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Luxin Zhang™, Shilian Zheng™, Kunfeng Qiu"’, Caiyi Lou, and Xiaoniu Yang

Abstract—Cognitive radio-based Internet of Things (CR-IoTs)
provide an efficient spectrum management for IoT networks with
massive wireless access and data transmission needs. As one of
the key technologies of CR-IoT, spectrum sensing is of great
research significance. Motivated by the recent boom on applica-
tions of deep learning (DL) in wireless communications networks
and IoT, several spectrum sensing methods based on DL have
emerged. However, these algorithms train the sensing models with
the extracted features of received signals and require a retraining
of sensing models when the number of sensing antennas changes.
Thus, we develop multiple-antenna spectrum sensing methods
based on convolutional neural networks (MASSnets) using the
in-phase (I) and quadrature (Q) components of the signals as
the input. The three schemes of MASSnet also provide the flex-
ibility to choose between retraining the sensing models or using
the obtained models for different sensing antenna configura-
tions. Experiment results demonstrate the superior performance
of the proposed methods over existing DL-based spectrum sens-
ing methods in terms of probability of detection especially in
very low-signal-to-noise ratio (SNR) condition. Furthermore, the
proposed methods have good generalization ability to new noise
distribution, new fading channel, different frequency offsets, and
detecting signals with a new modulation even without retraining.

Index Terms—Cognitive radio (CR), deep learning (DL),
Internet of Things (IoT), multiple antenna, spectrum sensing.

I. INTRODUCTION

HE PAST decades have witnessed an exponential growth

of Internet of Things (IoT) devices. The massive con-
nections and data transmission for IoT have taken the burden
to the wireless communication services. Hence, the demand
for spectrum resource management and transmission band-
width utilization is greater than ever before [1]. The cognitive
radio-based IoT (CR-IoT) is expected to become an effec-
tive way to address the lack of spectrum problem [2]. The
CR-I0T utilizes a two-step method to deal with the data traf-
fic for IoT [3]. Specifically, the spectrum sensing technique
is first used to judge whether there is available spectrum for
secondary users (SUs) via sensing the presence of the pri-
mary user (PU). Then CR-IoT optimizes the data transmission
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after obtaining the licensed spectrum [4]. By exploiting cog-
nitive radio (CR) to 10T, cognitive IoT devices can access
the unoccupied frequency band so that the problem of spec-
trum shortage can be effectively alleviated. The multiaccess
and high-interaction characteristics of the IoT also bring great
challenges to spectrum sensing.

Spectrum sensing for CR systems has been widely stud-
ied in [5], [6], [7], [8], and [9]. Most studies obtain spectrum
sensing results via comparing detection statistics with detec-
tion thresholds. The detection statistics are usually designed
based on the distinguishing characteristics between signals and
noise [10], [11], [12], [13]. For instance, matched filter detec-
tion (MFD) [14], cyclostationary feature detection (CFD) [15],
energy detection (ED) [16] and covariance-based detection
(CBD) [17] use various test statistics and they are typical solu-
tions which are widely used in traditional spectrum sensing
methods. These methods have their own applicable condi-
tions and coexist with advantages and disadvantages. MFD can
obtain a satisfactory detection precision in low-signal-to-noise
ratio (SNR) conditions by utilizing the correlation between
the information of the ideal primary signal and the received
signals. However, this requires having to know the perfect sig-
nal information of the PU in advance. CFD also works well
in low-SNR situations but it needs to calculate the cyclosta-
tionary features of the signals which takes a lot of computing
resources. This makes CFD insufficient in CR systems with
high-real-time requirements especially in IoT networks. As a
popular spectrum sensing method due to simple realization
without any prior knowledge of PU’s signals, ED calculates
the energy of the received signals of SU to sense the pres-
ence of the PU via comparing the energy with the detection
threshold. But the detection performance is susceptible to noise
uncertainty. Like ED, CBD also qualifies as a blind detection
technique. In most CBD methods, there is no requirement for a
prior knowledge regarding noise power. This characteristic of
CBD significantly alleviates the impact of noise power uncer-
tainty, making it a highly attractive advantage when compared
to ED. Nevertheless, it should be noted that CBD hinges on the
fundamental assumption of signal sample correlation, and its
applicability may be limited in scenarios where signal samples
are statistically independent.

To further improve the detection performance, some
researchers have also focused on applying deep learning
(DL) in spectrum sensing. Because DL has been successfully
applied to wireless communications system and IoT networks
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for dealing with image classification [18], speech recogni-
tion [19], signal detection [20], and signal classification [21]
etc. DL-based spectrum sensing methods utilize deep neural
networks (DNNs) to intelligently extract features of input data
for distinguishing the presence or absence of the PU. However,
in the realm of existing DL-based sensing methods, a major-
ity of them utilize extracted features, such as covariance or
correction matrices, derived from the received signals, as the
input for DNNs. For data-driven schemes, it is indeed possi-
ble to utilize raw signal data as input, which contains more
comprehensive information than certain extracted features. To
the best of our knowledge, in multiantenna spectrum sens-
ing, there are no existing studies that use raw in-phase (I)
and quadrature (Q) data of the signals as the input of neural
networks. To fill the gap, in this article, we explore multiple-
antenna spectrum sensing approaches based on convolutional
neural network (CNN), namely, MASSnet, using raw IQ data
as the input. We believe that the DNNs can learn more hid-
den features from raw IQ data than from the preprocessed
features. Experimental results validate that the proposed meth-
ods have better detection performance than the DL methods
based on covariance (CM-CNN) [22] or correlation matrices
(DS2MA) [23].

Given the diverse array of devices connecting to CR-IoT
networks, it is likely that different types of devices will
be equipped with varying numbers of antennas. Hence, it
is necessary to investigate spectrum sensing algorithms for
different receiving antenna configurations. In the existing lit-
eratures, spectrum sensing schemes are typically addressed for
a specific number of receiving antennas. When the number
of antennas changes, they require the retraining of sensing
models. Nevertheless, developing distinct spectrum sensing
models for each device might prove impractical in practical
implementations, considering the laborious task of obtain-
ing labeled training data and the resource-intensive training
process. A more sensible approach is to develop efficient
algorithms that facilitate the reuse of sensing models across
different devices. Thus, we devise three schemes of MASSnet,
namely, MASSnet-B, MASSnet-F, and MASSnet-A, to pro-
vide SUs of CR-IoT with the flexibility to choose between
retraining the sensing model or using the obtained model based
on their specific circumstances and requirements for CR-IoT
devices equipped with different sensing antennas. Especially,
MASSnet-B trains sensing models to with the certain number
of sensing antennas. MASSnet-F and MASSnet-A have the
capability to train spectrum sensing models that can be easily
extended for performing spectrum sensing on various CR-IoT
devices. Extensive experiments are carried out to evaluate the
performance of the proposed methods.

In summary, the main contributions of this article are as
follows.

1) We propose multiple-antenna spectrum sensing methods
that utilize the raw IQ data of the signals as the input
of CNN. CNN can learn more hidden features from raw
IQ data compared to preprocessed features like covari-
ance or correlation matrices. For online detection, the
detection threshold can be set according to the desired
false alarm probability. Experimental results confirm that
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the proposed methods outperform the feature-extraction-
aware methods in terms of detection performance.

2) We propose three schemes of MASSnet, namely,
MASSnet-B, MASSnet-F, and MASSnet-A, to cater
to different devices with various numbers of receiv-
ing antennas in CR-IoT. MASSnet-B aims to achieve
high-detection performance by training the specific CNN
detector for each devices. MASSnet-F and MASSnet-A
provide solutions that enable the reusability of obtained
sensing models across different devices. MASSnet-F is
simple to implement, as it is trained using IQ data from
a single receiving antenna and then extended to oth-
ers through feature fusion. MASSnet-A also requires
training only once and can effortlessly adapt to any
number of antennas. It achieves improved detection
performance by using an adaptive feature extraction
module that explores the correlation among different
sensing antennas.

3) We conduct extensive experiments with the proposed
three schemes of MASSnet in various detection con-
ditions. For the situation of variable number of sensing
antennas, MASSnet-B can obtain an SNR gain of about
3 dB when the number of antennas is doubled and
consistently have a better detection performance than
CM-CNN and DS2MA. MASSnet-A and MASSnet-F
also get the incremental performance from the increasing
number of antennas without retraining and MASSnet-A
outperforms CM-CNN method even though CM-CNN
has to be retrained when the number of sensing anten-
nas is changed. Furthermore, experimental results show
that the proposed schemes of MASSnet have good
generalization ability to new noise distribution, new
fading channel, different frequency offsets, and detecting
signals with a new modulation even without retraining.

The remainder of this article is organized as follows. We

discuss the related work in Section II and describe the basic
problem of multiple-antenna spectrum sensing in Section III.
In Sections IV, V, and VI, three schemes of MASSnet are
discussed in detail. Section VII provides simulation results of
the proposed methods and Section VIII concludes this article.

II. RELATED WORK
A. Traditional Spectrum Sensing Methods

In the context of traditional spectrum sensing methods, the
construction of the test statistic emerges as the most influential
factor on detection performance and represents a key distin-
guishing factor among various methods. For instance, if we
have perfect prior knowledge regarding the PU’s signals, the
utilization of MFD can be employed to improve the detection
performance. Zhang et al. [24] studied a MFD-based spectrum
sensing and considered the scenario where the transmit power
level of the PU is not constant. Brito et al. [25] developed
general MFD to a hybrid spectrum sensing method. It adopted
double MFD and executed different schemes with a false alarm
probability of 0.5 as the boundary. If we only have access to
partial information about the PU’s signals but are aware of
the statistical properties exhibiting temporal periodicity, the
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application of CFD becomes a viable approach. Shen and
Alsusa [26] designed a CFD method which can circumvent
the computational burden associated with the 4th-order cumu-
lant. To solve the multiple lags for a fixed cycle frequency of
traditional CFD, Shen and Alsusa [27] proposed a new test
statistics jointly utilizing cycle frequencies and lags. Different
from MFD and CFD, ED obtains spectrum sensing results by
calculating the energy of the received signals without the need
for prior knowledge about the signals. Digham et al. [28] used
the energy detector based on sampling theory for the unknown
transmit signals. Further considering the probability of sig-
nal occurrence at different sampling points, Ma and Li [29]
proposed a probability-based ED method. Yang et al. [30]
considered a heterogeneous CR network and explored a nor-
malized ED method based on the principle of log-likelihood
ratio test according to the different sensing reliability of
SUs. In addition, the covariance matrix (CM) is regarded
as a versatile detection statistic that encompasses some dis-
criminative characteristics for spectrum sensing. Especially,
Zeng and Liang [17] designed the test statistic based on
the absolute value of the covariance, while Liu et al. [31]
employed the maximum eigenvalue of CM. On the other hand,
Ali et al. [32] utilized the maximum-minimum eigenvalue
approach. In order to improve the reliability of detection in
complex channel environment, multiantenna reception is used
for CR systems which can increase receiving gain and over-
come channel fading. Wang et al. [33] proposed a sensing
algorithm based on multiple high-order cumulants for the CR-
IoT with multiple sensing antennas. It can allay the adverse
effects of noise uncertainty and balance computation and
detection performance effectively. Zhang et al. [34] studied
the multiple antennas-based CR-IoT with additive Gaussian
mixture noise model. They designed a kernelized test statis-
tic by mapping the received signal matrix to high-dimensional
feature space using the nonlinear Gaussian kernel function.
Singh et al. [35] ameliorated the traditional energy detector for
cooperative spectrum sensing of multiple CR networks with
multiple receiving antennas which can obtain stable detection
results at the low-SNR conditions of less than 0 dB. In gen-
eral, these traditional methods exhibit certain constraints and
restrictions in their application.

B. DL-Based Spectrum Sensing Methods

The principal distinctions among diverse DL-based spec-
trum sensing methods primarily manifest in variations within
neural network architectures and the modalities of input data.
Liu et al. [22] proposed a spectrum sensing framework based
on CNN. It explored a data-driven test statistic via using
the CM of samples as the input of CNN. Zheng et al. [5]
developed the CNN-based detector based the power spectrum
of sensing data. Short-time Fourier transform was applied to
the signal samples and a spectrogram-aware CNN algorithm
was proposed to settle the spectrum sensing problem in [36].
Soni et al. [37] considered the spectrum data as time-series
data and exploited a detection architecture based on long short-
term memory (LSTM) network which can improve the sensing
performance at low-SNR regions. Moreover, considering both
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spatial and temporal features of received signals, Xie et al. [38]
proposed a CNN-LSTM detector. It obtained the series of
energy-correlation features from the CMs via CNN which
were sent to LSTM to learn the PU activity pattern. In [39],
a graph learning-based method to capture the received signal
strengths (RSSs) of different SUs. Exploiting the property of
low rank, the matrix constructed with RSSs from SUs fits
nicely into the graph learning paradigm for a good detec-
tion performance. For the CR assisted Internet of Vehicles,
Ahmed et al. [40] developed a learning-based spectrum sens-
ing model with residual learning equipped with atrous spatial
pyramid pooling (ASPP) module. It learned different sit-
uations of PU activity in the network from spectrograms.
Besides supervised learning, Xie et al. [41] developed an
auto-encoder for spectrum sensing approach. In contrast to
the aforementioned approaches, it does not require a large
amount of labeled data for training while demonstrating detec-
tion performance comparable to supervised methods under
Gaussian and Laplace noise. In multiantenna receiving sce-
narios, DL-based methods have also gained popularity in the
spectrum sensing domain. Liu et al. [22] proposed a learning-
based multiantenna spectrum sensing architecture using the
CM of received signals as the input of CNN (CM-CNN).
Similarly, Wang et al. [42] considered a CR system where
a PU and SU are equipped with multiple receiving antennas
and proposed a spectrum sensing method based on adver-
sarial learning via extracting the high-dimensional features
of CM. They designed three coupled neural networks to
improve the adaptability of different conditions of different
SNR. Keunhong and Yusung [23] devised a deep spectrum
sensing method for multiple antennas (DS2MA) receiving, uti-
lizing the auto-correlation and cross-correlation functions of
received signals. However, among the existing methods, the
use of raw IQ data as input for DL-based multiple-antenna
spectrum sensing approaches and the exploration of deploy-
ment scenarios with varying numbers of antennas have not
been thoroughly investigated. These motivate our study here.

III. PRELIMINARY BASICS
A. Signal Model

We consider a CR-IoT network composed of one PU with
single transmitting antenna and several SUs with different
number of receiving antennas. As shown in Fig. 1, the SU
senses the presence of PU with M (M > 1) received sig-
nals. For every SU, the problem of spectrum sensing can be
formulated as a binary hypothesis test

i%o S r(n) = w(n)

(D
Hi :r(n) =h(n)s(n) + wn)

where Ho and H; denote the PU is absent and present, respec-
tively, r(n) is the received signal at the SU, s(n) is the trans-
mitted signal of the PU, h(n) is propagation channel between
PU and SU, w(n) is additive noise, n =0,1,...,N—1, N is
the number of received samples. These vectors can be detailed
as following equations at time slot n:

r(n) = [rl(n),VZ(n),...,rM(n)]T c (CMXl 2)
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Fig. 1. Signal model.

h(n) = [ (n), a(n), ..., hy(m)]" € CM*! 3)
wn) = [wi(n),wo(n), ..., WM(n)]T c CM><1 @)

where r;(n) denotes the received signal of the ith antenna,
hi(n) is the channel response between the transmitter and the
ith antenna, and w;(n) represents the noise of the ith antenna.

B. Noise Model

1) AWGN: The additive white Gaussian noise (AWGN) is
a kind of ideal noise model which is easy to analyze. Most
of existing literatures are researched on this model which is
used to approximate the actual noise in a certain frequency
band. Under AWGN, the noise is assumed to have a constant
power spectral density over the entire channel bandwidth and
the amplitude follows a Gaussian probability distribution:

@) = Lo {(w—u«)z}
P = e P

202
where 1 is the mean and o2 is the variance.

2) AGGN: However, it has been suggested that there were
several communication systems followed noise distributions
of generalized Gaussian distribution, such as underwater com-
munications system, sensor network, local spectrum sensing
application, and so on. Thus, we also consider additive
generalized Gaussian noise (AGGN) model to analyze the
performance of proposed algorithms. The probability function

w— L

of AGGN can be expressed as
P
p
L exp{ - (©6)
2yI(1/p) { ‘ 14 }

where p is the mean, y is the inverse scale parameter, p is
the shape parameter and I'(-) represents the Gamma function.

(&)

plw) =

C. Channel Model

1) Ideal Channel: We first consider the ideal condition
where the channel response is a constant. In this case, when
the noise model is AWGN, then the channel model could be
called a AWGN channel.
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2) Rayleigh Channel: In actual CR systems, the received
signals of SU usually affected by multipath fading due to
the obstacles between the PU and SU. We consider Rayleigh
fading in this article. With the Rayleigh fading channel, the
amplitude of the received signal is random and the enve-
lope follows a Rayleigh distribution. The probability density
function of Rayleigh distribution can be formulated as:

2

202

w
plw) =— eXp{ } >0 @)
o

where o2 is the variance.

IV. PROPOSED MASSNET-B

Motivated by the recent surge in data-driven schemes uti-
lizing DL in wireless communications networks and the IoT,
we develop the MASSnet as a solution to address the chal-
lenge of multiple-antenna spectrum sensing. We first introduce
the basic scheme, named MASSnet-B, which involves training
the spectrum sensing models using the raw 1Q data of received
signals as input. During the training stage, binary labeled data
indicating the presence or absence of PU are utilized as super-
vised information to train the sensing models. Then in the
sensing stage, we employ the output features of MASnet-B as
the detection statistic to complete the issue of binary hypoth-
esis test. We refer to MASSnet-B as the basic scheme, as it
still involves separate detectors for different devices in the
context of CR-IoT with varying numbers of receiving anten-
nas. It is suitable for the new members of CR-IoT that has the
sufficient training data and computing resources to train the
sensing models. It can generally achieve the satisfying detec-
tion performance due to the consistent reception configuration
between training and inference stage. For the sake of simplic-
ity in implementation, we design MASSnet-B in an ingenious
manner that necessitates modification only to the first con-
volutional layer when accommodating different numbers of
receiving antennas.

A. Net Structure of MASSnet-B

We choose CNN as the basic element for the MASSnet-B
which has been successfully exploited to solve classification
problems, such as image recognition, text classification, radio
signal identification, and so on. The PU signal detection can
be modeled as binary classification problem and CNN is one
of the perfect approaches to settle it. MASSnet-B is designed
based on artificial neural network of residual modules [43].
The residual structure can effectively extract richer features
and avoid overfitting by using shortcut connection instead of
direct connection between different layers of CNN. The fun-
damental components of MASSnet-B is shown in Table I,
where “Conv” represents the convolutional layer, the fore
“15 x 2M” is the kernel size and “/2 x 2M” is the stride
of kernel movement, “MaxPool” and “GAvgPool” mean the
maximum pool and global average pool operations, “Residual
Block” denotes the basic residual module as shown in Fig. 2,
“Dropout” denotes the dropout layer for avoiding overfitting
and “Fc x2” is the fully connection layer with 2 neurons. A
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TABLE I
STRUCTURE OF MASSNET-B

Layer Output dimensions
Input N x2M x 1
15 x 2M, Conv, /2 x 2M T x1x16
3 x 1, MaxPool, /2 x 1 I x1x16
Residual Block1(16) I x1x16
Residual Block2(32) T x1x32
Residual Block2(64) Mox1x64

Residual Block2(128) % x 1 x 128

GAvgPool 1x1x128
Dropout(0.5) 1x1x128
Fc x2 I1x1x2

3x1,conv,/1x1 3x1,conv,/2x1

shortcut

1x1,conv,/2x1

3x1,conv,/1x1 3x1,conv,/1x1

(a) (b)

Fig. 2. Structure of residual blocks. (a) Residual blockl. (b) Residual block2.

more detailed description of these modules of MASSnet is as
follows.

1) Input Layer: To ensure the integrity of the information,
we use the original IQ data of received radio signal of
every antenna at the receiver as the input of MASSnet-B.
Considering a CR system with M receiving antennas, the
observation vector can be expressed as a complex matrix with
a dimension of N x M. Without loss of generality, we extract
the I-channel and Q-channel sequence and form a matrix of
real numbers, denoted as

[ 0O) L) nv -1 ]
0:10)  0i(1) 01N — 1)
L)  h() h(N - 1)
M= | Q0 o) ON-1 |
) In(1) In(N = 1)
L Ou(0)  Ou(1) Ou(N —1) |

where x™ is the input matrix, xM ¢ RN>2ZMx1 Thyg the input
of MASSnet-B depends on the length of the received signals
and the number of receiving antennas.
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2) Convolutional Layer: The convolutional layer applies
sliding convolutional filter equipped with weight W and bias
b to the input S. The convolutional operation computes the dot
product of weight and the input by moving the filter vertically
and horizontally, and then adds the bias. Assume that the input
matrix S € R/”*XKxD s 3 3-D (3-D) tensor and we obtain the
output feature tensor Y € R/ XK <P after convolved by the
moving filter. Specifically, the process of feature mapping is
formulated as

D
Y,=> W,a®Ss+bp.peP. 9)
d=1
Note that we add padding operation with convolutional layer
to ensure the size of the output is the same as the input if
the stride equals to 1. A striding step size greater than 1 can
reduce the size of output features. Especially, we design the
stride of convolutional layer after the input layer of MASSnet-
B to 2 x2M to ensure its output size be (N/2) x 1. It is through
this method of setting the stride of the first convolutional layer
according to the number of receiving antennas to adapt to
different CR systems with minimal modification.

In order to enhance the representation and computation
capability of MASSnet-B, we apply rectified linear unit
(ReLU) as nonlinear activation function to the output of
convolutional layer, ReLLU(Y), which is expressed as

ReLU(Y) = max{0, Y}. (10)

3) Pooling Layer: The pooling layer performs down-
sampling by dividing the input into rectangular pooling regions
where the maximum or average values are computed when
max pooling layer or average pooling layer is adopted. Assume
that the pooling region is defined as Rjx, the result can be
obtained as follows after the max-pooling operation:

(1)

Vi k = max x;
/ i€R; i

where x; represents activity values of neurons in the covered
area of R; . Similarly, we have the average-pooling operation

1
Vik =1 ) X
! IR; kl Z l

iERjyk

(12)

The global average pooling performs computing a global mean
through a sufficiently large pooling region.

4) Residual Block: As shown in Fig. 2, residual blocks
improve the efficiency of information propagation in CNN via
adding shortcut connections to nonlinear convolutional layers.
The output of the residual block can be obtained by adding
the results of identity mapping (or only perform dimension up
or down) and residual mapping

) =80 +FO)

where g(-) denotes the identity mapping implemented with
some layer skips as shown in Fig. 2(a). If the F(-) contains
downsampling or upsampling operation via a stride not equal
to one, it usually performs a convolutional operation with
1 x 1 kernel size to change the dimension of feature map,
as illustrated in Fig. 2(b). This transformation of the objective

13)
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function learned by neural network from z(y) to z(y) —g(y) has
been confirmed that can obtain a better training result [43].

5) Dropout Layer: The dropout layer helps prevent the
MASSnet-B from overfitting via setting input elements to zero
with a given probability which is designed to 0.5 in this arti-
cle. Note that this operation only works in the training phase
and the output of this layer is equal to its input at inference
stage.

6) Fully Connected Layer: Since the problem of spectrum
sensing has a binary solution, we design a fully connected
layer with 2 neurons as the output of MASSnet and obtain
the classification feature corresponding to the class labels
(corresponding to hypothesis H; and Hp, respectively), i.e.,

h) = [hm] (z)]

hi3,(2) (14

where £ represents the fully connected layer and /), (z) is the
feature value of hypothesis H;, i =0, 1.

B. Training Method of MASSnet-B

We use batch normalization (BN) technique [44] between
convolutional layer and nonlinearity to speed up the training
process. The BN normalizes the activations of each channel
of mini-batch convolutional layers’ output z by subtracting the
mean p and dividing by the standard deviation o. A learn-
able offset 8 and scale factor y are used to shift normalized
parameters

Z—U
Znorm = ————
Vol +e

where ¢ is a constant for ensuring numerical stability and
avoiding division by zero.

Once the output vector of the last fully connected layer is
obtained, we use Softmax as the activation function for the
binary classification problem of spectrum sensing

y + 8 5)

eZi

E:l elc

Softmax(z;) = (16)
where z; denotes the output of the ith neuron of the fully con-
nected layer of MASSnet-B and C is the number of categories
which is designed to 2 in this article.

In addition, we train the MASSnet via stochastic gradient
with momentum (SGDM) algorithm by minimizing the cross-
entropy error loss as

L(y. f5(xMi0: 05))

train’

—y " log Softmax (fz (X\hin: 05))

c
=— Z ye log Softmax (fz, (x{‘;’ain; 68))
c=1
)
O =0 —aVe LO) + O —6-1)  (18)

where fp(-;-) is a parameterized function with respect to
MASSnet-B, x!. e RV*2M*1 j5 one of the training sam-
ples, Op is the learnable parameters of MASSnet-B containing
weights and biases, y is the label of x{‘r’[ain which is usu-
ally represented as a one-hot vector, « denotes the learning

rate, | means the index of updating iteration, V represents
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Algorithm 1: Training Process for MASSnet-B

Input : Training dataset Dy = {x%m, Yirain}> learning
rate «, step-size hyper-parameter ¢, max number
of training epochs Z;
Output: Trained MASSnet-B model f5(6p);
1 Create a MASSnet-B model with random initial

parameter;

2fori=11t 7 do

3 for the whole dataset Dyyyin, do

4 Randomly choose a bath samples from D4y,
without repetition;

5 Obtain the output of MASSnet-B model and
calculate classification loss according to (17);

6 Update parameters of the MASSnet-B model
fB(6p) according to (18).

7 end

8 end

the gradient operation and ¢ is a step-size hyperparameter
which determines the contribution of previous gradient step
to the current iteration. The detailed training algorithm for
MASSnet-B is shown in Algorithm 1.

C. Spectrum Sensing With MASSnet-B

After the training stage of MASSnet-B, we use the trained
model to sense the existence of PU with the unlabeled data.
The test samples are sent to the trained model with the same
form of training data and we can obtain the feature vector as
follows:

f(l: 0) = [f’*'”l (g QB)} (19)

T, (Xiests O8)
where xM e RNV*2Mx1 j5 one of the test samples and
fB(-; Op) the parameterized function with respect to the trained
MASSnet-B model with parameters . We further achieve
the detection results based on the output features. Generally
speaking, when the PU signal is present, fg7(, (xM; Op) tends
to be large and Softmax(me](X{‘gst; 0p)) will approach 1.
When the PU is absent, fg3, (xIy; 05) tends to be small
and Softmax(fgml(x{‘gst; 0p)) will approach 0. So we can
use fpp, (XM 0p) as the detection statistic and adopt the
following detection rule:

Ho : faH, (x{‘gsl; GB) < AB
Hi o fem, (ngst; 93) > Ap

where Ap is the detection threshold.

As for the binary hypothesis testing problem, the probabil-
ity of false alarm (Py) and the probability of detection (P)
are generally used to evaluate the performance of spectrum
sensing methods. Py represents the probability that SU detects
the existence of PU (hypothesis ;) when the PU is absent
(hypothesis ), denoted as

Py = P(H1|Ho).

(20)

21

P, represents the probability that SU can correctly judge the
existence of PU (hypothesis 1) when the PU is really present
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Algorithm 2: Spectrum Sensing Process for MASSnet-B

Input : Testing dataset Dy.5; = {X%IS[}, pure noise
samples, trained MASSnet-B model f5(6p), the
probability of false alarm Py;

Output: Spectrum sensing results;

1 Obtain the noise feature vectors of trained MASSnet-B

model based on pure noise samples according to (19);

2 Compute the detection threshold based on noise feature

vectors and Py [22];

3 for the whole dataset Dy.5r do

4 Randomly choose a bath samples from Dy, ; without
repetition;

5 Obtain the output features of bath data based on
MASSnet-B model according to (19);

6 Compare the output features with the detection
threshold to obtain the spectrum sensing results
according to (20).

7 end

(hypothesis H1), denoted as

Pq = P(Hi|H1). (22)
Once the probability of false alarm Py is set, the detection
threshold Ap is determined. We can set the threshold according
to the desired probability of false alarm Py [22]. We provide
the pseudo-code of spectrum sensing process for MASSnet-B
in Algorithm 2.

V. PROPOSED MASSNET-F

While proposed MASSnet-B can be directly adapted to dif-
ferent devices in CR-IoT with a same number of sensing
antennas, it requires retraining of sensing models when the
number of sensing antennas changes. Without loss of gener-
ality, massive connections lead IoT networks to be composed
of different devices with varying numbers of receiving anten-
nas. Since obtaining labeled training data is laborious and the
training process demands a substantial amount of computa-
tional resources and execution time, it may be impractical
to train separate spectrum sensing models for each device
in practical implementations. A more sensible approach is to
develop efficient algorithm that facilitate the reuse of sensing
models across different devices. Taking into account the ease
of implementing a single-antenna spectrum sensing model,
we devise MASSnet-F which can extend the capability of
single-antenna model to accommodate an arbitrary number
of antennas through feature fusion from the received sig-
nals across diverse antennas. To be more specific, MASSnet-F
only needs to be trained once with labeled 1Q data of sig-
nals acquired by a single antenna. During the sensing stage,
we input the 1Q data from different receiving antennas sepa-
rately into the trained model and calculate the average of the
obtained feature matrices as the test statistic. Based on this
statistic, we compute the detection threshold and ultimately
complete spectrum sensing.
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A. Net Structure and Training of MASSnet-F

The net structure of MASSnet-F can be considered as a
special case of MASSnet-B with a single receiving antenna.
Specifically, we build the MASSnet-F model according to
Table I via setting M to 1. Hence, the input layer dimen-
sion is N x 2 x 1 and the kernel size of first convolutional
layer is 15 x 2 where its stride equals 2 x 2. The input matrix
x! € RV*2x1 can be represented as

1_[1(0) 1(1) I(N—l)]
Q) Q1) ON-—-1) |

We collect signal samples of the CR system composed
of only one antenna as the training data set. As men-
tioned in Section IV, we minimize the cross entropy between
the true labels and predicted results of MASSnet-F model
Ly, fF(Xllrain; 0r)) and update its parameters 6 via SGDM
technique until the training process is converged.

(23)

B. Spectrum Sensing With MASSnet-F

While the MASSnet-F model is trained with a single-
antenna scenario, it can be used for multiantenna CR systems
to sense the presence of PU signals. Considering a SU
equipped with M receiving antennas, the assembled observa-
tion vector can be expressed as

_ A
LO) L) LN - 1) Xiew
0100 o1 (D) O1N-1
LO) k() LN — 1) Xiom
M| 00 0 QN -1 |
In©)  Iy(1) Iy(N —1)
| 00 Ou(D) OuN -1y | | 5
24
In this way, x, e RV*2Mxl can be devided into M
groups of input data xﬁg';{ e RV>2x1 py — 1,2, ..., M. These

M matrices will be fed into the trained MASSnet-F model
separately to obtain the classification feature vectors as

Tr, (ng: 9F)

) , m=1,2,...
fFl?—lo (Xtest; GF)

fF(Xt(gg;QF) = ,M.

(25)

Then we merge the M feature vectors and calculate their
mean as the detection statistics. The detection rule can be
represented as

1 M

HO : M Zm:lfFW'[l (Xt(ggy 9F> < )‘-F
M

Hi: gp Dt frio (ngg QF) > Ap

where Ar is the detection threshold which can be set according
to the desired probability of false alarm P;. Compared with
MASSnet-B, MASSnet-F only needs to obtain the classifica-
tion feature of each antenna and fuse the features instead of
retraining the models to adapt to CR systems with different
number of receiving antennas. The spectrum sensing algorithm
for MASSnet-F can be seen in Algorithm 3.

(26)
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Algorithm 3: Spectrum Sensing Process for MASSnet-F

Input : Testing dataset Dy.5; = {X%IS[}, pure noise
samples, trained MASSnet-F model fr(6F), the
probability of false alarm Py;

Output: Spectrum sensing results;

1 Obtain M feature vectors of trained MASSnet-F model

based on pure noise samples according to (25);

2 Merge M feature vectors and calculate the mean as the
ultimate noise feature vector;
3 Compute the detection threshold based on noise feature

vector and Py [22];

4 for the whole dataset Dp5r do

5 Randomly choose a bath samples from D5, without
repetition;

6 Obtain M output features for every sample of bath
data based on MASSnet-F model according to (25);
7 Obtain detection statistics by calculating the mean of
M feature vectors and compare it with the detection
threshold to obtain the spectrum sensing results
according to (26).

8 end

VI. PROPOSED MASSNET-A

MASSnet-F, with its easily implementable characteristics,
allows for effortless reusability of the spectrum sensing model
across different devices by the feature fusion technique.
However, obtaining separate feature matrices tends to over-
look the correlation between different receiving antennas and
the detection performance is suboptimal in this sense. In this
section, we propose MASSnet-A method which needs to be
trained only once and can be adaptive to arbitrary number
of antennas by taking into account the correlation among
signals of different receiving antennas to improve the detec-
tion performance. Without loss of generality, a multiantenna
receiving SU with a small number of receiving antennas is
easier to implement and, in this scenario, allows for more
cost-effective and efficient training of the sensing models. We
devise MASSnet-A to train the sensing model using the raw
IQ data of more than 2 receiving antennas. During the sensing
stage, we can effortlessly adapt MASSnet-A for deployment in
other IoT devices with varying numbers of receiving antennas
by making minor modifications and recalculating the detection
thresholds. Because we design an adaptive feature extraction
module to capture the interantenna information, incorporating
a variable, parameter-free pooling layer to preserve the fixed
dimension of output feature matrices when handling different
IQ data from various CR-IoT devices with various numbers
of receiving antennas.

A. Net Structure and Training of MASSnet-A

Based on MASSnet-B, we add a front module used to
extract the features of different antennas and limit the output
feature size for forward propagation at the following layers.
The front module includes a convolutional layer and an aver-
age pooling layer. As shown in Table II, we set the kernel size
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TABLE II
STRUCTURE OF MASSNET-A

Layer Output dimensions
Input N x2M x 1

31 x 4, Conv, /1 x 2 N x (M —-1)x16
7x (M —1), AvgPool, /1 x (M — 1) N x1x16
15 x 1, Conv, /2 x 1 T x1x16
3 x 1, MaxPool, /2 x 1 T x1x16
Residual Block1(16) % x1x16
Residual Block2(32) % X 1x 32
Residual Block2(64) &x1x64

Residual Block2(128) &x1x128

GAvgPool 1x1x128
Dropout(0.5) 1x1x128
Fc x2 I1x1x2

of first convolutional layer to 31 x 4 in order to learn the cor-
relation between adjacent 2 antennas. A stride of 1 x 2 is used
to ensure that the covered region of convolution occupies 1Q
signals of exactly 2 antennas. To make the MASSnet-A work
for CR systems with arbitrary number of antennas, we design
an average pooling layer with kernel size of 7 x (M — 1) and
stride of 1 x (M — 1) after the first convolutional layer. Once
performing down-sampling of this layer, a feature map of size
N x 1 x 16 will be obtained no matter what the value of M is.
Note that the BN and ReL.U operations are also placed between
the convolutional layer and the pooling layer. Then we adjust
the next convolutional layer’s kernel size to 15 x 1 and stride
to 2 x 1. The subsequent layers has the same structure as
MASSnet-B.

We note that in training MASSnet-B, the same number
of receiving antennas is used to acquire the training sam-
ples and the testing samples. In training MASSnet-F, only a
single antenna is needed to acquire the signals to construct
the training samples. Different from these two methods, in
training MASSnet-A, the configuration of the required num-
ber of antennas is more flexible. Generally speaking, we
can use M; > 2 antennas to construct the training sam-
ples of MASSnet-A. As mentioned earlier, we minimize the
cross entropy between the true labels and predicted results of
MASSnet-A model L(y, fa (xi‘r/[;in; 64)) and update its param-
eters 64 via SGDM technique until the training process is
converged. The detailed training method can be performed
with reference to MASSnet-B, which will not be repeated here
for simplicity.

B. Spectrum Sensing With MASSnet-A

With a front module of convertible parameters, MASSnet-
A can be adopted to new CR systems in the inference stage
which are equipped with different number of sensing antennas
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Algorithm 4: Spectrum Sensing Process for MASSnet-A

Input : Testing dataset Dy.5; = {X%IS[}, pure noise
samples, trained MASSnet-A model f4(64), the
number of antennas in training dataset My, the
probability of false alarm Py;

Output: Spectrum sensing results;

1 if M # M, then
2 Modify the kernel size of the average pooling layer
in the front module of MASSnet-A model to
TxM—1);
3 end
4 Obtain the noise feature vectors of trained MASSnet-A
model based on pure noise samples according to (27);
5 Compute the detection threshold based on noise feature
vectors and Py [22];
6 for the whole dataset D;.5 do
7 Randomly choose a bath samples from D;,g; without
repetition;
8 Obtain the output features of bath data based on
MASSnet-A model according to (27);
9 Compare the output features with the detection
threshold to obtain the spectrum sensing results
according to (28).

10 end

as offline training stage. The detailed spectrum sensing process
is shown in Algorithm 4. In online detection stage, we first
verify if the number of receiving antennas for the data to be
sensed corresponds to the configuration of training data set.
If they do not align, it is necessary to adjust the parameters
of MASSnet-A according to the current number of antennas.
After that, we obtain the sensing data x//, which is represented
as the observation matrix in (8). With the trained model, the
feature vector can be obtained as

farr (Xlases 0a) }
Sarro (Xteses 64)

Similarly, we can use fy#, (xM; 64) as the detection statis-
tic and adopt the following decision rule:

Ho : fan, (Xiese 04) < Aa
Hi = fa, (Xtess 04) = 2a

where )4 is the detection threshold which can be set according
to the desired probability of false alarm Py. It can be seen that
with MASSnet-A, the inference only needs to be carried out
once for each testing sample, which can save computational
complexity compared with MASSnet-F.

fa(xMs 04) = [ Q27)

(28)

VII. PERFORMANCE EVALUATION
A. Parameter Settings

We generate the simulation data for evaluating the
performance of our proposed MASSnets. QPSK with the initial
phase of 7 /4 is chosen as the modulation type of the PU as the
basic setting. 16QAM is also used to test the performance of
the methods in the adaptation to new modulations. We apply
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TABLE III
TRAINING OPTIONS

Parameters Values
Optimizer SGDM
Max Number of Epochs 45
Mini-Batch Size 64
Initial Learning Rate 0.01
Learning Rate Drop Period 7
Learning Rate Drop Factor 0.2

the raised cosine FIR pulse-shaping filter to the modulated
signals with an oversampling factor of 8. Each signal (under
H1) contains 1024 symbols which means that the length of
each signal is 8192. The arrival time offset of every receiving
antenna is randomly chosen in the range of —5 to 45 samples.
The SNR ranges from —50 dB to —5 dB with an interval of
1 dB. There are 500 samples at each SNR for training and
250 samples at each SNR for testing. Without loss of gener-
ality, the same amount of noise data (under H) is generated.
All of the following experiments are accomplished on dell
laptop with Intel(R) Core(TM) i9-9900K CPU @ 3.6 GHz
and NVIDIA GeForce RTX 2080 GPU. The hyperparame-
ter setting in training the MASSnets is shown in Table III.
Note that for MASSnet-B, the model needs to be retrained
for each number of receiving antennas, while for MASSnet-F
and MASSnet-A, the model is trained only once. Specifically,
MASSnet-F is trained with a single antenna and MASSnet-A
is trained with the configuration of 4 receiving antennas.

B. Comparison Methods

In order to evaluate the effectiveness of our proposed
algorithms, we compare the detection performance of
three schemes of MASSnet with two existing DL-based
multiantenna spectrum sensing methods. Note that both com-
parison methods have not consider the reuse of sensing models
across different CR-IoT devices. When the number of sensing
antennas changes, they require executing the entire training
operation to obtain the new sensing models. In other words,
the training and inference stages remain consistent when using
the two methods.

1) CM-CNN: CM-CNN is a popular spectrum sensing
framework based on CNN, which has been confirmed to out-
perform the conventional methods [22]. It also formulates the
binary hypothesis test as a binary classification problem and
trains the CNN detector using labeled data of the PU is absent
or present. Utilizing the powerful ability of CNN in extracting
features of matrix-shaped data, CM-CNN calculates the CM
of received signal as the input of detector

N—-1

1
Re(N) = = ) _rmr’ ()

n=0

(29)

where R, (N) is the CM of N observation vectors with a dimen-
sion of M x M. Then the real and imaginary parts of complex
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Fig. 3. Detection performance versus SNR of different methods under various probabilities of false alarm: M = 4. (a) Py =0.001. (b) Pr = 0.01. (c) Py =0.1.

matrix Ry (N) are further expanded to form the input matrices
of dimension M x M x 2 for the CNN.

Once obtained the well-trained detector, CM-CNN can
determine the detection threshold according the output of CNN
and the probability of false alarm. Finally, spectrum sensing
is accomplished based on the detection threshold.

2) DS2MA: DS2MA is a newly proposed method designed
to tackle the issue of multiple antennas spectrum sensing
with DL [23]. It merges the auto-correlation and cross-
correlation of received signals as the input matrices for
CNN-based detector. The auto-correlation function matrix can
be expressed as

N—1
e = Y r0r = 1) (30)
n=0
where 1 = 0,1,2,...,L—-1,i=0,1,2,....M — 1, rf(n)
is the conjugate of rj(n), L is the symbol duration, M is
the number of antennas and ¢; ; is the element of the auto-
correlation matrix. The cross-correlation function matrix can
be expressed as

N—1

1 Z ri(mri(n — 1)

wc,r =
N n=0

€29

where V. ; is the element of the cross-correlation matrix, i’ =
0,1,2,...,M —1,i# 7, cis an index representing different
cross-correlations and ¢ =0,1,2, ..., Cjz‘,,.

The input of detector comprises a combination of the auto-
correlation matrix and the cross-correlation matrix, possessing
a dimension of (M + CI%,,) x L x 2. The detector is also
trained through supervised learning with binary labels and pro-
duces the detection results based on a specified false alarm
probability.

C. Simulation Results

1) Performance Comparison: We first compare the detec-
tion performance of proposed three spectrum sensing algo-
rithms with the CM-CNN and DS2MA methods. For the
sake of illustration, we show the probability of detection
versus SNR ranged from —40 dB to —5 dB under dif-
ferent false alarm probability Py in Fig. 3. Without loss

of generality, both the training data set and the test data
set are generated under the simulation condition of M
4 receiving antennas. Simulation results demonstrate that
the detection performance of the proposed MASSnet-B and
MASSnet-A is superior to that of CM-CNN and DS2MA
detection methods under various Py, owing to the richer
information obtained from IQ data compared to the spatial-
temporal correlation of the received signals. Even in cases
where single antenna fusion is employed, MASSnet-F shows
superior detection performance compared to CM-CNN and
achieves similar results to DS2MA when the SNR exceeds
—20dB. In the scenario of same number of antennas at
training and inference stage, the performance of MASSnet-
A is close to that of MASSnet-B and better than that of
MASSnet-F. Among the three proposed methods, in terms
of probability of detection, the worst performed MASSnet-
F still has performance gain than CM-CNN. For instance,
when SNR —18dB, MASSnet-F can achieve a prob-
ability of detection close to 100% with a probability of
false alarm of 0.01 while the DS2MA has the compara-
ble results and the CM-CNN has a probability of detec-
tion of nearly 68% with the same probability of false
alarm.

2) Adaptation to Different Number of Antennas: We now
evaluate the performance of CM-CNN, DS2MA and proposed
MASSnets with different number of receiving antennas. The
false alarm probability is kept 0.01 in these experiments.
Results are shown in Fig. 4. Note that MASSnet-B, CM-
CNN and DS2MA need to be retrained for different number
of antennas while MASSnet-A and MASSnet-F only recalcu-
late the detection thresholds. MASSnet-A was trained under
the case of 4-antenna reception and evaluated in other scenar-
ios of different amount of receiving antennas. It is obvious
that all the detection algorithms can obtain performance gain
with the increase of amount of receiving antennas. As shown
in Fig. 4(a), in the case that the receiving antennas are not
too many, MASSnet-A can achieve very close performance
to MASSnet-B where there is an SNR gain of about 3 dB
when the number of antennas is doubled. As the number
of antennas increases, the performance of MASSnet-A and
MASSnet-B consistently outperform CM-CNN and DS2MA.
Specifically, in the case of 8 receiving antennas, they can



ZHANG et al.: MASSnet: DEEP-LEARNING-BASED MULTIPLE-ANTENNA SPECTRUM SENSING

CM-CNN, M=4

0.9 F CM-CNN, M=8 ,
CM-CNN, M=16
0.8 L | DS2MA, M=4 |

- -3 - DS2MA, M=8
——DS2MA, M=16

@ MASSnet-F, M=4
--© - MASSnet-F, M=8
—©&— MASSnet-F, M=16
““““““ g MASSnet-A, M=4
- -%x - MASSnet-A, M=8
— & MASSnet-A, M=16

3 MASSnet-B, M=4
- -EF - MASSnet-B, M=8
—5— MASSnet-B, M=16

o
3
T

o
(o)
T

=]
o
T

o
~
T

Probability of detection
o
w

o
o

o
e

O

-30 -25 -20 -15
SNR(dB)

(a)

09 r
08
=
R=t
5 07r
(]
k3]
< o6t
3
0.5
e
=R ,
3 —%— MASSnet-F, AWGN
3 —O— MASSnet-A, AWGN
< 03 —%— MASSnet-B, AWGN
Q:‘ [ MASSnet-F, Rayleigh

----- A MASSnet-A, Rayleigh

> MASSnet-B, Rayleigh
- - 4— - MASSnet-F, Rayleigh-Train
- -¥c - MASSnet-A, Rayleigh-Train
- - =~ - MASSnet-B, Rayleigh-Train

0.2

0.1

50 45 -40

-35 -30 -25 -20

SNR(dB)

-15 -10 -5

Fig. 5. Detection performance versus SNR of proposed MASSnet under new
channel model: Pf =0.01, M =32.

surpass the CM-CNN with 16 receiving antennas. As for
MASSnet-F, although it can be extended from only single-
antenna scenario to arbitrary number of antennas without
retraining, it obtains the least gain from the increasing number
of antennas. While the detection performance of MASSnet-
F is not as good as DS2MA, it still surpasses CM-CNN.
When the number of antennas is 16, the detection results
acquired by MASSnet-F are close to those of CM-CNN which
needs to be retrained. When the scale of antenna further
expanded, MASSnet-B still achieves about 3 dB gain from
antenna doubling as shown in Fig. 4(b). MASSnet-A does
not perform as well as MASSnet-B, but performs signifi-
cantly better than CM-CNN. For instance, the performance
of MASSnet-A with 32 antennas is similar as that of CM-
CNN with 64 antenna and the performance of MASSnet-B
with 32 antennas is similar as that of CM-CNN with 128
antennas. We should note that both DS2MA and MASSnet-B
involve retraining the sensing model for specific number of
receiving antennas, but the proposed MASSnet-B achieves a
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higher detection probability than DS2MA in low-SNR situa-
tions. These results validate the superiority of our proposed
methods.

3) Performance Under Rayleigh Channel: The above
experiments show the advantages of our proposed three
schemes of MASSnet which are based on the assumption
that the propagation channel is AWGN channel. To vali-
date the generalizability of MASSnet, we study the detection
performance under different wireless communication channels.
Considering the mobility of IoT devices, we show the simu-
lation results under Rayleigh fading channel in Fig. 5. We
assume the Rayleigh fading is frequency-flat and the maximum
Doppler shift is set to 30 Hz [45]. Note that “Rayleigh-
Train” means we train the MASSnet models based on the
simulation samples under the corresponding Rayleigh chan-
nel and “Rayleigh” means we perform spectrum sensing for
Rayleigh fading channel using the trained AWGN-based mod-
els. Furthermore, the retraining operations of MASSnet-F
and MASSnet-A are only performed on the basic models.
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Specifically, for MASSnet-F we only train the models once
with the Rayleigh-based samples of single-antenna condition.
For MASSnet-A, we train the model only once using 4-antenna
data set in Rayleigh channel. Fig. 5 demonstrates the good
adaptability of MASSnet-F and MASSnet-A under Rayleigh
fading channel whether executing retraining or not. Though
AWGN-trained MASSnet-B model has a greater loss than
other schemes of MASSnet under Rayleigh fading channel,
MASSnet-B can obtain more noticeable performance incre-
ment with retraining of the data under the channel to be sensed.
Under low SNR, it achieves a better performance than the
other schemes. Overall, the proposed MASSnets have satis-
factory performance under different channel models. While
the training data of Rayleigh channel is available, they can
achieve a detection probability over 90% with a false alarm
probability of 0.01 at SNR = —21.5 dB.

4) Performance Under AGGN: Most traditional spectrum
sensing methods consider the condition of AWGN, but the
actual CR systems may not necessarily conform to the ideal
characteristics of AWGN. Thus, we evaluate the MASSnets
under other noise model. Fig. 6 shows the probability of
detection of MASSnets with AGGN. For AGGN, the arbi-
trary location parameter is 0, the inverse scale parameter
is 1 and the shape parameter is 1.5. As shown in Fig. 6,
MASSnets adapt to AGGN well with or without retraining.
The detection performance is similar under following three
cases: 1) detecting under AWGN with trained AWGN-based
models (denoted as “AWGN”); 2) detecting under AGGN with
trained AWGN-based models (denoted as “AGGN”); and 3)
detecting under AGGN with trained AGGN-models (denoted
as “AGGN-Train”). It should be noted that the detection
threshold should be redefined under AGGN with the trained
AWGN-based models.

5) Effect of Frequency Deviation on Detection
Performance: In the actual CR system, the signal received
by the SU tends to has a frequency deviation due to oscillator
mismatch or Doppler shift between the transmitter and
receiver. This is an important factor affecting the performance
of spectrum sensing algorithms. We study the detection
performance of MASSnets under different carrier frequency
deviations. As shown in Fig. 7, when the normalized carrier
offset Af (relative to the symbol rate) is set to 0.01, the
performance of MASSnets is almost the same as the condition

SNR(dB)
(b) (©)

Detection performance of proposed MASSnets under various frequency offsets Af: M = 32, Py = 0.01. (a) Af = 0.01. (b) Af =0.1. (c) Af =0.2.
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Fig. 8. Performance of detecting new signals: Py = 0.01, M = 32.

without frequency deviation. If the Af increases to 0.1, the
probability of detection has a slight decrease and the degree
of decline is similar for the three schemes of MASSnets.
Fig. 7(c) further shows that an increased frequency deviation
causes a greater performance degradation. In conclusion,
MASSnets have some robustness against frequency deviation
although the training data set is composed of samples without
frequency deviation.

6) Adaptation to New Signals: Finally, we study the
performance of MASSnets with the new signals with untrained
modulation type. Note that all the models of proposed schemes
of MASSnets are trained with QPSK data. Without loss of gen-
erality, the signal samples of 16QAM are used to verify the
ability of MASSnets, where the probability of false alarm is
kept 0.01 and the number of receiving antennas of the CR
system is chosen 32. Simulation results are shown in Fig. 8.
It demonstrates that MASSnets can adapt to the new signals
of 16QAM modulation with almost the same performance as
the case of QPSK. This validates that the trained MASSnets
can be used to detect new signals that they have never seen
before.

VIII. CONCLUSION

In this article, we have investigated a multiple-antenna spec-
trum sensing architecture named MASSnet for CR-IoT, which
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relies on raw 1Q data of received signals. We formulate the
problem of PU signal detection as a binary hypothesis test and
trains the MASSnet as a binary classification model. We can
delimit the detection threshold flexibly according the different
false alarm probability via putting the noise data to the well-
trained model. The proposed three schemes can be adapted to
different devices with different numbers of receiving antennas
in CR-IoT. Two of them even allow for the reusability of sens-
ing models when the number of antennas changes. It is more
feasible in practical implementations. Experiment results have
shown that the MASSnet based on raw 1Q data is superior to
the covariance or correlation matrices-aware methods at low-
SNR situations. Results validate the robustness and scalability
of proposed three schemes under different conditions of differ-
ent number of sensing antennas, different signal modulations,
different wireless channel models and noise models. In our
future work, we will further explore the collaborative sens-
ing of different SUs and conduct over-the-air experiments to
verify the performance of MASSnet in real-world situations.
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