19866

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

SC-CAAC: A Smart-Contract-Based Context-Aware
Access Control Scheme for Blockchain-Enabled
IoT Systems

Mpyana Mwamba Merlec

Abstract—Integrating blockchain technology with the Internet
of Things (IoT) facilitates seamless interaction between IoT
devices and systems to securely share, access, and exchange data.
However, ensuring adequate access control within blockchain-
enabled IoT (BIoT) systems remains a significant challenge. It
is often difficult to adapt existing access control mechanisms to
the dynamic and context-dependent nature of IoT environments,
necessitating a robust context-aware approach to ensure adequate
security and the privacy of resources within BIoT systems. In this
article, we propose a novel smart contract-enabled context-aware
access control (SC-CAAC) scheme for BIoT systems. It utilizes
context-aware access control models that consider contextual
information, including user profile, purpose, date, time, location,
resource, and operating environment specifications, to make
access control decisions. Smart contracts dynamically enforce
access control policies and manage access permissions, ensuring
that sensitive data and resources are accessible only to autho-
rized users. The proposed scheme leverages the immutability,
transparency, and decentralization of a blockchain that is shared
by multiple participants in a consortium network, removing the
need for a central authority to record and audit access control
policies and decisions and promeoting accountability and trust.
The implementation and evaluation of our proposed scheme using
the Hyperledger Besu blockchain demonstrates its effectiveness
and scalability in real-world scenarios.

Index Terms—Blockchain, blockchain-based Internet of Things
(BIoT), context-aware access control (CAAC), Internet of Things
(IoT), smart contracts.

I. INTRODUCTION

HE Internet of Things (IoT) has reshaped how we interact
with the world around us. IoT systems connect various
devices together to exchange data, providing new opportunities
for applications in industrial automation, smart factories, smart

Manuscript received 25 January 2024; accepted 16 February 2024. Date of
publication 29 February 2024; date of current version 23 May 2024. This work
was supported in part by the Korea University Funding; in part by the Institute
of Information and Communications Technology Planning and Evaluation
(IITP, High Assurance of Smart Contract for Secure Software Development
Life Cycle) funded by the Ministry of Science and ICT (MSIT) of the Korean
Government under Grant 2021-0-00177; in part by the Technology Incubator
Program for the Startup (TIPS) funded by the Ministry of Small and Medium
Enterprises, and Startups (MSS) of the Korean Government under Grant
S3306708. (Corresponding author: Hoh Peter In.)

Mpyana Mwamba Merlec is with the Department of Computer Science and
Engineering, Korea University, Seoul 02841, South Korea (e-mail: mlecjm@
korea.ac .kr).

Hoh Peter In is with the Department of Computer Science and Engineering,
Korea University, Seoul 02841, South Korea, and also with DAO Solution
Inc., Seoul 06247, South Korea (e-mail: hoh_in@korea.ac.kr).

Digital Object Identifier 10.1109/JI0T.2024.3371504

, Member, IEEE, and Hoh Peter In

, Member, IEEE

homes, and smart cities [1]. However, these systems also
introduce new challenges, particularly in terms of privacy and
security [2], [3], [4], [5], [6]. In I0T systems, many of the
devices may have limited computing power, memory, and/or
battery life, complicating the application of traditional security
mechanisms [4], [5], [6], [7]. IoT systems can also contain
sensitive data that require protection against unauthorized
access or modification [6], [7], [8]. IoT security, privacy, and
trust issues are discussed in [2], which emphasizes the need
for robust security and privacy mechanisms to protect sensitive
data and ensure user trust. In addition, [3] explored the
privacy and security challenges facing IoT and highlighted the
importance of encryption, authentication, and access control
mechanisms to mitigate security risks.

Blockchain technology has the potential to enhance the
security and privacy of IoT systems [9], [10], [11], [12], [13].
A blockchain is a distributed ledger that enables multiple
parties to share and verify data without the need for inter-
mediaries [9], [10]. Transactions on a blockchain are secured
through cryptography and, once recorded, they cannot be
voluntarily modified or deleted [11]. This makes blockchain
technology an attractive option for securing IoT systems,
particularly those that involve multiple parties with conflicting
interests [12], [13].

Access control mechanisms are an essential component of
secure IoT systems [5], [6], [7], [8]. Access control involves
granting or denying access to assets based on the identity
and permissions of the requesting users or services. Access
control policies may include rules, such as who can access
a resource, when they can access it, and what actions they
can perform on it [7], [14]. The integration of blockchain
technology and IoT systems has the potential to offer a range
of features for secure and decentralized data management [9],
[10], [11], [12]. However, it remains challenging to implement
effective access control within Blockchain-enabled IoT (BIoT)
systems [6], [11], [12], [13], [14], [15]. Existing access control
mechanisms, such as discretionary access control (DAC), role-
based access control (RBAC), attribute-based access control
(ABAC), and policy-based access control (PBAC) [5], [6], [7],
[8], [13], [14], [15], [16], are often not suited to the dynamic
and context-dependent nature of IoT environments, thus a
robust, context-aware strategy for the protection of security
and the privacy of resources within BIoT systems is required.

The centralized architecture of existing access control
systems also imposes certain limitations in terms of security,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8458-4706
https://orcid.org/0000-0003-4192-4122

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

scalability, and trust [14], [15]. In a centralized system, a
single authority or entity controls access control policies
and decisions, thus it represents a single point of failure
(SPF) targeted by malicious attacks. In addition, scaling these
systems to accommodate a large number of users or devices
can be challenging due to the concentration of control [13]. By
employing blockchain technology and smart contracts, access
control systems for BIoT can benefit from enhanced security,
decentralization, and resilience [13], [14], [15], [16], [17],
[18], [19], [20]. Smart contracts are self-executing agreements
encoded on a blockchain that automatically execute predefined
actions when specific conditions are met [10], [17]. Smart con-
tracts thus can play a crucial role in IoT access control systems
by providing a decentralized and automated mechanism to
manage permissions and enforce policies [18], [19].

To address the challenges associated with BIoT systems,
this article makes the following contributions.

1) We propose a novel smart-contract-based context-
aware access control (SC-CAAC) scheme for BloT
systems. The proposed scheme utilizes context-aware
access control (CAAC) models that consider contex-
tual information, including the user profile, purpose,
date, time, location, resource, and operating environment
specifications, to make access control decisions. The
goal of this scheme is to enhance security and privacy
and improve the granularity of access control by consid-
ering the specific context in which access requests are
made.

2) We design and build smart contracts that are inte-
grated with IoT decentralized applications (Dapps) to
dynamically enforce CAAC policies and manage access
permissions, ensuring that only authorized users can
access sensitive data and resources within a BIoT
system. Cryptographic techniques ensure data confi-
dentiality and integrity, protecting sensitive information
from unauthorized access or modification.

3) We propose a practical and comprehensive integrated
blockchain and IoT framework with a layered archi-
tecture. Blockchain is employed as a distributed and
decentralized approach for access control in an IoT
system. This approach uses a distributed ledger that
is shared among multiple participants in a consortium
network, removing the need for a central authority.
The decentralization, transparency, and immutability of
the blockchain ensure that access control policies and
decisions are immutably recorded and auditable by all
participants, enhancing trust and accountability.

4) Our proposed SC-CAAC scheme is implemented using
the Hyperledger Besu blockchain to verify its effective-
ness and scalability in real-world scenarios. Several use
cases are presented to demonstrate the applicability and
adaptability of the proposed scheme in various BloT
system settings.

The remainder of this article is organized as follows.
Section II presents the research background and related work,
while Section III describes the proposed SC-CAAC scheme.
Section IV describes the implementation and evaluation pro-
cess, with the use cases and applications of the proposed

19867

scheme outlined in Section V. Section VI discusses the limita-
tions and remaining challenges for this technology. Section VII
concludes and suggests future research.

II. BACKGROUND AND RELATED WORK

This section describes the background of the research and
reviews the literature on blockchain technology and smart SC-
CAAC.

A. Internet of Things

IoT is an evolving paradigm that facilitates the
interconnection of physical devices, including vehicles,
buildings, and appliances. These items are equipped with
sensors, software, and network connectivity, enabling them
to collect and exchange data [1], [2], [3]. IoT is a rapidly
growing field that has the potential to transform many
aspects of modern life, including healthcare, transportation,
manufacturing, and agriculture [1], [9], [10]. IoT systems
are characterized by a number of heterogeneous devices
and frequent data transmission, which requires efficient
processing, storage, and communication strategies [1], [5].
The architectural framework of IoT systems, which includes
connected devices, data transmission protocols, cloud or
edge computing platforms, gateways, data aggregation
analytics, and security mechanisms to protect data and
ensure privacy, has been detailed in [9], [10], [11], [12],
and [13]. The continuing evolution of IoT offers numerous
opportunities and challenges, particularly in terms of
security, privacy, and scalability, thus requiring collaborative
efforts among researchers, practitioners, and policymakers

(11, [2], [3], [4], [5].

B. Access Control Models for IoT

Access control in IoT is needed to ensure that only autho-
rized entities have the right to access, modify, or operate IoT
devices, data, and services [5], [6], [7], [8]. However, the
high heterogeneity of devices and diverse range of applications
and operational contexts associated with IoT systems com-
plicate the implementation of access control [6], [13], [14],
prompting the search for novel approaches and techniques.
The research reported in [5], [6], [7], [8], [13], [14], and [15]
has explored new technological advancements, emphasizing
scalable and flexible access control systems that can adapt to
dynamic IoT environments.

As summarized in Table I, a number of traditional access
control models, such as DAC, RBAC, ABAC, and PBAC,
have been adapted for IoT security [5], [6], [7], [8], [13],
[14], [15], [16]. DAC governs access to resources based on
the discretion of the resource owner [5], [6], [7]. It is simple
and flexible but can lack fine-grained control and struggles
in dynamic IoT environments [6]. RBAC, which is known
for its high performance, scalability, and straightforward
administration, cannot fully address the contextual nuance of
IoT systems [13], [14], [15], [16]. ABAC considers various
attributes of users, resources, and the environment to make
access decisions [14], [16] and thus provides fine-grained con-
trol, adaptability, and scalability. Similarly, the PBAC model

19868

TABLE I
COMPARISON OF EXISTING ACCESS CONTROL MODELS

Property DAC RBAC ABAC PBAC CAAC
Complexity Low Low High Moderate High
Granularity Low Low High Moderate High
Flexibility High Moderate High High High
Administration Simple Simple Complex Complex Complex
Performance Low High High High High
Scalability High Low High High High
Security Level Low High High High High

uses high-level policies to make access control decisions,
incorporating real-time contextual information [6], [14] to
provide flexibility, adaptability, and fine-grained authorization.
However, with the exception of DAC and RBAC, these options
are characterized by complex policy management [7], [14],
[15], [16], while defining and managing policies can be
challenging, leading to potential policy conflicts.

An access control architecture for a secure IoT plat-
form is proposed in [8], focusing on robust mechanisms to
facilitate secure and authorized interactions. He et al. [15]
reconsidered access control and authentication mechanisms,
addressing challenges posed by smart home-based IoT devices
and proposing new approaches to enhance security. These
advancements highlight the importance of integrating con-
textual factors, such as the location, time, device type, and
environmental conditions, into access control decisions to
enable more dynamic and effective policies, thus enhancing
the security and operational efficiency of IoT systems.

CAAC models [20], [21], [22], [23], [24], [25], which
incorporate contextual information, such as the user iden-
tity, location, time, IP address, device security status, and
resource sensitivity into access decisions, are increasingly
useful in IoT settings. A comprehensive review of CAAC
systems, particularly in cloud and fog networks, is provided
in [20], highlighting the evolution of and challenges in this
area. Context-based access control models that consider the
environmental context of access requests have also been
developed [21], emphasizing the importance of environmental
factors in access decisions. In addition, integration of contex-
tual information in cloud computing environments for adaptive
policy enforcement is explored in [22].

Other research has focused on wuser context and
capability-attribute-based approaches for IoT access con-
trol [23], [24], [25], assigning specific capabilities to entities
to facilitate granular access control. Context-aware attribute-
based models have been proposed in [23] and [24] to ensure
the security of sensitive data such as electronic health records
(EHRs) by taking into account critical incidents and context-
specific factors. However, because these models have been
proposed for centralized IoT systems, they are inherently
susceptible to single points of failure and exhibit limitations
in terms of security, privacy, and scalability.

C. Blockchain IoT and Smart Contracts

BIoT involves the integration of blockchain technology with
IoT systems [9], [10], [11], [12], [13], [25]. BIoT has several
use cases across various industries, including smart cities,

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

smart farms and factories, logistics and supply chains, smart
homes, smart grids, and appliances [10], [11], [12], [13], [14].
The use of blockchains can enable the secure and decentralized
exchange of data between IoT devices to increase the security
and privacy of IoT networks [12], [13], [14], [15]. In BIoT
systems, IoT devices can transmit and store encrypted data
on the blockchain, creating tamper-resistant records of shared
transactions. Data confidentiality, integrity, and availability
can be ensured by using decentralized persistent storage
systems, such as the interplanetary file system (IPFS). Smart
contracts, which practically originated with the Ethereum
blockchain [26], are self-executing contracts in which the
terms of agreements are directly built into the code. They can
be used to automate on-chain access control decisions and
provide tamper-proof audit trails [10], [17]. Smart contracts
play a crucial role in BIoT systems.

Blockchains are mainly categorized based on the
network type and access permissions [26], [27], [28]. Public
blockchain networks, such as Bitcoin and Ethereum, are
open to everyone without restrictions [26]. In contrast,
Private blockchain networks, such as Hyperledger Fabric,
restrict access to specific participants of an organization [27].
Consortium blockchain networks are governed by a group of
organizations and allow a controlled set of participants [28],
while hybrid blockchain networks combine both private and
public features [28]. In addition, it permissionless blockchains
allow anyone to participate, while permissioned blockchains
require explicit permission. The choice of blockchain type
depends on numerous factors, including access control needs,
governance, performance, and scalability [9], [10].

D. Blockchain and Smart-Contract-Based Access Controls
for IoT

Blockchain systems offer a decentralized and secure frame-
work for access control in IoT [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42]. The inherent
properties of these systems, including their immutability,
transparency, and distributed consensus, can be used to
enhance the security and efficiency of access control systems
in IoT environments. Previous studies [29], [30], [31] have
explored various blockchain-based solutions for IoT access
control. Study of integrating a blockchain system with IoT
is proposed in [32] for secure healthcare digital systems,
using the transparency and immutability of blockchains to
ensure data integrity and privacy in healthcare applica-
tions. A mutual authentication system using blockchain is
presented in [34], with fine-grained access control features
introduced to achieve secure Industry 4.0. In this frame-
work, the blockchain is employed to improve the security
and efficiency of access control in industrial environments.
Smart contracts are used in [35] as a capability-based access
control mechanism in decentralized IoT systems. In [36], the
focus is on user capability-based access control strategies for
situational awareness. A consortium capability access control
approach using a blockchain system is proposed in [37] to
facilitate secure and efficient resource sharing among IoT
devices.

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS 19869
TABLE II
COMPARISON OF THE PROPOSED SCHEME WITH RELATED WORK

Reference Domain CAACT sC? XACML APMS® APEA® S &P° Architecture Blockchain Network Built PE’
5] IoT X X v X X IV Centralized X Private v X
[13] BloT X v X X X VI X Decentralized v Public v v
[15] HIoT X X X X X Vi X Centralized X Private v v
[19] EHR X v v X v I Decentralized v Private v v
[21] Mobile v X X X X VIV Centralized X Private X X
[22] PaaS v X v v v IV Centralized X Private 4 v
[23] EHR v X X X X VI X Centralized X Private v v
[24] EHR v X v X X VI X Centralized X Private v v
[25] BloT X v X X X Vi X Decentralized v Public v v
[29] BIoT X v X X X x4 Decentralized v Private X X
[31] Edge X v X X v VIV Decentralized v Private v v
[33] IoMT X v X X v VI X Decentralized v Public X X
[34] Industry 4.0 X v X X 4 I Decentralized v Private v v
[35] BloT X v X v v VIV Decentralized v Private v v
[36] Space v v X 4 v I Decentralized v Private v v
[37] BIoT X v X v v x4 Decentralized v Consortium v v
[38] General X v v v X VIV Decentralized v Consortium v v
[39] - v v X X v VI X Decentralized v Public v v
[40] BloT v v X X X Vi X Decentralized v Hybrid v v
[41] IoMT v v X X v VI X Decentralized v Private v v
[42] Supply chain X v X v X x4 Decentralized v Private v v
[43] SDN/NFV-6G 4 v X X v I Decentralized v Private v v

This work BloT v v v v v x4 Decentralized v Consortium v v

! Context-aware access control 2Smart contract °Access Policy Modeling Schema *Access Policy Enforcement Algorithm °Security and Privacy ' Performance evaluation

A smart-contract-enabled dynamic consent and fine-grain
access control management approach using a blockchain
system is proposed in [38] for personal data utilization
that complies with the General Data Protection Regulation
(GDPR). It allows individuals to maintain granular control
over their data and make informed decisions regarding its
usage. In [39], a dynamic context-aware RBAC mechanism
using a blockchain system is proposed for decentralized
IoT environments. Research in [40] introduces blockchain-
based context-aware authorization management as a service
for secure resource sharing in IoT. A blockchain-based
context-aware CP-ABE encryption schema for the Internet
of Medical Things (IoMT) is discussed in [41], combining
a blockchain with context-aware attribute-based encryption
for enhanced security. An access control framework for
blockchain-based supply chain systems is presented in [42].
Finally, [43] proposes a context-aware authentication han-
dover and secure network slicing approach using a DAG
blockchain system for edge-assisted SDN/NFV-6G envi-
ronments, ensuring secure handovers based on contextual
information.

Table II compares our proposed SC-CAAC scheme for
BIoT systems with related strategies. Our approach aims
to address the limitations of previous methods and enhance
the security and privacy of data in BloT systems. CAAC
policies and permissions are dynamically enforced using
smart contracts, ensuring that only authorized users have
access to assets within the BIoT environment. The decen-
tralized nature of blockchain mitigates single points of
failure, making it difficult for attackers to compromise
the system. Furthermore, the use of consensus mech-
anisms in the blockchain system ensures tamper-proof
policy enforcement, reducing the risk of unauthorized
access.

User (Uy) 8

Smart Home Context (C,)

CAACL Policy
<policy_id>
<version 0.1>
<policy_rules>
<rule#1>
<context_cond#1>
<context_cond#2>

CAACL Policy
<policy_id>
<version 0.1>
<policy_rules>
<rule#1>
<context_cond#1>
<context_cond#2>

<context_cond#n>

\ | <frules1>

\| </policy_rules>
<proof>

<context_cond#n>
<ruletl>
</policy_rules>
<proof>

Bl Context-Aware ACL
‘ Smart contract
@ Blockehain
World state DB/IoT Data DB
Full node

Fig. 1. Use cases of the proposed SC-CAAC scheme for BIoT systems.
CAACL: Context-aware access control list.

III. SYSTEM DESIGN

Fig. 1 illustrates the proposed SC-CAAC scheme for BloT
systems. This scheme can be adapted to various use cases,
including smart cities, smart mobility, smart homes, and
Industrial IoT (IIoT). The use of smart contracts operating
on IoT gateways or the nodes of the consortium blockchain
network allows autonomous and reliable transactions without
needing a central trusted authority. This approach uses a

19870

IoT Device Layer

* * * * Environment Context

Sensors/Actuators (i.e., Smart Home, Industry, etc.)

Sensors/Actuators

Send access request (R,-)¢ ZigBee Zwave Wired Wi-Fi LTE/5G T Response/Operation denied

Blockchain-based IoT Decentralized Application Layer

Service Integration APIs
Wallet API Web3 ABI | RPC | SDKs

Smart Contract-based Context -aware Access Control System

Context Manager Resource & Service Manager
Context Context CAACL Pohcy Resource Service
Modeler Analyzer Ru]ei Manager Manager

Context-aware Access Controller Controller

User Profile) dfzclstw?
Manager information

Contextual
information

Policy
Enforcer

Policy

Authenticats g.q
Ly Administrator

Blockchain Technology Layer

Smart Contract ‘ Consensus ‘ Transaction Blockchain
M

Fig. 2. Layered architecture framework of the proposed SC-CAAC scheme
for BIoT systems. ABI: application binary interface; API: application interface,
DB: database; RPC: remote procedure call; and SDK: software development
kit.

[—
‘ |_ State DBj

CAAC model to make informed access control decisions.
The model considers contextual information, such as the user
profile, purpose, date, time, location, resource, and operating
environment specifications to determine whether to grant or
deny access to a resource. For example, in a smart home
scenario, a smart lock can use context-aware smart contracts
to assess access rights, allowing or denying entry based on
predefined conditions. Similarly, a smart thermostat can be
regulated using smart contracts to access online energy pricing
data and adjust temperature settings during peak pricing peri-
ods to optimize energy usage. SC-CAAC can thus automate
and decentralize access control for IoT devices in a BloT
system, enhancing its security, transparency, and ability to
audit interactions and transactions.

A. System Architecture

Fig. 2 presents the layered framework architecture of our
SC-CAAC scheme for BIoT systems. It consists of the
following three layers.

1) IoT Device Layer: This layer comprises heterogeneous
IoT devices, which encompass the physical devices and
sensors that collect data from the physical environment.
These devices can include various types of sensors,
actuators, and embedded systems. The BIoT network
ensures seamless connectivity and data exchange among
IoT devices using various protocols, standards, and
technologies, which enable reliable and efficient com-
munication, such as Bluetooth, Wi-Fi, ZigBee, Zwave,
and cellular networks (i.e., LTE or 5G). The identity
management and certificate issuance for IoT devices
can be managed by trusted entities within the BloT
consortium network. These entities, possibly IoT device
manufacturers or network administrators, are responsible
for registering devices and issuing certificates, ensuring
a secure identity verification process.

2) BloT Dapp Layer: This is a middleware layer that
provides essential services and functionalities enabling

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

interoperability, data processing, and integration with
BIoT Dapps. It includes two main modules.

a) Service Integration Application Interfaces (APIs):
Services integration APIs play an essential role
in facilitating interactions between IoT devices
and the blockchain network. The integration APIs
and protocols include Web3 and wallet APIs,
application binary interfaces (ABIs), remote pro-
cedure calls (RPCs), and software development
kits (SDKs). These enable secure authentication,
data exchange, and execution of smart contract
functions in BIoT systems. They allow IoT devices
to operate in Dapps and benefit from the trans-
parency, immutability, and security provided by
the blockchain. The wallet APIs are used for
managing cryptographic keys and digital wallets
associated with IoT devices. It provides secure
storage and generates signatures for transactions
using private keys, allowing IoT devices to authen-
ticate and interact securely with the blockchain
network.

b) SC-CAAC System: This consists of a number
of core components. a) The context manager
contains two subcomponents: i) the context mod-
eler, which is used to define and represent the
contextual information relevant to access control
decisions by capturing data, such as the user
profile, purpose, date, time, location, operating
environment, and resource specifications and ii) the
context analyzer, which processes the contextual
data, applies analytics, and generates meaningful
insights that are used by the context-aware access
controller. b) The CAACL policy rules database
(DB) serves as a repository for predefined CAACL
policy rules, specifically designed to accommo-
date the contextual information captured. c) The
context-aware access controller consists of several
subcomponents that are responsible for checking
and enforcing contextual constraints of access con-
trol policy rules. These subcomponents are listed
as follows.

i) The authenticator verifies the authenticity and
identity of users or devices seeking access to
the resources of the BIoT system.

ii) The user profile manager manages user profiles
and maintains relevant information, such as
user roles, permissions, and associated contex-
tual attributes.

iii) The policy administrator handles the admin-
istration of the access control policies. It is
used to define, update, and remove policies as
required.

iv) The policy enforcer evaluates the CAAC rules
stored in the CAACL policy rules DB against
the contextual constraints provided by the
context manager and makes access control
decisions, i.e., granting or denying access to
resources and services within the system.

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

d) The resource and service manager oversees
the management and provisioning of resources and
services within the system. It consists of two sub-
components: i) the resource manager handles the
allocation and management of resources (e.g., data,
devices, and services) and it ensures that access to
resources is regulated according to CAAC policies
and ii) the service manager, which manages the
availability and accessibility of services provided
by the system and it coordinates the provisioning of
services considering access control decisions made
by the context-aware access controller.

3) Blockchain Technology Layer: This consists of several
components working together to operate a blockchain
network. These components include: a) the smart con-
tract manager, which is responsible for managing and
executing smart contracts within the blockchain network,
facilitates the deployment, storage, and retrieval of smart
contracts; b) the consensus manager is essential for
maintaining the integrity and consensus of the state of
the blockchain network; c) the transaction manager han-
dles the processing and validation of transactions within
the blockchain network and ensures that transactions
are properly formatted, have valid signatures, and meet
all of the criteria specified by the blockchain network;
d) the blockchain manager is in charge of managing the
blockchain’s shared ledger; and e) the state DB stores
and maintains the state of the blockchain network. It
is updated and synchronized as new transactions are
processed and blocks are added to the blockchain.

This architecture provides a structured approach for the
design and implementation of efficient and robust CAAC
schemes for BIoT systems. Each layer focuses on specific
tasks and responsibilities, contributing to the overall function-
ality and efficiency of the IoT ecosystem.

B. CAAC Policy Management

CAAC policy management involves the defining, deploy-
ing, updating, and revoking/removing of policies. It also
enforces access control policies by considering the contextual
information of the system and users. CAAC policies are
defined and managed by the BIoT system administrators
(designated based on their role and authority within the
consortium network) within the SC-CAAC.

1) CAACL Policy Definition: CAAC policy P; can be
defined as in

Pi = {d.v, P(Ry), P} (1)

where d refers to the policy description, v is the policy version,
and P(R,) is the aggregation of defined policy context-aware
rules, which is expressed in

P(Rn) = fu(R;), j € [1,n] 2)

where R; is a policy rule from predefined context-aware
policy rule set {R1, Ra, R3, ..., R,}. Equation (3) is used to
formally define R;

R; = {€,U, R,C(Rm). A, p} (3)

19871

1, enable

5= 0, disable @
where £ denotes the policy rule effect, which is a binary
variable as defined in (4). U represents a set of authorized
users defined as U = {uy,up, u3, ..., uy}. R refers to a
set of resources to which rule is applied, defined as R =
{r1, 72, 73,...,). Ais a set of authorized actions defined as
A={ay,ay,as,...,a,}, and p represents the permission state
defined in (5). Permission state p can be either it is 1 (allow)
or 0 (deny).

1, allow
= 5
P 0, deny. ©)
Context-aware constraint rule C(R,,) can be formally
defined using

C(Rm) =fn(Ce), k€1, m] (6)

where C., is the kth of m defined context constraints of
CAAC policy rule R, fin(Ce,) is a function that aggregates
context constraint-factor parameters and maps them onto the
corresponding R,,, and P denotes the policy creation proof
document. This document includes type I, created timestamp
t, creator identifier Uj;, verification method V, policy rule hash
h, signature S, and current status s of the proof, as defined in

P={M,1,U;,V,h,S,s). (7)

The extensible access control markup language
(XACML) [44] is used to define models for the SC-CAAL
policy rules for simplicity and standardization purposes. Code
Listing 1 presents an SC-CAACL policy definition in JSON
profile for XACML [38], [45]. It consists of three main
sections.

1) The policy header section provides basic policy
information, including the name, description, and
version.

2) The policy rules section contains CAAC rules defined
within the policy. This code snippet contains one rule,
but several rules can be defined with an enabling
effect. The policies rules section specifies the authorized
users, resources, and various contextual constraints, such
as user roles, dates and periods, weekdays, location
ranges, places, devices, and authorized IP addresses. The
allowed actions for this rule are also defined.

3) The proof section provides cryptographic proof of the
policy’s authenticity and integrity. It includes the signa-
ture, creation timestamp, creator identifier, verification
method, policy rule hash, signature value, and status.
This SC-CAACL policy schema allows granular access
control policies to be enforced based on contextual
factors.

Algorithm 1 describes the proposed SC-CAAC policy
setup and registration process. The parameters received by
the algorithm include the user account address U,, session
authentication status Ag, and CAACL policy setup P; =
{d, v, P(Ry), P}. It begins by verifying whether the requesting
user account is authorized and whether the session status is
authenticated. It then parses and extracts all CAACL policy

19872

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

{"policy_id":"ContextAwareAccessPolicy#01",

» "policy_desc": "CAACL policy for BIoT",

;s "policy_version": "1.0",

4+ "policy_rules": [

{"rule_id":RL#001,

6 "effect": "enable",

7 "authorized_users":["U0OO1","UO02"],

8 "resource": ["ROO1", "RO02"],

s "context_constraints": {

10 "user_role": ["admin"],

1 "date_period":{

12 "start_date":"2024-06-01 T15:10:202",

13 "end_date":"2025-05-31 T15:10:192"},

14 "time_period":{"start_time":"Ol:OO",
"end_time":"23:59"},

15 "weekdays": ["Mon", "Tue", "Wed", "Thu", "Fri"],

16 "location_range":{"latitude":40.7128,
"longitude":774.0060,"radius":SOOOO},

I "place":["Office", "Home", "School"],

18 "device": [{"id":"M24", "type":"Mobile"}],

19 "authorized_ip":["127.0.0.%"] },

20 "action":["setDevice ()", "getIoTData()"],

21 "permissions": "allow" }},

» "proof": [
{"type": "Ed25519Signature2022",

24 "created": "2023-06-01 T15:05:20z",

25 "creator": "143Cda6...54f2bc2",

26 "verificationMethod": "v2e...gb6x/v#01",
"policyRuleHash": "d4FxhTu...GMg6ZcB",

2 "signatureValue": "b2GeZhk...aYg6ZbA",

» "status": "activated" }]

o}

Code Listing 1. SC-CAAC policy JSON schema for XACML

Disabled Revoked

Policy State
Transition

Revoked

Fig. 3. SC-CAAC policy and policy rule state transition diagram: None (0),
Created (1), Enabled (2), Disabled (3), and Revoked (4).

Enabled

Disabled
Rule State
Transition

attributes and checks whether P; is registered already to avoid
duplication and whether the given proof is valid. It then maps
all policy context constraint rules R; of P;, collects timestamps
t, and then pushes the policy set’s instance to the blockchain.
Transaction hash T}, and block number By, are returned upon
successful execution of the transaction. In the case of failure,
all the policy states are reverted to their initial states.

2) SC-CAAC Policy and Rule State Transitions: Fig. 3
illustrates the state transitions for both SC-CAAC policy and
the policy rule lifecycle. For the Policy State Transition, the
process begins with the Created state (1), suggesting the
initiation of a policy from None (0), indicating the absence or
nonexistence of a policy. Following its creation, the policy can
be Enabled (2), making it active and enforceable. However,
there might be scenarios where it is necessary to temporarily
deactivate the policy, leading the Disabled state (3). Finally,
if the policy is no longer relevant or required, it transitions to
the Revoked state (4), making it invalid. In parallel, the Rule

Algorithm 1 CAAC Policy Setup and Registration

Setting parameters: Contract address SC,, admin address A;, ACM
Input: Account address U,, AuthStatus A, Policy P; =
{d,v,P(Rn), P}
Output: 7}, Byo

1: while (U, A, Pild, v, P(Ry), P]) do

2 if (U, # NULL) and (U, € U) then

3 if Ay = true then

4: Parse and extract all attributes of CAACL policy P;

5

6

7

if (P; ¢ P) and (isValid(P;[P]) = true) then
for all R; in P(R,) do
Map all context constraints:
Rj[] <~ {$7 Z/{, R7 C(Rm)» Avp}

8: return mapped CAACL Policy rules P(Rpy)
9: end for ~
10: Map all P; attributes P;[d, v, P(Rn), Pl
11: Collect a timestamp ¢ < Datetime.now()
12: sc.newPolicy.push(P;ld, v, P(Rx), P])
13: Compute the transaction: T = [i, hash(P;), t)]
14: Emit sc.newPolicyAdded(P;, Uy, t)
15: return the transaction execution state (7}, Byo)
16: else _
17: return “Policy proof P;[P] is not valid.”
18: end if
19: else
20: return “User session is not authenticated: A; = false"
21: end if
22: else
23: return “User account address is not authorized: U, ¢ U"
24: end if

25: end while

State Transition presents a more nuanced picture. The None
state (0) signifies the absence or noncreation of a rule. After
it is formulated, the rule enters the Created state (1). Much
like its policy counterpart, the rule can then be Enabled (2) to
be actively applied or Disabled (3) for temporary deactivation.
The final Revoked state (4) marks the rule’s termination, and
it is no longer valid. Notably, the diagram in Fig. 3 shows
potential reversals between states, highlighting the dynamic
nature of policy and rule management.

3) CAACL Policy Rule Checking and Enforcement:
CAACL policy rule evaluation is a process in which it is
determined whether requested access should be granted or
denied based on the defined policies and the current context.
Policy enforcement involves mechanisms to enforce access
control policies and restrict unauthorized access attempts.
These mechanisms may include authentication, authoriza-
tion checks, encryption, and other security measures. Policy
enforcement ensures that access control decisions are made
correctly and consistently by computing all relevant CAACL
policy rules from the access control matrix (ACM).

The ACM, which defines access permissions between spe-
cific subjects and objects, is defined in (8), where Q; is
the access request and C.a) is the state of the context
constraint condition. For example, let C.a) be a context
constraint condition for which the request location is within
the authorized range, defined as a latitude (£) of 40.7128,
longitude (L) of —74.006, and a radius (r) of 500000 m.
Equations (9)—(11) [46] are used to determine if the request

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

location is within the authorized range

Qi Cowy Comy Com Con(a)
9 1 0 0 e 0
o) 1 1 0 e 1
ACM = | 0, 1 1 1 .. 1 3)
O 1 0 1 e 0
A AL
a = sin® <7¢> + cos ¢ 1. cos ¢2. sin2(7>.)

Equation (9) calculates the value of a, which is an
intermediate value used in the Haversine formula [46]. A¢ is
the difference in latitude between two points, while ¢ 1 and ¢2
are the latitudes of these two points. AX denotes the difference
in longitude between the two points. Equation (10) calculates
the value of ¢, which is the angular distance between the points
on a sphere. atan2 is a two-argument arctangent function that
is used to compute the inverse tangent of the quotient of
its arguments. Finally, in (11), the distance is calculated by
multiplying the angular distance ¢ by the radius of the Earth R.
Thus, the C.,(a) constraint is satisfied if distance < r for the
request location is within the location range radius

c= 2.atan2(ﬁ, «/1_—a>

distance = R.c.

(10)
(1)

Predefined policy rules are enforced by computing Q;(A),
which is the control decision for request access Q;. It is 1
(granted) if all of the condition state values C.,(a) for context
constraints in a row of the ACM are 1 (True), as expressed in

1, granted (¥ Co =1, k € [1,m])

. . (12)
0, denied (otherwise).

Qi(A) = {
Algorithm 2 depicts the verification process for the CAACL
policy rules. The received input parameters include user
account address U,, session authentication status Ay, access
request Q;, and relevant CAACL policy P;. The algorithm
begins by verifying whether U, is authorized and A; is
authenticated. It then checks whether P; exists within the
predefined CAACL policy set P and whether P;[P] is valid. If
all policy context constraint rules are verified, their verification
states are updated in the ACM to 1 (true) or O (false). Finally,
the updated ACM is returned as output, which is used by the
policy enforcer for access control decision enforcement, as
described in Algorithm 3.

Algorithm 3 receives input parameters that include user
account address U,, session authentication status A, access
request Q;, CAACL policy P;, and the relevant states in the
ACM. Tt begins by checking whether U, is authorized and 4;
is authenticated. Next, it determines whether access request
Q; and the states of the relevant policy context constraint
rules Q;[Ce,(a)] and P; exist in the ACM and P, respectively.
The validity proof P;[P] and the state values of all policy
contextual constraint rules Q;[C,,(a)] are then verified. If the
proof is valid and all Q;[C¢, (a)] in the ACM are 1 (true), then
the decision state Q;(A) of the access request is updated to
1 (true) and access is granted. Otherwise, it is updated to O
(false) and access is denied.

19873

Algorithm 2 CAAC List Policy Rules Verification

Setting parameters: Contract address SC,, admin address Ag,
CAACL Policy P = {d, v, P(Rn), P}, ACM

Input: Account address U,, AuthStatus Ag, Access request Qj,
Policy P;

Output: ACM updated

1: while (U,, Q;, P;, As) do

2 if (U, € U) and (A = true) then

3 if (P; € P) then _

4: if sc.isValid(P;[P] = true) then
5: for all R;in P; do
6.
7
8

for all Cr, in R; do
if (C, # NULL) A (Ce, = true) then

update rule context constraint state:
Caa) < 1

9: else

10: update rule context constraint state:
Cop(a) < 0

11: end if

12: Save C (a) in ACM: ACM < C¢,(p)

13: end for

14: end for

15: return ACM

16: else _

17: return “P;[P] is not valid.”

18: end if

19: else

20: return “P; does not exit.”

21: end if

22: else

23: return “U, not authorized or session .Ag not authenti-

cated.”
24: end if

25: end while

IV. IMPLEMENTATION AND EVALUATION

This section discusses in detail how the proposed SC-CAAC
scheme is implemented and evaluated.

A. Implementation Details

Table III summarizes the implementation and experimental
setup. Hyperleder Besu [47] is adopted to build the prototype
for our proposed scheme. Hyperledger Besu [47] is an open-
source blockchain platform compatible with Ethereum. It
supports several consensus protocols and provides a smart
contract execution environment, monitoring and management
tools. It also offers fine-grained access controls with data
privacy options for permissioned blockchain networks. Using
Hyperledger Besu [47], we establish a consortium blockchain
network that enables multiple organizations to collaborate and
participate in a permissioned BIoT network with enhanced
privacy and security features. The Solidity [48] programming
language is used to develop our smart contracts, which run on
Ethereum Virtual Machines (EVMs) that are compatible with
Hyperleder Besu. The architectural model of the implemented
smart contracts is described in the Appendix.

The programming languages, libraries, APIs, and frame-
works used to build our Dapps include Python, Flask,'

1 https://github.com/pallets/flask/

19874

Algorithm 3 CAAC Policy Rules Enforcement

Setting parameters: Contract address SC,, admin address Ag,
CAACL Policy P = {d, v, P(Rn), P}, ACM

Input: Account address U,, AuthStatus Ag, Access request Qj,
Policy P; Output: Q;(A) Access Granted/Denied

1: while (Ug, Q;, P;, As) do

2: if (U, € U) and (Ag = true) then

3: if (Q; € ACM) then

4: if (P, € P) then _

5: if sc.isValid(P;[P] = true) then

6: if Qi[cck(A)] = 1 for all (Qi[cck(A)] in ACM)

then

7: update access control decision state: Q;(A) < 1

8: save Q;(A) in ACM: ACM <« Q;(A)

9: return “Access granted: Q;(A)"

10: else

11: update access control decision state: Q;(A) < 0

12: save Q;(A) in ACM: ACM <« Q;(A)

13: return “Access denied: Q;(A)"

14: end if

15: else _

16: return “P;[P] is not valid.”

17: end if

18: else

19: return “P; does not exit.”

20: end if

21: else

22: return “Q; does not exist in ACM.”

23: end if

24: else

25: return “U, not authorized or session Ag not authenti-
cated.”

26: end if

27: end while

ECDSA,? RESTful, and Web3.py.3 Metamask wallet* is used
to manage cryptographic keys and create and verify transaction
signatures. RPCs are used to interact with the blockchain
network nodes through the Web3.py API in the smart con-
tracts. Tessera is used as a private transaction manager.
Raspberry Pi [25] serves as a gateway, allowing low-resource
IoT devices to run the smart contracts integrated within the
Dapps to interact with the blockchain.

B. Performance Evaluation

The proposed SC-CAAC system is evaluated using the
following performance metrics.

1) Space Complexity and Deployment Costs: This analy-
sis examines the storage requirements and costs associated
with smart contract deployment, noting the importance of
striking a balance between resource usage and costs within
a blockchain network. Table IV summarizes the space and
deployment costs of the core SC-CAAC smart contracts.
The CAAC_Rule_Mgr.sol smart contract is the costliest,
using 12.99 kB and requiring 5057248 Gwei of gas,
which is equivalent to 0.00506 ETH. CAAC_Policy_Mgr.sol
is less costly, using 5.15 kB and 2090226 Gwei
(0.00209 ETH) for deployment. The interfaces for these

2https://pypi.org/project/ecdsa/
3 https://web3py.readthedocs.io/en/stable/
4https://metamask.i0/

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

TABLE III
DETAILS OF THE IMPLEMENTATION AND EXPERIMENTAL SETUP

Consortium Blockchain Network

Parameters Values

Network BloTNet (Hyperledger Besu Consortium)
Chain ID 1337

Number of nodes 3 members, 4 validators, 1 rpcnode
Consensus protocol IBFT 2.0

Epoch interval 30,000

Step period/Average block time (s) 5

Request timeout (s) 10

Total difficulty 0x1

Gas limit 16,234,336

Average gas used 1,181.19

Average block size (bytes) 845.2

Number of Tx per block 1

Smart contract language Solidity
Solidity compiler version v0.8.20
EVM Version London

Private transaction manager Tessera

Hardware, Dapp Development, Deployment, and Testing

Values
6-Core Intel i5 3.1 GHz, RAM: 128GB
Pi 4 model B, 4GB RAM, OS: Raspbian

Parameters
Computing Server (iMac Pro)
IoT devices gateway

Digital wallet MetaMask v10.23.3
Dapp language, frameworks, and APIs Python, Flask, web3.py, JSON-RPC API
Average encryption time (ms) 254

TABLE IV
SPACE AND DEPLOYMENT COSTS OF THE CORE SMART CONTRACTS

Deployment Cost
No Smart contract POy

Size (KB) Gas Used | ETH
(1) CAAC_Policy_Mgr.sol 5.15 2,090,226 0.00209
2) ICAAC_Policy_Mgr.sol 1.05 - -
(3) CAAC_Rule_Mgr.sol 12.99 5,057,248 0.00506
4) ICAAC_Rule_Mgr.sol 1.78 - -

T (Gwei)

contracts, ICAAC_Policy_Mgr.sol and ICAAC_Rule_Mgr.sol,
have sizes of 1.05 and 1.78 kB, respectively. Although they
have important roles, they do not incur specific deployment
costs due to their auxiliary nature. Interfaces can be used to
define the methods and events available in smart contracts [48].
They are essential for interacting with deployed contracts from
external scripts and applications. This cost evaluation provides
insight into the resource allocation and efficiency of the core
contracts in the SC-CAAC approach.

Table V summarizes the read and write time complexity
and transaction execution gas costs for the main smart
contract functions in SC-CAAC. The majority of the
functions have a consistent time complexity of O(1) for read
operations. However, for rule write functions setCAACRule,
EnableRule, DisableRule, RevokeRule, authorizeUser, and
removeUserAuthorization have a slightly higher O(2)
complexity for these operations. For policy and contract setting
write operations, functions SetCAACPolicy, EnablePolicy,
DisablePolicy, RevokePolicy, setCAACRule, EnableRule,
DisableRule, RevokeRule, authorizeUser, removeUserAutho-
rization, DisableContract, and EnableContract have a
consistent O(1) complexity. Of particular note, getAllPolicies
and getAllAuthorizedUsers have linear time complexity O(n)
for read operations. This indicates that their execution
time may increase proportionally with the amount of data
processed.

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

TABLE V
TIME COMPLEXITY AND TRANSACTION GAS COSTS OF KEY FUNCTIONS

No Contract Functions Read Write Gas Cost" Cost in ETH
(1) SetCAACPolicy o(l) o(l) 213,504 0.00021
2) EnablePolicy o(l) o(l) 45,548 0.00005
3) DisablePolicy o(l) o(l) 45,714 0.00005
) RevokePolicy o(l) o(1) 45,943 0.00005
(5) GetPolicylnfo o(l) - - -

(6) GetPolicyStatus o(l) - - -

) GetPoliciesNumber o(l) - - -

8) getAllPolicies O(n) - - -
) setCAACRule 0oQ2) o(l) 388,208 0.00034
(10) EnableRule oQ2) o(l) 63,957 0.00006
(11) DisableRule 0oQ2) o(l) 64,039 0.00006
(12) RevokeRule 0Q2) o(l) 63,939 0.00006
(13) GetRulelnfo o(l) - - -
(14) getRulePolicyID o(l) - - -
(15) GetRuleStatus o(l) - - -
(16) getRulesNumber o(l) - - -
(17 authorizeUser 0(2) o(l) 94,344 0.00008
(18) removeUserAuthorization 0Q2) o(l) 65,918 0.00005
(19) isUserAuthorized o(1) - - -
(20) getAllAuthorizedUsers O(n) - - -
21) VerifyPolicyRule o(l) - - -
(22) EnforcePolicyRule o(l) - - -
(23) DisableContract o(l) o(l) 25,977 0.00003
(24) EnableContract o(1) o(l) 47,889 0.00005

i (Gwei)

Gas consumption quantifies the computational power and
resources consumed when executing functions on an EVM-
based blockchain network. For example, serCAACRule, with
a gas consumption of 388208 Gwei (equivalent to 0.00034
ETH), is relatively resource-intensive, illustrating its com-
plexity in setting access control rules. Conversely, functions
such as EnablePolicy and DisablePolicy, with gas costs of
around 45000 Gwei (0.00005 ETH), are more streamlined
operations with modest resource consumption. Gas costs
are also a direct indicator of transaction fees, and higher
costs can hinder the widespread adoption of smart contracts,
especially in public blockchain networks, if users consider
them exorbitant. Unlike write operations, read operations do
not incur any gas costs because they do not alter the ledger
state.

2) Transaction Time Complexity and Latency Time: The
time complexity and latency for transaction processing are
measured to assess the efficiency and responsiveness of the
system, which are vital for applications that prioritize the
processing performance.

1) CAACL On-Chain Policy and Rule Setting Operations:
Fig. 4 presents the latency times of various CAACL
on-chain policy-setting operations. The overall policy
setting registration latency is significantly affected by the
transaction execution time, with an average of 3833 ms
for SetNewPolicy, 4569 ms for EnablePolicy, 4679 ms
for DisablePolicy, and 4659 ms for RevokePolicy.
Although EnablePolicy has the highest latency at
4618 ms and SetNewPolicy the lowest at 3971 ms,
the other operations—DisablePolicy and RevokePolicy—
are similar at 4808 and 4807 ms, respectively. This
consistency in the sending, signing, and preparation
times across these operations highlights the robustness
of our proposed system regardless of the specific policy
transaction involved.

19875

Policy-Setting Transactional Time Costs

5000
4000 - -
7
g
o
g 3000 .
H
>
13
5
E 2000 /7] Tx Exec. Time
Il Tx Send Time
Il Tx Sign Time
1000 I Tx Prep. Time
—w— Tx Latency
SetNewPolicy EnablePolicy DisablePolicy =~ RevokePolicy
Smart Contract Function
Fig. 4. Average latency time for SC-CAACL on-chain policy setting

by function: 1) SetNewPolicy; 2) EnabledPolicy; 3) DisablePolicy; and
4) RevokePolicy.

Rule-Setting Transnational Time Costs

5000
4000 I
—~
)
£
=
)
g 3000 I
=
>
)
=
&; 2000 /7] Tx Exec. Time I
— I Tx Send Time
I Tx Sign Time
[Tx Prep. Time
1000 |—v— Tx Latency —
0- ‘ ‘ % ‘

SetNewRule EnableRule DisableRule RevokeRule

Smart Contract Function

Fig. 5. Average latency time for SC-CAACL on-chain policy rule setting by
function: 1) SetNewRule; 2) EnabledRule; 3) DisableRule; and 4) RevokeRule.

Fig. 5 presents the latency time for the on-chain SC-
CAACL policy rule-setting transactions SetNewRule,
EnableRule, DisableRule, and RevokeRule divided into
individual actions. The execution of the transaction
requires the longest time at 4091, 4698, 4716, and
4705 ms, respectively, while the auxiliary times for the
other actions are consistent across operations (54-57 ms
for sending, 10-12 ms for signing, and 53-56 ms for
preparation). The overall latency is 4212, 4819, 4841,
and 4829 ms for SetNewRule, EnableRule, DisableRule,
and RevokeRule, respectively. These results represent
a consistent system performance across various rule-
setting operations, with the transaction execution time
being the primary influencing factor.

2) CAACL Policy and Rule On-Chain Query Operations:
Fig. 6 presents the latency time for various smart con-
tract functions associated with CAACL policy queries.

19876 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

Policy-Query Average Latency Time Costs Rule-Query Transactional Time Costs

60 ! 60
50 E— 50 —
@ 2
E o — Eu —
o)
£ =
= e
>30 1 .30 I
g)
g =
2 15}
S ®
20 1 — 20 S
10 E— 10 |
0 0

1 T T T 1 T T
Polici Poli i Poli PolicyInf ‘ ‘ ! ' ! '
GetPoliciesNumber GetPolicyVersion GetPolicyStatus - GetPolicylnfo GetRulesNumber GetRuleStatus GetRulelnfo GetRulePolicyID

Smart Contract Function .
b Smart Contract Function

Fig. 6. Average latency time for SC-CAACL on-chain policy queries by
function: 1) GetPoliciesNumber; 2) GetPolicyVersion; 3) GetPolicyStatus; and
4) GetPolicylnfo.

Fig. 8. Average latency time for SC-CAACL on-chain rule queries
by function: 1) GetRulesNumber; 2) GetRuleStatus; 3) GetRulelnfo; and
4) GetRulePolicylD.

Policy-Query Latency by Transaction Submission Rate Rule-Query Latency by Transaction Submission Rate

I I I
60 +———#— GetPoliciesNumber 60 \ \
GetPolicyDesc. —m— GetRulesNumber|
50 44— GetPolicyVersion —e— GetRuleStatus
—¥— GetPolicyStatus 50 —#&— GetRulelnfo
g 40 | ~® GetPolicylnfo = —v— GetRulePolicylD
Y 40 7
'E 30 ‘é’ /
§ [i 30
£ 20 g /
- 220
10 =
10
0 .
T T T T T 0+
0 200 400 600 800 1000
Query Transaction Submission Rate (') ' 200 ' 200 ' 600 ' 300 ' 1000

Query Transaction Submission Rate
Fig. 7. Latency time for SC-CAACL on-chain policy queries by
transaction submission rate: 1) GetPoliciesNumber; 2) GetPolicyVersion; Fig. 9

A lat time for SC-CAACL on-chai i 1 ies
3) GetPolicyStatus: and 4) GetPolicylnfo. verage latency time for on-chain policy rule queries

according to the transaction submission rate by function: 1) GetRulesNumber;
2) GetRuleStatus; 3) GetRulelnfo; and 4) GetRulePolicyID.

Of the assessed functions, GetPoliciesNumber has the
lowest latency, with an average of 48 ms, while that
of both GetPolicyVersion and GetPolicyStatus is 55 ms
and that of GetPolicylnfo is 57 ms. This represents
a relatively consistent response time across different
policy-related queries. Fig. 7 shows the impact of the
transaction submission load on the transaction latency
for different CAACL policy-related query functions.
As the transaction rate submission increases from 0
to 1000, the latency time for all functions increases
linearly (GetPoliciesNumber from 2.10 to 52.82 s,
GetPolicyVersion from 2.13 to 54.43 s, GetPolicyStatus
from 2.13 to 55.49 s, and GetPolicylInfo from 2.16
to 57.03 s). The performance is thus consistent for
all functions, with only minor variations, especially at
higher transaction loads. Nevertheless, the higher latency

with higher transaction loads for policy-related queries
highlights the challenges facing scalability, meaning that
optimization is required to improve this performance
under high demands. Fig. 8 presents the transaction
latency time for smart contract functions related to
CAACL policy rule queries. GetRulesNumber has the
lowest latency at 50 ms, increasing to 55 ms for
GetRuleStatus, 57 ms for GetRulelnfo, and 60 ms for
GetRulePolicyID. This indicates potential variation in
the computational intensity and/or data access complex-
ities of each function. Fig. 9 presents the change in
the latency time in response to the transaction sub-
mission rates for rule-related queries. GetRulesNumber,
GetRuleStatus, GetRulelnfo, and GetRulePolicyID all
exhibit a direct and linear increase in latency as the

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

Policy Verification and Enforcement Time by Number of Rules
60

A
50 —=— Verification Time pd
. 'y
—— Enforcement Time
—4— Request Elapsed Time A
o 40 W
g
o
£
= 30
>
Q
g
Q
E
= 20
10
A //Il/
-
0 oo o e S S, S A
0 2 4 6 8 10

Number of Rules by Policy

Fig. 10. Average latency time for SC-CAACL policy verification and
enforcement according to the number of rules by policy.

submission rates increase. At a submission rate of 1000,
the latency converges to around 55-60 s, while they
remain slightly above 0 s at the lowest submission
rate. This highlights the efficient query processing of
the proposed system at low transactional loads, but
scalability may be difficult at higher transaction loads.
This indicates a need for further optimization to ensure
robust performance.

3) CAACL Policy Verification and Enforcement Times:
Evaluating the policy verification, enforcement, and
overall elapsed time is crucial to understand the
efficiency and scalability of the system. The policy
verification time measures the time it takes to verify
whether an access request satisfies predefined CAACL
policy rules, while the enforcement time is the amount
of time required to make an access decision. The overall
elapsed time includes both verification and enforcement,
as well as decryption and system I/O requests. The
average policy verification, enforcement, and overall
elapsed times for the CAACL system are 26.47, 1.39,
and 28.76 ms, respectively. As shown in Fig. 10, the
policy verification time increases with a higher number
of rules (e.g., 5.53 ms for 1 rule to 50.33 ms for
10 rules). This nearly linear relationship illustrates the
direct impact of rule complexity on the verification
process. In contrast, the enforcement time remains
consistent with an increase from 1.01 ms for 1 rule
to 2.00 ms for 10 rules. This stability indicates the
robustness of the enforcement mechanism. The overall
elapsed time also increases with the number of rules in
a pattern similar to the verification time. These results
suggest that the verification time is a critical determinant
of the overall policy processing latency.

3) Block-Related Metrics: Block-related parameters such
as block size, propagation time, and processing efficiency
are important in determining the overall performance and
stability of a blockchain network. In the Hyperledger Besu

19877

blockchain network using the IBFT 2.0 consensus algorithm,
block creation and validation follow a defined protocol tailored
for enterprise environments. As summarized in Table III,
blocks are proposed every 5 s, and the validator set is updated
every 30000 slots. A validator awaits a proposal or vote
for 10 s before continuing. To simplify our analysis, each
block carries one transaction with an average size of 845.21
bytes. This simplified transactional density allows for the more
straightforward scalability analysis and prediction of network
bandwidth requirements. However, this may differ from real-
world applications depending on the use case, transactional
demands, and network conditions. A block gas limit of
16234336 is set, and experiment results show that an average
of 1182 gas was used per block.

V. USE CASES AND APPLICATIONS

This section presents a variety of use cases for the SC-
CAAC scheme to highlight its broad applicability and effec-
tiveness in various BIoT environments.

1) Smart Home Automation: SC-CAAC can be used
to enhance the security and convenience of smart
homes [12], [15], [25]. For example, access to home
security systems can be controlled based on contextual
data such as the homeowner’s location or time of day.
Smart contracts can automatically adjust permissions for
devices such as smart locks or alarms based on these
contexts.

2) Smart Healthcare: In smart healthcare [19], [23], [32],
SC-CAAC can manage access to patient records and
medical devices. Depending on the role of the user
(doctor, nurse, or family member), location, and time,
access to patient data can be controlled to ensure privacy
and compliance with regulations such as HIPAA.

3) Supply Chain Management: In blockchain-based supply
chain systems [33], [42], SC-CAAC can be utilized to
control access to the tracking of the movement of goods.
Smart contracts can provide real-time, conditional access
to data for different stakeholders (i.e., suppliers, trans-
porters, and retailers) based on their role and the stage
of the supply chain involved.

4) 1loT: In IIoT settings [34], [35], [36], SC-CAAC can
ensure that only authorized users have access to the
control of critical machinery. Access can be dynamically
managed based on factors such as employee credentials,
current machine status, and environmental conditions.

5) Energy Systems: In smart grids [25], [37], SC-CAAC
can regulate access to energy usage data and control
systems. This ensures data integrity and the secure
operation of energy distribution, allowing for context-
based access for maintenance, monitoring, or emergency
responses.

6) Smart Cities: In smart city applications [40], [41], [42],
[43], SC-CAAC can be used to manage access to various
urban services such as public transportation, waste
management, and city surveillance systems, adapting to
different user roles and environmental contexts.

SHealth Insurance Portability and Accountability Act.

19878

These examples illustrate the versatility and practicality of our
proposed scheme in real-world settings.

VI. DISCUSSION

Though the proposed SC-CAAC system significantly
improves the security and privacy of BIoT systems, it also has
some limitations and challenges that need to be addressed.

1) Complexity: Designing and implementing CAAC poli-
cies within smart contracts can be complex and difficult.
Contextual information in IoT environments, such as
the user profile, device status, location, and time, is
diverse and dynamic. Capturing and interpreting this
information accurately within smart contracts can be
challenging and thus requires robust modeling methods
and efficient processing algorithms.

2) Secure Smart Contract Development: Developing smart
contracts requires specific skills and care to prevent
bugs and security vulnerabilities. Once deployed, smart
contracts are difficult to modify, making it difficult to
correct any mistakes or adapt to new requirements.
Guidelines and tools for efficient and secure smart
contract design and development are thus required.

3) Scalability: An increase in the number of IoT devices
in a system can cause scalability issues. Because every
transaction or access request has to be processed by
smart contracts and recorded on the blockchain, it can
lead to high latency, particularly when the network is
large. As the number of IoT devices and transactions
increases, the computational and storage requirements
for executing smart contracts grow. Ensuring efficient
and scalable execution of CAAC policies while main-
taining the performance of the blockchain network is
thus crucial.

4) Performance and Efficiency: Blockchains are compu-
tationally expensive and may cause delays in the
processing of access requests, leading to slower response
times. This can be a challenge in real-time systems
where quick decisions are necessary. BIoT systems may
have high transaction volumes, which may result in
network congestion, high latency, and higher transaction
costs.

5) Computation and Energy Efficiency: Public blockchains
using PoW as their consensus mechanism are known for
their high computing and energy requirements, raising
sustainability concerns. For IoT devices with limited
processing capabilities, this can result in significant
computational overhead. This article focuses on the
IBFT consensus algorithm, but we also intend to explore
other consensus algorithms, such as Proof of Stake (PoS)
and Proof of Authority (PoA) variants (e.g., Clique and
QBFT) that are supported by Hyperledger Besu.

6) Interoperability: Manufacturers produce a wide vari-
ety of IoT devices with different standards, protocols,
and data formats. Ensuring seamless integration and
interoperability between heterogeneous IoT systems and
various blockchain systems is important for widespread
adoption and effective implementations.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

7) Privacy Concerns: Though they can enhance data
integrity and security, the transparency of blockchain
systems can pose privacy challenges. Contextual
information used for access control decisions can
be sensitive and confidential. Protecting the pri-
vacy of this information, along with the associated
access control policies and decision logs stored on
the blockchain, requires robust security mechanisms
and privacy-preserving techniques. Data obfusca-
tion must occur before recording information on a
blockchain.

8) Legal and Regulatory Issues: The use of smart con-
tracts and blockchains also raises legal and regulatory
questions. Regulations and legal frameworks for smart
contract enforcement in BIoT systems are still evolving,
leading to potential legal uncertainty.

VII. CONCLUSION AND FUTURE WORK

This article proposes an SC-CAAC scheme for BloT
systems. The proposed scheme addresses the challenges of
ensuring adequate access control in dynamic BIoT envi-
ronments by considering contextual information in access
control decisions. The decentralization, immutability, and
transparency of a blockchain system provide a robust frame-
work for the definition and enforcement of CAAC policies
for access permission management in BIoT systems. CAAC
policies are dynamically and securely enforced using smart
contracts, ensuring that only authorized users can access
sensitive data and resources. The proof of concept built on
the Hyperledger Besu blockchain presented in this article
validates the effectiveness and scalability of the proposed
scheme in real-world scenarios. Furthermore, several use cases
are described to illustrate the adaptability and applicability
of the proposed scheme in various BIoT systems. Thus, this
research contributes to the field by presenting a groundbreak-
ing approach that employs smart contracts for CAAC in BloT
systems. This approach not only enhances the security and
privacy of these systems but also fosters a higher degree of
trust and accountability through decentralized access control
mechanisms. Our research thus lays the groundwork for
potential improvements in secure smart contract design for
IoT, context-aware policy modeling, analysis, and enforcement
optimization. It can also be used to devise scalability solu-
tions for blockchains with multiple consensus protocols and
to design privacy-preserving techniques and interoperability
protocols. These advancements are required to maintain and
improve the efficiency and effectiveness of SC-CAAC in
evolving BIoT environments.

APPENDIX

Fig. 11 depicts the unified modeling language (UML) rep-
resentation of the smart contract architecture implemented for
our proposed SC-CAAC scheme. It includes two critical smart
contracts, CAAC_Police_Mgr and CAAC_Rule_Mgr, which
are vital to the architecture and operation of the SC-CAAC
system. CAAC_Police_Mgr implements essential elements

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

19879

<<Struct>>
CAAC_Policy
CAAC_Rule_Mgr
policyld: string
policyDescription: string

getPolicyStatus(_policyld: string): PolicyStatus

getPolicyInfo(_policyld: string): (string, string, PolicyStatus, uint256, address)
\ enablePolicyStatus(_policyld: string)

\ disablePolicy(_policyId: string)

“ revokePolicy(_policyld: string)

policyVersion: string | " >~eo__
policyStatus: PolicyStatus “\\
lastUpdate: uint256 \~\
storedBy: address S
T l \\\\
\\
CAAC_Policy_Mgr \\
CAAC_Rule_Mgr ‘\‘
\
Private: \
AccessPolicyList: string[] \
Public: \
contractAddr: address ln‘
ADMIN: address 4
isContractEnabled: bool |
CAAC_Policies: mapping(string=>CAAC_Policy) !
<<Enum>> - !
RuleStatus Public: . . '
CAAC Rule Mer <<event>> ContractEnabled(_by: address, _isContractEnabled: bool, _timestamp: uint256) !
— — <<evern ContractDisabled(_by: address, _isContractEnabled: bool, _timestamp: uint256) i
None: 0 <<event>> NewPolicyAdded(_policyld: string, _timestamp: uint256, _by: address) E
Created: | <<event>> PolicyEnabled(_policyld: string, _timestamp: uint256, _by: address) !
Epabled: 2 <<event>> PolicyDisabled(_policyld: string, _timestamp: uint256, _by: address) ‘:
Disabled: 3 <<event>> PolicyRevoked(_policyld: string, _timestamp: uint256, _by: address) !
Revoked: 4 constructor() !
Q LY DisableContract() ,,'
\
! \ EnableContract() g
i \ setCAACPolicy(_policyld: string, _policyDescription: string, _policyVersion: string) ’,'
': \\‘ countPoliciesNumber(): uint256 i
\ I‘l
/
/
/
/
/

<<Struct>>
CAAC_PolicyRule
CAAC_Rule_Mgr

<<Enum>> g
ruleld: string PolicyStatus /—"‘
policyld: string CAAC_Rule_Mgr T
ruleStatus: RuleStatus a-c

. None: 0
authorized_users: address[] Created: 1
resources: bytes32[] Euabledl' N
ruleConstraints: bytes32[] Disable(i'_S
actions: bytes32[] Revoke d: 1
isPermissionGranted: bool .
lastUpdate: uint256

/
/
storedBy: address

!

CAAC_Policy_Rule_Mgr
CAAC_Rule_Mgr

Private:

CAAC_PolicyRuleList: string[]

Public:
CAAC_PolicyRules: mapping(string=>CAAC_PolicyRule)
authorized_user: mapping(address=>bool)

Internal:

findUserIndex(_ruleld: string, _address: address): uint256
Public:

<<event>> NewRuleAdded(_ruleld: string, _policyId: string, _timestamp: uint256, _by: address)
<<event>> RuleEnabled(_ruleld: string, _timestamp: uint256, _by: address)

<<event>> RuleDisabled(_ruleld: string, _timestamp: uint256, _by: address)
<<event>> RuleRevoked(_ruleld: string, _timestamp: uint25

, _by: address)
<<event>> UserAuthorized(_ruleld: string, _address: address, _timestamp: uint256, _by: address)

<<event>> UserAuthorizationRemoved(_ruleld: string, _address: address, _timestamp: uint256, _by: address)
setPolicyRule(_ruleld: string, _policyld: string, _resources: bytes32, _ruleConstraints: bytes32, _actions: bytes32)
counRuleNumber(): uint256

getRuleInfo(_ruleld: string): (string, RuleStatus, bytes32[], bytes32[], bytes32[], uint256, address)
enableRule(_ruleld: string, _policyId: string)

disableRule(_ruleld: string, _policyld: string)

revokeRule(_ruleld: string, _policyld: string)

authorizeUser(_ruleld: string, _address: address)

isUserAuthorized(_ruleld: string, _address: address): bool

getAuthorizedUserNumber(_ruleld: string): uint256

removeUserAuthorization(_ruleld: string, _address: address)

Fig. 11. SC-CAAC core smart contract architecture model representation in UML.

of the CAAC policies, such as policy identifiers, descrip-

implements the rules linked to these policies, specifying
tions, versions, statuses, and update timestamps, along with rule identifiers, associated policies, operational states, and
the addresses modifying these policies. CAAC_Police_Mgr

permission statuses. Key to this structure are functions and

19880

events for policy and rule management, alongside PolicyStatus
and RuleStatus enumeration to define their potential states.
Based on its structure and functions, the proposed SC-CAAC
system thus has the ability to manage access control in BloT
systems.

[1]
[2]
[3]
[4]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things: An
overview,” in Proc. Internet Soc. (ISOC), 2015, pp. 1-53.

S. Sicari et al., “Security, privacy and trust in Internet of Things: The
road ahead,” Comput. Netw., vol. 76, pp. 146—-164, Jan. 2015.

C. Maple, “Security and privacy in the Internet of Things,” J. Cyber
Policy, vol. 2, no. 2, pp. 155-184, 2017.

V. V. Jog and T. Senthil Murugan, “A critical analysis on the security
architectures of Internet of Things: The road ahead,” J. Intell. Syst.,
vol. 27, no. 2, pp. 149-162, 2018.

S. Gusmeroli, S. Piccione, and D. Rotondi, “IoT access control issues: A
capability based approach,” in Proc. 6th Int. Conf. Innov. Mobile Internet
Services Ubiquitous Comput., 2012, pp. 787-792.

A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman,
“Access control in the Internet of Things: Big challenges and new
opportunities,” Comput. Netw., vol. 112, pp. 237-262, Jan. 2017.

R. Sandhu and P. Samarati, “Access control: Principle and practice,”
IEEE Commun. Mag., vol. 32, no. 9, pp. 40-48, Sep. 1994.

P. Shantanu, M. Hitchens, and V. Varadharajan, “Towards a secure access
control architecture for the Internet of Things,” in Proc. IEEE 42nd
Conf. Local Comput. Netw. (LCN), 2017, pp. 219-222.

H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things:
A survey,” IEEE Internet Things J., vol. 6, no. 5, pp. 8076-8094,
Oct. 2019.

K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292-2303, 2016.

L. Golightly, P. Modesti, R. Garcia, and V. Chang, “Securing distributed
systems: A survey on access control techniques for cloud, blockchain,
10T and SDN,” Cyber Security Appl., vol. 1, Dec. 2023, Art. no. 100015.
A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
ToT security and privacy: The case study of a smart home,” in Proc. [EEE
Int. Conf. Pervasive Comput. Commun. Workshops, 2017, pp. 618-623.
O. Novo, “Blockchain meets IoT: An architecture for scalable access
management in IoT,” [EEE Internet of Things J., vol. 5, no. 2,
pp. 1184-1195, Apr. 2018.

S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control in
Internet-of-Things: A survey,” J. Netw. Comput. Appl., vol. 5, no. 2,
pp. 1184-1195, Apr. 2018.

W. He et al., “Rethinking access control and authentication for the home
Internet of Things (IoT),” in Proc. 27th USENIX Security Symp., 2018,
pp. 255-272.

E. Coyne, and T. R. Weil, “ABAC and RBAC: Scalable flexible and
auditable access management,” IT Prof., vol. 15, no. 3, pp. 14-16, 2013.
M. M. Merlec, Y. K. Lee, and H. P. In, “SmartBuilder: A block-based
visual programming framework for smart contract development,” in
Proc. IEEE Int. Conf. Blockchain (Blockchain), 2021, pp. 90-94.

R. Xu, Y. Chen, and E. Blasch, “Decentralized access control for IoT
based on blockchain and smart contract,” in Modeling and Design
of Secure Internet of Things. Hoboken, NJ, USA: Wiley, 2020,
pp- 505-528.

M. Tuler De Oliveira, L. H. A. Reis, Y. Verginadis, D. M. F. Mattos, and
S. D. Olabarriaga, “SmartAccess: Attribute-based access control system
for medical records based on smart contracts,” IEEE Access, vol. 10,
pp. 117836-117854, 2022.

A. S. M. Kayes et al,, “A survey of context-aware access control
mechanisms for cloud and fog networks: Taxonomy and open research
issues,” Sensors, vol. 20, no. 9, p. 2464, 2020.

M. J. Covington and M. R. Sastry, “A contextual attribute-based access
control model,” in Proc. OTM Confed. Int. Conf. Move Mean. Internet
Syst., 2006, pp. 1996-2006.

Y. Verginadis et al., “Context-aware policy enforcement for PaaS-
enabled access control,” IEEE Trans. Cloud Comput., vol. 10, no. 1,
pp. 276-291, Jan.—Mar. 2022.

E. Psarra, Y. Verginadis, I. Patiniotakis, D. Apostolou, and G. Mentzas,
“Accessing electronic health records in critical incidents using context-
aware attribute-based access control,” Intell. Decis. Technol., vol. 15,
no. 4, pp. 667-679, 2021.

[24]

[25]

[26]

(271

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

E. Psarra, D. Apostolou, Y. Verginadis, I. Patiniotakis, and
G. Mentzas, “Context-based, predictive access control to electronic
health records,” Electronics, vol. 11, no. 19, p. 3040, 2022.

L. Ngwira et al., “Towards context-aware smart contracts for blockchain
10T systems,” in Proc. Int. Conf. Inf. Commun. Technol. Conver. (ICTC),
2021, pp. 82-87.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum, Zug, Switzerland, Yellow Paper, 2014.

E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
pp. 1-15.

M. M. Merlec, M. M. Islam, Y. K. Lee, and H. P. In, “A consortium
blockchain-based secure and trusted electronic portfolio management
scheme,” Sensors, vol. 22, no. 3, p. 1271, Feb. 2022.

S. Algarni et al., “Blockchain-based secured access control in an IoT
system,” Appl. Sci., vol. 11, no. 4, p. 1772, 2021.

S. Namane and I. B. Dhaou, “Blockchain-based access control tech-
niques for IoT applications,” Electronics, vol. 11, no. 14, p. 2225, 2022.
I.-H. Chuang et al., “TIDES: A trust-aware IoT data economic system
with blockchain-enabled multi-access edge computing,” IEEE Access,
vol. 8, pp. 8583985855, 2020.

N. Chendeb, N. Khaled, and N. Agoulmine, “Integrating blockchain with
IoT for a secure healthcare digital system,” in Proc. 8th Int. Workshop
Adv. ICT Infrastruct. Services, 2020, pp. 1-8.

S. Salonikias et al., “Blockchain-based access control in a globalized
healthcare provisioning ecosystem,” Electronics, vol. 11, no. 17, p. 2652,
2022.

C. Lin, D. He, X. Huang, K. R. Choo, and A. V. Vasilakos, “BSeln: A
blockchain-based secure mutual authentication with fine-grained access
control system for industry 4.0,” J. Netw. Comput. Appl., vol. 116,
pp. 42-52, Aug. 2018.

R. Xu, Y. Chen, E. Blasch, and G. Chen, “BlendCAC: A smart contract
enabled decentralized capability-based access control mechanism for the
10T, Computers, vol. 7, no. 3, p. 39, 2018.

R. Xu, Y. Chen, E. Blasch, and G. Chen, “Exploration of blockchain-
enabled decentralized capability-based access control strategy for space
situation awareness,” Opt. Eng. vol. 58, no. 4, pp. 041609-041609,
Feb. 2019.

M. Amine Bouras, B. Xia, A. Omer Abuassba, H. Ning, and
Q. Lu, “IoT-CCAC: A blockchain-based consortium capability access
control approach for IoT,” PeerJ Comput. Sci., vol. 7, p. e455,
Apr. 2021.

M. M. Merlec, Y. K. Lee, S-P. Hong, and H. P. In, “A
smart contract-based dynamic consent management system for per-
sonal data usage under GDPR,” Sensors, vol. 21, p. 7994,
Nov. 2021.

M. U. Rahman, B. Guidi, F. Baiardi, and L. Ricci, “Context-aware
and dynamic role-based access control using blockchain” in Advanced
Information Networking and Applications. Cham, Switzerland: Springer,
pp. 1449-1460, 2020.

T. Sylla et al., “Blockchain-based context-aware authorization manage-
ment as a service in IoT,” Sensors, vol. 21, no. 22, p. 7656, 2021.

B. Annane, A. Alti, and A. Lakehal, “Blockchain based context-aware
CP-ABE schema for Internet of Medical Things security,” Array, vol. 14,
Jul. 2022, Art. no. 100150.

A. Sarfaraz, R. K. Chakrabortty, and D. L. Essam, “AccessChain: An
access control framework to protect data access in blockchain enabled
supply chain,” Future Gener. Comput. Syst., vol. 148, pp. 380-394,
Nov. 2023.

I. H. Abdulgadder and S. Zhou, “SliceBlock: Context-aware authen-
tication handover and secure network slicing using DAG-blockchain
in edge-assisted SDN/NFV-6G environment,” /[EEE Internet Things J.,
vol. 9, no. 18, pp. 18079-18097, Sep. 2022.

OASIS Standard. “Extensible access control markup language
(XACML) version 3.0.” Jan. 22, 2013. Accessed: Dec. 28, 2023.
[Online]. Available: https://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-en.html

OASIS Standard. “JSON Profile of XACML 3.0 Version 1.1.” Jun. 20,
2019. Accessed: Dec. 28, 2023. [Online]. Available: https://docs.oasis-
open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html

C. F. F. Karney, “Algorithms for geodesics,” J. Geodesy, vol. 87, no. 1,
pp. 43-55, 2013.

C. Fan, C. Lin, H. Khazaei, and P. Musilek, “Performance analysis of
hyperledger Besu in private blockchain,” in Proc. IEEE DAPPS, 2022,
pp. 64-73.

C. Dannen, “Solidity programming,” in Introducing Ethereum and
Solidity. Berkeley, CA, USA: Apress, 2017, pp. 69-88.

MERLEC AND IN: SC-CAAC SCHEME FOR BLOCKCHAIN-ENABLED IoT SYSTEMS

Mpyana Mwamba Merlec (Member, IEEE)
received the B.Sc. degree in computer science
and engineering from the Information Systems
Engineering Department, University Protestant of
Lubumbashi (UPL), Lubumbashi, D.R.Congo, in
2011, and the M.S.E. degree in computer science and
radio communication engineering (with Academic
Excellence Awards from the NIIED, Ministry of
Education, Republic of Korea) and the Ph.D. degree
in computer science and engineering (software) from
Korea University, Seoul, South Korea, in 2017 and

2022, respectively.

He is currently a Research Professor with the Blockchain Research Institute,
Korea University. His primary research interests include Web 3.0, distributed
computing systems, distributed ledger technologies, distributed/decentralized

applications, and the following topics: blockchain-enabled FinTech,
e-commerce, supply chains, cryptocurrency algorithmic trading, cybersecurity,
data privacy, GDPR compliance, machine learning, Internet of Things, and
cyber—physical systems.

19881

Hoh Peter In (Member, IEEE) received the B.Sc.
degree in computer engineering and the M.Sc.
degree in computer science from Korea University,
Seoul, South Korea, in 1990 and 1992, respectively,
and the Ph.D. degree in computer engineering from
the University of Southern California, Los Angeles,
CA, USA, in 1998.

In 1999, he became an Assistant Professor with
Texas A&M University at College Station, College
Station, TX, USA. He joined the Department of
Computer Science, Korea University as an Assistant

¥

Professor in 2003, where he is currently a Professor. He is a Founder and the
Emeritus President of the Korean Society of Blockchain and the Director of the
Blockchain Research Institute, Seoul. He is also the founder and CEO of DAO
Solution, Inc., Seoul. He has published over 120 research papers. His main
research interests are blockchain, smart contracts, and software engineering.

Prof. In received the ICRE 10-Year Most Influential Paper Award in 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

