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SmartFly: Fork-Free Super-Light Ethereum Classic
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Abstract—The use of blockchains in the Internet of Things
(IoT) is extremely promising, as it gives connected things the
possibility to send and receive payments or tamper-proof data.
In the last years, FlyClient has emerged in the literature as
a technique for allowing resource-constrained devices to verify
blockchain transactions. FlyClient is based on Merkle mountain
ranges (MMRs) and probabilistic sampling, and it allows us
to develop blockchain clients whose resource consumption is
sublinear with the length of the chain. However, this comes at
the cost of a change in the blockchain format, which leads to
forks that are politically expensive, because they require 51%
consensus. In this article, we explore the possibility of fork-
free FlyClient verification methods that leverage smart contract
programming. Smart contracts are able to add functionalities to
a blockchain without needing forks. This raises several and novel
technical issues that we address in the article. We show that
fork-free sublinear clients are feasible without trusting the nodes
that invoke the smart contract methods, as long as the smart
contract language provides a means to access the most recent
block or its hash. As a proof of concept we propose SmartFly,
a fork-free FlyClient verification system for the ethereum classic
(ETC) blockchain. We measure several performance metrics of
SmartFly, proving that it is succinct in storage and bandwidth
consumption and economically bearable (about 38 euros per day
to maintain the whole system).

Index Terms—Blockchain, ethereum classic (ETC), FlyClient,
Internet of Things (IoT), Merkle mountain range (MMR), smart
contracts.

I. INTRODUCTION

IT IS widely believed that the application of blockchain
technology in the Internet of Things (IoT) is not a matter of

“if” but “when” [1], [2], [3], [4], [5], [6], [7]. This is because
the blockchain technology has several unique features that can
address some of the key challenges in IoT, such as security,
trust, data sharing, and decentralization. The importance of
blockchain-based IoT applications is witnessed by recent stan-
dards or draft standards proposed by IEEE [8] and IETF [9].
The possible showstopper is that, to validate data, money
transfers, or smart contract executions on the blockchain,
clients need to download a huge amount of data, whose size
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grows linearly with the length of the blockchain itself. Such
an operation is extremely burdensome for resource-constrained
devices, since they have either to download and verify tens
of gigabytes, or rely on some trusted full node to do it for
them, which may be unavailable in some applications. This
limits the possibility of applying blockchain technologies in
the IoT. Bünz et al. [10] proposed FlyClient, an extremely
lightweight verification method that uses Merkle mountain
range (MMR) data structures and probabilistic sampling on
proof-of-work (PoW)-based blockchains. As an example, in
ethereum classic (ETC) [11] such a technique would allow
a resource-constrained client to verify a money transfer by
downloading just 500 kB [10], which is 6600 times smaller
than what state-of-the-art clients can do. This is made possible
by a probabilistic proving protocol whose size grows only
logarithmically with the chain length.

An important limit of FlyClient is that it needs to refactor
the block headers, and therefore it necessitates at least a
soft fork, which is politically expensive and risky, because
it needs 51% consensus to be successful. Among the major
cryptocurrencies, only Zcash [12] tackled a similar fork,
introducing FlyClient support with the “Heartwood” fork in
2020.1 Another possibility is to use a velvet fork [13], which
does not require consensus majority. However, introducing
FlyClient support with a velvet fork can make the system
vulnerable to chain-sewing attacks [14].

In this article we explore the possibility to realize FlyClient
super-lightweight clients without any fork, by means of the
smart contract technology. Such a technology is capable of
augmenting the features of a blockchain network without
needing forks, by programming class-like objects called smart
contracts. This allows us to realize and maintain an MMR
data structure with a smart contract, at the cost of some
cryptomoney to pay in order to deploy it and invoke its meth-
ods. We show that this approach is generally feasible without
trusting the nodes that invoke the smart contract methods,
provided that the smart contract programming language allows
access to the most recent block or its hash. We further present
SmartFly, a system based on smart contracts that realizes
FlyClient on ETC without forks. SmartFly takes into con-
sideration the difficulty adjustment mechanism and possible
difficulty tampering attacks [15]. We measure the monetary
cost of maintaining SmartFly under various tradeoffs, and its
performance in terms of client storage and client bandwidth

1Introducing heartwood, https://electriccoin.co/blog/introducing-
heartwood/.
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consumption. We prove that SmartFly is succinct in storage
and bandwidth consumption and economically bearable (about
38 euros per day to maintain the whole system).

A. Motivation

Some IoT applications that can leverage the benefits of
SmartFly are listed in the following.

1) Supply chain management [16], [17], [18], in which
blockchain can be used to track the movement of goods
from the manufacturer to the end consumer. IoT devices
can exchange data on the location, temperature, and
humidity of the goods through the blockchain. This can
enhance transparency and accountability, reduce the risk
of fraud and counterfeiting, and enable more efficient
supply chain management.

2) Energy trading [19], [20], [21], [22], in which
blockchain can facilitate peer-to-peer energy trading
between households or businesses that generate renew-
able energy. IoT devices can collect data on the
energy production and consumption, which can then
be recorded on the blockchain and retrieved and used
by other IoT devices. Smart contracts can be used to
automate the trading of energy between devices, without
the need for intermediaries or central authorities.

3) Smart cities [23], [24], [25], in which blockchain can
be used to improve the efficiency and the sustainability.
Various IoT sensors and actuators can exchange data on
traffic, air quality, waste management, and other urban
services through the blockchain. This can enable more
effective decision making and resource allocation, and
facilitate the creation of new services and applications.

B. Contribution

The contribution of this article is summarized as follows.
1) We show that FlyClient super-lightweight clients are

realizable without forks by means of the smart contract
technology, without trusting the nodes that invoke the
smart contract methods.

2) We present SmartFly, a system that realizes FlyClient on
ETC without forks, which takes into consideration the
difficulty adjustment mechanism of ETC and possible
difficulty tampering attacks.

3) We measure the monetary cost of maintaining SmartFly
under various tradeoffs, and its performance in terms of
client storage and bandwidth consumption.

C. Paper Structure

The remainder of this article is organized as follows.
Section II compares with relevant related work. Section III
introduces the necessary preliminary concepts. Section IV
introduces our reference threat model. Section V explains how
we defend against difficulty tampering attacks. Section VI
describes the SmartFly system model. Section VII explains
our experiments and shows and discusses the results. Finally,
we conclude this article in Section VIII.

II. RELATED WORK

The problem of allowing “light clients” that are able to ver-
ify the validity of a transaction without storing and processing
the entire blockchain was studied since the very beginning of
the blockchain technology, by Satoshi Nakamoto in its seminal
whitepaper [26]. Nakamoto proposed the simplified payment
verification (SPV) technique, which requires to structure each
block as a Merkle tree with the transactions as leaves. This
allows clients to store only the header of each block, which
contains the Merkle tree root. SPV clients can trustworthily
verify transactions assuming that 51% of mining power is
honest. SPV clients are now provided by the majority of
cryptocurrencies [27], [28]. Although the storage saving with
respect to full clients is big, SPV clients still need to store an
amount of data that linearly grows with the chain length. This
means that an SPV client must nowadays store gigabytes of
data to work, which is clearly out of bound for the majority
of IoT applications.

Cao et al. [29] proposed CoVer, a method alternative to
SPV clients in which light clients cooperate with each other to
verify a block validity without trusting any full node. CoVer
has the advantage of requiring far less trust compared to
standard SPV clients. However, CoVer is “sublinear” only with
respect to the block size, in the sense that it requires clients
to store only a fraction of each block. It is not sublinear with
respect to the chain length, therefore, as in the case of SPV
clients, it is inapplicable in constrained IoT devices.

The problem of developing truly sublinear light clients has
been approached by the literature with three different ways: 1)
superblock-based approaches; 2) reputation-based approaches;
and 3) MMR-based approaches. Superblocks are blocks that
solve a puzzle that is more difficult than the current difficulty
target. Due to the nature of the partial hash preimage puzzles
employed in PoW-based cryptocurrencies, superblocks are
unintentionally produced by miners with a probability distribu-
tion that can be foreseen in advance. This allows light clients
to check a small set of superblocks instead of the complete
chain, and thus to spend a sublinear amount of storage and
bandwidth. Superblock-based approaches were proposed in
Bitcoin forums and mailing lists since 2012 [30], [31], but
the first scientific proposal was by Kiayias et al. [32], which
introduced Proofs of Proof of Work (PoPoW). Successive
literature proposed NIPoPoW [33], which is a noninteractive
version of PoPoW, and a smart contract realization of it [34].
Bünz et al. [10] analyzed the efficiency of superblock-based
and MMR-based approaches, and they concluded that the
latter ones consume less bandwidth, security level being
equal. Moreover, superblock-based approaches are harder to
be applied in variable-difficulty blockchains.

In reputation-based approaches, light clients try to iden-
tify trustworthy full nodes by exchanging information about
good and bad behaviors and maintaining a reputation
system. An example is Debe et al. [35], which implements
a node reputation system by means of smart contracts.
Interestingly, reputation-based approaches are orthogonal to
other approaches, so they can be fruitfully applied together
with superblocks or MMRs in order to further improve their
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security. When applied alone, reputation systems are very
cheap in terms of resource consumption, but they do not give
any formal security assurance to light clients. For example,
a full node can accumulate a good reputation by behaving
correctly for some time, and then suddenly “go bad” when
there is an opportunity to earn much from a malicious
behavior.

Todd [36] first proposed to use MMR data structures in the
Bitcoin blockchain. Bünz et al. [10] introduced FlyClient, a
sublinear client based on MMR and probabilistic sampling.
Their proposal is able to work also in blockchains with vari-
able difficulty, but it requires a fork, either soft or velvet [13].
Unfortunately, a soft fork is politically expensive, because it
needs 51% consensus to be successful, whereas a velvet fork
can make FlyClient vulnerable to the chain-sewing attack [14].
In this article we show that forks are not necessary, and we
investigate the technical challenges of realizing MMR-based
light clients by means of smart contracts.

It is worth to say that superblock-based and MMR-based
approaches are specific for PoW-based blockchains, and they
cannot be applied in blockchains based on Proof of Stake
(PoS), like the Ethereum one after the “Merge” fork.2 In
general, it is hard to provide for sublinear clients in PoS-
based blockchains, basically because they require clients to
download and verify account balances stored in previous
blocks in order to validate each single block [28].

III. PRELIMINARIES

A blockchain [26], [37] is an append-only ledger constituted
by a hashed chain of data blocks, each of which comprises
several transactions. A blockchain is typically maintained
by a blockchain network, which is a peer-to-peer network
of mutually untrusted nodes, by means of some consensus
protocol. Blockchain networks are primarily used today for
implementing decentralized cryptocurrencies, such as Bitcoin
and Ethereum.

The traditional consensus protocol for blockchain networks
is the PoW consensus. In such a protocol, different nodes (min-
ers) compete to each other in order to solve a cryptographic
puzzle (mining). The first miner that solves the puzzle appends
a new block to the blockchain, and it gets a monetary reward.
In order to take part to the competition, miners must be full
nodes, that is they must store locally the whole blockchain,
which is typically several gigabytes.3 If a node is not required
to mine but only to check that specific transactions are present
in the blockchain, it can save space by storing only the header
of each block and trusting that the majority of miners are
honest. In the present paper, we call light node a node that
stores all the chain of block headers (headerchain). Each block
header conveys the Merkle tree root of all the transactions of
the block.4 To check that a transaction is inside a given block,
a light node must only retrieve the corresponding Merkle proof

2The Merge, https://ethereum.org/en/upgrades/merge/.
355 GB for ETC at the time of writing: https://bitinfocharts.com/ethereum%

20classic/.
4More precisely, to index the various transactions inside the block, ETC

uses a Merkle Patricia trie, which is a data structure similar to a Merkle tree
that offers similar proving guarantees and proof sizes.

from an untrusted full node. Although light nodes can save a
significant amount of space with respect to full nodes, their
storage requirement still grows linearly with the chain length.
Thus, light clients are “light” for full-resource PCs or high-
end mobile devices, but they are not light at all for more
resource-constrained devices, like those that are employed
in embedded computing or the IoT. In this article, we call
sublinear nodes the nodes whose storage, bandwidth, and
computation complexity grows less than linearly with respect
to the chain length. Of course, sublinear nodes are best suited
for embedded computing and IoT applications.

Within the PoW consensus protocol, the block difficulty is
defined as the expected number of trials needed to solve its
puzzle. The difficulty of two or more blocks is the sum of the
single blocks’ difficulties. According to the protocol, in the
presence of two or more alternative valid chains, a node will
give its consensus to the most difficult one.

A. Ethereum Classic Difficulty Adjustment

In PoW-based blockchain networks, the difficulty of the
blocks is not constant but it is adjusted through time, in order
to keep the expected number of appended blocks constant over
time. In the following, given a header x we will indicate with
x.D its difficulty and with x.t its mining time. Mining times
are expressed in seconds passed since a reference date, and
they must be strictly increasing block by block. In ETC, the
difficulty of each block x is calculated from the previous block
xp as x.D = Dnext(xp.D, xp.t, x.t), where

Dnext
(
xp.D, xp.t, x.t

)

= xp.D +
⌊

xp.D

2048

⌋
· max

(
1 −

⌊
x.t − xp.t

10

⌋
,−99

)
. (1)

Such a formula aims at keeping the expected interblock time
as close as possible to 10 s with respect to the total mining
power employed by the ETC network, while at the same time
avoiding abrupt difficulty changes.

Note that the difficulty of a block depends on the timestamp
of the same block. As a consequence, it is impossible to
determine the difficulty of the block that will be mined next
until such a block is actually mined and thus its timestamp is
decided. This is in contrast with Bitcoin, in which the difficulty
of the next block is determined only by the past blocks.

B. Merkle Mountain Ranges

MMRs [10], [36] are extensions of Merkle trees that allow
for efficient appends and proofs of ancestry. A proof of
ancestry proves that a given MMR Mi is an ancestor of another
MMR Mj, that is Mj has been built from Mi by executing a
number of appends. Fig. 1 exemplifies three append operations
that change the MMR M6 to the MMR M9.

Each append operation changes a logarithmic number of
nodes in the MMR, which are represented by blue-filled nodes
in Fig. 1. It is always convenient to represent a whole MMR
with its root, so we indicate with the symbol li ∈ rj that the
leaf li is member of the MMR rooted by rj, and with the
symbol ri −→ rj that the MMR rooted by ri is an ancestor of
the one rooted by rj.
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Fig. 1. Examples of MMR append operations and proof of ancestry.

The Merkle proof (also called “proof of inclusion”) �li∈rj

proves that li is member of rj, and it is composed by all the
sibling nodes of the path that connects the leaf li to the root
rj in the MMR. The proof of ancestry �ri−→rj is composed
by the rightmost leaf of ri (li), plus the Merkle proof �li∈rj .
In the example of Fig. 1, the proof that M6 is an ancestor of
M9 is constituted by the green-circled nodes in M9. It is easy
to see that from these nodes it is possible to compute both the
M6 root (r6) and the M9 root (r9). Verifying an ancestry proof
consists in recomputing both roots and checking if they match
the given ones. The proof of ancestry �ri−→rj does not prove
only that an MMR is generically an ancestor of another, but
also that the former is exactly the ith version and the latter is
exactly the jth version. Note that the size of an ancestry proof
grows logarithmically with the number of MMR leaves.

C. MMR-Based Sublinear Nodes

Bünz et al. [10] introduced a method to allow sublinear
nodes based on MMR data structures and random sampling
of the blockchain. MMR-based sublinear nodes require to
modify each block header to include the root of an MMR
having the hashes of all the preceding block headers as leaves.
In this way, given two block headers containing the MMR
roots ri and rj, it is easy to prove that the entire blockchain
preceding the first block is a prefix of the entire blockchain
preceding the other block, by simply providing the proof of
ancestry �ri−→rj . Given this possibility, a constrained node
can avoid downloading the entire headerchain, by requesting
and downloading only a sublinear number of randomly chosen
headers from an untrusted resourceful node. Assuming for
simplicity that the difficulty remains constant, the untrusted
resourceful node must prove to the constrained node to own a
correctly mined blockchain with a given difficulty and indexed
by a given MMR root (top MMR root), which must be declared
beforehand.

To do that, the two nodes execute a proving protocol, during
which the sublinear node is the verifier and the resourceful
node is the prover. For each sampled header, the verifier
checks its PoW solution validity and that its contained MMR
root is an ancestor of the top MMR root. If the verifier
samples the headers according to an increasing reciprocal
probability distribution, then the protocol will reach some
provable level of security against a dishonest prover capable
of correctly mining a given fraction of the last part of the
blockchain. Therefore, a prover cannot lie on the difficulty of
its locally maintained chain, for example pretending that it
is more difficult than the honest one. Like light SPV clients
do, a sublinear node must query two or more nodes about
the difficulty of their locally maintained chain before checking

such a claim, under the assumption that at least one of them
is honest and declares an honest headerchain. Bünz et al. [10]
also extended this method in the variable-difficulty setting,
basing on the variable-difficulty Bitcoin backbone protocol
model [38]. In Section V-A, we will explain our MMR-based
solution for ETC in the variable difficulty setting, and how it
differs from the Bünz et al.’s one.

IV. THREAT MODEL

We consider an adversary that wants to “modify” a transac-
tion to the eyes of a victim constrained node. To do that, she5

makes the constrained node believe that she owns a correctly
mined chain more difficult than the honest one, when in fact
she does not. The adversary conveniently forks her chain from
the honest one, with a forking point that is somewhere before
the block that contains the transaction to modify.

Following the work of Bünz et al. [10], we model the
adversary as a (c, L)-adversary, that is an adversary that cannot
produce a fork more difficult than L with a c fraction (or
more) of its difficulty being valid. “Valid” here means that the
blocks forming such a difficulty contain valid PoW solutions
and they respect the difficulty adjustment rule of ETC (see
Section III-A). In order to convince the constrained node
about the difficulty of her chain, the adversary must undergo
a proving protocol. Due to the fact that the constrained node
verifies the proof of ancestry of the MMR root contained in
each sampled header, the adversary cannot “borrow” blocks
from the honest chain in her fork, or “reconnect” her fork to
the honest chain, or reuse multiple times her validly mined
blocks. Indeed, the ancestry proof would reveal if a block was
moved from its original position on the same fork or through
different parallel forks.

A. Difficulty Tampering and Difficulty Raising Attack

The proof of ancestry alone does not detect whether the
adversary respected the difficulty adjustment rule in her fork,
therefore she could mount a difficulty tampering attack. Such
kind of attack has been considered by Bünz et al. [10] in the
original FlyClient paper. In a difficulty tampering attack, the
adversary tampers with the difficulties of her fork by imposing
one or more impossible difficulty increases that violate the
difficulty adjustment rule. It is convenient for the adversary to
fake the difficulty to be impossibly high, rather than faking
it in other ways. Although this may appear counter intuitive,
it actually increases the success probability of the adversary.
Indeed, if the adversary increases the difficulty of her blocks
of, say, ×2 then she will mine half of the blocks in average.
Of course, this would not affect the average time in which she
mines a chain with a given difficulty, but on the other hand it
would sensibly increase the variance of such a time. It turns
out that the more difficult the malicious blocks are, the greater
will be the chances that the adversary mines a chain more
difficult than L in which a c fraction of blocks has valid PoW
solutions, hence breaking the (c, L)-adversary model.

5From now on, we will refer to the adversary as “she,” reconnecting with
the tradition in cryptography that names an active adversary “Mallory.”
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A light node can easily detect the difficulty tampering attack
by simply checking that the difficulty adjustment rule have
been respected block by block along the whole headerchain.
This is harder to achieve for a sublinear node, since it cannot
download the whole headerchain.

Of course, an attacker could increase the difficulty of her
fork also without violating the difficulty adjustment rule. In
this case, we talk about difficulty raising attack. Bahack [15]
first studied the difficulty raising attack against Bitcoin.

B. (Dis)Trusting the Smart Contract Appenders

Since we want to realize and maintain an MMR via smart
contract, it is important to analyze the trust assumptions we
put on the nodes that invoke the smart contract methods to
append new leaves to the MMR (appenders). Indeed, the
appenders could invoke the smart contract methods providing
malicious input arguments. Basically, we do not make any trust
assumption about the appenders, except that they periodically
invoke the methods to maintain the MMR. This threat model
captures a wide range of applications, for example, those in
which the appenders are anonymous. In Section VI, we will
show that this is feasible provided that the smart contract
programming language allows access to the most recent block
or its hash. The smart contract language of ETC allows it.

V. DETECTING DIFFICULTY TAMPERING ATTACK

In the Bitcoin context, Bünz et al. [10] proposed to defend
against a dishonest prover mounting a difficulty tampering
attack by checking that the chain declared by the prover
respects the hypotheses of the variable-difficulty Bitcoin back-
bone protocol model [38]. If this happens, then we have some
formally proved properties of liveness and persistence that
lead us to exclude an adversarial fork more difficult than
the honest chain. Unfortunately, we cannot do the same for
ETC because, at the time of writing, it still does not exist
a formal model of it in the literature, which would allow
us to prove security properties. We cannot even apply the
Bitcoin backbone protocol model, because the ETC difficulty
transition rule is different and does not easily fit into the model.

Since we cannot rely on a formal model, the objective of
our verifier is to check that the ETC’s difficulty transition rule
has been respected by the blockchain proposed by the prover
in order to exclude the possibility that the prover mounted
a difficulty tampering attack. Note that it is impossible to
check that the difficulty transition rule has been respected
along the whole blockchain unless the verifier stores it all.
Hence, the verifer must check the plausibility of the declared
difficulty transitions. In this way, SmartFly inherits the security
of ETC against the difficulty raising attack, that is, under the
assumption that ETC is secure, then also SmartFly is. Indeed,
if the attacker could successfully mount (in a reasonable time)
a difficulty raising attack against SmartFly, then she could do
it also against a full node. In other words, ETC itself would
be vulnerable, without SmartFly’s fault.

In the next section, we propose an extension of the MMR
data structure that allows the plausibility check in the ETC
blockchain.

Fig. 2. MMR leaf creation.

A. Difficulty MMR for Ethereum Classic

We enrich the MMR data structure with information nec-
essary to detect a difficulty tampering attack, thus obtaining
a Difficulty MMR data structure. Our Difficulty MMR differs
slightly from the analogous data structure proposed by [10],
because it is suitable for the ETC difficulty adjustment algo-
rithm (see Section III-A), which is different from the Bitcoin
one. In particular, the node format differs from [10] because
it contains the timestamp and the difficulty of the last covered
block, rather than the next block (i.e., the block successive
to the last covered one). This is made necessary due to the
difficulty adjustment rule of ETC, for which it is impossible
to determine the difficulty of the block that will be mined next
until such a block is actually mined.

We define our Difficulty MMR in such a way that each
of its leaves can cover a different number of blocks. We call
leaf subchain the group of consecutive headers covered by
a leaf. This feature will be important to save smart contract
maintenance cost, by aggregating more blocks in a single leaf.
It also provides for flexibility on how frequently the appenders
can append leafs. Each node a in our Difficulty MMR contains
the following pieces of information.

1) The hash of the last covered header for leaves, or the
hash of the concatenated child nodes for nonleaves (a.h).

2) The number of blocks covered by the node (a.n).
3) The total difficulty of the blocks covered by the node

(a.w).
4) The difficulty of the first and the last blocks covered by

the node (respectively, a.Df and a.Dl).
5) The timestamp of the first and the last blocks covered

by the node (respectively, a.tf and a.tl).
The pseudocode to create leaf and nonleaf nodes is
detailed, respectively, in Figs. 2 and 3. In Fig. 2 the inputs
x1, x2, . . . , xN are the headers of the blocks that the MMR leaf
will cover, and the output l is the created MMR leaf. In Fig. 3
the inputs alx and arx are, respectively, the left and right child
nodes, and the output a is the created MMR node.

B. Plausibility Checks for Ethereum Classic

With Difficulty MMRs, we can of course provide for
ancestry proofs as with plain MMRs. In addition, with the
extra information contained in each node of the proof, we
can check the plausibility of the difficulty adjustments of
the chain declared by the prover. We will refer hereafter to
Difficulty MMRs with simply “MMRs.” Note that the MMR
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Fig. 3. MMR nonleaf node creation.

Fig. 4. Difficulty plausibility check.

covers the blockchain only from the first block of the first
appended leaf subchain. It is impossible to verify transactions
before that point in a sublinear fashion. From now on, without
losing in generality we will neglect the precedent part of
the blockchain and we will consider only the part of the
blockchain covered by the MMR. We assume that the header
of the block precedent to the first leaf subchain (x0) is well-
known by all the verifiers.

Given an ancestry proof �ri−→rj = {a1, a2, . . .} composed
of ordered MMR nodes, in the sense that they cover the
chain from left to right, the difficulty plausibility check verifies
the adjustments node by node in the following way. The
difficulty adjustment between two nodes is checked exactly
with (1). On the other hand, the difficulty adjustment within
the same node is checked against an upper bound Dmax, which
is computed by considering the greatest possible difficulty
raising, corresponding to the case in which each block covered
by the node was mined in 1 s. If the difficulty of the last
block covered by the node, and the total difficulty and the total
mining time of the blocks covered by the nodes are below
such a bound, then all the difficulty adjustments are plausible.
The pseudocode of the plausibility check is detailed in Fig. 4,

where Dnext(·, ·, ·) is the difficulty adjustment function defined
in Section III-A. Line 4 implements the difficulty adjustment
check between two nodes, whereas line 15 implements that
within the same node.

C. Security Against the Difficulty Tampering Attack

It is possible to demonstrate that a SmartFly verifier is
secure also in case the difficulty adjustment rule is violated
by the adversary. Our proof strategy is to show that a (c, L)-
adversary remains a (c, L)-adversary also if she performs a
difficulty tampering attack, that is, by violating the adjustment
rule she cannot produce a fork more difficult than L with a c
fraction (or more) of its difficulty being valid. If we manage to
prove that, then the security proof in Bünz et al. [10] provides
SmartFly for a guaranteed level of security even in case of
a difficulty tampering attack. We have to prove that a (c, L)-
adversary gains no advantage in violating the adjustment rule,
that is she remains a (c, L)-adversary even if she performs a
difficulty tampering attack. We prove this by showing that any
successful difficulty tampering (c, L)-adversary can be reduced
to an equally successful (c, L)-adversary that never violates
the adjustment rule and has the same mining power. First
of all, let us point out that each leaf subchain in which the
adversary violates the adjustment rule is not valid even if it
is correctly mined. Indeed, if the verifier samples it, then the
proving protocol will fail anyway, since the verifier checks
the adjustment rule for each block inside the subchain. Thus,
each rule-violating subchain must lie between two sampled
subchains, or between the first appended subchain and the
first sampled subchain. But in both these intervals the verifier
checks the plausibility of the cumulative difficulty transition.
If the adversary breaks the plausibility, then the proving
protocol will fail, and she will not be successful. On the other
hand, if the adversary does not break the plausibility, then a
(c, L)-adversary with the same mining power and that never
violates the adjustment rule will be able to produce exactly
the same valid subchain. This proves that, while the difficulty
plausibility check does not prevent an adversary from violating
the adjustment rule in one or more blocks, it nevertheless
nullifies any real advantage in doing so. To sum up, a (c, L)-
adversary remains a (c, L)-adversary also if she performs a
difficulty tampering attack, and thus Bünz et al. [10] provided
SmartFly for a guaranteed level of security even in case of a
difficulty tampering attack. This concludes our proof.

VI. SYSTEM MODEL

In this section, we describe the SmartFly system and its
components. Fig. 5 shows the SmartFly reference architecture.

The components of the system are the following ones.
1) The SmartFly contract, which is a smart contract that

maintains the MMR and stores the value of the MMR
root inside the blockchain.

2) The SmartFly appenders, which are nodes that trigger
the execution of the MMR append operation of the
SmartFly contract, and provide the necessary input
information to perform such an operation. Each append
operation adds a new leaf to the MMR, covering a leaf
subchain.



15354 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Fig. 5. SmartFly reference architecture.

3) The SmartFly provers, which are nodes able to execute
instances of the proving protocol with the verifiers.
Provers must store off-chain the full MMR.

4) The SmartFly verifiers, which are low-resource devices
that want to verify the presence of a given transaction
in the blockchain. To do that, they execute the proving
protocol with one or more provers.

The appenders bear the cost of executing the MMR append
operations, so it is necessary to provide an incentive for them
to do that. To this aim, it is convenient that the appenders
are run by the same companies that control one or more
verifiers and enjoy the proving service. The provers themselves
could give incentives for such companies to pay for the MMR
maintenance, for example by refusing to run proving protocols
with the ones that performed no or too few append operations
in the recent past.

A. MMR Representation

In ETC, smart contracts are written in the EVM bytecode,
which is a Turing-complete language. Each EVM instruction
has an associated cost, which is measured in gas. In turn, gas
has a price (fee) measured in Gwei, which a node must pay
in order to get a smart contract method executed. In the EVM
bytecode, the most convenient place where to store the MMR
is the storage, which is a read/write persistent memory [39]. It
is possible to implement MMR append operations by simply
storing the peak set, which is the minimal set of MMR nodes
that cover all the leaves and whose subtrees are complete.
Indeed, from the peak set it is possible to append a new leaf,
recompute a new peak set (which may be smaller than the old
one), and from that recompute a new root. This allows us to
put only the peak set into the SmartFly contract storage, and
to program the append operation in such a way that it modifies
a constant number of peaks, thus minimizing the maintenance
cost. After having updated the peak set, the append operation
computes the new root (r) and writes it inside the blockchain.
This operation has logarithmic complexity since it depends on
the number of changed MMR nodes, which is logarithmic (cfr.
Section III-B). To save money, it is convenient to store only the
root hash (r.h) inside the blockchain, which is equivalent in
terms of security. Since the SmartFly contract does not need to
read again such a root hash afterwards, we store it inside event
logs, which are cheap and write-only memory that represents
the output of smart contract executions [39].

B. MMR Append Operation

In order to put the least possible trust on the appender, the
safest thing would be that the append operation of the smart

contract accepts no input, any part of which could be malicious.
All the information to build the new leaf should be retrieved
from storage or from built-in functions of the smart contract
language. This is possible if the smart contract language lets
us access the fields of the past block headers. Unfortunately,
the EVM bytecode lets us access only the hashes of the most
recent 256 block headers. To overcome this, the SmartFly
contract receives in input from the appenders all the headers
of the leaf subchain. Upon receiving the block headers, the
contract checks their validity by recomputing their hashes, and
by comparing them with the ones accessible via the EVM
bytecode. For the headers precedent to the 256 most recent ones,
the smart contract checks that they are concatenated to the ones
accessible via the EVM bytecode, by using the block header
field containing the hash of the previous block. If the check
fails, then the append operation is reverted with a REVERT
instruction. This prevents that malicious appenders update the
MMR with invalid blocks, or with valid blocks belonging to
forks different from the one that miners gave consensus to.
Also, the execution revert makes the malicious appender spend
money uselessly, so this constitutes a disincentive for attacks.

Note that the aforementioned technique is feasible also if
the smart contract language would allow us to access the most
recent block’s hash only, instead of the most recent 256 ones.
This proves that fork-free sublinear clients are feasible without
trusting the appenders in case the smart contract language
provides a means to access the most recent block or its hash.

It is also possible that an append operation from an honest
appender gets reverted. This can happen for example when the
blockchain maintained by the appender differs from the one
maintained by the miners due to a temporary fork caused by
network delays. In this case, the cost of the execution revert
constitutes an incentive to append only stable blocks.

Except for the first appended leaf subchain, the contract
also checks that one of the input block headers contains the
previous MMR root. This is required in order the proving
protocol to work (see Section VI-C). The check is done by
simply storing in the smart contract the index of the block
in which the append operation has been requested and by
checking, during the following invocation, that the block with
that index has been provided in input. Even here, if the check
fails then the append operation is reverted. If all the checks
pass, then the contract builds a new MMR leaf from the
received leaf subchain, and it appends it to the MMR.

Each append operation appends a single MMR leaf, but
an MMR leaf can cover a subchain of multiple consecu-
tive blocks. On the other hand, each mined block may not
contain append operations. This gives a great flexibility to
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the appenders, because the growth rate of the MMR can
temporarily lag behind that of the blockchain. Of course, the
part of the blockchain which is not yet covered by the MMR
cannot be involved in the proving protocols.

Even if the MMR is updated sporadically like it happens
in a velvet-fork-based deployment of FlyClient [14], the
smart-contract solution does not give space to the same
vulnerabilities. The reason is that a velvet fork divides the
network in updated miners (i.e., miners that adopt the new
protocol) and nonupdated miners (i.e., miners that do not). To
maintain backward compatibility, a block mined by an updated
miner is valid for a nonupdated miner as well. Therefore, a
malicious updated miner can put arbitrary data in the field
containing the MMR root, and all honest nonupdated miners
will continue mining over it. Such an unchecked MMR root
can be used to perform a chain-sewing attack. A smart-contract
solution avoids the attack at its root, because it makes no such
a distinction between updated and nonupdated miners. Every
miner executes the smart contract in the same way, so no
honest miner will mine over an invalid MMR root.

C. Proving Protocol

Suppose that a constrained node wants to check the presence
of some transaction in the blockchain. First of all, the verifier
retrieves some public list of active SmartFly provers. The
node then chooses k provers to query either randomly or by
some reputation system, which is outside the scope of this
article. The constrained node asks to each of these k provers to
declare the root of their locally maintained MMR (rtot), which
contains the root hash (rtot.h) and the difficulty of their locally
maintained headerchain (rtot.w). After that, the constrained
node starts querying the prover that declared the most difficult
chain with a proving protocol, in which the constrained node
plays the role of the verifier. If the prover fails the proving
protocol, then the constrained node queries the prover that
declared the second most difficult chain, and so on. The
proving protocol aims at convincing the verifier that the
prover actually stores a valid chain of the declared difficulty.
The verifier downloads from the prover a sublinear number
of headers, together with various proofs that convinces the
prover about their validity. If all the downloaded headers
are valid, then the prover will consider the whole chain
declared by the prover as valid. In particular, assuming that
we want to guarantee λ bits of security level against a (c, L)-
adversary, the verifier downloads the most recent n headers
(deterministic sampling), with n being the smallest number of
headers necessary to: 1) make a total difficulty greater than
or equal to L and 2) cover the block conveying the MMR
root hash declared beforehand by the prover. Then, the verifier
downloads m leaf subchains at randomly chosen heights of the
total difficulty (probabilistic sampling), with

m = λ

log0.5

(
1 − 1/ logc

(
L

rtot.w

)) . (2)

The probability distribution according to which the verifier
randomly chooses the heights w to sample is

f (w) = rtot.w

(w − rtot.w) ln
(

L
rtot.w

) with: w ∈ [0, (rtot.w) − L]. (3)

The proof that such deterministic and probabilistic samplings
guarantee λ bits of security level against a (c, L)-adversary
is similar to the one in [10]. The verifier downloads the leaf
subchains that include the blocks at such difficulty heights.
During the deterministic sampling, the verifier downloads also
the Merkle proof that the event log conveying the MMR
root hash is actually inside one of the blocks. The verifier
checks the validity of the downloaded headers (i.e., it checks
the validity of the PoW solutions and the block-by-block
difficulty adjustments), and the Merkle proof. During the
probabilistic sampling, for each sampled leaf subchain, the
prover downloads also: 1) the relative MMR hash root, which
is inside the event logs of one of the blocks; 2) the Merkle
proof that proves that such event log is actually inside one of
the blocks; and 3) the ancestry proof that proves that the MMR
hash root is actually a previous version of the MMR locally
maintained by the prover. The verifier checks the validity of the
leaf subchain (i.e., it checks the validity of the PoW solutions
and the block-by-block difficulty adjustments), the Merkle
proof, the ancestry proof, and the difficulty plausibility of the
ancestry proof. To decrease the amount of data downloaded
by the verifier, we apply simple optimizations that avoid
the verifier to download twice the same data. In particular,
if the verifier randomly chooses a difficulty height included
in a leaf subchain that has been already sampled before,
the sampling is avoided totally. Moreover, the verifier avoids
downloading twice the same MMR nodes, or MMR nodes that
are recomputable from leaf subchains or from other MMR
nodes that it already downloaded.

We can obtain a noninteractive version of the proving
protocol just described by applying the Fiat–Shamir heuristic
[40]. In particular, which blocks are sampled is determined
not at random, but according to a secure hash function
applied to the MMR root rtot that the prover declared at
the beginning of the protocol. The noninteractive version is
more practical than the interactive one, because it allows the
prover to be offline while the verifier executes the protocol.
For example, the prover could publish the noninteractive
proof on a website, or the noninteractive proof could be
sent to the verifier by another verifier in a peer-to-peer
fashion.

After the proving protocol is concluded successfully, the
constrained device can permanently store only the MMR
root hash, so the SmartFly system is very succinct in
memory. When the device wants to verify a transaction, it
downloads from some untrusted prover the leaf subchain of
the block containing the transaction, the Merkle proof that
such a transaction is inside a block of the leaf subchain,
and the Merkle proof that such a leaf subchain is inside
the MMR.

VII. EXPERIMENTS

In this section we experimentally evaluate the SmartFly
contract monetary cost and the proof size, which is the
total amount of data downloaded by the verifier during an
execution of the proving protocol. Table I shows a summary
of the parameters employed in the experiments with their
values.
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TABLE I
PARAMETERS OF THE EXPERIMENTS

Fig. 6. Costs of an example sequence of append operations.

A. SmartFly Contract Monetary Costs

In order to evaluate the SmartFly contract costs we imple-
mented it in the Solidity6 language, and we statically validated
it using Mythril7 to eliminate possible bugs. We then created
a private ETC blockchain using Ganache,8 and we compiled
and deployed the contract on the chain using Truffle.9 In order
to evaluate the cost of SmartFly deployment and maintenance
we extracted the gas consumed from the receipt of the relative
transactions. The cost of deploying the SmartFly contract on
the chain is 1 842 811 gas, which is quite cheap. In order to get
a concrete idea of the cost, we convert gas into Gweis and then
in turn into euros, by applying, respectively, the average fee10

and the average Gwei-euro exchange rate11 over the year 2021.
Using these exchange rates, the SmartFly contract deployment
costs only 0.46 euros.

Fig. 6 shows the cost of an example sequence of MMR
append operations with one block per leaf and four blocks
per leaf. The abscissas show the number of blocks covered
by the MMR. We can notice that there are some high-cost
peaks, whose frequency decreases as the number of covered
blocks increases. This phenomenon can be observed when the
number of blocks covered by the MMR are 1, 3, 7, 15, and 31
(with one block per leaf), and 4, 12, and 28 (with four blocks
per leaf). This happens when the size of the peak set reaches a

6Solidity, https://soliditylang.org/.
7Mythril, https://github.com/ConsenSys/mythril/.
8Ganache, https://trufflesuite.com/ganache/.
9Truffle, https://trufflesuite.com/.
101 gas equals 10 Gweis, https://explorer.bitquery.io/ethclassic/.
111 ETC (i.e., 1 000 000 000 Gweis) equals 25 euros,

https://finance.yahoo.com/quote/ETC-EUR/.

Fig. 7. Average gas and euro cost to insert one block in the MMR with
different values of blocks per leaf and a chain of 2048 blocks.

new maximum, so the contract needs to allocate new storage to
accommodate it. Excluding the cost peaks, we can also notice
an approximate saw-tooth shaped trend, which is due to the
cost of accessing the peak set stored in the blockchain. Indeed,
due to how the MMR is structured, at each append the peak
set grows or shrinks with a saw-tooth trend.

Fig. 7 shows the average gas and euro cost per block to
append the first 2048 blocks in the MMR with different values
of blocks per leaf. With 16 blocks per leaf, an appender spends
0.0044 euros per block. This means that the appenders would
collectively spend about 38 euros per day to maintain the
whole system. The per-block cost paid by appenders does
not approach zero, because the input size of a single append
operation grows linearly with the number of blocks per leaf.
Moreover, we experienced that the cost slightly increases after
the limit of 128 blocks per leaf. This occurs because the cost of
allocating storage in the EVM bytecode increases quadratically
after ≈ 724 allocated bytes, which is a design choice of the
EVM bytecode to defend against memory DoS attacks [27].

ETC imposes a maximum amount of gas that all the
transactions inside a block are allowed to consume (block
gas limit), which is currently fixed at 8 500 000 gas. This
poses a theoretical limit to the number of blocks per leaf that
can be used in an append operation, which is approximately
560 blocks per leaf.

B. Proof Size

To evaluate the proof size, we simulated a number of
proving protocols between a prover and a verifier. For sim-
plicity, we suppose that the blocks held by the prover have
constant difficulty D, whose value is irrelevant to the simu-
lation results. Note that this is a pessimistic assumption from
the performance point of view, since real variable-difficulty
blockchains tend to have much more difficulty distributed on
recent blocks rather than on old ones. Thus, the verifier will
sample recent leaf subchains with much more probability, and
this allows it to leverage more effectively the optimizations to
reduce the proof size described in Section VI-C. Regarding
the adversary, we fix L = 30D. This choice stems from the
common assumption that no adversary is capable of correctly
mining a fork more difficult than 30D, which is implicitly done
by ETC community when recommending 30 confirmation
blocks before considering a transaction immutable.12 To obtain
more meaningful statistical results, we performed 30 indepen-
dent repetitions of each simulation.

12ETC Frequently Asked Questions, https://bitni.com/page/ETC-etc-faq.
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Fig. 8. Average proof size w.r.t. number of blocks in the chain with λ = 50
and c = 0.5. 95%-confidence intervals are displayed in error bars.

Fig. 9. Average proof size w.r.t. number of blocks per leaf, with λ = 50 and
a chain of 230 400 blocks.

Fig. 8 shows the average proof size of SmartFly compared
with that of FlyClient as the chain length grows, with λ =
50, c = 0.5, and different numbers of blocks per leaf. As
expected, the proof size grows logarithmically with the chain
length. There is also a constant component that depends on
L, which becomes prevalent as the number of blocks per
leaf decreases. The SmartFly proof size approaches that of
FlyClient in case of one block per leaf, but FlyClient remains
more efficient. This is because in FlyClient the MMR root
hash is directly inside the block header, whereas in SmartFly
it is inside an event log. Therefore, the SmartFly proving
protocol needs an additional Merkle proof to prove that such
an event log is covered by the downloaded blocks, as said in
Section VI-C.

Fig. 9 shows the average proof size with respect to the number
of blocks per leaf with a chain of 230 400 blocks, corresponding
to an average mining time of 640 h. We fixed λ = 50 and tested
different values of c. As expected, the proof size grows with the
number of blocks per leaf. This defines a tradeoff between the
cost of the append operation and the proof size. In other words,
the more the appenders pay, the less data the verifiers download,
and vice versa. Note that the size grows only sublinearly, due
to the proving protocol optimizations. Also, the size greatly
depends on the adversarial power expressed by c: the more
powerful the adversary is (i.e., the greater is c), the more data
have to be downloaded by the verifiers.

Fig. 10. Average proof size w.r.t. number of blocks per leaf, with c = 0.3
and a chain of 230 400 blocks.

Fig. 10 shows again the average proof size with respect
to the number of blocks per leaf with a chain of 230 400
blocks, but now fixing c = 0.3 and varying λ. Note that the
size depends roughly linearly on the desired security level.
The more security the verifier wants, the more data it has to
download. Of course, different verifiers can choose different
security levels in the same SmartFly system, depending on the
criticality of the particular IoT application they realize.

VIII. CONCLUSION

In this article we explored the possibility to realize FlyClient
super lightweight clients for PoW-based blockchains without
forks, by means of the smart contract technology. This comes
at the cost of some cryptomoney to pay in order to deploy the
smart contract and invoke its methods. We showed that this
approach is generally feasible without trusting the nodes that
invoke the smart contract methods, provided that the smart
contract programming language allows access to the most
recent block or its hash. We further presented SmartFly, a
system based on smart contracts that realizes FlyClient on
ETC without forks. SmartFly is applicable also to the newly
created EthereumPoW cryptocurrency.13
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