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Hardware/Software Codesign of Real-Time
Intrusion Detection System for Internet
of Things Devices
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Abstract—The rapid expansion of the Internet of Things (IoT)
has increased security concerns, thereby necessitating efficient
intrusion detection systems (IDSs). In this article, we propose
a real-time IoT IDS designed by combining a random forest
(RF) classifier with an ensemble feature selection technique
(EFST). The proposed IDS can be deployed on a small-scale
field-programmable gate array (FPGA) board. The system uti-
lizes a two-metric ensemble feature selection process to reduce
computational complexity and enhance classification accuracy.
In addition, the EFST aggressively extracts a limited number
of features, thereby reducing the complexity of the RF model.
Then, the tailored RF classifier is mapped onto an FPGA-based
hardware accelerator to realize real-time detection. The proposed
method was evaluated experimentally on the benchmark BoT-
IoT data set. The results demonstrate that the proposed IDS
realizes significant improvements in terms of resource utilization
and processing time compared to several state-of-the-art FPGA-
based IDS implementations while maintaining sufficient detection
accuracy. In particular, our implementation on the Xilinx
PYNQ Z2 achieved 10.2x, 135.7x, and 8.43 x speed-up compared
to state-of-the-art IDSs running on an Intel Core i7 CPU, an
ARM Cortex-A9 microprocessor, and a neural network-based
accelerator on the PYNQ, respectively. In addition, our approach
exhibits the lowest resource utilization among FPGA-based IDS
solutions. These results demonstrate that this work contributes to
developing secure and sustainable IoT ecosystems by integrating
EFST, RF classification, and FPGA-based acceleration.

Index Terms—Field-programmable gate array (FPGA), hard-
ware accelerator, Internet of Things (IoT), intrusion detection,
random forest (RF).

I. INTRODUCTION

ITH the proliferation of the Internet of Things (IoT),
Wthere has been a significant increase in the number
of connected devices, which has resulted in a corresponding
increase in security concerns [1]. Consequently, intrusion
detection systems (IDSs) have become a critical component
of network security, particularly to protect IoT devices against
cyberattacks [2], e.g., distributed Denial of Service (DDoS)
attacks [3], reconnaissance [4], and information theft [5].
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Among the various anomaly intrusion detection algorithms,
machine learning (ML) algorithms like random forest (RF) [6]
and neural networks (NNs) [7] are effective [8], [9], [10].
These ML algorithms can realize good performance (i.e.,
sufficient inference accuracy) by increasing model complexity
at the expense of increased processing time [11]. In other
words, it is inherently difficult to construct both lightweight
and accurate ML models. Thus, developing an ML-based
IDS that can detect anomaly intrusions accurately in real
time on resource-constrained IoT devices is an important but
challenging issue.

Generally, the high dimensionality of input data is a bottle-
neck when reducing the complexity of ML models in terms of
both computational costs and the amount of data. A simple and
effective solution to this problem is to select and use a subset
of important features for the ML model training and inference
processes. With this approach, we can expect relaxed com-
putational complexity, reduced memory costs, and improved
inference accuracy [12]. Note that network traffic involves
a high number of features and feature selection processes
contribute to lightweight ML models for IDSs. In addition,
ensemble feature selection techniques (EFSTs), which inte-
grate the outcomes of various feature selection algorithms or
data subsets, can be used to further identify the most important
features from different perspectives [13]. Recently, existing
IDS studies have exploited EFSTs to improve the detection
accuracy of software-defined ML models [4], [S]. However,
these studies utilized powerful off-the-shelf platforms [e.g.,
graphics processing units (GPUs)] to process the ML model;
thus, they only filtered out ineffective features using the EFST
and proceeded to use many features (e.g., 20 features in [5]).
Considering that IDSs must be deployed on many small
IoT devices, when they are hardware/software codesigned in
manner similar to various embedded systems, the number of
features should be reduced as much as possible to reduce
both hardware costs and processing time. In other words, to
develop a sufficiently lightweight ML model, the EFST should
aggressively select a limited number of features.

In addition to the lightweight model design, the hardware
accelerator architecture affects the performance of real-time
processing. Previous studies have demonstrated that field-
programmable gate arrays (FPGAs) are a promising platform
to accelerate ML models in a number of emerging IoT
applications (e.g., image classification [14], object detec-
tion [15], and image compression [16]). Note that ML
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TABLE 1
BOT-1I0T DATA SET
Category ‘ Type of traffic Instances #
Normal ‘ Legitimate network traffic 9,543
DoS DoS attack traffic 33,005,194
DDoS DDoS attack traffic 38,532,480
Reconnaissance Network traffic used to gather information 1,821,639
Information Theft | Network traffic used to steal sensitive data 1,587

algorithms have inherent parallelism; thus, accelerators that
fully exploit this parallelism are expected to realize real-
time intrusion detection. However, existing FPGA-based IDS
acceleration methods must consider the difficulties associated
with a compact accelerator design. Due to extensive use of
digital signal processing units (DSPs) for matrix multiplication
and accumulation operations in NN-based IDSs [9], [10] or
memory-hungry implementations in RF-based network traffic
classification [17], such accelerators cannot be deployed on
small-scale FPGAs.

Thus, in this article, we propose a real-time IDS design that
considers both hardware and software approaches. The goal of
the proposed IDS is to provide accurate and efficient network
intrusion detection while also addressing the challenges asso-
ciated with real-time processing and the limited hardware
resources of IoT devices. Among various ML algorithms,
the proposed IDS utilized an RF algorithm because it can
realize high classification accuracy and is robust against noise
and outliers in the network traffic. In addition, in terms
of hardware accelerator implementation, the RF algorithm
is generally more lightweight than an NN solution, and it
possesses inherently rich parallelism between decision trees.
To comprehensively design a lightweight RF-based IDS, we
first present an EFST that combines two feature selection
metrics to evaluate the network traffic. Specifically, we utilize
the Gini index [18] and the out-of-bag (OOB) score [19]
because these metrics take distinct importance perspectives
in terms of the RF algorithm. With our EFST, only a few
important features are selected and used to develop and train
our lightweight RF model. We then codesign the RF-based
IDS on a heterogeneous Zynq SoC (PYNQ Z2) by utilizing
both the CPU and the configurable fabrics of an FPGA. Here,
a feature extractor is implemented to handle the network
traffic as software running on the CPU, and the RF hardware
accelerator is implemented on the FPGA fabrics in a flexibly
programmable manner (i.e., parameterized and modulated).
Compared to existing programmable accelerators [17], [20],
our accelerator consumes much fewer resources and fits in a
small-scale FPGA while achieving comparable latency. The
proposed IDS was evaluated on a publicly available data set,
i.e., the BoT-IoT data set [21] (Table I [22]), to quantitatively
demonstrate its effectiveness against several state-of-the-art
ML-based IDSs.

The primary contributions of this study are summarized as
follows.

1) The proposed EFST utilizes the Gini Index and OOB
score metrics to rank feature importance. Given the
high dimensionality of network traffic features, the
EFST selectively extracts a limited number of highly
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important features. This strategic extraction contributes
to reducing the complexity of the RF model. In an
experimental evaluation, among 15 standard and effec-
tive features [22], [23] for the BoT-IoT data set (used
as a full feature set), the proposed EFST reduced the
number of features to three while maintaining inference
performance that is comparable with that of a model that
used the full feature set.

2) The proposed RF accelerator is flexibly programmable in
terms of the number of trees and the maximum depth of
the RF model. These parameters are tunable during the
design phase. The proposed EFST reduces the number
of features, thereby reducing the resource utilization of
the model. In addition, we address a potential issue
regarding inefficient memory usage to store information
about the structure of the model [17].

3) The proposed RF-based IDS is codesigned relative to
both hardware and software to facilitate implementation
on a heterogeneous Zynq SoC. Compared to exist-
ing FPGA-based IDS methods, the proposed method
achieves the lowest resource utilization. In addition, the
processing time of the proposed IDS on the Zynq SoC is
up to two magnitudes faster than state-of-the-art IDSs.
For instance, it is 10.2x, 135.7x, and 8.43 x faster than
systems running on an Intel Core i7 CPU, an ARM
Cortex-A9 microprocessor, and an NN-based accelerator
on the Zynq, respectively.

The remainder of this article is organized as follows.
Section II briefly describes the basic technologies utilized in
this study. Section III explains the proposed hardware/software
codesigned IDS for IoT devices. Section IV holistically
evaluates the proposed method compared to state-of-the-art
methods. Finally, this article is concluded in Section V.

II. PRELIMINARIES

In this section, we briefly review the fundamental technolo-
gies utilized in the proposed IDS, i.e., the RF algorithm and
feature selection.

A. Random Forest

The RF algorithm is an ensemble learning method com-
prising multiple decision trees, each of which is constructed
independently using bootstrapped samples from the original
data set. There are two important hyperparameters in an
RF model, i.e., the number of trees (N) and the maximum
depth of each decision tree (M). The former balances a
tradeoff between the complexity of the model and the inference
performance, and the latter determines how many splits are
permitted in the tree. Fig. 1 shows an example RF model
comprising three decision trees, each of which has a depth of
three (i.e., N = 3 and M = 3). Here, each split (or node)
has two child nodes (the left and right nodes), either of which
is taken according to the features of the input data and the
corresponding threshold values.

In inference, computational complexity stems from the
number of trees (N), maximum tree depth (M), and considered
features. Storage requirements depend on the number of trees
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Fig. 1. Example RF model comprising three decision trees.

(N), target data set size, and individual tree size. The tree size
is dictated by the number of nodes, features, and corresponding
threshold values used in decision-making at each node. A
layer, also referred to as a level or depth, refers to a group
of nodes that are at the same distance from the root node
in the tree. Here, the root node, i.e., the node where the
tree begins, is considered the first layer. In the classification
context, each tree in an RF model casts a vote for a specific
class label when presented with an unseen data point. Here,
the model allocates the data point to the class that accumulates
the majority of votes. This aggregation of votes from multiple
trees culminates in a more robust and accurate classification
than a single decision tree [24].

The RF method, as described above, can be computationally
expensive when running on resource-constrained IoT devices,
which will affect both the inference latency and hardware
accelerator footprint. Binarizing the operations in the RF
model is effective in addressing the issue. To realize effective
binarization, the feature values and decision thresholds must
be quantized into discrete binary values. This quantization
process can be performed using several techniques, e.g.,
uniform or nonuniform quantization [25], considering the data
distribution and the desired tradeoff between computational
efficiency and model accuracy. Once the quantization is
complete, the resulting discrete values are encoded as binary
representations, which facilitates the use of bitwise operations,
e.g., the XOR and bit counting operations. When classifying
an unseen data point, the binarized RF model traverses the
decision trees using these bitwise operations to compare the
binarized feature values with the binarized decision thresholds,
and the outcome of these comparisons determines the path
taken through each tree.

The binarized RF model can be implemented effectively on
an FPGA as a dedicated accelerator. The inherent indepen-
dence between the trees enables streamlined parallel inference
for multiple decision trees, which improves the overall com-
putational efficiency. In existing methods (e.g., [17]), within
each tree, storage and computations are allocated for each layer
to facilitate effective pipelining between layers. However, this
method incurs considerable consumption of storage resources
and necessitates time-intensive memory configuration for each
layer, thereby hindering the deployment of RF models on
resource-constrained devices.

B. Feature Selection

Feature selection is a critical process in ML classification
tasks involving high-dimensional data By identifying and
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extracting highly important features, we can reduce com-
putational costs, storage requirements, and training time
and improve classification accuracy [26]. There are several
common feature selection metrics for the RF method, e.g.,
information gain [27], the Gini index [18], and the OOB
score [19]. The information gain metric quantifies the reduc-
tion in entropy or uncertainty after splitting a data set based on
a specific feature. Here, for each feature, the information gain
is determined according to the difference between the parent
entropy and the weighted average of the children entropy. The
Gini index, which is derived from the Gini impurity, measures
the impurity of a node in a decision tree. It quantifies the
likelihood of misclassifying a randomly selected instance from
the data set if it were labeled according to the class distribution
at a node. The OOB score leverages the unique structure
of the ensemble learning method. During the construction of
each decision tree, OOB instances (i.e., data instances that
are left out of the bootstrapped samples') can be utilized to
estimate the generalization error and feature importance of the
RF model without requiring a separate validation set.

Various of feature selection techniques (FSTs) based on
these metrics have been studied previously. Among RF-based
works, a representative study [29] selected important features
according to the mean decrease Gini (MDG) and mean
decrease accuracy (MDA) metrics, which can be obtained
by calculating the average reduction in the Gini impurity
and accuracy, respectively. This work demonstrated the effec-
tiveness of leveraging both MDG and MDA, resulting in
improvements to robustness and performance, as well as a
reduction of inference time for high-dimensional data sets.

Later, FSTs were extended to EFSTs by integrating various
metrics and methods. EFSTs can capture complex interac-
tions among features from distinct importance perspectives
to provide a more comprehensive and robust representation
of feature importance. Existing EFSTs for IoT IDSs employ
multiple metrics. For example, three filter-based feature rank-
ing techniques and four supervised learning-based feature
ranking techniques were combined in previous studies [4], [5]
to obtain a reduced subset of 20 features. However, these
approaches do not consider the resource-constrained require-
ments of IoT devices, which would demand fewer features to
realize efficient processing and real-time detection.

Feature selection affects both the inference accuracy and
computational/data requirements (i.e., the model’s complex-
ity). In terms of realizing a real-time IDS, striking an optimal
balance between them is crucial to ensure practical application.
Thus, to deploy an RF-based IDS on resource-constrained
devices, an effective FST or EFST that identifies and retains
the most relevant features must be utilized to reduce the
model’s complexity.

III. PROPOSED CODESIGNED RF-BASED IDS oN FPGA

In this section, we present the proposed real-time IDS by
codesigning hardware/software for IoT devices, which must
handle massive amounts of network traffic. As described in
Fig. 2, the cyber intrusion targets IoT devices connected to

]Approximately one-third of the data instances tend to be categorized as
OOB instances [28].
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Fig. 2. Deployment of IDS in IoT environment.

the public Internet through the communication network. The
IDS should be deployed on gateways or integrated into IoT
devices to identify and address malicious traffic threats. Both
gateways and IoT devices have limited resources to directly
operate IDS with optimal tradeoffs.

In detail, balancing real-time and high-accuracy detection
simultaneously is a major challenge for these resource-
constrained devices. As mentioned previously, to date, ML
algorithms (including the RF method) have been proven
effective for malicious and normal traffic classification in the
IoT context. Thus, a promising and realistic solution is to
design a dedicated hardware accelerator for a lightweight ML
classifier with reduced computational burden through model
optimizations.

According to these motivations, the goal of this study is
to hardware/software codesign a lightweight RF-based IDS
that utilizes an effective EFST to reduce hardware resource
utilization by reducing the dimensionality of the input data. For
embedded systems applications, hardware/software codesign
can simultaneously realize flexibility via software solutions
and accelerate processing using hardware. Our software imple-
mentation involves two main components: 1) an EFST that
incorporates the Gini index [18] and the OOB score [19]
to select a limited number of useful features from the IoT
network traffic and 2) a software feature extractor to extract
the target features from the network traffic in real-time. The
former is used offline (i.e., during RF training), and the latter is
used online (i.e., it is deployed on the CPU of an FPGA SoC).
For the hardware implementation, we present a lightweight and
programmable accelerator architecture to flexibly implement
the RF model in a memory-efficient manner. Finally, to realize
a real-time IDS, we codesign the software feature extractor
and the hardware accelerator on a heterogeneous Zynq SoC.
Here, the software feature extractor and hardware accelerator
exploit the processing system (PS) and programmable logic
(PL) of the Zynq SoC, respectively.

In the following sections, we describe the EFST, the
memory-efficient RF accelerator, and the IDS system code-
signed on the Zynq SoC in detail.

A. Ensemble Feature Selection Technique

Network traffic is a representative example of high-
dimensional data that involves a number of features (refer
to Table IV in Section IV). For such data, feature selection
metrics can effectively quantify the contribution of each
feature to RF algorithms, compared to that of many features.
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Algorithm 1 Proposed EFST Algorithm

Input: X: Feature matrix, y: Target vector, K: Number of
features to select, Tp: OOB score threshold, T: Gini score
threshold

Output: Sg: Selected feature set

1: Train an RF classifier on X and y

2: for each feature subset f; in the RF classifier do

3:  Calculate the Gini score scoreGini(f;) for the feature
subset f; by the formulae (1) and (2)

4: end for

5: for each feature subset f; in X do

6:  Train a new RF classifier on f; and y

7. Calculate the OOB score scoreOOB(f;) for the feature
subset f; by the formula (3)

8: end for

9: Sg <0

10: count < 0
11: for each feature j in X do
12:  if scoreOOB(f;) > To and scoreGini(f;) > T then

13: Sg < SpUf;

14: count < count + 1
15:  end if

16:  if count == K then
17: break

18:  end if

19: end for

20: return Sg

In this study, we focused on the Gini index and OOB
score as the feature selection metrics to integrate into the
EFST. As discussed in Section II-B, these metrics are based
on distinct perspectives to quantify the feature importance,
i.e., the misclassification likelihood by the Gini index and the
generalization error by the OOB score. Thus, the proposed
EFST can extract useful and robust features to construct
and train a lightweight but sufficiently accurate RF model
(Section III-B). Existing EFSTs (e.g., [4] and [5]) did not
reduce the number of features significantly (e.g., 20 fea-
tures) because they only focused on the model’s classification
performance. In other words, the runtime was not considered.
In addition, they targeted a specific intrusion threat (e.g.,
reconnaissance detection in [4] and information theft in [5]). In
contrast, the proposed EFST aggressively reduces the number
of selected features and covers a wider variety of IoT threats
(Table I).

The Proposed EFST: The proposed EFST algorithm is given
in Algorithm 1. The goal of this algorithm is to assess the
impact of each feature on the performance of the model. This
algorithm first trains the RF model on the training data set X
and labels y. Then, we obtain the feature importance according
to the Gini index (lines 1-4). We then train a new RF model
with each feature subset and target label y, and we obtain the
feature importance according to the OOB score (lines 5-8).
In RF, the Gini importance index value (hereafter referred to
as the Gini score) for a feature is obtained by the sum of the
Gini index reduction over all nodes where the specific feature
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is used to split. Specifically, given the number of features n
and the ith feature f; (1 <i < n), the Gini score for feature f;
(scoreGini(f;)) is calculated as follows:

k
scoreGini(f}) = Y _ Imp(f;, Cj) (1)
j=1

where k is the number of classes, C; is the jth class, and
Imp(f;, C;) is the impurity of feature f; for class C;j. The
impurity is computed as follows using the Gini impurity
formula:

k
Imp(f;, Gj) = 1= ) Prc 2)
m=1

where Py, c; is the proportion of samples from class C; that
are classified as class m using feature f;.

Note that no single decision tree generation process uses all
of the samples. Here, we refer to the unused samples as OOB
samples, which can be utilized to evaluate the accuracy of the
tree. The OOB score for each feature is evaluated iteratively,
where a higher score indicates higher feature importance. The
OOB score for feature f; (scoreOOB(f;)) can be obtained as
follows:

1 ~
scoreOOB(f;) = |OO—Bf| Z I[yt = yt(fi)] 3)

! lEOOBfi

where y; is the true label of the rth sample, y;(f;) is the
predicted label of the tth sample by the RF model trained
using feature f;, function I[] counts the number of times the
equation in square brackets becomes true, and |OOBy;| denotes
the number of samples not used to construct the trees referring
to feature f; to split.

By setting different thresholds for these scores, we can
flexibly identify a final set of features that are consistently
important according to both evaluation metrics (lines 11-19).

The Feature Selection Process: When implementing the
EFST to reduce the number of network traffic features, we
initially employ the RF model for training on the network
traffic data set. In this process, the RF model assesses the
impurity change of each feature during node partitioning
using the Gini index to gauge its importance. The Gini index
quantifies a feature’s role in reducing the node impurity,
thereby measuring its contribution to the overall model. It
primarily focuses on the misclassification risk. Subsequently,
we train a new RF model using each feature subset and target
label, measuring feature importance through the OOB score.
The essence of this process lies in iteratively evaluating the
contribution of each feature, ultimately resulting in a set of
consistently important features.

The reduction of features yields dual advantages. First, it
diminishes data dimensionality, thereby accelerating model
training and rendering it better suited for real-time applica-
tions. Second, EFST guarantees that the selected features are
both useful and robust, leading to effective simplification of
the model structure and an enhancement of its generalization
capacity to unobserved data.
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B. Hardware Accelerator for RF Classifier

In RF, individual decision trees can be evaluated inde-
pendently in their reasoning process, thereby making them
well-suited for parallelized acceleration on an FPGA [17],
[20], [30], [31]. In most previous studies, the decision tree
data comprising tree structures, decision nodes, and leaf nodes
is stored in on-chip memory to allow multiple processing
elements (PEs) perform the inference task in parallel. Although
this memory-oriented approach enables efficient use of other
types of available hardware resources, without a careful
decision regarding the parallelized granularity, memory con-
sumption can easily become a dominant factor when selecting
a deployable FPGA board. In fact, existing memory-hungry
architectures, e.g., layer-wise parallelization in RF-RISA [17],
may limit their applicability to resource-constrained environ-
ments.

The proposed RF accelerator resolves this memory bottle-
neck issue by allocating block RAM (BRAM) resources at
a coarser granularity to achieve effective resource utilization.
Specifically, we allocate BRAMs to individual decision trees
rather than individual layers, which results in a significant
reduction in the total number of BRAMs required for the
entire accelerator. Here, we consider an RF model with N
trees and maximum depth M. While layer-wise parallelization
approaches (e.g., RF-RISA) require N x M BRAMs to store
this model, the proposed approach only requires N x X BRAMs
to store the same model, where X is the number of BRAMs
needed to store a single decision tree. Although X is correlated
with the total number of nodes in a single tree and thus can
be up to 2M*+D _ 1, we can search data efficiently without
exploring all nodes. Specifically, two 36 kB BRAMs can store
sequence data with the size of depth 2,048 and a width of
36 bits. Note that this capacity is sufficient to accommodate
the information of all decision nodes in decision trees with
a depth of 10 or less. Thus, in practice, the number of
decision nodes is significantly less than the theoretical upper
bound (2M+D — 1), which means that X can be two or three
in most cases, thereby significantly reducing BRAMs. This
optimized BRAM allocation scheme enhances the efficiency
of the accelerator and helps overcome the resource constraints
associated with RF models implemented on low-end FPGAs.

In the following, we elaborate on the design of our accelera-
tor. Fig. 3(a) shows an example of a single decision tree with a
maximum depth of two. It contains one root node, two internal
nodes, and four leaf nodes. Fig. 3(b) shows the corresponding
memory layout. Here, all the nodes are stored in the instruction
format defined in Fig. 3(c). Fig. 3(d) describes the accelerator
architecture of the corresponding decision tree.

Memory Layout: In our accelerator, one MEM is used to
store all of the instruction sets of a single decision tree (e.g.,
the node information, node addresses, and tree structure) and
is read by the PEs to perform the reasoning tasks. The memory
layout is designed based on the depth-first traversal order
of the decision tree during the actual inference process. All
decision nodes are stored in a 1-D array format. Fig. 3(b)
shows the memory layout for a balanced decision tree with
a depth of two. In practice, decision trees are rarely balanced
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Fig. 3. Decision tree model and overview of the corresponding accelerator. (a) Decision tree model. (b) Memory layout. (c) Node instruction structure.

(d) Hardware accelerator.

TABLE 11
VALUES AND LABELS OF “CLASS” AND “FEATUREID”

Component ~ Value  Label

0000  DDoS/DoS
Class 0001 Normal )

0010  Reconnaissance
0011 Information Theft
0000  Bytes
0001  Dbytes

FeaturelD 0010  Dpkts
0011 Drate

perfectly. In addition, if a substantial number of decision nodes
are pruned, it is unnecessary to allocate storage space for the
pruned nodes.

Instruction Format: The width of the data stored in BRAMs
is defined by the format shown in Fig. 3(c). As can be seen,
the instruction comprises five components. Here, “LCAddr”
and “RCAddr” represent the addresses of the left child and
right child, respectively, which guide the decision tree nodes
to the next node. For the leaf nodes [n2, n3, nS, and n6 in
Fig. 3(a)], “9'b00000000” is set to LCAddr and RCAddr.
“Class” represents the reasoning category of the current
node, and “FeatureID” is the label of the specific feature
used for comparison. The values and labels of “Class” and
“FeatureID” are shown in Table II. “Threshold” holds the
threshold value of the decision tree node used for comparison
with the input feature. Among these five components, only
the threshold values can be set as a floating-point number.
As briefly mentioned in Section II-A, we performed fixed-
point quantization on the threshold value. The quantization
formula is defined as follows. Here, x is the threshold value,
and round() is a rounding function that maps the result to the
nearest integer value. The range of threshold values [a, b] is
mapped to the range of possible integer values [0, 2% — 1],
where k is the number of bits used to represent the integer
value (k = 16 in our case)

(x—a)x (2k-1)

= round
9 b—a

“4)

Current Node Address

Cla
| Temp Result

Node[41:0] Node
LCAddr FeatureID
or
RCAddr
g Feature[15:0]*K
MEM: Threshold r
I -
S cature EI Input Data[16*K-1:0] Data Memory
L Mux2
Next Node Address | —— Address
— Data
Class
Fig. 4. Internal PE structure.

Hardware Accelerator: The architectural overview of a
single decision tree is shown in Fig. 3(d). From a high-level
perspective, the PEs are responsible for evaluating the decision
criteria at each node and directing the data flow accordingly.
The processing in the PEs is described in the following
paragraph. These PEs are performed in a pipelined manner
to produce N results in parallel, which are then input to a
majority voter to output an inference result. Here, N represents
the number of decision trees; thus, the decision tree node data
(described as “Instruction Set”) is stored in N memory blocks
(i.e., MEMs). The input data are fed to the accelerator in a
streaming manner, which allows for efficient pipelining of the
PEs. By continuously supplying input data to the PEs, their
processing capabilities can be fully utilized, further enhancing
performance.

The internal PE structure is shown in Fig. 4. In the PE, the
decision tree node first loads node information from the MEM
through the address of the root node. Here, the FeatureID
is used to determine the specific feature from the input
data. Since the input data are composed of K features, each
represented by a 16-bit value, the total bit-width is 16 x K [the
number of input features K is determined using the proposed
EFST (Section III-A)]. The corresponding 16-bit feature width
is extracted from the input data using a multiplexer (MUX1)
based on the FeatureID. Then, this feature and the correspond-
ing threshold value (stored in the node information) are input
to the comparator for comparison. Beginning with the most
significant bit, the XOR operation is performed to compare
the corresponding bits of the feature and threshold. If XOR
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Fig. 5. Overview of RF accelerator architecture.

yields “1”, the number with “1” at that position is larger. The
comparison continues along subsequent bits until a difference
is found, ultimately determining whether or not the feature
is greater than the threshold value. Then, according to the
comparison result, the next address to be accessed (i.e., the left
child address or the right child address) is determined to read
the next node information from the MEM. When all decision
nodes finish the comparisons, the Class stored in the leaf node
information represents the classification result of the tree [i.e.,
Temp Result 1 in Fig. 3(d)].

Fig. 5 shows an overview of our RF accelerator. Note that
all of the Temp Results are input to a majority voter to output
the final classification result. Here, each bit position is assessed
independently. The most frequent bit value at each position
is selected for the output, resulting in a majority-voted binary
representation. For instance, if three decision trees predict
the classes 0011, 0010, and 0011 for a particular input, the
majority vote would yield the final prediction as class 0011.
For an RF model comprising N trees with a maximum depth
of M, the accelerator has a total of N x M PEs, which are
configured using slices (in Xilinx FPGAs). In addition, the
accelerator has N MEMs (with a data width of 42 bits) and N
data memories (with a data width of 16 bits for each of the K
features).

In summary, our accelerator is lightweight in memory. It
requires N x X BRAMs for the MEMs and N x K x 2 bytes for
the data memories (i.e., the data width is 16 bits), where X and
K are effectively reduced by the tree-wise memory allocation
and our EFST (Section III-A), respectively. The accelerator
is also lightweight in terms of computations because the RF
model is binarized to reduce computational complexity.

C. FPGA-Based IDS

As shown in Fig. 6, we implemented the proposed IDS on
a heterogeneous Zynq SoC. We designed the RF hardware
accelerator in Verilog HDL and then mapped it on the PL
part of the Zynq. The software-implemented feature extractor
was processed on the PS part by an ARM Cortex-A9 with
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Fig. 6. Proposed IDS deployed on the Zynq platform.
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Fig. 7. Overview of the proposed codesigned IDS.

a clock frequency of 667 MHz. Here, the feature extractor
communicates with external devices to receive the network
traffic through a PHY Ethernet LAN. It also proceeds the
received network traffic to extract and preprocess the required
features (obtained by our EFST) for input to the accelerator.
Then, the accelerator processes the extracted input features
and produces the detection results, which are returned to the
PS side. The entire system was designed using Xilinx Vivado
2021.1.

Fig. 7 shows a more detailed view of the proposed code-
signed IDS. The PS and PL parts are interfaced through
the advanced extensible interface direct memory access (AXI
DMA) module. The AXI DMA supports the AXI stream
protocol for high-speed data transfer, and connects the CPU
core on the PS part and the accelerator on the PL part through
the AXI dedicated ports (“HP0” as a slave port and “GP0” as
a general-purpose port). The DRAM controller on the PS part
is used to read the required data from the DRAM that stores
the extracted features.

IV. EVALUATION

In this section, we first explain our experimental setup
and the metrics used to evaluate the proposed IDS. We then
evaluate the results quantitatively.
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TABLE III
EXTRACTED BOT-10T DATA SET

Category Original size  Extracted size

DDoS/DoS 71,537,674 20,000

Reconnaissance 1,821,639 20,000

Information Theft 1,587 1,587

Normal 9,543 9,543
TABLE IV

EXTRACTED 15 FEATURES FROM THE PCAP DATA IN THE
BOT-IOT DATA SET (THE GINI INDEX IN RATIO % AND
THE OOB SCORE IN ACCURACY %)

Feature  Description Gini OOB
Bytes Total number of bytes in transaction 18.79  98.41
Dbytes  Destination-to-source byte count 1.56  65.62
Dpkts Destination-to-source packet count 0.64 59.19
Drate Destination-to-source packets per second 048 44.65
Dur Record total duration 14.10 93.71
Max Maximum duration of aggregated records 3.56  83.69
Mean Average duration of aggregated records 2.56  83.37
Min Minimum duration of aggregated records 0.89  78.46
Pkts Total count of packets in transaction 8.44  82.26
Rate Total packets per second in transaction 543  93.64
Sbytes Source-to-destination byte count 2030 98.23
Spkts Source-to-destination packet count 9.10 87.26
Srate Source-to-destination packets per second 7.55 88.76
Stddev  Standard deviation of aggregated records 320  76.65
Sum Total duration of aggregated records 340 8443
A. Setup

To demonstrate the effectiveness of the proposed methods
in realistic IoT network environments, we conducted two eval-
uations. We first evaluated the proposed EFST (Section III-A),
and then we evaluated the proposed codesigned IDS with the
RF accelerator (Sections III-B and III-C). Note that we utilized
the BoT-IoT data set in both of these evaluations. The BoT-IoT
data set, which was released by the University of New South
Wales in 2019, is a specialized intrusion detection data set that
serves as a realistic representation of BoT network attacks on
IoT devices [21]. It includes instances of normal traffic and
four categories of attacks, i.e., DDoS, DoS, reconnaissance,
and information theft. When the traffic of a DoS attack comes
from multiple sources, it is referred to as a DDoS attack. Due
to their similarity in attack mechanisms, DoS and DDoS are
frequently studied together in terms of detection and defense
methods [21], [32], [33], [34], [35]. Thus, we handle them
together in our evaluations.

The full BoT-IoT data set processed by the Argus network
security tool> comprises 73 million instances with 29 features.
As shown in Table III, the data for the categories are heavily
imbalanced; thus, we downsampled the number of instances in
each category to 20 000, except for the normal and information
theft categories [23]. Among the 29 features in the data set,
15 network flow features (Table IV) can be extracted from
packet capture (PCAP) data through network flow analysis
and thus can be utilized for real-time inference by IDSs. The
extracted features of each record are then transformed into

2https://openargus.org
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TABLE V
CONFUSION MATRIX

| Attack Normal
Attack True positives (TP) False negatives (FN)
(i.e., correctly predicted (i.e., incorrectly predicted
attack samples) normal samples)
Normal False positives (FP) True negatives (TN)

(i.e., incorrectly predicted
attack samples)

(i.e., correctly predicted
normal samples)

floating-point values (ranging between 0 and 1) using min-
max normalization. Hereafter, these 15 features are considered
a full set of features.

For the first evaluation (Section IV-B), we implemented our
RF model using scikit-learn (sklearn)? to evaluate the detection
performance. By varying the threshold parameters T and Tp
to extract important features from the 15 features in Table IV,
we identified a set of parameters to develop a lightweight
(i.e., as few trees as possible) RF hardware accelerator while
achieving good detection performance. Here, the number of
trees N and the maximum depth of trees M were setto N = 6
and M = 11. In addition, the accuracy, precision, recall, and
F1 score metrics were used to evaluate the RF model, and the
confusion matrix in Table V defines these evaluation metrics.

1) Accuracy: The ratio of correctly classified normal and

attack samples to the total number of samples.

TP + TN

TP+ FP + TN + FN’

2) Precision: The percentage of successful predictions.
TP

TP + FP’

3) Recall: The ratio of correctly classified attack samples.
TP

TP + FN’

4) FI1 Score: A composite metric that considers both
precision and recall metrics to evaluate the extent to
which the model detects attacks successfully.

Accuracy =

Precision =

Recall =

Recall - Precision
Fl1=2

" Recall + Precision’

In the second evaluation (Section IV-C), according to the
results of the first evaluation, we selected the appropri-
ate features and developed the corresponding RF hardware
accelerator in Verilog HDL. Here, the online inference time
and circuit area (i.e., the FPGA resource utilization) of
the IDS (Section III-C) were evaluated for the PYNQ Z2
(Xc7z020clg400) using Xilinx Vivado 2021.1.

B. Results of Our Proposed EFST

Fig. 8 shows the Gini ratio and OOB score for each feature
in the red and blue bars, respectively. With the cumulative Gini
ratios equating to 100%, a more substantial ratio underscores
the increased significance of the feature. A higher OOB score
reflects the augmented importance of the given feature.

3 https://scikit-learn.org
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TABLE VI
THRESHOLD SETTINGS FOR RF-EFST-#

| T¢  To | Selected features
RF-EFST-2 | 0.15 0.95 | Sbytes, Bytes
RF-EFST-3 | 0.10 0.90 | Sbytes, Bytes, Dur
RF-EFST-6 | 0.05 0.85 Sbytes, Bytes, Dur, Spkts Srate, Rate
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Fig. 8. Feature importance ranking.

According to the results shown in Fig. 8, we conducted
the first evaluation for the following three methods. For all
methods, we performed four-class training and testing on the
extracted BoT-IoT data set (Table III).

1) RF- Full (Baseline): An RF model using all 15 features

in Table IV (i.e., feature selection was not performed).
This model is considered the baseline model.

2) RF-EFST-#: An RF model with the proposed EFST.
Here, the suffix “#” indicates the number of features
selected by different threshold settings 7 and . In our
evaluation, we varied these thresholds as summarized in
Table VI to generate three sets of selected features.

3) RF-EFST-#-q: A 16-bit quantized version of the best RF-
EFST to confirm how the quantization process affects
the detection performance.

First, we compared the features selected according to
different threshold values as shown in the fourth column
of Table VI. Considering that anomaly intrusion is abnor-
mal communication from the source-to-destination, intuitively,
most of the selected features are relevant to source-to-
destination information. In contrast, the destination-to-source
features were ranked lower by both Gini ratio and OOB score
metrics. In this evaluation, only three sets of thresholds were
given to the proposed EFST because selecting additional low-
importance features (as determined by the two metrics) would
not benefit a lightweight RF model.

We then investigated the classification performance of the
compared RF methods on the BoT-IoT data set as described
in “Test set” columns of Table VII. By using all 15 features,
the RF-full achieved the best classification performance with
99.14% accuracy. Interestingly, even by reducing the features
from 15 to three or six, we found that the performance did not
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change. However, further reducing the features down to two
resulted in a performance degradation of 0.2% on average.

Furthermore, to deepen our insights into the model’s gen-
eralization capability, we also conducted cross-validation as
described in the right half of Table VII. Across fivefold cross-
validation, the model’s performance remains at a high level.
The uniformity observed across various evaluation metrics
indicates that the model demonstrates robustness in clas-
sification across diverse categories. The alignment between
the outcomes of the test set and those of cross-validation
is pivotal in mitigating the risk of overfitting. Models are
evaluated across a broader range of data subsets, reducing
over-reliance on specific features of the training set and
enhancing generalization performance. This indicates that the
model can consistently perform well when presented with
previously unseen data.

Recall that selecting features more aggressively (i.e., select-
ing fewer features) enables more efficient real-time IDSs,
the RF-EFST-3 is considered the best method. We then
applied quantization to the RF-EFST-3 method to realize the
RF-EFST-3-q in the table, which demonstrated a slight decline
in accuracy and Fl-score (0.46% and 0.45%, respectively).
One may think that the RF-EFST-2 is better than the RF-EFST-
3-q; however, applying quantization to the RF-EFST-2 would
lead to a further large decline in performance. Thus, from
the first evaluation, we conclude that the RF-EFST-3-q is a
suitable model upon which our hardware/software codesigned
real-time IDS should be implemented on an FPGA.

C. Results of Hardware Implementation

To demonstrate the effectiveness of the proposed codesigned
RF-based IDS, we first compared the following five accelera-
tors designed for the same FPGA board in terms of resource
utilization.

1) NN2019 [9]: An NN accelerator working with a clock
frequency of 76 MHz. The design of this accelerator is
flexible and can be updated to adapt to emerging attacks.

2) NN2021 [10]: An NN accelerator working with a clock
frequency of 100 MHz. Here, a hierarchical decision-
making approach is taken for real-time IoT network
intrusion detection.

3) NN2023 [36]: An NN accelerator working a clock
frequency of 100 MHz. This accelerator was extended
from NN2021 for a heterogeneous hardware-based
network intrusion detection framework.

4) RF-Full-q: A 16-bit quantized RF accelerator using all
15 features in Table IV (i.e., the quantized version of
RF-full).

5) RF-EFST-q: A 16-bit quantized version of the proposed
RF model using only three features selected by the EFST
(i.e., RF-EFST-3 in the first evaluation. This accelerator
works with a clock frequency of 100 MHz).

The results are shown in Table VIII, where the numbers
in the parentheses in the first row represent the available
number of resources of each type on the chip Xc7z020clg400
(containing a total of 53200 LUTs, 106400 FFs, 140 BRAMs,
220 DSP slices, and 125 Bonded I0Bs). Here, “N/A” indicates
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TABLE VII
COMPARISONS OF CLASSIFICATION RESULTS (IN %) ON THE BOT-IOT DATA SET

| Test set | Cross validation
Model
‘ Accuracy  Precision  Recall  FI score ‘ Accuracy  Precision  Recall  FI score

RF-full 99.14 99.14 99.14 99.13 99.10 99.11 99.10 99.10
RF-EFST-2 98.95 98.94 98.94 98.94 98.98 99.00 98.98 98.98
RF-EFST-3 99.14 99.15 99.14 99.13 99.09 99.10 99.09 99.09
RF-EFST-6 99.09 99.10 99.09 99.09 99.08 99.09 99.08 99.08
RF-EFST-3-q 98.68 98.68 98.68 98.68 98.99 99.00 98.99 98.99

TABLE VIII

COMPARISON OF RESOURCE UTILIZATION ON THE XILINX PYNQ Z2 (Xc7z2020cLG400)

Accelerator ~ LUTs (53,200)  FFs (106,400)  DSPs (220) BRAMs (140) LUTRAMs (17,400)  Bonded IOBs (125)
NN2019 26,463 56,478 111 44 N/A N/A
NN2021 11,603 16,461 184 61 242 N/A
NN2023 28,004 33,974 219 20 1,412 N/A
RF-full-q 6,993 3,436 0 30 0 245

RF-EFST-q 3,653 2,811 0 15 0 53

TABLE IX

CLASS-BASED F1 SCORE (IN %) COMPARISON TO STATE-OF-THE-ART SYSTEMS ON THE BOT-10T DATA SET

| Normal | Reconnaissance | Information Theft

System | No. of features | DDoS/DoS
ProtEdge [23] 16 94.50
Lawal et al. [40] 10 100.00
Ullah at al. [33] 64 99.92
Our system 3 100.00

N/A 72.50 35.00
96.00 96.41 92.00
99.73 99.76 99.75
96.55 98.46 97.60

that the corresponding result was not available from the
publication. By comparing the existing NN-based accelerators
and RF-full-q, we found that the latter reduced resource
utilization significantly. Note that no DSP was used due to the
binarized operations. In contrast, the required IOBs exceeded
the number of available IOBs on the PYNQ-Z2. This was
caused by taking 15 features as input, meaning that a larger
FPGA would be required to deploy RF-full-q. Among the
compared accelerators, the proposed accelerator (i.e., RF-
EFST-q) was the most lightweight for all resource types. For
the logic configuration, the LUTs were the most used on-chip
resource; however, this represented only 6.97% utilization. For
the on-chip memory configuration, the proposed accelerator
(i.e., RF-EFST-q) consumed 10.71% BRAMSs. Compared to
the RF-full-q, the RF-EFST-q reduced the complexity of the
logic design by selecting a smaller subset of features at each
decision node. This reduction in complexity can lead to more
efficient hardware implementations. In addition, the RF-EFST-
q requires fewer BRAMs to store all decision trees because
reducing the number of features can lead to simpler trees with
fewer decision nodes [37]. Considering that the PYNQ-Z2
is one of the smallest FPGA boards used for IoT devices,
the proposed accelerator can potentially be deployed on
even smaller boards. This demonstrates the usefulness of our
work.

Next, we compared our implemented system against with
state-of-the-art systems in terms of classification performance
on the BoT-IoT data set. It is crucial to highlight that
our hardware implementation exhibited identical performance
to the quantized RF model (i.e., RF-EFST-3-q). Converting
the quantified RF model into our hardware accelerator on

the FPGA development board does not cause any loss in
classification performance. Table IX elaborates the class-based
F1 score for four distinct classes, including DDoS/DoS,
Normal, Reconnaissance, and Theft. Our system achieved
100.00% in identifying instances related to DDoS/DoS attacks,
underscoring its robust accuracy. In the Normal category,
the system demonstrated a strong score (96.55%), indicat-
ing its effective discrimination of normal network behavior.
The Reconnaissance and Theft categories also exhibited bal-
anced and robust performance. Compared with state-of-the-art
systems, our system achieves a comparable performance in
multicategory network traffic threat detection, consolidating its
effectiveness in complex network environments. Furthermore,
another highlight is that to achieve this performance, our
system utilizes only three features, which is much fewer than
the features used by the other systems. The reduced number
of features reflects our concise and efficient design in feature
engineering, which helps improve system performance and
mitigate the risk of overfitting.

Delving further into these results, our system exhibits
performance differences in multicategory network intru-
sion detection. The consistent high detection performance
of DDoS/DoS attacks is attributed to their distinct and
regular features. Contrary, our system falls slightly short
behind state-of-the-art systems in the Normal, Reconnaissance,
and Information Theft categories due to different reasons;
Recognizing the diversity of normal network behavior is
challenging since this diversity results in differences between
features. Also, the uneven distribution of normal samples
contributes to the performance decrease; Reconnaissance
attacks pose difficulty to detect due to their covert nature [4].
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TABLE X
COMPARISON OF INFERENCE TIME

Model Platform Clock (MHz) Time (ms)
RF-EFST-3-a9 ARM Cortex-A9 667 145.24
RF-EFST-3-i7  Intel Core i7 2,800 10.97

NN2019 FPGA (Zynq Z-7020) 76 9.02
NN2021 FPGA (PYNQ Z2) 100 0.44
NN2023 FPGA (PYNQ Z2) 100 2.24
RF-EFST-q FPGA (PYNQ Z2) 100 1.07

Our system may not have ideally captured the covert sig-
natures of the Reconnaissance attack; The lack of sufficient
Information Theft samples [23] impacts our system’s ability
to adequately learn and identify these attacks, resulting in
performance degradation. These findings underscore the com-
plexities of accurately identifying various types of attacks in
multicategory network intrusion detection. To address these
challenges, exploring data augmentation [38] and ensemble
learning [39] could be promising. These approaches can
enhance the robustness of the training data set and leverage
the strengths of multiple models to achieve more accurate
detection outcomes.

Lastly, we evaluated the inference time of the proposed IDS
when deployed on the PYNQ-Z2. Here, to facilitate a fair com-
parison, we performed the inference task on 22544 records
(similar to previous studies [9], [10], [36]). In this evaluation,
in addition to the above four accelerators, we also compared
a few software implementations of IDSs on an embedded
microprocessor (i.e., an ARM Cortex-A9, which is deployed
on the PYNQ-Z2) and a desktop PC (with an Intel Core i7
CPU). Specifically, we evaluated a software implementation of
the RF-EFST-3 for the ARM Cortex-A9 and Core i7 (hereafter
RF-EFST-3-a9 and RF-EFST-3-17, respectively). Through this
evaluation, we verified the effectiveness of parallelization in
our hardware accelerator.

The results are shown in Table X. As can be seen,
the software implementations on both the Cortex-A9 and
Core i7 struggled with real-time intrusion detection even with
the benefit of a high clock frequency and the feature reduction
by the proposed EFST. The inference times of RF-EFST-3-a9
and RF-EFST-3-17 were 145.24 ms and 10.97 ms, respectively.
In contrast, despite the lower clock frequency on the FPGA
(i.e., even 28x lower than the Core i7), FPGA accelerators
can detect intrusions more quickly because they all enjoy rich
parallelism inherent in the ML algorithms (both NN and RF).
Compared to the existing FPGA accelerators, the proposed
method (i.e., RF-EFST-3-q) achieved a shorter inference time
than the NN2019 and NN2023 methods. Specifically, the
inference time of RF-EFST-3-q was 8.43x and 2.09x (1.07 ms
compared to 9.02 ms and 2.24 ms) faster than NN2019
and NN2023 methods, respectively. In addition, the inference
time of the proposed method was comparable to that of
the NN2021 method. Note that although RF-EFST-3-q was
slightly slower, its inference time is sufficient for practical
application in industrial IoT (IIoT) contexts. In a typical IIoT
setting, sensors may be connected via low power wide area
networks, e.g., LoRaWAN or Narrowband IoT [41]. These
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networks were designed for low power consumption and long-
range communication at the cost of limited bandwidth and
higher latency compared to traditional networks.

For example, given that the average latency for data trans-
mission in an IloT network is 100 ms and the available data
rate is 50 Kb/s [42], we can calculate the number of records
that can be transmitted within the latency constraint as follows.
First, for RF-EFST-3-q, we set the size of each record to
48 bits because we have 16 bits for each of the three features

Record size (bits) = 48.

We then calculate how many records can be transmitted during
the data transmission latency
(Data rate x 0.1 s)

Record size
__ (50000 x 0.1)

48
~ 104 records.

Records transmitted in 100 ms =

Recall that the proposed IDS can process 22544 records in
1.07 ms, this result satisfies the constraints of the network’s
latency and bandwidth constraints and ensures real-time detec-
tion.

D. Discussion of Limitations and Future Direction

While our system has demonstrated remarkable
performance against current cyber threats, it has limitations
in handling ever-evolving attacks. For example, since our
system would confront the issue of data timeliness, regular
updates to the IoT network traffic data set will need to
be considered. Through such updates, we can effectively
adapt to the dynamic threat landscape and enhance the
system’s performance in addressing emerging attacks. Future
research can concentrate on advanced deep learning techniques
customized for resource-constrained IoT environments, aiming
to better capture latent features and enhance detection
performance for emerging threats.

Our work has made progress in deploying IoT IDS on
FPGA without due consideration for data privacy protection.
In sensitive industrial or medical applications, it is essential
to carefully consider data privacy. To address this concern,
integrating privacy-aware ML techniques (e.g., federated learn-
ing [43], [44]) into our system will provide a comprehensive
approach toward privacy protection. Federated learning allows
model training between distributed data sources without
directly sharing the original data, thus protecting the privacy
of the data. By incorporating privacy protection techniques,
we can make our system better suited for handling sensitive
data and enhance its practical applicability.

V. CONCLUSION

In this article, we have proposed a hardware/software
codesigned IDS system based on a lightweight RF classifier.
By applying our designed EFST, which aggressively reduces
the number of selected network traffic features, the proposed
method obtains high detection accuracy while reducing compu-
tational complexity (i.e., both hardware resources and detection
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time). In an experimental evaluation, with only three out of 15
features extracted from the PCAP data, we achieved 99.14%
accuracy on the BoT-IoT data set, which is equivalent to the
accuracy obtained using all 15 features. The corresponding IDS
demonstrated sufficiently low resource utilization on the PYNQ-
Z2 to address the issue of substantial memory usage found in
state-of-the-art IDS accelerators. By successfully addressing the
unique challenges associated with high-dimensional data and
constrained processing capabilities, these results demonstrate
that the proposed method is suitable for real-time intrusion
detection on resource-limited IoT devices.
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