
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024 13217

A Fast Crash Reproduction Method for Android
Applications Based on Widget Hierarchy Graphs

Zhanqi Cui , Member, IEEE, Gaoyi Lin , Liwei Zheng , and Zhihua Zhang

Abstract—To improve the efficiency of fixing bugs, mobile
application developers must reproduce bugs reported by testers
or users as quickly as possible. In some cases, automated testing
tools can help developers reproduce crashes. However, these
tools were not designed for reproducing bug reports. They are
not efficient at reproducing crashes. To focus testing resources
on suspicious widgets, we propose CrPDroid, a fast crash
reproduction method for Android applications based on widget
hierarchy graphs. First, it builds a widget hierarchy graph by
using the project file of the application under test; then, it locates
suspicious widgets by analyzing the bug report and the project
file of the application under test and calculates the fitness of each
widget according to the widget hierarchy graph; finally, it uses the
fitness of widgets to guide automated testing to reproduce crashes
quickly. To evaluate the effectiveness of CrPDroid, experiments
are conducted on real Android application bug reports, and
the crash reproduction tool ReCDroid, ReproBot and automated
testing tools APE and PUMA are compared with CrPDroid. The
experimental results show that CrPDroid successfully reproduces
15 bug reports that cause Android app crashes. In addition,
compared with APE, PUMA, ReCDroid, and ReproBot, the
average time for CrPDroid to reproduce crashes decreased by
76.87%, 81.94%, 95.58%, and 76.55%, and the total number of
operations on suspicious widgets in the same period of testing
time increased by 44.07%, 87.57%, 88.70%, and 68.93% on
average, respectively.

Index Terms—Android applications, bug reports, reproduce
crashes, widget hierarchy graphs.

I. INTRODUCTION

W ITH the rapid development of 5G [1], Internet of
Things (IoT) devices are penetrating various areas

of our lives [2]. The number of IoT devices based on
the Android platform, especially Android smartphones, is
experiencing explosive growth [3]. As the Android system

Manuscript received 25 September 2023; revised 11 December 2023;
accepted 16 January 2024. Date of publication 22 January 2024; date of
current version 9 April 2024. This work was supported in part by the Jiangsu
Provincial Frontier Leading Technology Fundamental Research Project under
Grant BK20202001; in part by the Open Research Fund of Key Laboratory
of Safety-Critical Software Fund (Nanjing University of Aeronautics and
Astronautics) under Grant NJ2023031; in part by the National Natural Science
Foundation of China under Grant 61702041; and in part by the Beijing
Information Science and Technology University “Qin-Xin Talent” Cultivation
Project under Grant QXTCP C201906. (Corresponding author: Zhanqi Cui.)

Zhanqi Cui and Gaoyi Lin are with the Computer School, Beijing
Information Science and Technology University, Beijing 100101, China
(e-mail: czq@bistu.edu.cn; lingaoyi1998@bistu.edu.cn).

Liwei Zheng and Zhihua Zhang are with the Computer School, Beijing
Information Science and Technology University, Beijing 100101, China
(e-mail: zlw@bistu.edu.cn; zhangzh@bistu.edu.cn).

Digital Object Identifier 10.1109/JIOT.2024.3357209

continues to grow in popularity, Android mobile applications
have also proliferated. In 2022, Google Play released more
than 2.6 million Android applications [4]. Facing fierce com-
petition in the mobile application market, developers must
release new versions of applications as quickly as possible to
remain competitive. As a result, it is difficult to test mobile
applications thoroughly, and many bugs are still contained
in the release versions. Furthermore, this situation leads to
increased testing and maintenance costs and challenges the
robustness and reliability of mobile applications.

It has been found that 88% of users abandon mobile applica-
tions when encountering bugs repeatedly [5]. Therefore, bugs
in mobile applications result in user loss, and developers must
respond quickly to the bugs found and fix them, especially
application crashes, which directly affect the usability of
mobile applications [6]. To debug and fix crashes, it is first
necessary to reproduce crashes. Reproducing crashes may
require complex operations since mobile applications typically
involve many interfaces and executable events. Therefore,
manually reproducing crashes is inefficient. Automated testing
tools can assist developers in reproducing crashes, but they
are less efficient. For example, Google’s automated testing
tool Monkey [7] can generate random UI events and inject
them into Android applications, regardless of their design
details. Even though such automated testing tools can trigger
some crashes in applications, their search scope contains all
executable paths of the application, including irrelevant ones,
so they are less efficient in reproducing crashes.

Software projects use bug-tracking systems (such as
Bugzilla,1 Google Code Issue Tracker,2 GitHub Issue
Tracker,3 etc.) to manage the testing process and accelerate
bug fixing. Such bug-tracking systems allow testers to report
bugs during testing. Additionally, users can report bugs on
the mobile app market (e.g., Google Play)4 by posting com-
ments. Reviewing bug reports in the bug-tracking system and
user comments is an important way to find and reproduce
crashes. When reporting bugs, users and testers usually provide
application versions, system versions, bug screenshots, stack
traces, widget information, etc. By using the stack trace and
widget information in the bug report to reproduce a crash, a
developer can refine the search scope when manually locating
the crash, focus on the widget or function that caused the crash,

1Bugzilla. https://bugzilla.mozilla.org/describekeywords.cgi.
2Google Code Issue Tracker. https://code.google.com.
3GitHub Issue Tracker. https://github.com.
4Google Play. https://play.google.com/store/apps.

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5537-9236
https://orcid.org/0009-0006-8908-7326
https://orcid.org/0000-0001-7641-6369

13218 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Fig. 1. Example bug report for BetterBatteryStats.

and allocate more testing resources to the locations related to
the bug report to improve the efficiency of reproducing the
crash. For example, when a developer receives the bug report
shown in Fig. 1, they can focus on the “Show only %” widget.
However, existing automated testing tools rarely consider
bug reports. Furthermore, even if the widget that caused the
application crash is found, the application, which consists of
many interfaces and executable events, needs to be executed
following specific operation sequences to reproduce the crash.
As shown in Fig. 2, to reproduce the crash described in
the bug report in Fig. 1, four steps need to be executed in
sequence: 1) click “more options” as shown in Fig. 2(a);
2) click “Settings” as shown in Fig. 2(b); 3) scroll down as
shown in Fig. 2(c); and 4) click “Show only %” as shown in
Fig. 2(d).

As the example shows, it is possible to increase the effi-
ciency of reproducing a crash by using bug report information
effectively and concentrating more testing resources on sus-
picious widgets. Some works [8], [9], [10], [11] focused on
reproducing crashes with bug reports. Taking two state-of-the-
art works, ReproBot [10] and ScopeDroid [11], as examples,
their primary insight is extracting crash reproduction steps
from the natural language in bug reports and attempting to
execute the applications under test according to the extracted
steps to reproduce the crashes. However, a large proportion of
bug reports provide incomplete crash reproduction steps, mak-
ing it challenging to reproduce crashes efficiently. In extreme
cases, these approaches are degraded to general automation
testing tools. Moreover, they do not consider other useful
information provided in the bug reports, such as stack traces.
To mitigate this issue, we propose crash reproduction method
for Android applications (CrPDroid), a fast crash reproduction
method for Android applications based on widget hierarchy
graph. CrPDroid analyzes the project files of the application
under test to construct a widget hierarchy graph that records
the relationships between widgets as well as the relationships
between widgets and functions. In combination with the crash
reproduction steps and stack traces in the bug report, CrPDroid
can find the path for crash reproduction based on the graph
more efficiently. First, CrPDroid analyzes the project file of
the application under test and builds a widget hierarchy graph
based on function calls, interface jumps, and relationships

between widgets and functions. Second, it locates suspicious
widgets by analyzing bug reports and project files and calcu-
lates the fitness of each widget by using the widget hierarchy
graph. Third, the fitness of the widget is used to guide
automated testing to reproduce the crash quickly. Previously,
we proposed the technical framework of this method and con-
ducted preliminary experiments [12]. In this article, we expand
more technical details of the crash reproduction method,
including the construction of the widget hierarchy graph, the
fitness calculation of widgets, and crash reproduction with the
fitness of widgets. In addition, we expand the experiments to
further evaluate the effectiveness of CrPDroid. Specifically, the
scale of the representative experimental subjects is expanded
from 6 to 16. Moreover, two more state-of-the-art tools are
introduced for comparison. We also conduct experiments to
discuss the impact of the fitness calculation parameters and
the widget hierarchy graph on the performance of CrPDroid in
terms of testing resource allocation. The experimental results
show that CrPDroid, APE [13], PUMA [14], ReCDroid [8],
and ReproBot [10] successfully reproduce 15, 14, 9, 7, and
11 crashes, respectively. Compared with PUMA, CrPDroid
saves 81.94% of the time of reproducing crashes on average
and performs 87.57% more operations on suspicious widgets
in the same period of testing time. Compared with APE,
CrPDroid saves 76.87% of the time needed to reproduce
crashes on average and performs 44.07% more operations
on suspicious widgets. Compared with ReCDroid, CrPDroid
saves 95.58% of the time needed to reproduce crashes on
average and performs 88.70% more operations on suspicious
widgets. Compared with ReproBot, CrPDroid saves 76.55% of
the time needed to reproduce crashes on average and performs
68.93% more operations on suspicious widgets.

This article makes the following contributions.
1) We propose CrPDroid, which is a fast crash reproduction

method for Android applications based on widget hier-
archy graphs, to improve the efficiency of reproducing
crashes. In contrast to works focusing on the quality of
bug reports, CrPDroid aims to directly reproduce the
crashes described in the bug reports.

2) We propose widget hierarchy graphs, which describe the
relationships between widgets. The experimental results
show that the graphs can be used to guide dynamic
exploration for rapid reproduction of crashes.

3) Experiments are carried out on a set of real Android
applications, and the experimental results show that
CrPDroid outperforms the automated testing tools APE
and PUMA, as well as the crash reproduction tool
ReCDroid, in terms of crash reproduction quantity,
crash reproduction efficiency, and testing resource
allocation.

The remainder of this article is organized as follows.
Section II presents the details of the fast crash reproduction
method for Android applications based on widget hierarchy
graphs. Section III presents the experimental design and
results. Section IV discusses the limitations and threats to the
validity of the method. Section V introduces related work.
Section VI presents the conclusion.

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13219

Fig. 2. Steps for reproducing the crash described in the bug report shown in Fig. 1. (a) Click “more options”. (b) Click “Settings”. (c) Scroll down. (d) Click
“Show only %”. (e) Crash.

Fig. 3. Framework of the fast crash reproduction method for Android applications based on widget hierarchy graphs.

II. FAST CRASH REPRODUCTION METHOD FOR ANDROID

APPLICATIONS BASED ON WIDGET HIERARCHY GRAPHS

Fig. 3 shows the framework of the fast crash reproduction
method for Android applications based on widget hierarchy
graphs. First, it analyzes and obtains the function calls from
the project file of the application under test and extracts the
interface jumps and the relationships between widgets and
functions from the project file in combination with the function
calls to complete the creation of the widget hierarchy graph.
Then, it locates suspicious widgets by using the bug report
and the project file and calculates the fitness of widgets by
using the suspicious widgets and the widget hierarchy graph.
Third, it uses the fitness of widgets to guide automated testing
and outputs test scripts for reproducing the crash.

A. Building Widget Hierarchy Graphs

We use the widget hierarchy graph to describe the relation-
ships between widgets, as well as the relationships between
widgets and functions of Android applications. A widget
hierarchy graph consists of nodes corresponding to functions
in the Android application and edges corresponding to function

calls or interface jumps in the Android application. A widget
hierarchy graph can be defined as follows.

Definition 1 (Widget Hierarchy Graph): A widget hier-
archy graph of Android application A is a 5-tuple G =
(V, C, J, W, P), where:

1) V = {v1, v2, . . . , vi, . . .} is the finite set of nodes in the
graph, and node vi ∈ V is a function in A;

2) C = {c1,2, c3,4, . . . , ck,l, . . .} and J = {j1,2, j3,4, . . . ,

jm,n, . . .} are finite sets of two kinds of edges in the
graph; the edge ck,l ∈ C is a function call in A, and the
edge jm,n ∈ J is an interface jump in A;

3) W is the finite set of widgets in A;
4) P is the finite set of interfaces in A, and each interface

consists of several widgets.
For the function vi ∈ V , Wi = Annotation(vi) ⊆ W is the

set of widgets related to the function vi, indicating that the
function vi will be called when operating any widget in Wi;
if Annotation(vi) = ∅, then the function vi has no related
widgets. For the function call ck,l ∈ C, Caller(ck,l) = vk ∈ V ,
Callee(ck,l) = vl ∈ V , indicating that the function vk will call
the function vl. For the interface jump jm,n ∈ J, From(jm,n) =

13220 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

pm ∈ P and To(jm,n) = pn ∈ P, indicating that interface pm

can jump to interface pn, where the starting point of the jump
is pm and the ending point of the jump is pn. Trigger(jm,n) =
wm

v ∈ pm, indicating that the widget wm
v in the interface pm is

the widget that triggers the interface jump to pn.
To build the widget hierarchy graph, CrPDroid first needs

to get the set of functions V and the set of function calls
C to construct the graph. Specifically, CrPDroid compiles
the project file of the application under test to an APK file
and analyzes the APK file to get function calls. To obtain
function calls, CrPDroid uses FlowDroid5 to perform static
taint tracking analysis [15]. The calling functions and the
called functions in function calls are both added to the set of
functions V . The relationships between functions in terms of
calls are recorded in the set of function calls C. In Android
applications, function calls differ from those in ordinary
programs. An Android application is composed of components
with complex lifecycles (Activity, Service, BroadcastReceiver,
and ContentProvider) and developer-defined GUI callback
methods. Among them, components with complex lifecycles
provide multiple callback methods (i.e., lifecycle callback
methods [16]). By calling these lifecycle callback methods,
components can transit between different states of lifecy-
cles. The Android framework calls these lifecycle callback
methods and GUI callback methods implicitly. FlowDroid
automatically generates dummy methods to represent implicit
invocations of lifecycle and GUI callback methods in a
specific order to reduce the complexity of analyzing Android
applications.

After obtaining the set of functions V and the set of
function calls C, CrPDroid analyzes the project file of the
application under test in combination with function calls to
obtain interface jumps and the relationships between widgets
and functions. First, get the set of widgets W from the layout
files of the application under test. The layout files record
widgets and their attributes (including android:id, android:text,
android:contentDescription, etc.). CrPDroid identifies widgets
in the layout files and adds them to the set of widgets W. Then,
obtain the functions related to the widgets in W, i.e., event
handling functions, when operating one widget, the widget
will automatically call the event handling function associated
with it. The relationships between functions and widgets can
be obtained by static analysis tool Gator,6 which is a program
analysis toolkit for Android. For the function vi ∈ V , Wi =
Annotation(vi) ∈ W, that is, the function vi and the widgets
in Wi are related to each other. Next, we traverse the set
of functions V . If vu is a dummy function, we obtain the
set of widgets Wu = Annotaion(vu) ⊆ W related to the
functions called by vu and add the interface pu in which Wu

is located to the interface set P. Finally, identify the interface
jumps of the application by using Gator. If interface pm can
jump to interface pn, we add interface jump jm,n to J, where
From(jm,n) = pm, To(jm,n) = pn.

Fig. 4 shows a fragment of the widget hierarchy graph of
the BetterBatteryStats application. In Fig. 4, nodes represent

5FlowDroid. https://blogs.uni-paderborn.de/sse/tools/flowdroid/.
6Gator. http://web.cse.ohio-state.edu/presto/software/gator/.

Fig. 4. Widget hierarchy graph fragment for the BetterBatteryStats applica-
tion.

functions, and solid arrows represent function calls. For
example, function 5 is called by function 2. Some functions
have widgets related to them. For example, “Text colored,”
“Show only %,” and other widgets are related to function 7.
Nodes 2 and 3 represent dummy functions, and all widgets
related to functions called by dummy functions are within the
same interface; for example, widgets “Refresh” and “Settings”
are all within the same interface. The dotted arrows between
dummy functions 2 and 3 indicate an interface jump, which
is triggered by the widget “Settings.”

B. Calculating the Fitness of Widgets

The fast crash reproduction method for Android applications
based on widget hierarchy graphs guides automated testing by
the fitness of each widget. The fitness of widgets measures
whether a widget is likely to trigger a crash. The greater the
fitness value of a widget, the more likely it is to trigger a crash.
To determine the fitness of widgets, CrPDroid also needs to
obtain the set of suspicious widgets Wsusp.

The set of suspicious widgets Wsusp is obtained from the
project file of the application under test, where CrPDroid uses
the crash reproduction steps described in natural language and
the stack trace contained in the bug report to find the widgets
related to the bug report. Specifically, for the part of the bug
report that is written in natural language describing the crash
reproduction steps, CrPDroid first use the dependency analysis
tool spaCy [17] to divide the crash reproduction steps into
sentences, and apply stemming [18] to get the root forms of
the words in each sentence. Then, words describing widgets
are extracted from the sentences (the stemmed words). In the
work of Zhao et al. [8], they manually analyzed 813 bug
reports to construct grammar patterns. CrPDroid adapts the
grammar patterns7 to extract words describing widgets from
sentences. Finally, CrPDroid iterately checks all widgets in
the set W, checking whether they match the extracted words
describing the widgets. If a match is found, the widget is
added to the suspicious widget set Wsusp. The Word2Vec [19]
model is used for the matching by calculating the semantic
similarity (a score within the range of [0, 1]) between the
words describing the widgets and the widgets (using the
android:text and android:contentDescription attributes).

For the stack trace in the bug report, CrPDroid extracts the
first frame [20] in the stack (i.e., the function that causes the

7Grammar Patterns. https://github.com/AndroidTestBugReport/ReCDroid/t
ree/master/nlp%20pattern.

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13221

Algorithm 1 Calculate the Fitness of Widgets
Input Set of suspicious widgets Wsusp, widget hierarchy graph

G = (V, C, J, W, P)

Output Fitness F
1: F← ∅
2: Plocate ← FindPageOfSuspWidget(Wsusp, G)

3: for each page pn ∈ Plocate do
4: for each widget wn

u ∈ pn do
5: F.add(wn

u, CalFitWithFormula1(wn
u, Wsusp))

6: while first cycle or pstart �= ∅ do
7: pstart ← FindStartingPageOfJump(Plocate, G)

8: if Pstart �= ∅ then
9: for each page pm ∈ Pstart do

10: for each widget wm
v ∈ pm do

11: F.add(wm
v , CalFitnWithFormula2(wm

v , G))

12: Plocate = Pstart

13: return F

crash), and checks whether this function exists in the function
set V . If so, it then checks whether the function can be invoked
by operating widgets in the widget set W. If the function can
be invoked by operating a widget, the widget is added to the
suspicious widget set Wsusp. Specifically, CrPDroid analyzes
the function call chains within the set of function calls C. If
one function call chain contains the first frame in the stack,
and there is a function in the chain is related to a widget, the
widget is considered a suspicious widget.

After getting the set of suspicious widgets Wsusp, CrPDroid
first finds the interfaces to which each suspicious widget
belongs to and calculates the fitness of each widget in these
interfaces; then, it finds the starting interfaces of jumps that
take the above interfaces as the ending points of the jumps and
calculates the fitness of each widget in the starting interfaces
of the jumps.

Algorithm 1 is the algorithm for calculating the fitness of
widgets. The input is the set of suspicious widgets Wsusp
and the widget hierarchy graph G = (V, C, J, W, P), and
the output F is the fitness values of the widgets in Wsusp.
After initializing the set F (line 1) used to save the fitness
values, CrPDroid traverses all the interfaces in the widget
hierarchy graph, finds the interfaces to which all suspicious
widgets belong, and records the set of interfaces Plocate that
contains suspicious widgets (line 2). Lines 3–5 traverse the
widgets in each interface in Plocate, calculate the fitness of
these widgets, and save the results in F. Next, CrPDroid
continuously searches the set of starting points of interface
jumps and calculates the fitness of widgets at the starting
points (lines 6–12) until the set is empty. In each cycle,
CrPDroid first traverses all interface jumps in the widget
hierarchy graph, finds the interfaces that take any interface in
the set of interfaces built in the previous iteration as the ending
points of interface jumps, and saves the found interfaces as the
set pstart (line 7). If pstart is not empty, CrPDroid traverses the
widgets in each interface of pstart and then takes the interfaces
in pstart as the ending points of the jumps to proceed with
the next iteration after calculating the fitness of the widgets

(lines 9–11); if pstart is empty, indicating that there is no
interface that is the starting point of an interface belonging to
the pstart set created by the previous iteration, the algorithm
ends the iteration and exports F, which saves the fitness values
of the widgets (line 13).

For the interface pn ∈ Plocate to which the suspicious widget
belongs (line 2), CrPDroid uses (1) to calculate the fitness of
each widget in pn (line 5). To make a suspicious widget in
pn more likely to be covered during testing, for the widget
wn

u ∈ pn, if wn
u ∈ Wsusp, then its fitness is K×N; if wn

u /∈ Wsusp,
then its fitness is N. Here, N is a nonzero constant, and K is
a constant greater than 1

Fit
(
wn

u

) =
{

K × N, if wn
u ∈ Wsusp and wn

u ∈ pn

N, if wn
u /∈ Wsusp and wn

u ∈ pn.
(1)

For interface pm ∈ Pstart (line 7), we have pn ∈ Plocate
and jm,n ∈ J such that From(jm,n) = pm and To(jm,n) = pn.
CrPDroid uses (2) to calculate the fitness of widgets in pm.
Widgets that can trigger interface jumps may lead the testing
to the interface that triggers the application crash. To make
such widgets more likely to be covered during testing, for
wm

v ∈ pm, if wm
v is a widget in pm that can trigger the interface

jump to pn, its fitness is the sum of the fitness values of all
widgets in pn, that is,

∑
wn

u∈pn
Fit(wn

u); if wm
v in pm is not a

widget that can trigger an interface jump, its fitness is N

Fit
(
wm

v

) =
{∑

wn
u∈pn

Fit
(
wn

u

)
, if Trigger

(
jm,n

) = wm
v and wm

v ∈ pm

N, if Trigger
(
jm,n

) �= wm
v and wm

v ∈ pm.

(2)

Still taking the BetterBatteryStats application as an example,
use Algorithm 1 and the widget hierarchy graph to calculate
the fitness of its widgets. According to the bug report, the
suspicious widget is “Show only %.” The fitness of the
suspicious widget “Show only %” is K × N, and the fitness
of the widget “Text colored” in the same interface is N by
using (1). In addition, the widget “Settings” is the widget that
can trigger the interface to jump to the interface where the
suspicious widget is located. By using (2), the fitness of the
widget “Settings” is the sum of the fitness values of all widgets
in the interface where the suspicious widget “Show only %” is
located, that is, K×N+(s−1)×N (s is the number of widgets
in the interface where “Show only %” is located), while the
fitness of the widget “Refresh” in the same interface is N.

C. Generating Test Scripts

When the calculation of fitness for widgets is completed,
automated testing can be guided by the fitness values to
reproduce the crashes more quickly. During testing, CrPDroid
continuously selects and operates widgets in the current
interface of the application based on the fitness of widgets.
In each cycle, CrPDroid first calculates the probability of
each widget being selected based on its fitness in the current
interface and then selects and operates the widget according
to the probability. According to (1) and (2), all widgets
in the same interface are given appropriate fitness, giving
each widget a certain probability of being selected. This is
because triggering an application crash may require operating

13222 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Algorithm 2 Fitness-Guided Automated Testing
Input Application under test A, fitness F, maximum test time

LIMIT
Output Test script R

1: Launch A, R← ∅
2: while time < LIMIT do
3: Page ← GetCurrentPage(A)

4: if triggers BugReport crash then
5: return R
6: if isFullyExpl(Page) then
7: Execute(BACK, A)

8: R.add(BACK)
9: Continue

10: ListofWidget ← GetAllWidgets(Page)
11: ProbOfWidgetSelected← CalProbWithFormula3(Lis-
12: tofWidget, F)

13: wselect ← SelectWidget(ListofWidget,
ProbOfWidgetSelected)

14: Execute(wselect, A)

15: R.add(wselect)

16: return null

widgets other than the suspicious widgets mentioned in the
bug report. CrPDroid ends the testing when the maximum
test time is exceeded or the application crash is successfully
reproduced and then outputs the test script. It should be
noted that CrPDroid does not strive to reproduce crashes
strictly according to the steps described in the bug report,
as the crash reproduction steps provided by users are not
always accurate. When a crash occurs during the exploration,
CrPDroid compares the system logs with the stack trace in
the bug report. If the bug information of the system log is
consistent with the stack trace in the bug report, the crash is
considered successfully reproduced, otherwise, the exploration
process continues. As CrPDroid obtains the widget hierarchy
graph by statically analyzing the project file of the application
under test, it may miss some widgets. To avoid the situation in
which some widgets are never selected for operation because
they are not identified by the static analysis, if a widget not
identified by static analysis is encountered during the testing,
its fitness will be set to the nonzero constant N.

Algorithm 2 describes the algorithm of the fitness-guided
automated testing. The input is the application under test A,
the fitness of widgets F, and the maximum test time LIMIT .
The output is a testing script R that can reproduce the crash.
In line 1, CrPDroid launches the application under test and
initializes the test script R. Then, CrPDroid starts to continu-
ously explore the application under test (lines 2–14). When the
exploration time exceeds the maximum test time (line 2) or the
crash has been successfully reproduced (lines 4 and 5), the
exploration is terminated. During the exploration process,
line 3 obtains the current interface information of A. After
identifying all widgets from the current interface (line 10),
CrPDroid calculates the probability of each widget being
selected according to the fitness of the widgets (line 11). In
lines 12 and 13, CrPDroid selects and operates a widget in the

current interface according to the probability and records the
operation in the test script R (line 14). To avoid overexplo-
ration of a certain interface during the testing, CrPDroid will
judge whether the current interface has been fully explored
before further operating on the interface (line 6). If the current
interface has been fully explored, CrPDroid will return to the
previous interface to explore. Here, the condition for judging
whether the interface is fully explored is that all widgets in
the interface have been operated on and the total number of
operations on the widgets in the current interface is greater
than L.

The fitness of a widget directly affects the probability of
the widget being selected. In line 11, CrPDroid uses (3) to
calculate the probability that each widget in pt is selected to
be operated on. Among them, Fit(wt

y) is the fitness of widget
wt

y in interface pt, and
∑

wt
z∈pt

Fit(wt
z) is the sum of the fitness

values of all widgets in pt. For widget wt
y ∈ pt, the probability

of being selected to be operated on is the ratio of its fitness
to the sum of the fitness values of all widgets in pt

Pb
(

wt
y

)
=

Fit
(

wt
y

)

∑
wt

z∈pt
Fit

(
wt

z

) . (3)

III. EXPERIMENTS AND EVALUATIONS

A. Experimental Design

1) Research Questions: Four RQs are raised to evaluate the
effectiveness of CrPDroid.

RQ1: What impact does fitness calculation parameter have
on the ability of CrPDroid to reproduce crashes?

The parameter K affects the fitness of widgets calculated
by CrPDroid. Therefore, how does the parameter K affect the
ability of CrPDroid to reproduce crashes?

RQ2: How does widget hierarchy graph guidance affect the
performance of CrPDroid?

The widget hierarchy graph guides the automated testing
process of CrPDroid, so how does this graph affect the
performance of CrPDroid?

RQ3: In comparison with other automated testing tools
for Android applications, how effectively and efficiently does
CrPDroid reproduce crashes?

CrPDroid aims to use the information in the bug report to
improve the efficiency of crash reproduction, so how effective
and efficient is CrPDroid compared to other automated testing
tools?

RQ4: Can CrPDroid concentrate more testing resources
on suspicious widgets than other automated testing tools for
Android applications?

To increase the efficiency of crash reproduction, CrPDroid
uses information from the bug report to reduce the number
of unnecessary paths to be explored. Compared to other
automated testing tools, is CrPDroid able to concentrate more
resources on testing suspicious widgets?

2) Experimental Settings: In the experiments for RQ1–
RQ3, we follow the experimental settings of Zhao et al. [8]
and limit the testing time of each experiment to 2 h. For RQ4,
the execution time of each experiment is 30 min. To reduce
the impact of randomness, each testing tool is set to run ten

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13223

times on each experimental subject. The average of the results
is recorded as the final time. Furthermore, the parameter L,
which is used to evaluate whether the interface has been
fully explored, is set to 100 in the experiments. And adopting
the settings of ReCDroid, the threshold value of semantically
similar words is set to great than or equal to 0.8.

3) Experimental Subjects: The experimental subjects used
in this article are taken from Q-testing [21] and ReCDroid [8].
In Q-testing, Pan et al. [21] analyzed the standard benchmark
in evaluating automated testing tools for Android applica-
tions [22], [23], removed outdated applications, and obtained
34 applications that can be found on F-Droid or GitHub.
Furthermore, to enrich the test objects, they randomly selected
several different categories of applications from the open-
source application list [24] and finally obtained a benchmark
consisting of 50 Android applications from F-Droid and
GitHub. We analyze the above 50 applications collected by
Q-testing. First, we search for “Crash” on the bug-tracking
systems of the 50 applications, and 27 bug reports are
collected. Then, the crashes described in the bug reports are
manually verified for reproduction, and 8, 2, and 11 bug
reports are removed due to failure to build the APK, envi-
ronmental problems and cannot be reproduced, respectively.
As shown in rows 1–6 of Table I, six bug reports from five
applications are remained.

In ReCDroid, Zhao et al. [8] took the bug reports used in the
FUSION [25] and YAKUSU [9] papers, and randomly crawled
several bug reports from GitHub, to construct a benchmark
consisted of 51 bug reports. According to the information
provided by the ReCDroid paper, we download the specified
versions of the Android application projects where the bugs
are located as described in the bug reports, attempt to build and
run the Android applications to reproduce the bugs in them.
9, 20, and 12 bug reports are removed, due to unavailable
project source code, environmental problems, and cannot be
reproduced, respectively. As shown in rows 7–16 of Table I,
ten bug reports from ten applications are remained.

4) Experimental Environment: Based on the proposed
method, a prototype tool is implemented on the basis of the
PUMA framework to evaluate effectiveness. In the experi-
ments, we compare CrPDroid with PUMA [14], APE [13],
ReCDroid [8], and ReproBot [10]. PUMA and APE are
commonly used Android automated testing tools and are used
as baselines in comparative experiments of related studies,
such as Humanoid [26] and ATUA [27]. The goal of ReCDroid
and ReproBot is similar to CrPDroid, which is to reproduce
the crashes described in the bug reports. It should be noted that
the bug report analysis tools FUSION and YAKUSU are not
chosen for this study. Although both FUSION and YAKUSU
aim to generate event sequences for crash reproduction, their
analysis results still rely on manual validation by developers,
making them unsuitable for comparison with CrPDroid. The
development and experiment environment of CrPDroid is a
computer with 16-GB memory, a 6-core 3.3-GHz processor,
Ubuntu 20.04, Android SDK (4.3-8.0), and JDK 1.8.0.

B. Experimental Results

TABLE I
BASIC INFORMATION OF THE EXPERIMENTAL SUBJECTS

1) Results of RQ1 (What Impact Does the Fitness
Calculation Parameter Have on the Ability of CrPDroid to
Reproduce Crashes?): To evaluate the impact of the parameter
settings on the crash reproduction performance of CrPDroid,
the parameter K is set from 5 to 50, and the step size is 5
for CrPDroid. Then, the time required to reproduce the crash
with different parameter settings is compared.

In Table II, the first column lists the 16 experimental
subjects, and Columns 2–11 show the time CrPDroid takes
to reproduce crashes with different K values. As Table II
shows, except for the crash in Screenrecorder, CrPDroid can
reproduce the remaining 15 crashes when K is set between
5 and 50. Further analysis of the crash in Screenrecorder
indicates that reproducing this crash requires operations on the
notification drawer of the Android device, which CrPDroid
currently does not support. This limitation results in CrPDroid
being unable to reproduce this crash for any value of K.
Additionally, the reproduction times of CrPDroid tend to
be stable as K increases. For example, for Transistor and
AndroidDagger, the minimum crash reproduction times of
CrPDroid are 5.5 and 2.8 s, respectively, when the value of K
is 20; for Tomdroid, RadioBeacon (Bug1), and RadioBeacon
(Bug2), the minimum crash reproduction times of CrPDroid
are 11.4, 11.8, and 11.4 s, respectively, when the value of
K is 25; for APhotoManager and BetterBatteryStats, the
minimum times required for CrPDroid to reproduce the crash
are 12.6 and 21.7 s, respectively, when the value of K is 30;
for Collect and AIMSICD, the minimum times required for

13224 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

TABLE II
TIME FOR CRPDROID TO REPRODUCE CRASHES UNDER DIFFERENT VALUES OF K (IN SECONDS)

Fig. 5. Comparison between CrPDroid and CrPDroid* on crash reproduction.

CrPDroid to reproduce the crash are 8.2 and 8.6 s, respectively,
when the value of K is 35; for FastAdapter and FlashCards,
the minimum times required for CrPDroid to reproduce the
crash are 6.4 and 32.9 s, respectively, when the value of K
is 40; for AnyMemo, LibreNews-Android, Anki-Android, and
microMathematics, the minimum times required for CrPDroid
to reproduce the crash are 283.1, 39.2, 16.7, and 61.5 s,
respectively, when K is 45.

According to the experimental results, the crash reproduc-
tion performance of CrPDroid is affected by the value of K.
When K is 45, the crash described in the 15 bug reports can be
reproduced by CrPDroid most efficiently. Therefore, K is set
to 45 in the following experiments for RQ2, RQ3, and RQ4.

2) Results of RQ2 (How Does Widget Hierarchy Graph
Guidance Affect the Performance of CrPDroid?): For this RQ,

CrPDroid is compared to CrPDroid*, which is not guided by
widget hierarchy graphs. Without the guidance of the widget
hierarchy graph, CrPDroid* cannot obtain the fitness values
of widgets, and the fitness of all widgets in the application is
set to N. At this time, the widgets have the same probability
of being selected by CrPDroid* according to (3), and the
exploration strategy of CrPDroid* degenerates to a random
strategy.

Fig. 5 shows the time required for CrPDroid (K = 45) and
CrPDroid* (CrPDroid without guidance by widget hierarchy
graphs) to reproduce the crashes for the 16 experimental
subjects. Due to the limitation of being unable to manipulate
the notification bar, both CrPDroid and CrPDroid* cannot
reproduce the crashes in Screenrecorder. For the other 15
experimental subjects, CrPDroid successfully reproduce all

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13225

Fig. 6. Comparison of CrPDroid, APE, PUMA, and ReCDroid in terms of crash reproduction.

crashes, while CrPDroid* cannot reproduce the crash in micro-
Mathematics. For crashes that both CrPDroid and CrPDroid*
could successfully reproduce, CrPDroid saves 97.20% of the
time needed to reproduce crashes compared to CrPDroid*
on average, because the reason is that CrPDroid* is not
guided by the widget hierarchy graph and randomly allocates
testing resources to the widgets of applications during explo-
ration. The randomness results in CrPDroid* being unable
to reproduce the crash in microMathematics, which has a
large number of interfaces and widgets, within a limited
time cost. In contrast, CrPDroid, which is guided by the
widget hierarchy graph, prioritizes the allocation of testing
resources to operations related to suspicious widgets. This
makes CrPDroid more efficient than CrPDroid* in reproducing
crashes.

The above experimental results show that, benefitting from
a more efficient exploration strategy, CrPDroid and CrPDroid*
can effectively reproduce most crashes. In addition, the widget
hierarchy graph can further improve the efficiency of CrPDroid
in reproducing crashes.

3) Results of RQ3 (In Comparison With Other Automated
Testing Tools for Android Applications, How Effectively and
Efficiently Does CrPDroid Reproduce Crashes?): This RQ
compares CrPDroid, APE, PUMA, ReCDroid, and ReproBot
for crash reproduction. The effectiveness of the tool is mea-
sured by the number of crashes successfully reproduced within
a limited time and the time costs needed to reproduce crashes.

Fig. 6 shows the results of reproducing crashes with
CrPDroid (K = 45), ReCDroid, ReproBot and the automated
testing tools PUMA and APE. The Venn diagram of the
crashes reproduced by different tools is shown in Fig. 7.
Figs. 6 and 7 suggest that, due to the same limitation of
being unable to operate the notification drawer, the crash in
Screenrecorder that cannot be reproduced by CrPDroid also
cannot be reproduced by ReproBot, PUMA and APE. For
the remaining 15 crashes, the automated testing tool APE

Fig. 7. Venn diagram of crashes reproduced by CrPDroid, APE, PUMA,
ReCDroid, and ReproBot.

successfully reproduce 14 of them, except for the crash in
Anki-Android. For 14 crashes that both CrPDroid and APE can
reproduce, APE takes longer time than CrPDroid. CrPDroid
reduced the average time to reproduce the 14 crashes by
76.87% compared to APE. Further analysis of the crash in
Anki-Android, which APE fails to reproduce, suggests that
APE expends a lot of testing resources on paths unrelated to
reproducing the crash, making it unable to reproduce the crash
within the limited time.

The automated testing tool PUMA can reproduce 10 out
of 15 crashes, except for the crashes in LibreNews-Android,
Collect, Anki-Android, FlashCards, and AIMSICD. Among
the nine crashes that both CrPDroid and PUMA could repro-
duce, CrPDroid and PUMA took the same amount of time to
reproduce the crash in RadioBeacon (Bug1), while CrPDroid

13226 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

took less time to reproduce the other eight crashes. For
crashes that both CrPDroid and PUMA could successfully
reproduce, CrPDroid saved 81.94% of the time needed to
reproduce crashes compared to PUMA on average. The reason
is that PUMA’s model-based exploration strategy does not
consider suspicious widgets during the exploration process,
thus resulting in lower efficiency in crash reproduction. When
reproducing crashes in Collect, Anki-Android, and AIMSICD,
this model-based exploration strategy allocates more testing
resources to widgets unrelated to crash reproduction, making
it unable to reproduce crashes within the limited time. With
further analysis of the crash in BetterBatteryStats, LibreNews-
Android, FlashCards, which cannot be reproduced by PUMA,
we found that PUMA triggered an exception while backtrack-
ing the application, which caused PUMA to terminate and fail
to reproduce the crash.

As a tool for reproducing crashes in bug reports, ReCDroid
can only reproduce seven crashes and takes a longer time than
CrPDroid. It should be noted that, for the 15 experimental
subjects excluding Screenrecorder, CrPDroid fails to execute
Collect and Anki-Android by using the scripts provided by
ReCDroid. For the seven crashes that both CrPDroid and
ReCDroid can reproduce, CrPDroid reduces time costs by
95.58% on average compared to ReCDroid. After analyz-
ing the reasons for ReCDroid’s poor performance in this
experiment, it was found that ReCDroid aims to reproduce
crashes from the textual descriptions in bug reports. The
absence of adequate text describing the steps to reproduce the
crash in bug reports can negatively affect its crash reproduc-
tion efficiency, as shown in the experiments on AnyMemo,
FlashCards, and microMathematics. Second, ReCDroid does
not support swipe gestures, which prevents it from repro-
ducing crashes in RadioBeacon (bug1), BetterBatteryStats,
and AIMSICD. Finally, ReCDroid dynamically builds and
maintains a dynamic ordered event tree (DOET) during
exploration to guide automated testing. Building and ana-
lyzing the DOET while exploring the application is time
consuming. In contrast, the widget fitness used by CrPDroid
to guide exploration is determined by the static analysis
phase, without additional analysis during the exploration of the
application.

The crash reproduction tool ReproBot, similar to ReCDroid,
aims to reproduce crashes with the textual descriptions in
bug reports. ReproBot can reproduce 11 out of 15 crashes.
However, for these 11 reproduced crashes, ReproBot takes
longer time than CrPDroid. CrPDroid reduces the average
time by 76.55% compared to ReproBot. This is because the
crash reproduction steps included in the bug reports are often
incomplete, and ReproBot consumes more time to explore
the application to find the missing crash reproduction steps.
Moreover, the matching analysis of crash reproduction steps
and UI events of the application interface is a time-consuming
task. In contrast, CrPDroid obtains a widget hierarchy graph
during the static analysis phase, that contains the relationships
between widgets and interfaces, as well as the interface jumps.
CrPDroid can quickly locate suspicious widgets with this
graph. Further analysis of the four crashes that ReproBot fails
to reproduce, suggests that for Anki-Android and AnyMemo,

ReproBot consumes a lot of time to explore the application to
find the missing crash reproduction steps, making it unable to
reproduce the crash within the limited time. For LibreNews-
Android and BetterBatteryStats, ReproBot cannot accurately
match the crash reproduction steps with the UI events of
the application during the exploration, resulting in unable to
reproduce the crashes.

As the experimental results show, CrPDroid outperforms
APE, PUMA, ReCDroid, and ReproBot in terms of the number
of crashes reproduced. In addition, CrPDroid is more efficient
than PUMA, APE, ReCDroid, and ReproBot in reproducing
application crashes.

4) Results of RQ4 (Can CrPDroid Concentrate More
Testing Resources on Suspicious Widgets Than Other
Automated Testing Tools for Android Applications?): For this
RQ, CrPDroid, APE, PUMA, ReCDroid, and ReproBot are
compared in terms of the testing resources allocated to
suspicious widgets. In some cases, PUMA may terminate the
exploration earlier than 30 min if it is determined that the
application has been fully explored or that no more interfaces
can be explored. In this case, PUMA will be restarted so
that the exploration time accumulates for 30 min and the
operations on widgets for each exploration accumulate. For
this RQ, the number of operations to suspicious widgets is
used to evaluate the testing resource allocation of each tool
on suspicious widgets.

Table III shows how CrPDroid, APE, PUMA, and
ReCDroid operate on suspicious widgets in the same period of
time. Columns 2, 6, 10, 14, and 18 are the times elapsed from
the start of the experiment to the first operation on the suspect
widget. Exes, in Columns 3, 7, 11, 15, and 19, represents
the total number of operations on suspicious widgets within
30 min. Exea, in Columns 4, 8, 12, 16, and 20, represents the
total number of operations on all the widgets within 30 min.
Exes/Exea, in Columns 5, 9, 13, 17, and 21, represents the
ratio of operations on suspicious widgets to the number of
operations on all widgets.

The results show that in the same period of testing time,
compared with PUMA, the total operations of CrPDroid
on all widgets increases by 25.69% on average, the total
operations of CrPDroid on suspicious widgets increases by
87.57% on average, and the average Exes/Exea value of
CrPDroid is 35.18%, which is 6.2 times greater than PUMA.
Compared with APE, the total operations of CrPDroid on all
widgets is fewer, but the operations of CrPDroid on suspicious
widgets increases by 44.07% on average, and the average
Exes/Exea value is 7.6 times greater than APE. Compared with
ReCDroid, the total operations of CrPDroid on all the widgets
increases by 65.02% on average, the operations of CrPDroid
on suspicious widgets increases by 88.70% on average, and
the average Exes/Exea value of CrPDroid is 3.2 times greater
than ReCDroid. Compared with ReproBot, the total operations
of CrPDroid on all widgets increases by 14.23% on average,
the operations of CrPDroid on suspicious widgets increases
by 68.93% on average, and the average Exes/Exea value of
CrPDroid is 2.8 times greater than ReproBot.

In addition, in terms of the time cost from the beginning of
the experiment to the first operation on a suspicious widget,

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13227

TABLE III
COMPARISON OF TESTING RESOURCE ALLOCATION

the average time of CrPDroid is 95.55%, 96.09%, 99.20%,
and 95.59% less than that of APE, PUMA, ReCDroid and
ReproBot, respectively. It should be noted that CrPDroid
is implemented based on PUMA, but the total number of
operations of PUMA on all the widgets is less than that of
CrPDroid in the same period of testing time. One reason is
that PUMA restarts the application when it finishes exploring
a path, but restarting the application takes time.

To summarize, CrPDroid is more efficient in reproducing
crashes, prioritizing testing resources for suspicious widgets,
and performing more operations on suspicious widgets. As a
result, CrPDroid reproduces crashes faster than PUMA, APE,
ReCDroid, and ReproBot.

IV. DISCUSSION

A. Widget Hierarchy Graphs Analysis

The widget hierarchy graph, which describes the relation-
ships between interfaces and widgets, as well as the interface
jumps, is used by CrPDroid to guide automated testing. To
further evaluate the accuracy of the widget hierarchy graph, we
check 5 of the graphs statically constructed by CrPDroid for 16
experimental subjects, namely, APhotoManager, LibreNews-
Android, Transistor, microMathematics, and AndroidDagger.
The graphs constructed for the five experimental subjects are
manually compared with the actual Android applications. The
results show that the widget hierarchy graphs constructed by
CrPDroid for APhotoManager, Transistor, and AndroidDagger
are accurate, and CrPDroid can quickly reproduce crashes
by using the widget hierarchy graphs. However, the widget
hierarchy graphs constructed by CrPDroid for LibreNews-
Android and microMathematics are incomplete. Specifically,
1 out of 4 and 3 widgets required to reproduce the crash of
LibreNews-Android and microMathematics are not contained
in the widget hierarchy graphs of the two application, respec-
tively. Considering this situation, we set the fitness of widgets
not identified during the static analysis phase to a fixed value
N to avoid the case in which some widgets are never selected

for operation during the exploration phase because they were
not identified. This strategy enables CrPDroid to reproduce
crashes by attempting to explore unknown paths when it fails
to reproduce a crash based on the widget hierarchy graph,
although this consumes some additional time costs.

B. Crash Reproduction Steps Analysis

Although CrPDroid aims to reproduce the crashes described
in the bug reports, it does not focus on strictly following
the steps in the bug reports to reproduce the crashes. We
conducted a comparative analysis between the steps of crashes
successfully reproduced by CrPDroid and the steps in the
bug reports to find out their relationships. The results show
that when the crash reproduction steps in the bug reports are
complete, the actual crash reproduction steps of CrPDroid
match them. This is because CrPDroid treats the widget
operated in each crash reproduction step of the bug reports
as suspicious widgets, and prioritizes the testing resources to
the suspicious widgets to reproduce the crash by operating
the suspicious widgets. However, when the crash reproduction
steps provided in the bug reports are incomplete, the actual
crash reproduction steps generated by CrPDroid differ from
them. Specifically, the actual crash reproduction steps are
more like a complement for the steps described in the bug
reports. Although there could be some redundant operation
steps. This is because when CrPDroid cannot reproduce the
crash using the information in the bug reports, it attempts to
explore alternative paths within the application to assist in
crash reproduction.

C. Limitations

CrPDroid relies on stack trace and widget information in
bug reports to reproduce crashes and cannot obtain assistance
from information provided in other forms, such as attachments
or screenshots. If the stack trace and widget information
provided in the bug report is insufficient, it will reduce
the reproduction efficiency of CrPDroid. In extreme cases,

13228 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

CrPDroid may be used as an automated testing tool with
a random strategy (i.e., CrPDroid* in the experiment). For
instance, in the AnyMemo application, which is one of the
experimental subjects, the bug report primarily consists of
attachments and screenshots. CrPDroid cannot extract useful
information, resulting in a significantly longer crash repro-
duction time than other experimental subjects (as shown in
Fig. 6). In subsequent improvements, it is possible to consider
further utilizing the information provided in other forms in
bug reports. For example, widget information can be extracted
from screenshots using computer vision techniques to guide
automated testing.

In addition, the efficiency of CrPDroid in executing
applications is low. In our experiments, CrPDroid performs
significantly fewer operations than APE within the same
testing period, as shown in Table III. One significant reason
is that CrPDroid waits for a fixed time after performing
an operation to ensure its completion, as some operations
may generate animation effects. Subsequent improvements can
be made for the waiting strategy. For example, CrPDroid
could monitor whether the interface has finished loading after
operating a widget, and immediately operate the next widget
after the loading is completed.

D. Threats to Validity

1) External Validity: External validity threats arise from
the representativeness of the selected evaluation subjects and
bug reports on the one hand and the generality of CrPDroid
on the other. To ensure the representativeness of the eval-
uation subjects and bug reports, the Android applications
selected in the experiment are widely used in related testing
works [21], [22], [23], and the source codes are all open
source on GitHub or F-Droid. Bug reports are obtained from
the respective bug tracking system or comment section of the
application. To improve the generality of CrPDroid, we imple-
ment CrPDroid based on PUMA. PUMA is a programmable
Android testing framework that supports user-defined explo-
ration strategies and collects dynamic information. PUMA has
been validated on 3600 apps in Google Play [14] and is used
as the base framework in the related works of Liu et al. [28]
and Jiang et al. [29].

2) Internal Validity: The internal validity threat mainly
comes from the accuracy of the constructed widget hierarchy
graph and the correctness of the exploration of the application
under test. To improve the accuracy of the widget hierarchy
graph, we use the static analysis tool FlowDroid to analyze
and obtain function calls from the APK file of the application
under test. FlowDroid is widely used for data flow analysis of
Android applications and Java programs. The PUMA frame-
work is used to ensure that the exploration of applications
under test is accurate for CrPDroid. PUMA has been widely
used in analyzing program attributes (such as application state
and widget information) [14]. Moreover, we check and test
the written code for constructing widget hierarchy graphs and
calculating the fitness of widgets to minimize the risk of
invalidity.

V. RELATED WORK

This section introduces related work on Android GUI testing
and bug report analysis.

A. Android GUI Testing

GUI testing has been extensively used to detect application
crashes and achieve high code coverage. Automated testing
techniques can explore GUI events of the application under test
by using different strategies (such as random, model-based,
and reinforcement learning-based exploration strategies).

Some related work uses a random exploration strategy,
generating pseudorandom events to perform fuzz testing on the
application under test. Monkey [7] is the most commonly used
random strategy-based automated testing tool, which generates
a pseudorandom stream of GUI events by randomly interacting
with screen coordinates. The random strategy used by Monkey
performs well on some benchmark applications. However,
the test cases generated by Monkey contain many invalid or
redundant events, which threatens the efficiency of the testing
process. Dynodroid [30] improves the exploration method of
randomly interacting with screen coordinates. Its exploration
of the application is a cycle of observation, selection, and
execution. In the observation phase, Dynodroid determines the
layout of the widgets on the current screen and the expected
input type for each widget. In the selection phase, Dynodroid
tends to select widgets that are not frequently selected. Finally,
in the execution phase, Dynodroid operates on the selected
widget. In addition, Dynodroid allows users to pause automatic
exploration and resume exploration after manual operations
(such as authentication and password input) by the user.

There is also some work that generates test cases based on
application models. Taking GUIRipper [31] as an example, it
implements a model-based exploration strategy, which dynam-
ically builds a model of an application while exploring the
application with the DFS strategy. The application under test
will be re-explored if GUIRipper judges that any new interface
cannot be reached. Muangsiri and Takada [32] also proposed
a model-based exploration method, a behavioral-based GUI
testing method for mobile applications that achieves high
code coverage. The method creates a behavioral model from
usage logs by applying a statistical model. The events within
the behavioral model are mapped to GUI components in
a GUI tree. During testing, the method updates the model
dynamically to increase the probability of an event that rarely
or never occurs when users use the application. ATUA [27]
uses the application model to guide the dynamic exploration
of the application under test, thereby achieving significantly
higher coverage of the code affected by updates with a
much smaller number of test inputs. The application model
is initially created by static program analysis procedures and
then refined during testing.

Some work uses reinforcement learning techniques to guide
Android application testing. For example, Q-testing [21]
applies reinforcement learning techniques to test Android
applications with a curiosity-driven exploration strategy.
During the exploration process, Q-testing records and main-
tains a set of application states that have been visited and

CUI et al.: FAST CRASH REPRODUCTION METHOD FOR ANDROID APPLICATIONS 13229

then calculates reinforcement learning rewards based on the
difference between the current state and the recorded states.
By changing the importance of the application state under
test, Q-testing can dynamically adjust rewards for specific
events. QBE [33] also uses reinforcement learning techniques
to explore the application under test, implementing a fully
automated black-box testing method. QBE uses reinforcement
learning techniques to generate a Q-Matrix to evaluate the
probability of operating each widget. During the exploration
of the application under test, the widget to be operated is
selected from the application interface based on the Q-Matrix.
Romdhana et al. [34] first proposed a deep reinforcement
learning method called ARES for automatic black-box testing
of Android applications. Deep reinforcement learning is a
recent extension of reinforcement learning that takes advantage
of the learning capabilities of neural networks. Due to this
deep neural network, ARES achieves high scalability, general
applicability, and the ability to handle complex application
behavior.

The above techniques have successfully detected application
bugs or achieved high code coverage. However, these tools are
not designed to make use of bug reports, and their exploration
scope includes all reachable paths of the application under test,
resulting in less efficiency in reproducing crashes.

B. Bug Report Analysis

Some related studies have focused on the importance of bug
reports in the quality assurance of Android applications.

FUSION [25] assists users in automatically generating
operation steps for reproducing bug reports by dynamically
analyzing the GUI events of Android applications. With
FUSION, users can create more comprehensive and accurate
bug reports, and developers can obtain operable information
from bug reports, which can help reproduce and fix Android
application bugs. Unlike our method, FUSION focuses only
on automatically generating bug reports and cannot reproduce
application crashes based on bug reports.

In addition to generating bug reports for Android applica-
tions, YAKUSU [9] extracts abstract operation steps describing
how to reproduce bugs by combining static analysis and
natural language processing (NLP). The abstract operation
steps are used to guide the dynamic search process, which
will find a sequence of GUI operations that match the abstract
operation steps. YAKUSU aims to help developers analyze bug
reports and generate test cases based on those reports, rather
than reproducing the crashes described in the bug reports.
Therefore, the event sequences generated by YAKUSU cannot
guarantee the reproduction of the crashes described in the
bug reports and still require manual inspection by developers.
In contrast, our work automatically reproduces the crashes
described in the bug reports.

Along with directly using bug reports, improving the quality
of bug reports is also important. Chaparro et al. [35] developed
three versions of DEMIBUD based on regular expressions,
heuristics, NLP, and machine learning (ML) to detect missing
information in bug reports. DEMIBUD can remind submitters
to fill in missing content when writing bug reports and help
developers evaluate the quality of bug reports. In addition,

DEMIBUD can be used to expand existing bug report quality
models. Unlike CrPDroid, DEMIBUD aims to improve the
quality of bug reports and cannot reproduce crashes using bug
reports.

ReCDroid [8], ReproBot [10], and ScopeDroid [11] are sim-
ilar to CrPDroid, which focused on reproduce crashes in bug
reports. ReCDroid [8] reproduces crashes in two stages: 1) bug
report analysis and 2) dynamic exploration. In the bug report
analysis stage, ReCDroid uses NLP techniques to extract GUI
event representations for each step from the bug report. In the
dynamic exploration stage, ReCDroid explores the application
under test based on the GUI event representations obtained in
the previous stage. During exploration, ReCDroid builds and
maintains a DOET, searches for and fills in missing steps in
the bug report, and finally outputs the event sequence to a
script.

ReproBot [10] conducts crash reproduction in two phases. In
the first phase, it analyzed natural language sentences describ-
ing crash reproduction steps to extract information about the
widgets to be operated. In the second stage, ReproBot explored
the application by operating widgets based on the extracted
widget information. During the exploration, Q-learning was
used by ReproBot to find the missing steps required for the
crash reproduction.

ScopeDroid [11] reproduced crashes in three phases. First,
ScopeDroid used an automated testing tool to explore the
application under test and constructed its initial state transition
graph. Then it designed a multimodal neural matching network
to derive the fuzzy matching matrix between all candidate
GUI events and reproducing steps. Finally, ScopeDroid planed
the crash reproduction path with the initial state transition
graph and the fuzzy matching matrix to guide the exploration
accordingly. The path guided the exploration, and the state
transition graph was updated during the exploration.

VI. CONCLUSION

In this article, we present CrPDroid, a fast crash repro-
duction method for Android applications based on widget
hierarchy graphs. By automatically analyzing the project file of
the application under test, CrPDroid creates a widget hierarchy
graph, which is used in combination with the bug report to
generate test scripts for reproducing crashes. The experimental
results show that CrPDroid is able to reproduce the crashes
described in the bug reports and outperforms PUMA, APE,
and ReCDroid in terms of time costs.

In the future, we intend to use information retrieval-based
bug localization techniques to automatically find suspicious
widgets and further improve the efficiency of CrPDroid in
reproducing crashes.

REFERENCES

[1] L. Chettri and R. Bera, “A comprehensive survey on Internet of Things
(IoT) toward 5G wireless systems,” IEEE Internet Things J., vol. 7,
no. 1, pp. 16–32, Jan. 2020.

[2] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, “EveDroid: Event-
aware android malware detection against model degrading for IoT
devices,” IEEE Internet Things J., vol. 6, no. 4, pp. 6668–6680,
Aug. 2019.

[3] J. Wang et al., “IoT-praetor: Undesired behaviors detection for IoT
devices,” IEEE Internet Things J., vol. 8, no. 2, pp. 927–940, Jan. 2021.

13230 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

[4] “Number of available applications in the Google play store from
december 2009 to march 2023.” Statista. 2023. [Online]. Available:
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store

[5] “88% of people will abandon an app because of bugs.” Applause. 2017.
[Online]. Available: https://www.applause.com/blog/app-abandonment-
bug-testing

[6] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in Proc. IEEE Int. Conf. Softw. Test., Verif.
Valid. (ICST)2016, pp. 33–44.

[7] “UI/application exerciser monkey,” Android.com. 2021. [Online].
Available: https://developer.android.com/studio/test/monkey

[8] Y. Zhao et al., “ReCDroid: Automatically reproducing android appli-
cation crashes from bug reports,” in Proc. IEEE/ACM Int. Conf. Softw.
Eng. (ICSE), 2019, pp. 128–139.

[9] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automatically
translating bug reports into test cases for mobile apps,” in Proc. ACM
SIGSOFT Int. Symp. Softw. Test. Anal., 2018, pp. 141–152.

[10] Z. Zhang, R. Winn, Y. Zhao, T. Yu, and W. G. Halfond, “Automatically
reproducing android bug reports using natural language processing and
reinforcement learning,” in Proc. ACM SIGSOFT Int. Symp. Softw. Test.
Anal., 2023, pp. 411–422.

[11] Y. Huang et al., “Context-aware bug reproduction for mobile
apps,” in Proc. IEEE/ACM Int. Conf. Softw. Eng. (ICSE), 2023,
pp. 2336–2348.

[12] G. Lin, Z. Zhang, and Z. Cui, “Widget hierarchy graph guided crash
reproduction method for android applications,” in Proc. Int. Conf. Softw.
Eng. Knowl. Eng., 2023, pp. 584–587.

[13] T. Gu et al., “Practical GUI testing of android applications via model
abstraction and refinement,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.
(ICSE), 2019, pp. 269–280.

[14] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,” in Proc. Annu. Int. Conf. Mobile Syst., Appl., Services, 2014,
pp. 204–217.

[15] P.-W. LI, Y.-Q. Jiang, F.-Y. Xue, J.-J. Huang, and C. Xu, “A robust
approach for android malware detection based on deep learning,” Acta
Electronica Sinica, vol. 48, no. 8, pp. 1502–1508, 2020.

[16] “The activity lifecycle.” Android.com. 2022. [Online]. Available: https:
//developer.android.com/guide/components/activities/activity-lifecycle

[17] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding
with bloom embeddings, convolutional neural networks and incremental
parsing,” To Appear, vol. 7, no. 1, pp. 411–420, 2017.

[18] A. Kao and S. Poteet, Natural Language Processing and Text Mining.
London, U.K.: Springer, 2007.

[19] “Word2Vec.” Github.com. 2021. [Online]. Available: https://github.com/
dav/word2vec

[20] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj, “Do stack
traces help developers fix bugs?,” in Proc. IEEE Work. Conf. Min. Softw.
Repos. (MSR 2010), 2010, pp. 118–121.

[21] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in Proc.
ACM SIGSOFT Int. Symp. Softw. Test. Anal., 2020, pp. 153–164.

[22] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?,” in Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng. (ASE), 2015, pp. 429–440.

[23] A. Sadeghi, R. Jabbarvand, and S. Malek, “paTDroid: Permission-aware
GUI testing of android,” in Proc. Joint Meet. Found. Softw. Eng., 2017,
pp. 220–232.

[24] “Open-source android apps.” Github.com. 2022. [Online]. Available:
https://github.com/pcqpcq/open-source-android-apps

[25] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Auto-completing bug reports for android
applications,” in Proc. Joint Meet. Found. Softw. Eng., 2015,
pp. 673–686.

[26] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), 2019, pp. 1070–1073.

[27] C. D. Ngo, F. Pastore, and L. Briand, “Automated, cost-effective, and
update-driven app testing,” ACM Trans. Softw. Eng. Methodol. (TOSEM),
vol. 31, no. 4, pp. 1–51, 2022.

[28] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proc. Annu. Int. Conf.
Mobile Syst., Appl., Services, 2015, pp. 89–103.

[29] B. Jiang, Y. Zhang, W. K. Chan, and Z. Zhang, “A systematic study on
factors impacting GUI traversal-based test case generation techniques
for android applications,” IEEE Trans. Rel., vol. 68, no. 3, pp. 913–926,
Sep. 2019.

[30] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proc. Joint Meet. Found. Softw. Eng., 2013,
pp. 224–234.

[31] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of android
applications,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2012,
pp. 258–261.

[32] W. Muangsiri and S. Takada, “Random GUI testing of android applica-
tion using behavioral model,” Int. J. Softw. Eng. Knowl. Eng., vol. 27,
no. 09n10, pp. 1603–1612, 2017.

[33] Y. Koroglu et al., “QBE: QLearning-based exploration of android
applications,” in Proc. IEEE Int. Conf. Softw. Test., Verif. Valid. (ICST),
2018, pp. 105–115.

[34] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep reinforce-
ment learning for black-box testing of android apps,” ACM Trans. Softw.
Eng. Methodol. (TOSEM), vol. 31, no. 4, pp. 1–29, 2022.

[35] O. Chaparro et al., “Detecting missing information in bug descrip-
tions,” in Proc. Joint Meet. Found. Softw. Eng., 2017, pp. 396–407.

Zhanqi Cui (Member, IEEE) received the B.Eng.
degree from the Software Institute, Nanjing
University, Nanjing, China, in 2005, and the Ph.D.
degree from the Department of Computer Science
and Technology, Nanjing University in 2011.

He is a Professor with the Computer School,
Beijing Information Science and Technology
University, Beijing, China. His main research
interests include intelligent software analysis and
testing technology.

Gaoyi Lin is currently pursuing the master’s degree
with the Computer School, Beijing Information
Science and Technology University, Beijing, China.

His main research interests include intelligent
software analysis and testing technology.

Liwei Zheng received the B.Eng. degree and the
M.S. degree from the Department of Computer
Science, Taiyuan University of Technology, Taiyuan,
China, in 2001 and 2004, respectively, and the
Ph.D. degree from the Academy of Mathematics and
Systems Science, Chinese Academy of Sciences,
Beijing, China, in 2009.

He is an Associate Professor with the Computer
School, Beijing Information Science and Technology
University, Beijing. His main research interests
include requirement engineering and trusted
computing.

Zhihua Zhang received the B.Eng. degree in
computer and application and the M.S. degree in
computer application from Harbin University of
Science and Technology, Harbin, China, in 1993 and
1996, respectively.

She is an Associate Professor with the Computer
School, Beijing Information Science and Technology
University, Beijing, China. Her main research
interests are in software testing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

