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Variables and Low-Cost Sensors

Xiaoli Liu", Francesco Concas, Naser Hossein Motlagh™, Martha Arbayani Zaidan™', Senior Member, IEEE,

Pak Lun Fung

Markku Kulmala™, Petteri Nurmi

Abstract—We develop a portable and affordable solution for
estimating personal exposure to black carbon (BC) using low-
cost sensors and machine learning. Our approach uses other
pollutants and environmental variables as proxies for estimating
the concentrations of BC and combines this with machine
learning-based sensor calibration to improve the quality of the
inputs that are used as proxies in the modeling. We extensively
validate the feasibility of our approach and demonstrate its
benefits with benchmarks conducted on real-world data from
two different urban locations with different population densities
and characteristics. Our results demonstrate that our approach
can accurately estimate BC (R2 higher than 0.9) without relying
on a dedicated sensor. The results also highlight how calibration
is essential for ensuring accurate modeling on low-cost sensor
measurements. Our results offer a novel affordable and portable
solution that can be used to estimate personal exposure to
BC and, more generally, demonstrate how low-cost sensors and
proxy modeling can increase the spatiotemporal scale at which
information about BC level is available.
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I. INTRODUCTION

ORTABLE personal air quality sensors facilitating the

monitoring and mitigation of personal pollution exposure
are becoming increasingly affordable and available thanks
to advances in miniaturization and sensor technology. As
exposure to pollutants has been linked with many acute and
chronic diseases [1], [2], [3], [4], [5], [6], several types of
cancer [3], [7], [8] and even the occurrence and severity of
COVID-19 [9], [10], [11], [12], these devices provide essential
information for mitigating personal health risks and con-
tribute toward improved health. Besides benefits to individuals,
portable air quality sensors help to improve the resolution and
coverage of air quality information [13], offering policymakers
and other stakeholders information about current pollutant
characteristics at high spatial and temporal resolution. This
helps to mitigate the global cost of pollution and evaluate the
effectiveness of countermeasures designed to tackle pollution.
Indeed, estimates suggest that 2-5% of global GDP is spent on
the treatment of diseases linked to poor air quality [14], [15],
making pollution a truly global problem.

Among the different pollutants, black carbon (BC) (also
known as soot) is among the worst pollutants to affect indi-
viduals. BC is linked with several chronic health conditions,
including cancer and respiratory diseases [16], [17], and it
contributes to global climate change by absorbing heat [18].
What makes BC particularly problematic is that the BC
particles linger in the air for a long time while bonding with
chemicals and other substances [17], [19]. This makes soot,
besides a harmful substance in its own right, a carrier of
harmful compounds, including airborne viruses.

While portable and affordable (i.e., costing $100-$1000)
sensors for many pollutants, such as particulate matter (PM)
and common aerosols (e.g., NO, and CO;), are widely
available [13], [20], [21], [22], [23], [24], unfortunately,
this is not the case for BC level. Indeed, the dominant
approach for estimating the BC level currently is to rely on
professional-grade measurement technology which typically
is highly expensive to operate and maintain with a single
sensor typically costing over $50000 [25], [26]. This lack
of affordable and portable sensors for BC is unfortunate as
it limits the information about personal exposure to harmful
pollutants and the resolution of the available information.
The limited resolution of information is also challenging to
policymakers as they must base their decisions on aggregate

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-4792-2267
https://orcid.org/0000-0001-9923-9879
https://orcid.org/0000-0002-6348-1230
https://orcid.org/0000-0003-3493-1383
https://orcid.org/0000-0001-7527-5787
https://orcid.org/0000-0002-0241-6435
https://orcid.org/0000-0002-1881-9044
https://orcid.org/0000-0003-3464-7825
https://orcid.org/0000-0001-8262-6434
https://orcid.org/0000-0003-4220-3650

17578

information without
BC levels vary in
environments.

We contribute a portable and affordable solution for estimat-
ing BC levels using low-cost air quality monitoring sensors
and machine learning. The key idea in our approach is to
take advantage of proxy variables that are integrated into a
single sensor unit, and that measure environmental variables
and concentrations of other pollutants. The proxy variables
are used as input to a machine-learning model that estimates
the current BC level. Sensor utilities on portable air quality
monitoring devices are affected by cross-sensitivities which
results in the measurements of different pollutants being cor-
related. This suggests that the concentrations of one pollutant
can be estimated at least with a reasonable accuracy from the
concentrations of other pollutants. This is particularly useful
for BC, due to its tendency to linger in the air. Naively
modeling relationships between different pollutants, however,
is not sufficient, as sensor utilities on portable devices often
suffer from significant inaccuracies [27], [28]. To overcome
these inaccuracies, we combine proxy variables with machine
learning-based calibration which helps to improve the quality
of the sensor measurements used for proxy modeling. Machine
learning-based calibration has recently emerged as a powerful
solution for improving the accuracy of low-cost sensors, and to
provide an alternative to laboratory-based calibration. Machine
learning techniques are effective in dealing with air quality and
environmental data, which are often nonlinear, and machine
learning algorithms can learn from large amounts of environ-
mental data and identify complex patterns to perform low-cost
sensor calibration [28], [29]. As we demonstrate in this article,
the integration of machine learning-based calibration with
proxy modeling is essential for achieving accurate BC-level
estimation performance.

We validate our approach through extensive experiments
carried out on measurements from two locations with differing
urban densities and characteristics, and over a long period
of time (20 months and 26.5 months of measurements). The
results demonstrate that our approach can reliably estimate
BC levels with an R” higher than 0.9 without relying on
a dedicated sensor. The results also highlight how sensor
calibration is essential for improving the quality of the mea-
surements that are used as input for the proxy modeling.
Taken together, our work offers a novel portable and affordable
solution for estimating BC concentrations, significantly extend
the scope, scale, and spatiotemporal resolution at which
information about air pollutants can be captured on low-cost
Sensors.

1) Feasibility: Demonstrate the feasibility of estimating BC
levels on proxy variables using various machine learning
models and pollution data at two reference stations
collected in a long period.

2) Novel Approach: We estimate BC levels using proxy
variables leveraging intelligent machine learning and
sensor calibration. Specifically, our solution combines
data from low-cost sensor data with precalibrated proxy
variables on low-cost air quality sensors for estimating
BC levels.

having a detailed view of how
different parts of the urban

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 10, 15 MAY 2024

3) High Accuracy: The estimating BC levels on low-cost
sensors can achieve an accuracy close to those provided
by expensive high-quality instruments.

II. RELATED WORK
A. Low-Cost Sensor Calibration

Low-cost sensors are prone to noisy measurements, envi-
ronmental inferences, and interdevice differences, which can
result in errors in the sensor readings. Most of the works on
sensor calibration focus on developing calibration algorithms
or frameworks for specific pollutants (typically either PM or
one or more gaseous pollutants) [30], [31], [32]. The algo-
rithms that have been proposed cover basically all common
machine learning techniques, ranging from linear models, such
as univariate linear regression [22], [33], [34], [35], [36], [37],
[38], [39] and multivariate linear regression (MLR), to non-
linear models, such as support vector regression (SVR) [38],
random forest regression (RFR) [27], [38], [39], [40], [41],
multilayer perceptron (MLP) [21], [22], [38], [42], complex
neural networks [43], deep learning [44], and hybrid models
combining several techniques [41].

B. BC Estimation and Proxy Variables

BC estimation is typically carried out using expensive
professional-grade measurement stations. Most of the works
on modeling BC concentrations focus on a global scale
and use aggregate-level estimates [45], [46], [47], [48], [49]
which offer limited spatiotemporal resolution and are unable
to offer insights into personal exposure. The few works to
consider a finer resolution have focused on specialized micro-
environments, such as transportation systems or high-density
city blocks and used professional-grade measurements as
inputs for estimation [50], [51], [52]. There has also been
some limited work on developing mobile platforms for cap-
turing BC concentrations, but these remain proprietary and
limited in use [46].

Proxy variables are defined as variables that are not directly
relevant but can be utilized to serve in place of an unobservable
or immeasurable variable. Proxies have been used, e.g., to
forecast pollutant concentrations [53] or to fill in missing
values in observations [29]. The feasibility of using air quality
measurements as proxy variables for BC estimation has been
demonstrated in our earlier research. Fung et al. [54] developed
asimple linear regression white-box model for estimating BC by
using an input adaptive approach, which manages to search for
the best combination of proxy variables for the estimation using
ordinary least squares (OLSs). Contrary to linear regression,
Rovira et al. [55] focused on the nonlinear properties of BC by
exploring two black-box models, i.e., SVR and random forest.
Zaidan et al. [56] and Fung et al. [57] compared and evaluated
BC estimation using white-box and black-box models using
proxy variables measured at reference stations.

Compared to previous research, instead of measuring BC
directly, we use proxy variables for estimating BC concen-
trations. We also incorporate sensor calibration as part of
the estimation process to improve performance and consider
a broader range of input variables. Our work extends the
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Fig. 1. Sensing systems used in our experiment. (a) Portable LCPs.
(b) Installation of four LCPs on SMEAR III under a rain cover.

literature by providing a new affordable and approach for
BC-level estimating by integrating low-cost sensor calibration
with proxy modeling. Our experiments demonstrate that this
innovative combination of techniques helps to improve the
accuracy of BC estimates significantly.

III. SENSOR MEASUREMENTS AND SYSTEM
IMPLEMENTATION

The focus of our research is on providing an affordable,
accurate, and portable solution for estimating BC concen-
trations. We accomplish this by combining modeling that
uses proxy variables and intelligent sensor calibration. In this
section, we describe the measurements that we use to develop
and evaluate our methodology (Sections III-A and III-B) and
detail a prototype implementation of our system Section III-C.

A. Reference Sensing Stations

We develop our BC proxy models using air quality data
extracted from two high-quality measurement stations, namely,
SMEAR III' and Mikeldnkatu® stations. The SMEAR III
station is located in a suburban in the front open yard and its
surface includes built, car parking, road, and vegetation areas,
whereas the Mikeldnkatu station is located in a street canyon
just beside Mikelédnkatu street. Using the measurements from
these locations with different air pollution profiles enables
developing proxies for estimating the BC concentrations that
can work in different environments and thus generalizing our
BC proxy model.

The high-quality reference stations are equipped with accu-
rate professional-grade sensors measuring important pollutants
and environmental factors. The important pollutants mainly
include the PM and gas. Environmental factors include wind
direction (WD), wind speed (WS), pressure (P), relative
humidity (RH), temperature (T), and, depending on the sen-
sor unit, other related measurements. The sensor types and
corresponding measured variables from these two reference
stations and low-cost sensor packages (LCPs) are presented
in Table I. The reference measurements are used to develop
the BC proxy model to explore the feasibility of estimating

1 https://www.atm.helsinki.fi/lSMEAR/index.php/smear-iii

2https://WWw.hsy.ﬁ/en/residents/theairyoubreathe/monitoring—stations—
helsinki-metropolitan-area/Pages/makelankatu.aspx
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TABLE I
AVAILABLE INSTRUMENTS MEASURING VARIABLES USED IN BC PROXY
DEVELOPMENT AND THE AVAILABLE LCPS VARIABLES

Sensing stations  Instruments Variables measured

Grimm 180/FH 62 I-R PM, 5, PM;,
Horiba APNA 360 NO, NO,, NOx
MAAP Thermo Scientific 5012 BC

SMEAR III Platinum resistant thermometer Pt-100 T
Thin film polymer sensor Vaisala DPAS00 RH
Barometer Vaisala DPA500 P
Vaisala cup anemometer WD, WS
Horiba APNA-370 NO, NO,, NOx
Horiba APOA-370 and Thermo Model 491  Os

Mikeldnkatu Horiba APMA-360 Cco
MAAP Thermo Scientific 5012 BC
Vaisala WXT 520 and Vaisala WXT536 T, P, RH, WD, WS
Sensirion SPS30 PM,, PM, 5, PM, , PM,
MiCS-4514 CO, NO,

LCPs MQ-131 0,
BME-280 T, RH, P
SI1133-AA00-GM uv

BC levels on proxy variables using machine learning methods.
The two reference stations are described as follows.

SMEAR IlI: The reference station is operated by the
Institute for Atmospheric and Earth System Research (INAR)
and is located at the Kumpula Campus area at the University
of Helsinki, Finland. The station is located in the front open
yard and at about 150 m from a main street in the Kumpula
district and it is about 4 kilometers north-east from Helsinki
center in Helsinki [58]. The station is planned for research
and scientific exploration and it is designed to measure the
relationship between forest and atmosphere in boreal climate
zone [59]. This site is categorized as a semi-urban area, a
distinct surface covered with buildings, roads, and vegetation
areas. The station consists of high-quality sensors mounted
on a 31 m tall tower, with its base located on a rocky hill at
26 m above sea level. Its sensors can measure PM, gases, and
meteorological and radiation variables.

Mikelinkatu Station: The reference station is located at the
Mikeldnkatu district in Helsinki and is operated by the Helsinki
Region Environmental Services Authority (HSY). Mikeldnkatu
is one of the main streets of the city that leads to the city
center. The street is lined with apartment buildings and has
42 m of width. The street consists of six lanes, two tramlines,
two rows of trees, and two pavements. Mikeldnkatu Street is
one of the arterial roads in the city where every day different
kinds of vehicles, such as cars, buses, trams, and trucks cross
in it and often cause traffic congestion [60], the reason for
having a high level of PM; 5 and BC pollution. The traffic is
especially high during rush hours, at 8 A.M. and 5 P.M., and it
is the main source of BC in this street. This is the main reason
that the reference station is placed in the vicinity of the street
and it is interesting to measure air quality there. The sensing
station consists of a container equipped with standard air quality
measurement instruments. Most of the inlets for the measuring
devices are located on the top of the container, approximately
at a height of 2.8 m from ground level.

B. Low-Cost Sensor Packages

Fig. 1(a) presents one of the LCPs used in our study. Each
LCP is built on top of the BMD-340 System on Module
(SoM), which is powered with a 3500-mAh battery and
enclosed in a 3D-printed case made of ESD-PETG filament.
General battery life before recharging via micro USB interface
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is about 26 h. Each LCP is connected to mobile phones via
Bluetooth low energy (BLE) for transmitting the measured
data to the back-end (server layer). The mobile phones are
connected to the server through the 4G network or Wi-Fi.
Each LCP reports measurements periodically. The reported
readings include T, RH, P, carbon monoxide (CO), nitrous
dioxide (NO,), ozone (0O3), PM of various masses and sizes,
the amount ultraviolet (UV) light, the GPS position, and the
timestamp [61].

To collect data for calibration and validation purposes,
we install four LCPs near high-quality reference stations.
By installing four LCPs close to each other in the same
environment we aim to ensure sensors’ consistency and sen-
sor failures. Whereas sensors’ consistency means the LCPs
generate similar measurements while operating in the same
environment [24]. In addition, by installing multiple LCPs, we
plan to recover from the sensor failures whereas if a sensor
fails to operate due to power drainage or other reasons other
LCPs still continue measurements. As shown in Fig. 1(b), we
install the LCPs in pairs facing each other under a rain cover,
mounted onto SMEAR III. The LCP presented in Fig. 1(a) is a
portable low-cost sensor that can be attach to citizen’s bag for
tracking the measurement of air pollutants. The micro-sensors
installed inside LCP in Fig. 1(a) are the same as the mini-
sensors inside the four LCPs installed near the high-quality
reference station in Fig. 1(b). While the LCPs in Fig. 1(b)
are powered by connecting them to the electricity grid. The
LCPs are set up to transmit their readings every 2 min and the
LCPs measurement campaign was carried sparsely between
November 2019 and February 2020. In the main experiment,
we demonstrate how calibration and proxy models can operate
together using measurements from low-cost sensors for sensor
calibration and BC estimation.

C. System Implementation

The overall methodology has been implemented following
the framework shown in Fig. 2. The framework consists of
three layers: 1) a sensing layer; 2) a server layer; and 3) an
application layer. In the sensing layer, low-cost mini-sensors
and stationary reference station sensors continuously measure
the air quality and transmit the measurements to the server
layer (i.e., back-end). The difference between mobile and
stationary mini-sensors is that the portable mini-sensors are
connected to mobile phones for transmitting the air quality
data to the server (deployed on the edge or in the cloud), while
the mini-sensors in reference stations directly transmit the air
quality data to the server using available 4G/5G connections
through a Rest application programming interface (API). The
backend links the measurements with those collected from
a professional grade reference station and is responsible
for learning the calibration and proxy models used by our
approach. Data transmission can take place through any type
of wireless medium, including short-range communication
system, e.g., WiFi and BLE, or long-range cellular or IoT
communication protocols [62]. The data transmission interval
can be considered to follow a desired update rate and trans-
mission interval. Our current deployment uses 2-min cycle for
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sampling air quality measurements, and these are sent to a
server hourly.

The server layer is responsible to processing the data.
First, the air quality data are preprocessed, synchronized, and
the quality of data is checked. Next, the processing pipeline
calibrates the measurements of the low-cost sensors. The
calibrated data are used both on the portable device to provide
information about the air quality, and given as input to the
proxy modeling to estimate BC levels. The BC proxy estimates
are further transmitted to the application layer where they can
be accessed by the end user. Hence, the end users can not only
observe the accurate pollutants concentrations of the measured
pollutants from the portable device but also access information
about the personal BC exposure. The calibration models are
currently deployed on portable low-cost sensors and used in
two projects to compensate pollutant concentrations. Finally
on the application layer, pollution hotspot maps are made
according to the data from the portable devices and these can
used to support further applications, such as route planning.

IV. BC ESTIMATING WITH PROXY VARIABLES

We first develop the proxy modeling approach and demon-
strate its overall feasibility using data from two reference
stations. Specifically, in each location, we estimate the BC
levels using the measurements of other pollutants and envi-
ronmental variables in the same location. The approach of
testing on two locations with different characteristics is used to
demonstrate the generality of approach. We then further build
on this result and develop the proxy modeling and calibration
for low-cost sensors, and demonstrate the feasibility and
benefits of our overall approach in the subsequent sections.

A. Proxy Estimation Pipeline

The proxy modeling pipeline follows a traditional machine
learning pipeline. First, the preprocessing step uses a multi-
variate imputation by chained equations (MICEs) imputer [63]
to fill in missing values. In the experiments, the imputer is
trained separately for each training set split, and the same
imputer is then used both for the training and testing data.
Next, the features are scaled using standardization. Similarly
to the imputer, the scaler is learned separately for each training
data split. Training the imputer and the scaler only on the
training data and separately for each fold to prevent data
leakage and keep bias to a minimum.

After preprocessing, we perform feature selection using
recursive feature elimination (RFE) on the whole set of
features, until only one feature is left. In our experiments,
we train the models using the highest ranked feature, adding
the rest of the features one by one by following the ranking,
and computing the performance for each set of features. This
procedure is performed separately for every training split.
For estimating BC concentrations, we test machine learning
models that have shown robust performance for other pollu-
tants: MLR, SVR, decision tree regression (DTR), adaboost
regression (ABR), gradient boosting regression (GBR), RFR,
and MLP. Indeed, the machine learning models used in our
work are based on regression models. Since we believe
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Fig. 2. Framework for the implementation of a BC proxy.
TABLE II
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that varying machine learning architecture will not provide
significant performance differences, therefore the architecture
of the models is determined based on the default settings
provided by the machine learning scikit-learn library [64].

B. Performance Evaluation

We evaluate the performance of the different models using
tenfold cross-validation. The folds are generated by using
the KFold function in the Scikit-learn library in Python and
the data set is equally divided into folds according to time
due to the characteristics of time-series data. We consider all
common error measures, root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error
(MAPE), mean bias error (MBE), and R-squared (R?) listed
in Table II, where y;, ¥;, and y; represent the target value,
the predicted value, the mean of observed target values,
respectively, and #n is the number of samples. We use multiple
measures because different measures can rank models differ-
ently since different measures focus on different aspects of
performance [28]. RMSE focuses on outliers, MAE focuses
on the average performance, MAPE expresses the error in
proportion to the target values, MBE measures bias, and R?
measures the correlation. We use MAE as the cost function
for training the models as we are interested in a model that
approximates well the target data on average without focusing
on outliers. For every error measure, we obtain the overall
score by averaging the scores obtained in every fold. We
also plot target diagrams, which allow us to quickly visually
compare the performance of different models, in line with
best practice in air quality research [65], [66]. Target diagrams
are plotted by using centered RMSE (CRMSE) and MBE
divided by the standard deviation of the target values. CRMSE
is computed similarly to RMSE, but subtracting from the
predicted and target values their respective means.

C. Comparing the Models

The results of proxy estimation are shown in Table III.
Stations 1 and 2 are used to represent the SMEAR III and
Mikeldnkatu reference stations, respectively, for simplicity.
On the Station 2 measurements, MLP performs better than

TABLE III
PERFORMANCE OF SELECTED MACHINE LEARNING MODELS FOR THE
ESTIMATION OF BC CONCENTRATION. RMSE, MAE, AND MBE VALUES
ARE EXPRESSED IN ng/m3. RESULTS HAVE BEEN OBTAINED WITH
TENFOLD CROSS-VALIDATION ON THE WHOLE AVAILABLE DATA.
ALL THE AVAILABLE FEATURES ARE USED

| RMSE  MAE  MAPE  MBE R?

MLR | 271.60 167.98  70.49% 204 0553

= SVR | 266.14 15575  6139%  38.66 0575
~ DTR | 40460 22234  80.58% 374 -0.144
< ABR | 59337 500.50 289.12%  -452.21 -1.658
$ GBR | 27105 15872  63.07% -3.63  0.581
@ RFR | 279.13 16042  64.20% 485 0527
MLP | 28433 17859  6791% 1022  0.552
MLR | 39501 250.18  36.13% 050 0.777

g SVR | 39871 24124  3038% 4502 0.776
Z DIR | 53081 32467 38.18%  -2852  0.601
= ABR | 75881 67554 140.14% -620.07  0.137
£ GBR | 35548 21936 2827%  -10.75  0.820
= RFR | 359.61 22076  27.69%  -21.24 0815
MLP | 34445 217.09  29.41% -6.27  0.830

MLR, whereas for Station 1 the reverse is true. The Station
1 measurements are from a low-density urban area and from
a high altitude above traffic, which results in the relationship
between pollutants being simple. In contrast, the Station 2
measurements come from an area with high traffic and from
a station that is closer to the street level, which results in a
more complex relationship between the variables. SVR has
a relatively low error, but it suffers from high bias. The
performance of GBR and RFR is accurate with low bias.
Overall, these two models have very similar performance
across the two reference stations. The ABR by far has the
worst performance. This is due to the regression models used
by ABR being too simple to capture the complex relationship
between variables and hence models that can simultaneously
capture relationships between multiple variables are needed
for BC estimation.

The target diagrams for Stations 1 and 2 are shown in Fig. 3.
In the target diagram for Station 1, every model except ABR
is inside the circle and all the models inside the circle are very
close to each other. In the target diagram for Station 2, the
three points which represent GBR, RFR, and MLP overlap.
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Fig. 3.  Target diagrams showing the performance of selected machine

learning models for estimating BC concentration using proxy variables on
high-quality data. (a) Target diagram for Station 1. (b) Target diagram for
Station 2.

TABLE IV
RESULTS OF FEATURE SELECTION FOR EACH CROSS-VALIDATION FOLD,
AFTER TRAINING TWO SELECTED MODELS ON DATA FROM
MAKELANKATU. ALL THE PERFORMANCE SCORES ARE CALCULATED
USING MAE, EXPRESSED IN ng/m3

Model MLR RFR
Feature set Best All Best All
Fold 1 | 221.93 231.42 203.21  204.27
Fold 2 | 266.76  266.90 228.77  228.77
Fold 3 | 260.12  260.16 230.74  230.74
Fold 4 | 19748 207.13 190.46  190.53
Fold 5 | 217.24 22194 179.12  180.77
Fold 6 | 244.58 259.00 22220 227.37
Fold 7 | 284.73  295.80 281.41  289.66
Fold 8 | 238.64 297.80 211.23  213.39
Fold 9 | 228.14 241.47 237.04  247.08
Fold 10 | 215.34  220.15 190.96  190.96

RFR has the lowest MAPE, but it is the most biased one
in those three models. MLP appears to be the best model,
since it has the lowest RMSE and MAE, suggesting a good
performance on both average values and outliers. It has also
the lowest bias of the three and the highest overall correlation
with the target variable. Overall, MLR is the least biased
model, the best model for Station 1 seems to be GBR, and
the best model for Station 2 seems to be MLP.

We also evaluated the performance of using different sets
of features. The results are shown in Table IV for two
selected models, MLR and RFR. Using only the best feature
slightly reduces overall error, but the best-performing feature
is different for different folds. Hence, in practice using all
available features is sufficient as any potential improvements
in performance come at the cost of generality. For this reason,
in the remainder of this article, we use all input features for
proxy estimation.

Overall, the results show that proxy variables can be used
to estimate BC levels. The correlation in the estimates is
consistently high, suggesting the proxy variables capture the
overall trend in the measurements. The absolute error in the
estimates is slightly higher, as can be evidenced from the MAE
values. From the target diagrams, we can observe that this
is due to a bias in the estimates, i.e., there is a systematic
error in the estimates. This result further motivates the use of
calibration as part of the pipeline as it enables eliminating the
bias in the estimations—besides overcoming inaccuracy in the
low-cost sensor measurements.
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TABLE V
CORRELATIONS BETWEEN LCP SENSORS. EACH ROW INDICATES THE
VARIABLE ON WHICH A CORRELATION Is COMPUTED, EACH COLUMN
INDICATES THE PAIR OF LCP SENSORS ON WHICH THE
CORRELATION Is COMPUTED

LCP
Variable | 1 &2 1&3 1&4 2&3 2&4 3&4
T 0.971 0973 0987 0982 0964  0.962
RH 0947 0964 0980 0974 0948 0.953
P 1.000 1.000 1.000 1.000 1.000 1.000
CO 0950 0.888 0.887 0919 0908  0.985
NO, 0996 0993 0994 0994 0994  0.99
O3 0.046 0360 0.104 0.704 0304 0.126
MPM, 0997 0997 0997 0998 0997  0.997
MPM,s | 0993 0995 0990 0997 0995 0.994
MPM, 0988 0993 0985 0993 0992 0988
MPM;, 0990 0994 0987 0989 0990 0.984
NPM, 5 0998 0998 0998 0997 0997  0.997
NPM, 0998 0998 0998 0998 0997  0.997
NPM, 5 0998 0998 0997 0998  0.997 0997
NPM, 0998 0998 0997 0998  0.997 0997
NPM,, 0998 0998 0997 0998  0.997  0.997

V. BC ESTIMATION ON LOW COST SENSORS

The results in the previous section demonstrated that proxy
variables can be used to estimate BC concentrations with
reasonable accuracy, at least if we use data from reference
stations to train the models. In this section, we further
demonstrate that these results generalize to low-cost sensors.

A. Estimation Pipeline

The BC estimation pipeline operates similarly to the proxy
variable estimation, first using MICE to impute missing values,
followed by feature scaling. As input features for calibration,
we use all available features from the low-cost sensors: CO,
O3, all available PM measurements of different sizes, and
weather measurements: T, RH, and P.

B. Experiments

We conduct our experiment on the SMEAR III reference
station and nearby installed LCPs [Fig. 1(b)]. There are four
LCP sensors marked with LCP1, LCP2, LCP3, and LCP4.
The correlations between those four LCP sensors are presented
in Table V. The LCPs overall have very high consistency,
but there were periodic hardware failures on three of the
four sensors that affected the O3z measurements. The O3
measurements of LCP3 are the most consistent and best match
with the reference station, and hence we use this low-cost
sensor as a basis in the experiment and evaluation. Note that
there are also periods where some data from the reference
station—or the LCPs—is not available due to maintenance,
hardware failures, connectivity failures, and other factors.
Smaller gaps in the data are handled using imputation whereas
longer gaps have been excluded from the analysis.

The evaluation using a similar process as in the previous
section, i.e., using separate training and testing splits and
calculating a wide range of error measurements. We vali-
date the calibration pipeline and the overall BC estimation
pipeline using experiments with a separate train-test split
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(50/50) instead of cross-validation due to having less data,
for the reasons described above. For a short period (around
a week), the ground truth BC measurements are missing due
to a hardware failure happening during a holiday period. We
impute the values for these missing days by training a proxy
model using the reference station measurements only and
using the output of this model on the measurements from low-
cost sensors as the BC estimate for this period. Air quality
measurements are heavily correlated in time [28] and hence
removing these measurements would result in discontinuity
that breaks the models that are trained on the data. For
validating the calibration results, we can only consider periods
where the calibrated sensor values of the proxy variables can
be compared to the reference values. As shown in Section IV,
most of the co-pollutants are only available intermittently. The
use of a 50/50 split ensures there are sufficient measurements
for training and testing the calibration models for all the
variables considered in the evaluation. The reference stations
we have used are among the leading observation stations
worldwide and hence the issue of missing data unfortunately
is a reality that any data modeling approach must address—
which is also why we incorporate it into our evaluation. As
error metrics we use the same measures as before, i.e., the
same error measures as in Section IV, namely, RMSE, MAE,
MAPE, MBE, and R2, and as models we consider MLR, SVR,
DTR, ABR, GBR, RFR, and MLP.

To obtain a baseline for comparison, we also evaluate the
performance of a model trained on LCP3 against a model
trained on SMEAR III. To make the model as similar as
possible, instead of using all available features from reference
station, we select features as similar as possible to the ones
we select from the LCP3, namely, CO, O3, PM» s, PMjg, T,
RH, and P. To ensure consistency in the comparison of models
trained on SMEAR III and LCP3, we use the same train-test
split for every model. This means that the timestamp indices of
the training data used to train a Station 1 model are the same
as the indices in the training data used to train an LCP3 model
and the same is true for the test data.

C. Model Comparison

Table VI compares the BC proxy models trained on the low-
cost sensor data to those trained from the reference sensor data.
The results generally are very similar and the best-performing
models with the lowest bias are GBR and RFR. When trained
on LCP3 data, the performance of these two models is close
to the performance obtained with reference station data (i.e.,
SMEAR III). The MAE is slightly higher for the low-cost
sensors and the correlation is smaller, due to noise in the
measurements. Nevertheless, the same general trend remains
and the differences in performance are not significant. Fig. 4
further demonstrates this point by comparing the estimates BC
levels between the models trained on LCP3 data and reference
station data. The general trend is accurately captured and both
models are capable of distinguishing between harmful and
nonharmful levels of BC. Indeed, the main difference between
the two models comes during the highest BC levels where
the lower sensitivity of the low-cost sensors may result in
underestimating the overall level of BC.
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TABLE VI
PERFORMANCE OF SELECTED MACHINE LEARNING MODELS FOR THE
ESTIMATION OF BC CONCENTRATION USING PROXY VARIABLES FROM
Low-CoOST AIR QUALITY SENSORS. RMSE, MAE, AND MBE VALUES
ARE EXPRESSED IN ng/m3. RESULTS HAVE BEEN OBTAINED WITH A
50-50 VALIDATION SPLIT WITH RANDOM SAMPLING ON THE AVAILABLE
DATA. ALL AVAILABLE FEATURES ARE USED

Model | RMSE ~ MAE  MAPE MBE R? | Source
MLR | 22188 15453 65.44% -8.83  0.656 | SMEAR
289.72 18282 74.97% -337 0414 | LCP3
gyr | 24077 14576 58.78% 3880 0596 | SMEAR
30844 166.88  56.37%  70.66 0336 | LCP 3
DIR | 17120 9080  36.42% 094 0795 | SMEAR
186.52 104.83  41.78% -1.15 0757 | LCP 3
ABR | 20892 16033 8598% 7753 0.695 | SMEAR
25285 20699 121.07% -103.96 0554 | LCP 3
GBR | 13404 98.09  44.13% -420  0.834 | SMEAR
177.89 12040  50.63% 145 0779 | LCP 3
RFR | 13612 7208 32.11% 246 0.871 | SMEAR
14580 8559  35.07% 163 0852 | LCP3
MLp | 16418 10999  4500% 1793 0812 | SMEAR
18355 12469  51.46% -7.16  0.765 | LCP 3

We also explore the potential of transferring the models
trained on one low-cost sensor to other low-cost devices.
The sensors often contain variations across devices and in
practice it is not possible to use every device to train the
proxy model as this would require co-locating them next
to the reference station for a sufficiently long period. In
case calibration transfer is possible, then only a small set of
sensors could be placed close to a reference station and the
other devices could simply use the model trained from these
measurements [13]. To test this, we test the models trained on
LCP3 against the measurements obtained on the other low-
cost sensors. As mentioned, the O3 sensor on these devices
had some hardware issues and hence O3 was excluded from
the model. The experiment is performed by using the best two
models: 1) GBR and 2) RFR. Figs. 5 and 6 show the results
for the GBR and RFR models. The target diagrams align for
all devices and all points are inside the target. This suggests
that a model trained on an LCP works well on other LCPs
without need to retrain it.

VI. PROXY VARIABLES CALIBRATED
ON LOW-COST SENSORS

The previous section demonstrates that BC concentra-
tions can be estimated with reasonable accuracy from proxy
variables and on low-cost sensors. As the final step, we
demonstrate how calibrating the low-cost sensor measurements
that are used as input for the proxy model further improves
the overall performance.

A. Calibration of Proxy Variables

As calibration targets, we select variables from Station 1
corresponding to variables available from our LCPs, having
a low percentage of missing values in the period of the LCP
measurement campaign, namely, T, RH, P, CO, PM; 5, and
PMjg. We remove the samples where values are missing
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Fig. 4. Target BC values versus values predicted by a BC proxy model trained on LCP 3.
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Fig. 5. Target diagrams showing the performance of a GBR model, trained on one LCP and tested on every LCP.
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Fig. 6. Target diagrams showing the performance of an RFR model, trained on one LCP and tested on every LCP.
TABLE VII

from these target variables, as imputing them would result
in data leakage and bias. We perform variable scaling as in
the previous parts of our study. We test proxy calibration
using GBR and RFR since these have consistently been the
best-performing models. For simplicity, we performed the
experiments of this part of our study only on a single low-cost
sensor as the results of the previous section demonstrated that
models transfer across low-cost sensors.

In Table VII, we show the results obtained by calibrating the
low-cost sensor measurements to predict pollutants to be used
as proxy variables. For T we do not provide MAPE and MAE,
as temperature is measured using an interval scale (°C), on
which proportions do not make sense. As shown in Table VII,
RFR has a better performance than GBR for every variable,
therefore we decide to use RFR to perform the rest of the
experiments in this part of our study. The errors are low across
the board and the correlation is very high, suggesting that the
calibration performs well on the measurements.

B. Using Calibrated Proxy Variables to Improve BC
Estimation

Using low-cost sensor measurements as proxies to estimate
BC level is beneficial as low-cost sensors help to increase the

CALIBRATION OF PROXY VARIABLES ON LCP 3. MAPE AND MBE ARE
MISSING FROM T AS IT IS MEASURED USING AN INTERVAL SCALE (°C),

ON WHICH RATIOS AND PERCENTAGES DO NOT MAKE SENSE

| RMSE MAE  MAPE MBE R?

T 052 038 — — 0963
RH 374 282 326% -0.17 0818
% P 0.15 0.1 0.01% 000  1.000
o Co 1343 887 491% 002 0759
PM,;5 148 095 14377% -0.02 0.773
PM, 329 206  4813%  0.06 0.778

T 041 026 — — 0977
RH 270 1.80 2.09% 004 0.905

g P 0.11  0.07 0.01% -0.00  1.000
¥ CO 171 634 348% -0.17 0817
PM,;5 149 086 12056% -0.03 0.771
PM 291 161 3191% 008 0.826

spatial and temporal resolution of information due to higher
deployment density. To test the performance of estimating BC
concentrations without and with calibrated proxy variables, we
test multiple combinations of features and calibrated proxy
variables using an RFR model.
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TABLE VIII
ESTIMATION OF LCP 3 oN BC WITH AN RFR MODEL,
USING COMBINATIONS OF LCP FEATURES AND CALIBRATED PROXY
VARIABLES. ONLY RESULTS OF NOTEWORTHY
COMBINATIONS ARE SHOWN

LCP Calibrated proxy features Performance
features T, RH,P CO PM,s PM,;, | RMSE MAE MAPE MBE R?
X 122.65 76.88 31.22% -1040  0.896
X X 123.29 7838  31.65% -4.34  0.895
X X 127.41 79.88 32.07% -11.14  0.888
X X X 125.57 7892 31.83% -1122 0.891
X X 121.62 7895 31.82% -9.59  0.898
X X X 116.66 7641  30.87% -7.87  0.906
X X 117.12 7792 30.70% -8.44  0.906
X X X 116.58 76.31  30.06% -5.73  0.906
X X X 117.72 77.87  30.94% -9.46  0.905
X X X X 116.13 76.55  29.97% -6.29  0.907
X X X X 123.24 7736  30.96% -10.06  0.895
X X X X X 122.24 76.63  31.09% -10.00 0.897
X X X 173.62  119.55 53.72% -10.74  0.792
X X X X 149.23 9747 4233% -1329  0.847
X X 270.05 187.00 82.09% -31.93  0.498
X X X 149.23 9747 4233% -1329  0.847

In Table VIII, we show the results of selected combinations.
As we can see, the best results are obtained with a combination
of the regular variables plus calibrated proxy features T,
RH, P, and PMjo. We obtain the second best results by
adding calibrated PM; 5. PM1g is chosen over PMj 5 plausibly
because the BC measured underwent an aging process at a
high rate, which increases its coating thickness and hence
results in a larger diameter [67]. We can also notice that the
proxy variable CO does not improve the results, but it even
worsens them compared to using LCP features only. This
could be because CO emissions from vehicular traffic have
decreased to a background level in Helsinki due to three-way
catalysts in vehicles. Values close to background level are not
beneficial in predicting BC in this study [68]. Using calibrated
proxy features only is worse than using a combination of LCP
features and calibrated proxy features together.

VII. DISCUSSION AND ROADMAP

First, in Section IV, we have shown that BC concentrations
can be reliably estimated from proxy variables and we have
identified the best-performing machine learning for this task,
which are GBR, RFR, and MLP. Second, in Section V, we
have shown that estimating BC concentration using measure-
ments from low-cost air quality sensors as proxy variables
is also feasible, and similarly to the results of the first
perspective, the best models are GBR and RFR, with RFR the
best overall. We have also compared the results obtained with
low-cost air quality sensors to results obtained from Station
1 with the same data and seen that a model built on data
from low-cost air quality sensors has a performance close
to the same model built on high-quality data. This result is
particularly significant as it suggests portable devices carried
by citizens could supplement professional-grade stations and
often detailed insights into the BC concentrations in urban
environments. We have also shown that a model trained on
one low-cost sensor is transferrable to other sensors without
the need to retrain it. Third, in Section VI, we have shown
that prior calibration of low-cost air quality sensors and adding
the calibrated variables to the main model for estimating BC
concentration further helps to improve performance.

17585

Naturally, our study also presents some limitations. First, as
results in Section I'V indicate, low-cost sensing components are
prone to failures. In our case, O3z sensors from three low-cost
sensors failed and they needed to be removed from the data. In
actual deployments, it would be essential to have mechanisms
that can automatically validate the measurements and to detect
such failures—at least in terms of without needing to manually
inspect the values. Second, in terms of analysis, there were
also some limitations. We could not perform imputation on
Station 1 because it would lead to bias in the calibration
of the LCPs and we could not calibrate O3 because too
many values were missing from the target value. Nevertheless,
the results were consistent across all combinations that were
tested. Indeed, for all imputed combinations and for those
cases where O3 values were available, the results were in
line with the results of other variables and data sources,
suggesting that the results are robust. Another limitation is
the somewhat short measurement campaign for the low-cost
sensors. Ideally, a measurement campaign should last at least
a year, so that measurements can span across every season and
the sensor can be tested in every condition it can encounter
outdoors. However, we only had access to sparse data spanning
three months during winter for this study. Ensuring sufficient
retention for sensor use is a critical issue for low-cost sensors
and any measurement campaigns are likely to suffer from the
same issue of sparsity and limited data as our measurements.
Thus, the limitations in our data reflect the characteristics of
real-world data sets.

VIII. CONCLUSION

We contributed a novel affordable and portable solution
for estimating BC concentrations using low-cost air quality
monitoring devices and machine learning techniques. Our
approach builds on an innovative approach that uses other
pollutants and environmental variables as proxies that are used
to estimate overall BC concentration. As low-cost sensors
tend to suffer from noisy measurements and inaccuracies, we
further incorporate sensor calibration to improve the quality of
the measurements that are used as inputs for proxy modeling
to enable robust and accurate modeling on low-cost sensors.
We conducted experiments using a combination of ground-
truth measurements from a high-quality measurement station
and low-cost sensor measurements from two locations with
different urban characteristics. Our results showed that a model
trained on low-cost data from sensors for measuring PM
of various sizes, CO, NO,, O3z, and weather variables (T,
RH, and P), approximates well the true concentration of BC,
almost as accurately as a similar model trained on high-
quality data from an atmospheric station. The best-performing
machine learning models are GBR and RFR. The results
also show that the performance of BC estimates can be
improved by adding calibrated proxy variables as features,
i.e., the output of models that calibrate low-cost air quality
sensors to predict pollutants that correlate with BC. Overall,
our research offers a new way to estimate BC using low-
cost air quality sensors. This allows the monitoring of BC
more densely than using conventional methods, which in turn
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allows better-estimating health risks faced by individuals, the
generation of high-resolution pollution maps, and providing
detailed information to support policy making.
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