
16758 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Hardware/Software Cooperative Design Against
Power Side-Channel Attacks on IoT Devices
Mingyu Yang , Graduate Student Member, IEEE, Tanvir Ahmed, Member, IEEE, Saya Inagaki,

Kazuo Sakiyama , Senior Member, IEEE, Yang Li, Member, IEEE, and Yuko Hara-Azumi , Member, IEEE

Abstract—With the growth of Internet of Things (IoT) era,
the protection of secret information on IoT devices is becoming
increasingly important. For IoT devices, attacks that target
information leakage through physical side-channels (e.g., a power
side-channel) are a major threat in many use cases because IoT
devices can be accessed easily by a hostile third party. However,
securing resource-constrained IoT devices against side-channel
attacks is a challenging issue. Generally, it is difficult to satisfy
the requirements on side-channel protection while maintaining
the low-power and real-time constrains of IoT devices. In
this article, we propose a hardware/software cooperative design
for cryptosystems that is suitable for resource-constrained IoT
devices. Combining a security-oriented processor design (i.e.,
an instruction set architecture definition and its architectural
structure) and careful implementations of masked software
implementation for cipher algorithms can effectively improve the
power–performance–area (PPA) while suppressing power side-
channel leakage. In our evaluation, for three ciphers (Chaskey,
Simon, and advanced encryption standard), we demonstrate that
our work is superior to state-of-the-art works (two RISC-V
processors and a small-scale low-power processor) in terms of
both PPA and power side-channel protection.

Index Terms—Constrained devices, embedded processor,
hardware security, Internet of Things (IoT), side-channel attack.

I. INTRODUCTION

W ITH the ongoing development of Internet of Things
(IoT) technologies, there is a growing need to protect

an increasing amount of confidential data processed on IoT
edge devices. To enable a variety of IoT devices (particularly
low-end devices) to process cipher algorithms efficiently in
real time, the hardware and software implementations of
lightweight ciphers are important research areas. Lightweight
cipher algorithms are designed to be simple using basic
operations and/or small amounts of memory while proving

Manuscript received 3 October 2023; revised 19 December 2023; accepted
15 January 2024. Date of publication 18 January 2024; date of cur-
rent version 25 April 2024. This work was supported in part by the
Japan Science and Technology (JST) Agency AIP Acceleration Research
under Grant JPMJCR20U2; in part by the JST FOREST Program under
Grant JPMJFR216P; and in part by the Japan Society for the Promotion
of Science KAKENHI under Grant JP20H00590. (Corresponding author:
Mingyu Yang.)

Mingyu Yang, Tanvir Ahmed, Saya Inagaki, and Yuko Hara-Azumi are with
the School of Engineering, Tokyo Institute of Technology, Tokyo 152-8550,
Japan (e-mail: mingyu@cad.ict.e.titech.ac.jp; tanvira@cad.ict.e.titech.ac.jp;
saya@cad.ict.e.titech.ac.jp; hara@cad.ict.e.titech.ac.jp).

Kazuo Sakiyama and Yang Li are with the Graduate School of
Informatics and Engineering, The University of Electro-Communications,
Tokyo 182-8585, Japan (e-mail: sakiyama@uec.ac.jp; liyang@uec.ac.jp).

Digital Object Identifier 10.1109/JIOT.2024.3355417

their security level mathematically [1]. However, physical side-
channel attacks could decipher secret information from IoT
devices. Unlike a covert channel caused by the architectural
design of high-end devices (e.g., branch speculation and com-
plex memory hierarchy), a side-channel that emits physical
information, such as power consumption and electromagnetic
waves, presents significant risk threat even in low-end devices
because physical access to the IoT devices could be realized
easily by a hostile third party [2].

Masking is a provably secure countermeasure against such
physical side-channel attacks [3]. To protect the secret data,
masking divides them into multiple shares by introducing fresh
randomness. A masking scheme using d + 1 shares is theoret-
ically safe against dth-order attacks. In addition, masking is
applicable to software and hardware implementations [4], [5],
both of which have advantages and disadvantages. Software
masking can be applied more easily than hardware mask-
ing, which requires architectural changes. However, software
masking suffers from longer latency by introducing more
shares. Furthermore, hardware resources are typically shared
between different operations to suppress circuit area. Thus,
d + 1 shares may be insufficient to protect against dth-order
attacks [6]. In other words, to obtain effective protection
against attacks, more shares are required, which results in
increased latency overhead [7]. On the other hand, although
hardware masking can reduce latency via parallel processing
of computations on the shares, it incurs large circuit area and
power overheads. Naturally, if the baseline implementation
of the microarchitecture is larger and more complex, the
masked implementation will have a more significant circuit
footprint [8].

Conventionally, countermeasures against power side-
channel attacks have exclusively been considered from either
a software or hardware perspective. In contrast, a hard-
ware/software cooperative approach is expected to holistically
provide a more efficient solution to mitigate the incurred
overheads. In addition, improvements to the cipher strength
(e.g., increasing the key length or replacing the cipher
algorithms) will be required in long-life IoT devices due
to the development of new threats. Thus, to develop a
cryptosystem on the IoT devices, embedded processors are
expected to be preferable compared to cipher-dedicated
circuits.

Motivated by these ideas, our work enables a novel
cryptosystem design that combines hardware and software
approaches in a way that is resistant to side-channel attacks,

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3722-7009
https://orcid.org/0000-0002-4414-815X
https://orcid.org/0000-0001-9486-5272

YANG et al.: HARDWARE/SOFTWARE COOPERATIVE DESIGN AGAINST POWER SIDE-CHANNEL ATTACKS 16759

especially power side-channel attacks. Specifically, to achieve
an efficient power–performance–area (PPA) and resistance to
power side-channel attacks, this work integrates masked soft-
ware implementations and a security-oriented microprocessor
whose instruction set architecture (ISA) and microarchitec-
tural structure are defined to be lightweight cipher friendly.
This enables protection of secret data against dth-order
attacks using only d + 1-masked software unlike previous
methods [6]. In addition, our processor design does not
employ a duplicated datapath circuit by masked and unmasked
modules (i.e., arithmetic logic unit (ALU) and/or register
file), differing from most existing hardened processors and
cipher-dedicated co-processors [8], [9], [10], [11]. Thus, it
enables low-power/energy processing of ciphers and other
IoT applications such as eHealth monitoring [12], [13].
Another recent study proposed a masked hardware design
for a bit-serial implementation of a RISC-V processor [14]
to mitigate the circuit area overhead. In contrast to our
hardware/software cooperative design approach, this is a
hardware-specific approach that only focuses on ciphers.
The most relevant work to our study is the RISC-V Ibex
extension to be aware of masked software [15]. Although it
is based on a small RISC-V core, our work targets further
smaller, resource-limited edge devices for which top-down
designs based on existing processors may not be suitable.
Our evaluation on lightweight ciphers [Chaskey, Simon,
and advanced encryption standard (AES)] demonstrates the
effectiveness of our work against state-of-the-art works includ-
ing [15] in terms of both PPA and power side-channel
protection.

Our primary contributions are summarized as follows.
1) By implementing the hardware/software cooperative

approach, we realize a cryptosystem design that simulta-
neously fulfills good PPA to be suitable for constrained
IoT edge devices and resistance to power side-channel
attacks.

2) From the software perspective, to prevent information
leakage that previously masked software suffered due
to unintended resource sharing in the underlying hard-
ware architecture, we conduct hardware-aware software
optimizations with only minimum shares in a provably
secure masking countermeasure.

3) From the hardware perspective, unlike previous works
that harden existing processors by introducing a
duplicated datapath circuit or cipher-dedicated co-
processor [8], [9], [10], [11], our work takes a bottom-up
approach to define a minimum ISA and its architectural
structure. Thus, it can not only achieve good PPA when
processing masked software but also can suppress power
side-channel leakage while maintaining efficiency for
other IoT applications.

The remainder of this article is organized as follows.
Section II briefly describes the motivation for this work.
Section III describes the hardware/software cooperative
design of tamper-proof cryptosystems for IoT edge devices.
Section IV quantitatively evaluates our work compared to
state-of-the-art works. Finally, this article is concluded in
Section V.

II. MOTIVATION

In the IoT era, with an increasing need to process con-
fidential data (e.g., personal identifiable data) in real time,
lightweight symmetric ciphers have been tailored to resource-
constrained embedded systems. They essentially comprise of
only a few basic instructions that are supported by even the
ISA of low-end processors. In addition, they are parameterized
(e.g., key length and rounds) to address emerging threats.

Cryptosystems built on top of a microprocessor are prefer-
able in terms of flexibility to the update of parameters and/or
cipher algorithms compared to hardwired cipher circuits. To
develop a microprocessor that can be employed on resource-
constrained devices, a bottom-up approach in defining an ISA
and its architectural structure should be considered. For the
first step, here we examine the following symmetric ciphers
that adopt different designs for permutation or substitution.
These ciphers are used as benchmarks in our evaluation. These
ciphers are selected because of their different operation used
during computation. In our future work, more lightweight
ciphers will be covered, e.g., Speck, LED, and Ascon.

1) Chaskey [16] is an addition–rotation–XOR (ARX)-based
message authentication code (MAC) algorithm designed
for 32-bit embedded processors. ARX ciphers are
composed of only three types of operations (i.e., mod-
ular addition,1 rotation, and bitwise XOR). The basic
computation block is defined as the permutation π

shown in Fig. 1(a). As a variant of Chaskey, Chaskey-
12 [17], which contains 12 rounds of permutation,
was standardized by the International Organization for
Standardization as a lightweight MAC algorithm.

2) Simon [18] is a lightweight block cipher released by the
U.S. National Security Agency. A single round of the
Simon permutation is illustrated in Fig. 1(b). Simon is
another type of ARX cipher. However, unlike Chaskey,
addition is replaced by bitwise AND. In addition, Simon
supports different block size, key length, and rounds
combinations. In this work, Simon64, which adopts the
smallest processing unit of 32-bit with a 128-bit key
length, was used for our implementation and evaluation.

3) AES [19] is a block cipher standardized by the American
National Institute of Standards and Technology. AES
supports different settings in terms of key length, which
defines the number of rounds. The nonlinear substitution
step (i.e., SubBytes or S-box) is shown in Fig. 2.
Through the S-box, the input values a on the left side
are transformed into the output values b on the right
side. Technically, although AES is not considered as
a lightweight cipher, we utilize AES because it is a
representative symmetric cipher that employs the S-box
and has been widely evaluated in the literature. In
our evaluation, similar to most existing works on side-
channel attacks and countermeasures, we focus on the
S-box, which is the most critical component in AES.

Table I shows the details of the cipher benchmarks in
our evaluation. These ciphers support different block/key
lengths, here we selected those variants to have the same

1Hereafter, we refer to modular addition as “addition” for brevity.

16760 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

(a)

(b)

Fig. 1. One round of permutation. (a) Chaskey. (b) Simon.

key length. The above cipher algorithms are mathematically
proven to be secure. However, a side-channel that emits
physical information, such as power consumption, can leak
the secret information. To prevent side-channel leakage, a
masking countermeasure is applied. This masking countermea-
sure divides secret information into multiple shares according
to an XOR-ing scheme. Thus, in these cipher algorithms,
the original (i.e., the unmasked) implementation and the
masked implementation do not require complex operations.
Specifically, as summarized in Fig. 3, only several types of
simple instructions are used in both the masked and unmasked
implementations of Chaskey and Simon (when compiled for
the RISC-V RV32IMC ISA). The AES S-box uses fewer
types of operations by utilizing the table-based S-box (i.e.,
primarily load/store operations). In contrast, most existing
processors support many more types of instructions (e.g., 47
to 190 even in small-scale embedded processors according to
a survey reported in [13]), which means that the most of them
are unused to process lightweight ciphers. Even worse, in a
previous study [20], even unused hardware resources [e.g.,
floating-point arithmetic unit (FPU)] were identified to become
a side-channel leakage source due to glitch propagation.

Generally, the circuit area of microprocessors increases with
the complexity of the ISA and functionalities. Thus, protecting
such processors against side-channel attacks primarily by

Fig. 2. AES S-box.

TABLE I
DETAILS OF THE CIPHERS

Fig. 3. Breakdown of operations in unmasked and masked software
implementations of representative lightweight ciphers.

introducing a duplicated datapath circuit or cipher-dedicated
co-processor [8], [9], [10], [11] makes it more difficult to
develop a cryptosystem that is suitable for constrained devices.

Focusing on this bottleneck in existing works, we take
a bottom-up approach in a hardware/software cooperative
manner. In this work, we define a minimum ISA and its
architectural structure that can process a masked software
implementation of lightweight symmetric ciphers efficiently.
By handling power side-channel attacks cooperatively in terms
of both hardware and software, PPA can be improved while
providing side-channel protection.

III. HARDWARE/SOFTWARE COOPERATIVE APPROACH

AGAINST POWER SIDE-CHANNEL ATTACKS

As discussed in [7], there is a gap between proven secu-
rity in theory and safe implementation of cryptosystems in
practice. This work addresses this gap on constrained IoT
devices while considering the PPA of the cryptosystems.
Specifically, by adopting the hardware/software cooperative
approach, which combines a security-oriented hardware design

YANG et al.: HARDWARE/SOFTWARE COOPERATIVE DESIGN AGAINST POWER SIDE-CHANNEL ATTACKS 16761

TABLE II
ISA DEFINITION FOR OUR PROCESSOR (RA AND RB : THE INPUT

REGISTERS, I: AN IMMEDIATE VALUE, AND RD : THE OUTPUT REGISTER.
“/” INDICATES THAT EITHER OF TWO OPTIONS IS SELECTED, AND “< =

>” INDICATES THAT ASSIGNMENT IS IN EITHER DIRECTION)

and a hardware-aware software implementation, this work
attempts to develop a cryptosystem that is resistant to power
side-channel attacks and suppresses PPA overheads. Note
that this work assumes first-order attacks as well as the
work [15] and apply two-share masking as a starting point.2

The hardware design takes a bottom-up approach to define
the ISA and architecture of a microprocessor to develop
tamper-proof cryptosystems. The software implementation is
carefully realized to avoid unintended leakage through hard-
ware resource sharing such that only two-share making is
sufficient to provide protection against first-order attacks.

In the following, we elaborate on the proposed approach
relative to hardware and software perspectives.

A. Security-Oriented Hardware Design

To process masked lightweight ciphers while also pro-
viding a desired level of security under limited computing
resources, we developed a uniquely defined ISA that supports
a minimum set of instructions and a simple architecture
according to the preliminary analysis shown in Fig. 3. In this
work, we referred to a low-power 32-bit embedded proces-
sor SubRISC+ [12], [13] which was recently proposed for
lightweight embedded applications (e.g., eHealth monitoring)
as a baseline design of our microprocessor due to its simple
ISA and small circuit footprint. SubRISC+ supports four
types of instructions (i.e., subtraction, bitwise AND, shift with
only predefined values, and memory access). In this work,
we implemented support for subtraction, bitwise AND/XOR,
shift with arbitrary values, and memory accesses such that
different types of masked ciphers can be processed efficiently
while suppressing both circuit area and power overheads. The
ISA definition and instruction format of our processor are
summarized in Table II and Fig. 4, respectively. As shown
in Fig. 4, instructions are basically in a 16-bit format, and
an optional 16-bit block is utilized to handle an immediate
value or branch. Here, “Function” is a 1-bit flag signal that
specifies different options in each instruction. It is used to
determine whether the optional block will be used in SUB, to
select between bitwise AND/XOR in LOGIC, to specify the
assignment direction between the register file and memory in
MEM, and to select the shift direction in SHIFT. Operations
that are not directly supported by this ISA can be computed by
combining the instructions listed in Table II. Interested readers
are referred to [12] and [13] for additional details about the

2Resistance against higher order attacks will be explored in future work.

Fig. 4. Instruction format for our processor (short forms refer to Table II).

SubRISC+ instruction format and architecture. Unless stated
otherwise, we still follow the original format definition of the
SubRISC+ ISA.

To develop our security-oriented processor, based on our
decision on the ISA and microarchitectural source of leak-
age [20], the following three extensions are applied to the
baseline SubRISC+ architecture. An architectural overview of
the proposed processor design is shown in Fig. 5.

1) As mentioned previously, we introduce bitwise XOR

and shift with arbitrary values. Accordingly, the ALU
implementation and decoder as well as the instruction
format were extended to support these two instructions.

2) We employ a gating scheme that disables unnecessary
switching on inactive operations in the ALU module.
As pointed out in [20], even unused resources (e.g.,
FPU) can play an important role in leakage due to glitch
powers caused by unnecessary switching. Considering
this issue, conventional gating schemes to reduce power
consumption can be an effective solution. This obser-
vation motivated us to cut off undesired switching
activities in the ALU module, which is one of the busiest
modules in terms of glitch generation. To implement
the gated ALU, opcodes are used to determine the
current instruction to be executed such that only the parts
required for processing its operation are enabled (i.e.,
low-power input gating [21]).

3) Finally, as fresh randomness is required for masking
(Section III-B), we introduce a pseudo-random number
generator (PRNG) module that generates 32-bit random
numbers. Here, the random values are generated on-the-
fly and stored from the PRNG module to the register
file. In this work, we used an XORSHIFT-ADD-based
PRNG [22], which is a variant of Xorshift PRNG. In this
work, an assumption on attack scenario that the attackers
can not predict the output of the PRNG module is made.
Since other types of PRNGs can be applied, we will
explore a more suitable PRNG for our processor in the
future work.

B. Software Implementation: Masking

Masking is an effective countermeasure to protect secret
information in ciphers from side-channel attacks. Secret data
are divided into multiple shares on which the computation for
encryption is performed with fresh randomness to prevent from
analysis of the physical characteristics. Because permutation
or an S-box is critical for encryption, they must be masked
using masking schemes that correspond to their operations.
For example, Boolean masking is applied to operations where
no carry occurs during computation (e.g., logic operations,

16762 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Fig. 5. Architectural overview of our proposed design (PC: program counter,
ALU: arithmetic logic unit, RF: register file, and PRNG: pseudo-random
number generator).

Algorithm 1 B2A Conversion

Input: (X′, r), such that X′ = X ⊕ r, random value R
Output: A, such that x = A+r

1: T <= X′ ⊕ R // T is an intermediate value
2: T <= T − R
3: T <= T ⊕ X′
4: R <= R ⊕ r
5: A <= X′ ⊕ R
6: A <= A − R
7: A <= A ⊕ T

rotation, and table references). On the other hand, operations
that may involve carries between bits depending on the value
(e.g., addition) must be masked using the arithmetic masking.

In this work, we employ a conventional masking coun-
termeasure3 [23] for software implementations of Chaskey,
Simon, and AES, which were selected for their different
properties on masking. As described in the following, Chaskey
involves both arithmetic masking and Boolean masking on
the permutation, Simon involves only Boolean masking on
the permutation, and the AES S-box involves only Boolean
masking on the table-based substitution.

Masked Chaskey Implementation: As discussed in
Section II, Chaskey is an ARX cipher where both arithmetic
and logic operations are used in the permutation [Fig. 1(a)].
Thus, Boolean masking is applied to both XOR and rotation,
and arithmetic masking is applied to addition. When mixing
these masking schemes, the correctness of the final results
under masking must be ensured carefully. To realize this, we
implement the Goubin conversion [24] between these schemes
in two directions [i.e., from Boolean to arithmetic (B2A) and
from arithmetic to Boolean (A2B)]. The pseudocode for these
schemes is described in Algorithms 1 and 2, respectively.

While the B2A algorithm is relatively lightweight in taking
only several operations, the A2B algorithm involves a loop
that is iterated K−1 times where K is the number of bits of the
input (K = 32 in our evaluation). Obviously, this loop becomes
a bottleneck. Thus, to mask Chaskey while suppressing the
latency overhead, the A2B and B2A conversions must be
inserted into the appropriate positions along with both masking

3Other masking countermeasures (e.g., threshold implementation and
domain-oriented masking) can be similarly applied.

Algorithm 2 A2B Conversion
Input: (A, r), such that X = A + r, random value R
Output: X′, such that X = X′⊕r

1: T <= 2R // T is an intermediate value
2: X′ <= R ⊕ r
3: O <= R ∧ X′ // O is an intermediate value
4: X′ <= T ⊕ A
5: R <= R ⊕ X′
6: R <= R ∧ r
7: O <= O ⊕ R
8: R <= T ∧ A
9: O <= O ⊕ R

10: for k = 1 . . . K − 1 do
11: R <= T ∧ r
12: R <= R ⊕ O
13: T <= T ∧ A
14: R <= R ⊕ T
15: T <= 2R
16: end for
17: X′ <= X′ ⊕ T

Fig. 6. Masked Chaskey with A2B and B2A conversions.

schemes. Fig. 6 shows our implementation. The number spec-
ified in each A2B or B2A conversion indicates an index for
simple comprehension. In this implementation, conversions are
inserted immediately before and after the addition operations.
To minimize the latency overhead caused by these conversions,
“B2A(2)” and “B2A(6)” can be omitted if the precedent results
are passed directly to the additions. However, in this case, both
the converted and unconverted results are required, thereby
resulting in register file spilling.

A recent work [25] pointed out a potential leakage source
in the above A2B conversion algorithm (i.e., when the
intermediate variable R is overwritten as appeared on lines 6
and 8 of Algorithm 2). We examined how the intermediate

YANG et al.: HARDWARE/SOFTWARE COOPERATIVE DESIGN AGAINST POWER SIDE-CHANNEL ATTACKS 16763

variable R is used and found that R does not have to be written
to the same variable (on line 8 of Algorithm 2). Consequently,
we resolve this potential leakage point by assigning R to
another variable.

Masked Simon Implementation: The Simon permutation
does not involve operations with carries. Thus, only Boolean
masking is used (i.e., no conversion is required, unlike
Chaskey). An existing masking method [26] for the Simon
permutation is explained as follows:

rout[a] = l[a] (1)

rout[b] = l[b] (2)

lout[a] = r[a] ⊕ l[a]2 ⊕
(

l[a]1 ∧ l[a]8
)

⊕
(

l[a]1 ∧ l[b]8
)

⊕ k[a] (3)

lout[b] = r[b] ⊕ l[b]2 ⊕
(

l[b]1 ∧ l[b]8
)

⊕
(

l[b]1 ∧ l[a]8
)

⊕ k[b] (4)

where r and l are the inputs on the right and left sides of
the round function, rout and lout are the outputs on the right
and left sides, and k is a round key. Two shares of each input
or key are represented by a and b. The exponent operations
mean left rotation with the specified number of bits (e.g., l[a]2

means left rotation by 2 bits). In this masking method, the key
point is to handle the AND operation as follows:

l1 ∧ l8 =>
(

l[a]1 ⊕ l[b]1
)

∧
(

l[a]8 ⊕ l[b]8
)
.

By extending the right-hand side of this equation, the follow-
ing format is obtained:
(

l[a]1 ∧ l[a]8
)

⊕
(

l[a]1 ∧ l[b]8
)

⊕
(

l[b]1 ∧ l[b]8
)

⊕
(

l[b]1 ∧ l[a]8
)
.

This equation is then divided into two shares in (3) and (4)
to ensure correctness under the masking scheme. In addition,
before each round, the round key k is preprocessed to be
divided into k[a] and k[b] such that k = k[a] ⊕ k[b].

Masked AES Implementation: According to convention, we
implemented the AES S-box in a table look-up manner.
Then, for masking, we followed a principle in [27] to apply
Boolean masking to the table S-box and indexing of the
S-box. This process ensures that the original values are not
processed during encryption and masked values are processed
alternatively with a masked index.

C. Software Implementation: Resource Allocation and
Instruction Scheduling

We then carefully consider hardware resource allocation and
scheduling of instructions for the masked software implemen-
tations. The aforementioned masking implementations using
d + 1 shares and conversions between different masking
schemes should theoretically protect secret data from dth-
order side-channel attacks. However, the protection effect may
be subject to implementation of the underlying embedded
processors. As discussed in [6], 1) transitions between two
shares of the same secret data at the same memory location
or entry may lead to secret leakage. In addition, 2) shares
of the same secret data should not be accessed within two

successive instructions [15]. In other words, failing to satisfy
these two constraints can lead to disclosure of Hamming
distance between two shares.

To satisfy these constraints and avoid unintentional resource
sharing of the same secret data, we carefully implemented the
software to be aware of our microprocessor (Section III-A)
in terms of the register file and memory allocation [for
constraint 1)] and instruction scheduling [for constraint 2)].

First, we addressed constraint 1) using dedicated register
file entries or memory locations for each share to explicitly
avoid transitions between shares. Note that this approach is
potentially register hungry, particularly for embedded proces-
sors with limited register file entries (e.g., 16 or fewer). Thus,
if the number of dedicated register file entries is insufficient
for all intermediate variables, dedicated memory locations are
also allocated. When implementing masked software, con-
straint 1) can be satisfied by specifying these register/memory
allocations in the assembly code explicitly or via proper usage
of global variables in the C code.

Next, instruction scheduling was adjusted to satisfy con-
straint 2), which allows us to schedule instructions on values
that do not share the same secret data in a row. In addition,
swapping the operands of commutative operations also helps
realize efficient scheduling. Note that these adjustments can
be certainly done in the assembly level. However, if the C
code implementation is used, designers must ensure that the
instruction scheduling in the compiled code is as intended.

In summary, these combined hardware-aware optimizations
follow the principle that unintentional resource sharing of the
same secret data during encryption is avoided [6].

IV. EVALUATION

In this section, we first describe our experimental setup.
Then, we demonstrate the effectiveness of our work against
state-of-the-art works in terms of PPA and security.

A. Experimental Setup

In this evaluation, we used the SAKURA-X board [28],
which was designed for side-channel evaluation through spe-
cial power measurement connectors. This board comprises two
field-programmable gate arrays (FPGAs): 1) a Xilinx Kintex-
7 XC7K160T FPGA and 2) a Xilinx Spartan-6 XC6SLX45
FPGA. The Kintex-7 FPGA is used to implement the cryp-
tosystem, and the Xilinx Spartan-6 XC6SLX45 FPGA is used
to implement a controller for the Kintex-7 FPGA (e.g., clock
generator). For the Kintex-7 FPGA, the clock frequency was
set to 12 MHz.

For the masked implementations of Chaskey, Simon, and
AES S-box, the following processors were implemented on
the Kintex-7 FPGA to evaluate the effects of our method
comprehensively.

1) Ibex4: The Ibex is one of the smallest RISC-V cores
whose ISA is defined as RV32IMC. The number of
register file entries is 32.

2) SubRISC+: The SubRISC+ is one of the smallest micro-
processors based on which our processor was newly

4github.com/lowRISC/ibex

16764 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

TABLE III
COMPARISON OF PPA (MASKED SOFTWARE IMPLEMENTATIONS)

developed. In addition, its ISA was uniquely defined for
small-scale IoT devices [12]. The number of register file
entries is 16.

3) coco-Ibex: coco-Ibex [15] is the most relevant work to
our study in that it was developed by partially refining
Ibex to be aware of masked software implementations.
A verification tool was used to identify side-channel
leakage sources in the Ibex netlist. Then, to mitigate
secret-dependent glitches, a gating scheme was applied
to modules that had leakage (e.g., register file, ALU, and
load/store unit). Because we found some critical bugs
in its open-sourced RTL code from which the bitstream
could not be generated, we reproduced coco-Ibex from
the original Ibex code.

4) Small and Secure Processor (SSP): This is the proposed
processor (Section III-A). In the following, we refer to
our processor as the SSP.

These processors were evaluated in terms of implementation
results (i.e., the PPA). We used Xilinx Vivado 2020.2 to
evaluate the circuit area (resource utilization) and power con-
sumption as well as the FPGA implementation. Performance
(in terms of cycle counts per round of the Chaskey/Simon
permutation and the AES S-box) was measured using a cycle
accurate simulator for each processor. For software compi-
lation and assembling, we developed an in-house toolchain
for SSP and used an open-source toolchain for each of the
compared processors. Results on execution time are obtained
using a clock frequency of 12 MHz. This frequency is used in
subsequent simulations and evaluations. In addition, coco-Ibex
and SSP were evaluated in terms of security (i.e., the resistance
to first-order power side-channel attacks). In this security
evaluation, Welch’s t-test [29] was conducted to evaluate first-
order side-channel leakage on the measured power traces.
Here, a Keysight MSOX3104T oscilloscope was used for data
acquisition. We conducted a nonspecific leakage assessment,
where random and fixed plaintexts were fed to the processors
to compute t-values. If the peak of t-value was greater that
the threshold of |4.5|, the null hypothesis is rejected with a
confidence of more than 99.999%. In other words, the power
traces for random and fixed plaintexts can be distinguished sta-
tistically and thus may leak secret information. To understand
the security of our work holistically, the security evaluation
was performed at the instruction and cipher levels, where
sampling rates of the oscilloscope were set to 5 GSa/s and
313 MSa/s, respectively.

B. Results

PPA Evaluation: The four processors are compared in terms
of PPA in Table III. Here, to facilitate a fair comparison,

data/instruction memory and the PRNG module were excluded
from all processors. From the cycle count results, we see
that even though the proposed SSP supports much fewer
instructions than Ibex and coco-Ibex, it successfully achieves
comparable cycle counts as well as execution time with all
ciphers. Considering that SubRISC+ and SSP demonstrate
similar ISAs, the security-oriented ISA definition in SSP
(particularly the bitwise XOR and shift with arbitrary values)
improved the efficiency of processing ciphers. In addition, as
discussed in Section II, most types of instructions on Ibex
and coco-Ibex were unused even though their ISA is relatively
compact among RISC-V ISAs.

Next, we compare the results in terms of power con-
sumption and circuit area (i.e., resource utilization) together.
As expected, we found that the Ibex has a larger circuit
area because it supports more instructions and functionalities.
In addition, owing to the netlist refinements to mitigate
side-channel leakage, coco-Ibex incurred nonnegligible area
overhead. However, interestingly, coco-Ibex exhibited lower
power consumption than the original Ibex due to the gat-
ing scheme in coco-Ibex. Compared to Ibex and coco-Ibex,
SubRISC+ and the proposed SSP achieved an order of
magnitude less power consumption and area due to their
simpler microarchitectural structures. Although the proposed
SSP demonstrated a slightly higher overhead in both metrics
than SubRISC+, the advantage in terms of cycle reduction is
much greater.5 The effect of the cycle count reduction was
particularly large for both Chaskey and Simon, where many
XOR and rotation operations appear. These operations can be
performed efficiently by the ISA of the proposed SSP. Thanks
to the reduction on cycle count of the proposed SSP that leads
to less execution time, the energy consumption of the proposed
SSP outperforms not only the RISC-V processors but also
SubRISC+. Overall, we found that the proposed SSP achieved
better PPA than the compared state-of-the-art processors for
different types of cipher algorithms.

Although in this work we focused on cipher applications and
side-channel protection, it is also important to see the whole
picture when considering noncipher applications. Evaluations
are done to examine the PPA differences between the proposed
SSP with a compact ISA and RISC-V Ibex with a generally
used embedded ISA. Such that the potential performance
losses when executing noncipher applications due to SSP’s
compact ISA are verified. We evaluated a set of applications
that often performed on IoT edge devices for data processing
and analysis. The evaluation on noncipher applications that

5The ISA of the proposed SSP includes the ISA of SubRISC+ and the
proposed SSP has less than 2.9% LUTs overhead. Thus, the proposed SSP
can still efficiently process other applications (e.g., eHealth applications [13]).

YANG et al.: HARDWARE/SOFTWARE COOPERATIVE DESIGN AGAINST POWER SIDE-CHANNEL ATTACKS 16765

TABLE IV
EVALUATION ON NONCIPHER APPLICATIONS

TABLE V
DETAILS OF THE NONCIPHER APPLICATIONS

compares the proposed SSP and RISC-V Ibex is shown in
Table IV. The evaluated noncipher applications are briefly
introduced in Table V. From the results on performance and
execution time, we can observe that SSP and Ibex have
comparable cycle counts and execution time. With a much
compact ISA design, SSP even outperforms Ibex in several
applications. The reason on this is memory and branch instruc-
tions that takes multiple cycles on Ibex reduced the relative
performance compared to SSP. For Edge and Histogram, when
applications have less multiple cycle instructions, Ibex shows
better performance than SSP. For the comparisons on power
consumption, SSP shows better power efficiency than Ibex due
to its architectural design. Thanks to SSP’s power efficiency,
SSP shows better energy performance than Ibex even in the
cases that SSP requires a longer execution time. The results
on area are consistent with the results in Table III because
there is no change on the circuit design. Overall, these results
show the proposed SSP achieved better PPA than the compared
state-of-the-art processors in noncipher IoT applications.

Security Evaluation at the Instruction Level: Next, to clearly
examine the potential information leakage at a fine granu-
larity, we performed evaluations of instruction-level masking.
Comparisons between unmasked and masked instructions on
the proposed SSP are shown in Figs. 7 and 8, respectively.
Auxiliary horizontal lines are drawn at |4.5| in these figures.
The four most critical operations involved in the benchmarks
(i.e., XOR, AND, addition, and shift operations) were evaluated
by the nonspecific t-test using 50 000 traces for random/fixed
plaintexts. These operations were masked in software by
the two-share masking scheme. Here, NOP instructions were
inserted before and after the target instruction(s) to remove
interference from other instructions. As shown in the cor-
responding figures, the region between vertical dotted lines
indicates the period to evaluate the target instruction(s). As can
be seen, by applying the two-share masking, the proposed SSP
can successfully protect secret information against first-order
attacks.

Fig. 7. Unmasked instructions on SSP. (a) XOR. (b) AND. (c) Add. (d) Shift.

Fig. 8. Masked instructions on SSP. (a) XOR. (b) AND. (c) Add. (d) Shift.

Security Evaluation at the Cipher Level: Finally, security
evaluations were performed at the cipher level. Similar to
the previous instruction-level evaluation, here, both unmasked
and masked ciphers were implemented on the proposed SSP
and evaluated using a nonspecific t-test (Figs. 9 and 10,
respectively). In addition, we evaluated the masked ciphers on
coco-Ibex Fig. 11. For the masked ciphers on both coco-Ibex

16766 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Fig. 9. Unmasked ciphers on SSP (20 000 traces). (a) Chaskey. (b) Simon. (c) AES.

Fig. 10. Masked ciphers on SSP (500 000 traces). (a) Chaskey. (b) Simon. (c) AES.

Fig. 11. Masked ciphers on coco-Ibex (100 000 traces). (a) Chaskey.6 (b) Simon. (c) AES.

and the proposed SSP, we employed the two-share masking
and optimizations described in Sections III-B and III-C.
We set the largest number of traces for the evaluations of
our work (the combination of masked ciphers and SSP;
Fig. 10) to facilitate an in depth examination of the effects on
security.

As expected from the results of unmasked instructions
shown in Fig. 7, we clearly observe that the t-values are
greater than |4.5| almost all over the ciphers in Fig. 9. Due
to the interference between instructions, secret leakage was
more severe than that in the instruction-level evaluations,
which indicates the need for a hardware-aware software
implementation. According to the results shown in Fig. 11,
even though the ciphers were all masked, coco-Ibex sup-
pressed t-values below |4.5| for only the AES S-box, which
is consistent with the results reported in the work [15],
but failed for both Chaskey and Simon. In the work [15],

6The reason for much fewer samples than the samples in Fig. 10(a) is
because only a part of the results is presented here to clearly show potential
leakage on coco-Ibex. As shown in Table III, the total cycle counts are
comparable between coco-Ibex and SSP.

Gigerl et al. employed an application-specific integrated circuit
(ASIC) verification tool to determine the leakage sources,
and then evaluated coco-Ibex on an FPGA. However, the
exact same behaviors are not guaranteed between ASIC and
FPGA. This gap might fail to capture all leakage sources,
and coco-Ibex still leaks in Chaskey and Simon. Thus,
additional refinements to address with these leakage sources
will incur further PPA overhead in coco-Ibex. In contrast,
for the masked ciphers, the proposed SSP suppresses the t-
values within |4.5| in all ciphers. These results demonstrate
that the proposed SSP can eliminate the leakage sources
for different ciphers using our security-oriented bottom-up
microprocessor design, even without employing a costly dat-
apath duplication [8], [9], [10] or refinements done in the
work [15].

In summary, considering both the results on unmasked
and masked versions of ciphers as well as the PPA results,
the proposed SSP achieves a good tradeoff between PPA
and side-channel protection cooperatively from both hardware
(security-oriented processor) and software (microarchitecture-
aware optimization) perspectives.

YANG et al.: HARDWARE/SOFTWARE COOPERATIVE DESIGN AGAINST POWER SIDE-CHANNEL ATTACKS 16767

V. CONCLUSION

In this article, we have proposed a hardware/software coop-
erative design for cryptosystems that are resistant to power
side-channel attacks and suitable for resource-constrained IoT
devices. Here, we took a bottom-up approach to define a
security-oriented microprocessor and implement masked soft-
ware to which hardware-aware optimizations were applied.
From the cooperative design perspective, minimum ISA and
its architectural structure design together with hardware-aware
software optimizations are used to prevent from information
leakage from masked cipher implementations. In comparative
evaluations with state-of-the-art low-power (and security-
aware) processors, we demonstrated that our work achieved the
most efficient PPA for both cipher and noncipher applications
and security against first-order power side-channel attacks for
different types of lightweight ciphers.

In the future, further improvements to the PPA of the
proposed processor on will be considered. Also, further devel-
opment on the PRNG module and higher order protection
on different ciphers will be included. In addition, we plan
to perform an ASIC implementation and conduct further
evaluations using the proposed processor.

REFERENCES

[1] A. Bogdanov et al., “PRESENT: An ultra-lightweight block
cipher,” in Proc. Int. Workshop Cryptogr. Hardw. Embedded Syst.,
2007, pp. 450–466.

[2] H. D. Tsague and B. Twala, “Practical techniques for securing the
Internet of Things (IoT) against side channel attacks,” in Internet of
Things and Big Data Analytics toward Next-Generation Intelligence.
Cham, Switzerland: Springer, 2018, pp. 439–481.

[3] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Proc. Int. Conf. Theory Appl. Cryptogr. Techn.,
2013, pp. 142–159.

[4] M. Rivain, E. Prouff, and J. Doget, “Higher-order masking and shuffling
for software implementations of block ciphers,” in Proc. Int. Workshop
Cryptogr. Hardw. Embedded Syst., 2009, pp. 171–188.

[5] J. D. Golic, “Techniques for random masking in hardware,” IEEE Trans.
Circuits Syst. I, Reg., vol. 54, no. 2, pp. 291–300, Feb. 2007.

[6] J.-S. Coron, C. Giraud, E. Prouff, S. Renner, and P. K. Vadnala
“Conversion of security proofs from one leakage model to another: A
new issue,” in Proc. Constr. Side-Channel Anal. Secure Design, 2012,
pp. 69–81.

[7] L. De Meyer, E. De Mulder, and M. Tunstall, “On the effect of
the (micro) architecture on the development of side-channel resis-
tant software,” Cryptology ePrint Arch., IACR, Bellevue, WA, USA,
Rep. 2020/1297, 2020.

[8] E. De Mulder, S. Gummalla, and M. Hutter, “Protecting RISC-V against
side-channel attacks,” in Proc. Design Autom. Conf., 2019, pp. 1–4.

[9] S. Gao et al., “An instruction set extension to support software-based
masking,” IACR Trans. Cryptogr. Hardw. Embedded Syst., vol. 2021,
no. 4, pp. 283–325, Aug. 2021.

[10] W. Diehl, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Side-channel resistant
soft core processor for lightweight block ciphers,” in Proc. Int. Conf.
ReConFig. Comput. FPGAs, 2017, pp. 1–8.

[11] B. Marshall, D. Page, and T. Hung Pham, “A lightweight ISE for ChaCha
on RISC-V,” in Proc. Int. Conf. Appl.-Specific Syst., Archit. Processors,
2021, pp. 25–32.

[12] K. Saso and Y. Hara-Azumi, “Revisiting simple and energy-efficient
embedded processor designs towards the edge computing,” IEEE
Embedded Syst. Lett., vol. 12, no. 2, pp. 45–49, Jun. 2020.

[13] M. Yang and Y. Hara-Azumi, “Implementation of lightweight eHealth
applications on a low-power embedded processor,” IEEE Access, vol. 8,
pp. 121724–121732, 2020.

[14] K. Stangherlin and M. Sachdev, “Design and implementation of a secure
RISC-V microprocessor,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 30, no. 11, pp. 1705–1715, Nov. 2022.

[15] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, R. Bloem, “Coco: Co-
design and co-verification of masked software implementations on
CPUs,” in Proc. USENIX Secur. Symp., 2021, pp. 1469–1468.

[16] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel,
and I. Verbauwhede, “Chaskey: An efficient MAC algorithm for 32-bit
microcontrollers,” in Proc. Int. Conf. Select. Areas Cryptogr., 2014,
pp. 306–323.

[17] N. Mouha, “Chaskey: A MAC algorithm for microcontrollers–status
update and proposal of Chaskey-12–,” Ph.D. dissertation, Dept. Electr.
Eng., Inria Paris Rocquencourt, Paris, France, 2015.

[18] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith,
and L. Wingers, “The SIMON and SPECK lightweight block
ciphers,” in Proc. Design Autom. Conf., 2015, pp. 1–6.

[19] M. Dworkin, “Recommendation for block cipher modes of operation.
methods and techniques,” U.S. Dept. Commerce., National Inst. Stand.
Technol., Gaithersburg, MD, USA, Rep. TR-800-38A , 2001.

[20] V. S. Bokharaie and A. Jahanian, “Power side-channel leakage assess-
ment and locating the exact sources of leakage at the early stages
of ASIC design process,” J. Supercomput., vol. 78, pp. 2219–2244,
Feb. 2022.

[21] H. Kapadia, L. Benini, and G. De Micheli, “Reducing switching activity
on datapath buses with control-signal gating,” IEEE J. Solid-State
Circuits, vol. 34, no. 3, pp. 405–414, Mar. 1999.

[22] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Trans. Math. Softw. (TOMS), vol. 47, no. 4, pp. 1–32,
2021.

[23] J.-S. Coron and L. Goubin, “On Boolean and arithmetic masking against
differential power analysis,” in Proc. Int. Workshop Cryptogr. Hardw.
Embedded Syst., 2000, pp. 231–237.

[24] L. Goubin, “A sound method for switching between Boolean and
arithmetic masking,” in Proc. Int. Workshop Cryptogr. Hardw. Embedded
Syst., 2001, pp. 3–15.

[25] B. Gigerl, R. Primas, and S. Mangard, “Formal verification of arithmetic
masking in hardware and software,” Cryptology ePrint Arch., IACR,
Bellevue, WA, USA, Rep. 2022/849, 2022.

[26] A. Shahverdi, M. Taha, and T. Eisenbarth, “Silent Simon: A threshold
implementation under 100 slices,” in Proc. Int. Symp. Hardw. Orient.
Secur. Trust, 2015, pp. 1–6.

[27] M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger, “RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-order
zero-offset SCAs,” in Proc. Design, Autom. Test Eur. Conf., 2012,
pp. 1173–1178.

[28] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh, “SASEBO-GIII: A hard-
ware security evaluation board equipped with a 28-nm FPGA,” in Proc.
Global Conf. Consum. Electron., 2012, pp. 657–660.

[29] T. Schneider and A. Moradi, “Leakage assessment methodology,” J.
Cryptogr. Eng., vol. 6, pp. 85–99, Feb. 2016.

Mingyu Yang (Graduate Student Member, IEEE)
received the B.E. degree in computer engineering
from Nanyang Technological University, Singapore,
in 2017, and the M.E. degree in information and
communications engineering from Tokyo Institute
of Technology, Tokyo, Japan, in 2020, where he is
currently pursuing the Ph.D. degree with the School
of Engineering.

He worked on embedded systems design and
development during internship with Panasonic R&D
Center, Singapore, from 2016 to 2017. He was also

a Research Staff with TUMCREATE, Singapore, and Nanyang Technological
University from 2017 to 2018. In 2022, he worked as an Intern with Toyota
Central R&D Labs, Nagakute, Japan. His research interests include hardware
security and low-power embedded systems.

Mr. Yang is a Student Member of ACM.

16768 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Tanvir Ahmed (Member, IEEE) received the M.Sc.
degree in electrical engineering from Linköping
University, Linköping, Sweden, in 2011, and the
Ph.D. degree in information science from Nara
Institute of Science and Technology, Ikoma, Japan,
in 2014.

He is currently a Researcher with Tokyo Institute
of Technology, Tokyo, Japan. Before joining Tokyo
Institute of Technology, he held research positions
with Fujitsu Laboratories Ltd., Tokyo; Preferred
Networks, Inc., Tokyo; and Edgecortix Inc., Tokyo,

from 2014 to 2022 to design neuromorphic and machine learning architecture.
His research interests are domain-specific accelerator design (e.g., machine
learning), reconfigurable computing (both FPGA and CGRA), and machine
learning for compiler and EDA optimization.

Saya Inagaki received the B.E. degree in
information and communications engineering from
Tokyo Institute of Technology, Tokyo, Japan, in
2021, where she is currently pursuing the master’s
degree with the School of Engineering.

She worked on a research internship with RWTH
Aachen University, Aachen, Germany, in 2021. Her
major research interest is high-level synthesis for
hardware security.

Kazuo Sakiyama (Senior Member, IEEE) received
the B.E. and M.E. degrees from Osaka University,
Suita, Japan, in 1994 and 1996, respectively, the
M.S. degree from The University of California at
Los Angeles, Los Angeles, CA, USA, in 2003,
and the Ph.D. degree in electrical engineering
from Katholieke Universiteit Leuven (KU Leuven),
Leuven, Belgium, in 2007.

He is currently a Professor with The University of
Electro-Communications (UEC), Tokyo, Japan. At
UEC, he leads the hardware security research for

embedded cryptosystem, cyber–physical system, and physical authentication.
Before joining UEC in 2008, he was with Hitachi, Ltd., Tokyo (currently,
Renesas Electronics) as a Digital Hardware Designer, and later with KU
Leuven as a Ph.D. Research Assistant.

Dr. Sakiyama is a member of IACR and IEICE.

Yang Li (Member, IEEE) received the B.E. degree
in electronic and information engineering from
Harbin Engineering University, Harbin, China, in
2008, and the M.E. and Ph.D. degrees in information
and communication engineering from the University
of Electro-Communications, Chofu, Japan, in 2011
and 2012, respectively.

He is currently an Associate Professor with the
Department of Informatics, University of Electro-
Communications. His main research interests
include security evaluation and improvement for
cryptographic hardware and IoT devices.

Yuko Hara-Azumi (Member, IEEE) received the
Ph.D. degree in information science from Nagoya
University, Nagoya, Japan, in 2010.

She was a JSPS Postdoctoral Research Fellow
with Ritsumeikan University, Kyoto, Japan, from
2010 to 2012, during which she was also a
Visiting Scholar with the University of California
at Irvine, Irvine, CA, USA, and Karlsruhe Institute
of Technology, Karlsruhe, Germany. In 2012, she
joined Nara Institute of Science and Technology,
Ikoma, Japan, as an Assistant Professor. Since 2014,

she has been with the Department of Information and Communications
Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo,
Japan, where she is currently an Associate Professor. Her research interests
include system-level design automation, especially on high-level and logic
synthesis, microprocessor architecture, and hardware/software co-design for
embedded/IoT systems.

Dr. Hara-Azumi has served as an Organizing and Program Committee
Member for several premier conferences, including DAC, ICCAD, DATE,
CASES, ASP-DAC, and FPL. She is a member of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

