, comparison and research opportunities,” IEEE Access, vol. 9,
pp. 28177–28193, 2021.

[3] L. E. Kane, J. J. Chen, R. Thomas, V. Liu, and M. Mckague, “Security
and performance in IoT: A balancing act,” IEEE Access, vol. 8,
pp. 121969–121986, 2020.

[4] R. P. França, Y. Iano, A. C. B. Monteiro, and R. Arthur, “Intelligent
applications of WSN in the world: A technological and literary
background,” in Handbook of Wireless Sensor Networks: Issues and
Challenges in Current Scenarios, P. K. Singh, B. K. Bhargava,
M. Paprzycki, N. C. Kaushal, and W.-C. Hong, Eds. Cham, Switzerland:
Springer, 2020, pp. 13–34.

[5] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the
802.15.4 and ZigBee standards,” Comput. Commun., vol. 30, no. 7,
pp. 1655–1695, 2007.

[6] “Low range LoRa alliance.” Accessed: Apr. 1, 2024. [Online]. Available:
https://lora-alliance.org

[7] S. Lata, S. Mehfuz, and S. Urooj, “Secure and reliable WSN for Internet
of Things: Challenges and enabling technologies,” IEEE Access, vol. 9,
pp. 161103–161128, 2021.

[8] I. Ahmad et al., “Analysis of security attacks and taxonomy in under-
water wireless sensor networks,” Wireless Commun. Mobile Comput.,
vol. 2021, pp. 1–15, Dec. 2021.

[9] S. Wang and Y. Chen, “Optimization of wireless sensor network archi-
tecture with security system,” J. Sens., vol. 2021, pp. 1–11, Nov. 2021.

[10] F. Rezaeibagha, Y. Mu, K. Huang, and L. Chen, “Secure and efficient
data aggregation for IoT monitoring systems,” IEEE Internet Things J.,
vol. 8, no. 10, pp. 8056–8063, May 2021.

[11] R. Manjula, T. Koduru, and R. Datta, “Protecting source location
privacy in IoT-enabled wireless sensor networks: The case of multiple
assets,” IEEE Internet Things J., vol. 9, no. 13, pp. 10807–10820,
Jul. 2022.

[12] C. Peng, M. Luo, P. Vijayakumar, D. He, O. Said, and A. Tolba,
“Multifunctional and multidimensional secure data aggregation scheme
in WSNs,” IEEE Internet Things J., vol. 9, no. 4, pp. 2657–2668,
Feb. 2022.

[13] M. El-Hajj and A. Fadlallah, “Analysis of lightweight cryptographic
algorithms on IoT hardware platforms,” in Proc. 32nd Int. Telecommun.
Netw. Appl. Conf. (ITNAC), 2022, pp. 121–126.

[14] J. Nechvatal et al., “Report on the development of the advanced
encryption standard (AES),” J. Res. Nat. Inst. Stand. Technol., vol. 106,
no. 3, pp. 511–577, 2001.

[15] IEEE Standard for Low-Rate Wireless Networks, IEEE
Standard 802.15.4, Accessed: Apr. 1, 2024. [Online]. Available:
http://www.ieee802.org/15/pub/TG4.html

[16] A. Bogdanov et al., “PRESENT: An ultra-lightweight block
cipher,” in Proc. Int. Workshop Cryptogr. Hardw. Embed. Syst., 2007,
pp. 450–466.

[17] “The eSTREAM project, Salsa20.” Accessed: Apr. 1, 2024. [Online].
Available: https://www.ecrypt.eu.org/stream/salsa20pf.html

[18] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”
Internet Eng. Task Force, RFC 7539, 2015.

[19] F. Alcaraz Velasco, J. M. Palomares, and J. Olivares, “Lightweight
method of shuffling overlapped data-blocks for data integrity and
security in WSNs,” Comput. Netw., vol. 199, Nov. 2021, Art. no. 108470.

[20] S. R. Moosavi, E. Nigussie, S. Virtanen, and J. Isoaho, “An ellip-
tic curve-based mutual authentication scheme for RFID implant
systems,” Procedia Comput. Sci., vol. 32, pp. 198–206, Jan. 2014.

[21] S. Shamshad, F. Riaz, R. Riaz, S. S. Rizvi, and S. Abdulla, “An enhanced
architecture to resolve public-key cryptographic issues in the Internet
of Things IoT, employing quantum computing supremacy,” Sensors,
vol. 22, no. 21, p. 8151, 2022.

[22] G. Solomon, Shift Register Sequences: Secure and Limited-Access
Code Generators, Efficiency Code Generators, Prescribed Property
Generators, Mathematical Models. Singapore: World Sci., 2017.

[23] L. E. Bassham et al., “A statistical test suite for random and
Pseudorandom number generators for cryptographic applications,” U.S.
Dept. Comm. Nat. Inst. Stand. Technol., Gaithersburg, MD, USA,
Rep. SP 800-22, 2010.

[24] N. B. Atti, G. M. Diaz-Toca, and H. Lombardi, “The Berlekamp–Massey
algorithm revisited,” Appl. Algebra Eng., Commun. Comput., vol. 17,
no. 1, pp. 75–82, 2006.

[25] P. K. Gundaram, A. N. Tentu, and S. N. Allu, “State transition analysis
of GSM encryption algorithm A5/1,” J. Commun. Softw. Syst., vol. 18,
no. 1, pp. 36–41, 2022.

[26] N. Bajaj. “Linear feedback shift register: 1.0.6.” Accessed: Apr. 17,
2023. [Online]. Available: https://pypi.org/project/pylfsr/

[27] F. Dridi, S. El Assad, W. El Hadj Youssef, M. Machhout, and R. Lozi,
“Design, implementation, and analysis of a block cipher based on a
secure chaotic generator,” Appl. Sci., vol. 12, no. 19, p. 9952, 2022.

[28] C. De Cannière and B. Preneel, New Stream Cipher Designs: The
eSTREAM Finalists, M. Robshaw and O. Billet, Eds. Berlin, Germany:
Springer, 2008.

[29] “The eSTREAM project.” Accessed: Mar. 1, 2024. [Online]. Available:
https://www.ecrypt.eu.org/stream/finallist.html

[30] U. Yudha. “Source code of trivium.” Accessed: Jan. 4, 2024. [Online].
Available: https://github.com/uisyudha/Trivium

[31] S. Wolfram, “Random sequence generation by cellular automata,” Adv.
Appl. Math., vol. 7, no. 2, pp. 123–169, 1986.

[32] I. G. A. Poornima, B. Paramasivan, K. M. Pitchai, and M. Bhuvaeswari,
“A survey on cellular automata with the application in pseudo random
number generation,” J. Netw. Inf. Secur., vol. 5, no. 2, pp. 1–11, 2017.

ALCARAZ-VELASCO et al.: GS3: A LIGHTWEIGHT METHOD OF GENERATING DATA BLOCKS 25801

[33] A. John, B. C. Nandu, A. Ajesh, and J. Jose, “PENTAVIUM: Potent
trivium-like stream cipher using higher radii cellular automata,” in Proc.
Int. Conf. Cell. Automata Res. Ind., 2021, pp. 90–100.

[34] P. H. Lee, Y. Chen, S. C. Pei, and Y. Y. Chen, “Evidence of the
correlation between positive Lyapunov exponents and good chaotic
random number sequences,” Comput. Phys. Commun., vol. 160, no. 3,
pp. 187–203, 2004.

[35] B. M. Alshammari, R. Guesmi, T. Guesmi, H. Alsaif, and A. Alzamil,
“Implementing a symmetric lightweight cryptosystem in highly con-
strained IoT devices by using a chaotic S-box,” Symmetry, vol. 13, no. 1,
p. 129, 2021.

[36] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20,
no. 2, pp. 130–141, 1963.

[37] S. Zhu, X. Deng, W. Zhang, and C. Zhu, “A new one-dimensional
compound chaotic system and its application in high-speed image
encryption,” Appl. Sci., vol. 11, no. 23, 2021, Art. no. 11206.

[38] B. Schneier and P. Sutherland, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, 2nd ed. Hoboken, NJ, USA: Wiley,
1995.

[39] J. Zheng and J. Li, “MARC: Modified ARC4,” in Foundations and
Practice of Security, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia,
A. Miri, and N. Tawbi, Eds. Berlin, Germany: Springer-Verlag, 2013,
pp. 33–44.

[40] S. K. Mousavi, A. Ghaffari, S. Besharat, and H. Afshari, “Security of
Internet of Things using RC4 and ECC algorithms (case study: Smart
irrigation systems),” Wireless Pers. Commun., vol. 116, pp. 1713–1742,
Feb. 2021.

[41] “Data encryption standard DES.” Accessed: Apr. 1, 2024. [Online].
Available: https://csrc.nist.gov/CSRC/media/Publications/fips/46/
archive/1977-01-15/documents/NBS.FIPS.46.pdf

[42] A. Poschmann, G. Leander, K. Schramm, and C. Paar, “New light-weight
Crypto algorithms for RFID,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), New Orleans, LA, USA, 2007, pp. 1843–1846.

[43] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “The SIMON and SPECK families of lightweight
block ciphers,” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA,
Rep. 2013/404, 2024. [Online]. Available: https://eprint.iacr.org/2013/
404

[44] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, 1949.

[45] T. Farah, R. Rhouma, and S. Belghith, “A novel method for
designing S-box based on chaotic map and teaching–learning-based
optimization,” Nonlinear Dyn., vol. 88, pp. 1059–1074, Apr. 2017.

[46] F. Artuğer and F. Özkaynak, “A method for generation of substitu-
tion box based on random selection,” Egypt. Informat. J., vol. 23,
pp. 127–135, Mar. 2022.

[47] F. U. Islam and G. Liu, “Designing S-box based on 4D-4Wing hyper-
chaotic system,” 3-D Res., vol. 8, no. 1, p. 9, 2017.

[48] “Data base images.” Accessed: Mar. 2, 2024. [Online]. Available:
https://ccia.ugr.es/cvg/dbimagenes/

[49] V. Vujović and M. Maksimović, “Raspberry Pi as a wireless sensor node:
Performances and constraints,” in Proc. 37th Int. Conv. Inf. Commun.
Technol., Electron. Microelectron. (MIPRO), 2014, pp. 1013–1018.

[50] H. Wang, Y. Wu, Q. Ni, and W. Liu, “A novel wireless leaf area index
sensor based on a combined U-net deep learning model,” IEEE Sensors
J., vol. 22, no. 16, pp. 16573–16585, Aug. 2022.

[51] S. A. Deepthi, E. S. Rao, and M. N. Giriprasad, “Secure MRI brain
image transmission using IOT devices based on hybrid autoencoder
and restricted Boltzmann approach,” J. Sensors, vol. 2022, pp. 1–11,
May 2022.

[52] O. Elijah, S. Rahim, M. Musa, Y. Salihu, M. Bello, and M.-Y. Sani,
“Development of LoRa-Sigfox IoT device for long distance applica-
tions,” in Proc. 4th Int. Conf. Disrupt. Technol. Sustain. Develop., 2022,
pp. 1–5.

[53] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sens.
Netw., 2005, pp. 364–369.

[54] P. Levis and D. Gay, TinyOS Programming, 1st ed. Cambridge, U.K.:
Cambridge Univ., 2009.

[55] R. Randriatsiferana, F. Alicalapa, R. Lorion, L. Rajaoarisoa, B. Ravelo,
and C. Moy, “Energy modeling based on power profiling of wireless
sensor device,” IEEE Sensors J., vol. 22, no. 23, pp. 22754–22769,
Dec. 2022.

[56] J. M. Castillo-Secilla, P. C. Aranda, F. J. B. Outeiriño, and J. Olivares,
“Experimental procedure for the characterization and optimization of the
power consumption and reliability in ZigBee mesh networks,” in Proc.
3rd Int. Conf. Adv. Mesh Netw., 2010, pp. 13–16.

[57] K. Phasinam, T. Kassanuk, and D. M. Shabaz, “Applicability of Internet
of Things in smart farming,” J. Food Qual., vol. 2022, pp. 1–7,
Feb. 2022.

[58] S. W. Bray, Implementing Cryptography Using Python. Hoboken, NJ,
USA: Wiley, 2020.

[59] Y. Wu, J. P. Noonan, and S. S. Agaian, “NPCR and UACI randomness
tests for image encryption,” Cyber J. Multidiscipl. J. Sci. Technol., J.
Sel. Areas Telecommun., vol. 1, no. 2, pp. 31–38, 2011.

[60] J. Walker. “A pseudorandom number sequence test program.” Accessed:
Mar. 4, 2024. [Online]. Available: https://www.fourmilab.ch/random/

[61] E. Barker, “Recommendation for key management, part 1: General,”
U.S. Dept. Comm., Nat. Inst. Stand. Technol., Gaithersburg, MA, USA,
Rep. SP 800-57, 2020.

[62] Cryptographic Mechanisms: Recommendations and Key Lengths.
Version, 2023–1, Fed. Office Inf. Secur., Bonn, Germany, 2023.

[63] V. Gopal, E. Ozturk, J. Guilford, and W. Feghali, “Choosing a CRC
polynomial and associated method for fast CRC computation on intel
R©processors,” Intel Corp., Santa Clara, CA, USA, White Paper, 2012.

[64] A. Mughaid, A. Al-Arjan, M. Rasmi, and S. AlZu’bi, “Intelligent secu-
rity in the era of AI: The key vulnerability of RC4 algorithm,” in Proc.
Int. Conf. Inf. Technol. (ICIT), 2021, pp. 691–694.

[65] F. León-García, J. M. Palomares, and J. Olivares, “D2R-TED: Data—
Domain reduction model for threshold-based event detection in sensor
networks,” Sensors, vol. 18, no. 11, p. 3806, 2018.

[66] F. León-García, F. J. Rodríguez-Lozano, J. Olivares, and
J. M. Palomares, “Data communication optimization for the evaluation
of multivariate conditions in distributed scenarios,” IEEE Access, vol. 7,
pp. 123473–123489, 2019.

Francisco Alcaraz-Velasco was born in Cordoba,
Spain, in 1977. He received the B.Sc. degree in com-
puter science engineering from the Universidad de
Córdoba, Córdoba, Spain, in 1998, the M.Sc. degree
from Universidad de Málaga, Málaga, Spain, in
2003, the master’s degree in computer and network
engineering from the Universidad de Sevilla, Seville,
Spain, in 2011, the master’s degree in communi-
cation, networks and contents management from
the Universidad Nacional de Educación a Distancia,
Madrid, Spain, in 2016, and the master’s degree in

intelligent systems from the Universidad de Córdoba in 2016.
His research interests are in the area of securing a wireless sensor networks

and embedded systems.

Jose M. Palomares (Senior Member, IEEE) was
born in Motril, Spain, in 1975. He received the B.Sc.,
M.Sc., and Ph.D., degrees in computer engineering
from the Universidad de Granada, Granada, Spain,
in 1996, 1998, and 2011, respectively.

Since 2000, he has been a Lecturer, an Assistant,
an Associate Professor, and, currently, as a Professor
with the Universidad de Córdoba, Córdoba, Spain.
He is Co-Founder of the Advanced Informatics
Research Group, Universidad de Córdoba. He has
research interests in image and video processing,

real–time systems, wireless sensor networks, Internet of Things, and computer
architecture.

Dr. Palomares is a member of the ACM since 2005.

Joaquin Olivares received the B.S. and M.S.
degrees in computer sciences in artificial intelligence
and the M.S. degree in electronics engineering from
the Universidad de Granada, Granada, Spain, in
1997, 1999, and 2003, respectively, and the Ph.D.
degree was a patented chip for motion estima-
tion in video coding designed in FPGA from the
Universidad de Córdoba, Córdoba, Spain, in 2008.

From 2000 to 2001, he was a Software Architect
with the Orangee Group, Rome, Italy. He is a
Full Professor with the Electronic and Computer

Engineering Department, Universidad de Cordoba, where he was hired in
2001, and the Founder and the Head of the Advanced Informatics Research
Group. His research interests are the Internet of Things, embedded systems,
computer vision, and high-performance computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

