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Take an Irregular Route: Enhance the Decoder of
Time-Series Forecasting Transformer

Li Shen , Yuning Wei , Yangzhu Wang, and Huaxin Qiu

Abstract—With the development of Internet of Things (IoT)
systems, precise long-term forecasting method is requisite for
decision makers to evaluate current statuses and formulate future
policies. Currently, transformer and MLP are two paradigms
for deep time-series forecasting and the former one is more
prevailing in virtue of its exquisite attention mechanism and
encoder–decoder architecture. However, data scientists seem to be
more willing to dive into the research of encoder, leaving decoder
unconcerned. Some researchers even adopt linear projections in
lieu of the decoder to reduce the complexity. We argue that both
extracting the features of input sequence and seeking the relations
of input and prediction sequence, which are respective functions
of encoder and decoder, are of paramount significance. Motivated
from the success of FPN in CV field, we propose FPPformer
to utilize bottom-up and top-down architectures, respectively, in
encoder and decoder to build the full and rational hierarchy.
The cutting-edge patchwise attention is exploited and further
developed with the combination, whose format is also different in
encoder and decoder, of revamped elementwise attention in this
work. Extensive experiments with six state-of-the-art baselines
on twelve benchmarks verify the promising performances of
FPPformer and the importance of elaborately devising decoder in
time-series forecasting transformer. The source code is released
in https://github.com/OrigamiSL/FPPformer.

Index Terms—Deep learning, neural network, time-series fore-
casting, transformer.

I. INTRODUCTION

A. Background

THE ADVENT of Big Data era has brought immense
volume and variety of data in the 21st century, espe-

cially in Internet of Things (IoT) systems with tons of
sensors [1]. Consequently, it necessitates long-term time-
series forecasting methods with demanding accuracy and
efficiency to assist decision makers and engineers in the
appraisal of sensor statuses and future plans. Since tradi-
tional forecasting methods based on statistics [2], [3] are
no longer sufficient for such sophisticated situations, more
and more data scientists pay their attention to deep time-
series forecasting [4]. After decades of development and
competition, time-series forecasting MLP (TSFM) [5], [6], [7]
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and time-series forecasting transformer (TSFT) [8], [9], [10],
[11] become the mainstream.

B. Problems

TSFM and TSFT have different pros and cons. TSFM
is known for its parsimonious but efficient architecture so
that forecasting models based on TSFM excel in resisting
nonstationarity brought by distribution shifts [12] and concept
drifts [13]. Conversely, forecasting models based on TSFT
own more complicated architecture and better capability of
capturing long-term dependencies of time-series at the expense
of being more vulnerable to over-fitting problem caused by
nonstationarity [5]. Fortunately, pioneers have striven to get
around plenty of problems of TSFT. Direct forecasting strat-
egy [14] reduces the time complexity and alleviates the error
accumulation problem [15]. RevIN [12] solves the problem of
distribution shifts among windows with distinct time spans.
The channel-independent [16] forecasting method renders
TSFT refraining from extracting vague inter-relationships of
different variables. Patchwise attention mechanism [10], [16]
further attenuates the space complexity and brings the capabil-
ity of local feature extraction to TSFT. Indeed, recent works
have proven that TSFT models [9], [17] can also be stable
and robust in forecasting. Evidently, the majority of these
enhancement focus on improving the encoder architecture and
tackling input sequence features. It cannot be denied that they
are very important, but not solely. The connections of input
and prediction sequences, manifested by decoder in TSFT, are
also of paramount significance, especially for pursuing precise
forecasting in IoT. However, its significance is frequently
omitted and itself is inadequately explored. Normally, the
decoder architectures of existing TSFT models are simply
duplicates of their encoder architectures, barring with little
indispensable modifications, such like changing self-attentions
to cross-attentions [8], [15]. Furthermore, some researchers
have gone so far as to substitute decoder in TSFT with simple
linear projection [16], [18], which is analogous to TSFM,
for the sake of enhancing their efficiency. Now it is time to
enhance the decoder of TSFT to fully develop its potential and
push its forecasting performances to a new altitude.

C. Contributions

Different from existing TSFT models, we Fully develop the
tried-and-tested Patchwise attention mechanism and Pyramid
architecture in both encoder and decoder and thereby propose
FPPformer. Alike FPN [19] and PAN [20] architectures which
are prevalent in CV fields, FPPformer hierarchically extracts
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input sequence features from fine to coarse and constructs
prediction sequence from coarse to fine. To strengthen the
feature extraction capability of patchwise attention, we further
insert an elementwise attention block into each patchwise
attention block to extract fine-grained inner-relations of each
patch in encoder and decoder with merely linear complexity.
A channel-independent and temporal-independent embedding
method is utilized to modify the size of feature maps in
FPPformer to meet the needs of elementwise attention and
patchwise attention. Within each attention block in encoder,
the diagonal line of query-key matching matrix is masked
to ensure the generality of features extracted from input
sequences. Primary contributions of this work are fivefold.

1) We propose a novel TSFT, i.e., FPPformer, which
uncommonly and efficaciously improves the decoder
architecture of TSFT to break its fetters and excavate its
potential.

2) We renovate the decoder architecture of TSFT and
change it into top-down architecture for the sake of
rationally constructing the prediction sequence in a
hierarchical manner.

3) Motivated by a pioneer anomaly detection method, we
propose diagonal-masked (DM) self-attention to mitigate
the negative impacts of the outliers in input sequences.

4) A new combination of elementwise attention and patch-
wise attention is proposed by us to compensate the
weakness of conventional patch-attention in extracting
the inner-features of each patch, with only additional
linear complexity.

5) Extensive experiments under diverse settings validate
that FPPformer is capable of reaching state-of-the-
art on twelve benchmarks with peerless accuracy and
robustness.

II. RELATED WORKS

The past few years have witnessed the development and the
success of deep-learning-based forecasting methods. Thanks to
the help of neural network, the long-term multivariate forecast-
ing is no more a dream so that even IoT systems with plenty
of sensors and explosive data can be predicted [1], [21], [22].
Researchers have developed deep forecasting methods built
upon diverse networks and transformer is a hot topic among
corresponding literature.

A. Time-Series Forecasting Transformer

Traditionally, TSFT executes the forecasting via encoder–
decoder architecture. The transformer encoder is used to
extract the features of input sequence, then the transformer
decoder is able to construct the prediction sequence by the
extracted features of encoder and the prediction sequence,
which is initialized with a certain number since it is
unknown at the beginning. These two processes are completed
predominantly by attention mechanism, thereby researchers
always keep an eye on it. LogSparse transformer [23] and
Informer [15] discover the sparsity of query-key matching
matrix and they force the elements of query to attach to the
partial elements of key for the sake of reducing the complex-
ity. Autoformer [24], FEDformer [25] and ETSformer [26]

combine the TSFT with seasonal-trend decomposition and
signal processing method, e.g., fourier analysis, in attention
mechanism to enhance their interpretability. Patchwise atten-
tion is more popular and proven to be more useful recently.
TSFTs with patchwise attention, including Triformer [10],
Crossformer [8], and PatchTST [16], achieve more promising
performances than preceding models. However, whichever
TSFT always emphasizes that the modified architecture is
intended for more efficient or effective feature extraction
for input sequence. Hardly ever can statements involved
with the profits of decoder be found. Indeed, their decoders
seem to play the role of requisite appendages in the entire
transformer architecture. Once some parts of encoders are
changed by their proposed methods, mirrored changes are
made to their decoders. Some researches [16], [18] even
abandon the decoder to circumvent these changes. Contrary to
them, studying and figuring out the correct way of designing
decoders in TSFT is exactly what this work is supposed to do.

B. Other Miscellaneous Deep Forecasting Methods

Barring TSFT, there are plenty of other types of deep
forecasting methods. Forecasting methods based on RNN
and CNN are feasible ones. Their respective representatives
LSTNet [27] and SCINet [28] both achieved shiny perfor-
mances during their periods. However, compared with the
foregoing two types of deep forecasting methods, TSFM
relatively receives more attentions. These forecasting networks
are solely composed of linear-projection layers, whereas they
still achieve promising performances. Due to their simple
architectures, it is convenient for them to combine with statis-
tics models for the objective of improving their interpretability
and forecasting capability. NBEATS [29] and DLinear [5]
adopt seasonal-trend decomposition methods in their networks
more concisely than FEDformer [25] but achieve better results
in general. Challu et al. [7] further presented N-HiTS that
employs sampling and interpolation strategies on the basis of
NBEATS for more precise and hierarchical prediction. The
reconstruction method motivated from Legendre Polynomials
is taken into account by Zhou et al. [6] to come out with FiLM.
TSMixer proposed by Ekambaram et al. [30] considered the
temporal patterns, cross-variate information and additional
auxiliary information to render TSFM ready for more compli-
cated forecasting cases. They are challenging competitors for
TSFT and we chiefly compare FPPformer with other TSFTs
and these TSFMs in forthcoming experiments.

III. PRELIMINARY

A. Problem Statement

This work primarily concentrates on multivariate forecasting
problem. As the term suggests, a multivariate forecasting
problem is to predict a certain window {xt2 : t3}1:V with time
duration of (t3 − t2) and variable number of V with its anterior
window {xt1 : t2}1:V . Each xv

t ∈ R, where t ∈ [t1 : t3) and
v ∈ [1, V] , denotes an element at timestamp t and stemming
from variable v. There are quite a few nomenclature style to
name the dimension of t and v. In this work, the dimension of
t is termed the temporal dimension and the dimension of v is
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Fig. 1. Schematic of a vanilla TSFT with two-stage encoder (green dashed
box containing green solid boxes in the left) and two-stage decoder (orange
dashed box containing orange solid boxes in the right).

termed the variable dimension. Note that the word “channel-
independent” mentioned above refers to the independence at
the variable dimension. Moreover, we still discuss several
univariate forecasting cases where V = 1 in our experiments
since the variable treatment strategies of different forecasting
methods can be very distinctive, making multivariate forecast-
ing comparison, albeit prevailing, not persuasive enough.

B. Vanilla TSFT Architecture

The architecture of vanilla TSFT is chiefly composed of an
encoder, a decoder, and a projection layer. An example of
a vanilla TSFT with 2-stage encoder and 2-stage decoder is
sketched in Fig. 1. We can see that input sequence xin passes
through the encoder embedding layer, then the superimpo-
sition of the embedded input sequence Xin and its position
embedding Penc, which covers the input time span, is sent to
the encoder. The encoder processes Xin + Penc with M (M =
2 in Fig. 1) stages, each consisting of a self-attention block
and a feed forward layer, and the ultimate output feature map
of the encoder is Xenc. Typically, the canonical self-attention
conducts scaled dot-products with the formula of

Attn(q, k, v) = Softmax

(
qk�
√

D
v

)
(1)

where q, k, v ∈ R
L×D are the linear projections of the identical

sequence tensor, L is the number of tokens (or sequence
tensor length), and D is the hidden dimension. Readers can
refer to [31] to be familiar with attention mechanism and
feed forward layer. Correspondingly, the decoder receives
both Xenc and the zero-initialized prediction sequence 0pred.
0pred propagates through the decoder embedding layer to
obtain Xpred and its position embedding Pdec, which covers
the prediction time span, is superimposed on it. Afterward,
they are sequentially sent into N (N = 2 in Fig. 1) stages,
each consisting of a masked self-attention block, a cross-
attention block and a feed forward layer. Causality is essential

as the prediction sequence is unknown, so that the masked
self-attention, rather than normal self-attention, is utilized in
decoder. The cross-attention block is intended to construct
the prediction sequence via the encoder feature map Xenc.
Eventually, a projection layer maps the output feature map of
decoder Xdec to the prediction sequence xpred.

C. Employed Mechanisms

Barring our proposed methods, which will be introduced in
the upcoming section, we also employ several advanced time-
series forecasting mechanisms in FPPformer.

1) Direct forecasting method [14], which is widely
employed by recent deep forecasting method, performs
the prediction of the entire sequence with only one
forward process to alleviate the error accumulation.

2) Channel-independent forecasting method, which has
been mentioned in the foregoing sections, treats the
sequences of different variables as different instances.
The sequences of different variables are parallel sent into
the network without interfering with each other so that
the network can seek shared characteristics of different
variable sequences without imposing any inductive bias
to the correlations of different variables.

3) RevIN [12], which is devised for nonstationary time-
series forecasting, normalizes each input sequence with
its own statistics before sent into the network and
restores the original statistics to the prediction sequence
via the reverse instance normalization to handle the
distribution shifts of real-world long time-series.

4) Patchwise attention [16], which segments the sequence
into patches of the same length, treats each single patch,
rather than each single element, as a token in (1) and
treats the elements inside each patch or their latent
representations as the hidden features of each token
(patch) for better efficiency and generality.

Note that the majority of recent deep forecasting models [5],
[6], [7], [8], [10], [16], [28], [30], [32], including those
employed in our experiments, at least adopt two of above
mechanisms so that they are not something that distinguish
our methods from others.

IV. METHODOLOGY

A. Analysis of Decoder in TSFT

Before commencing the introduction to our proposed
FPPformer, we point out some deficiencies of current decoder
architecture in TSFT to clarify the necessity and rationality of
the decoder improvement in FPPformer.

We first discover the redundant self-attention problem in
decoder. To elaborate, we notice that the input to decoder
in Fig. 1 is a zero-initialized prediction sequence 0pred owing
to the unknown future. Consequently, the first (masked) self-
attention is performed only on the position embedding of the
prediction sequence. No matter it is fixed [15] or learnable [8],
it is completely independent of input sequence. Keep in mind
that time-series forecasting is an auto-regressive problem.
It makes no sense to perform (masked) self-attention only
on position embedding with the attempt of deducing some
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groundless relations. Moreover, position embedding is always
static after training while the input sequence can be dynamic
and nonstationary, shattering the last hope that the position
embedding can fit the statistics of time-series sequences due
to some sort of assumptions with respect to homogene-
ity [33], [34]. Start token [15] can be a solution, however short
start token is not enough for long-term forecasting and longer
start token brings about excessive complexity.

Besides, the connection of encoder and decoder is unitary,
leading to the multiscale insufficiency problem. As shown in
Fig. 1, the encoder with M stages can produce M feature
maps of input sequence, however merely the last one is sent
to decoder. This problem is more noteworthy when it comes
to some modified TSFT with hierarchical architecture in
encoder. For instance, Informer [15] employs convolution lay-
ers between every two stages in encoder and FEDformer [25]
keeps decomposing input sequences to acquire more precise
seasonal features but neither of them apply the same operations
to decoder and only the feature map of the last stage in encoder
is sent to decoder. Crossformer [8] merges adjacent segments
to obtain bigger patches in deeper stages in both encoder and
decoder. However, just as what we claim in foregoing sections,
the architecture of decoder is merely the replica of encoder
with an additional cross-attention in Crossformer. By merging
patches from small to big in decoder, Crossformer attempts
to construct the unknown prediction sequence from fine to
coarse, whose irrationality is self-evident.

B. Model Architecture

The overview of our proposed FPPformer is illustrated in
Fig. 2 and its major enhancement on vanilla TSFT concen-
trates on addressing the preceding two problems of decoder.
Comparing the schematics in Figs. 1 and 2, the differences
with respect to the overall architecture can be readily noticed.
To handle the first redundant self-attention problem in decoder,
we change the order of the self-attention and cross-attention
in decoder. Thereby, before embarking upon deducing any
relations within unknown prediction sequence, the prediction
sequence receives the auto-regressive parts from the deepest
encoder feature map, which serves as a better role for
prediction sequence initialization before the first self-attention
in decoder than simple zero-initialization with start token [15],
randomly generated parameters [8], the trend decomposition
of raw input sequence [25], and so forth. It is evident that the
latter initialization formats of other TSFTs are either relatively
simple or inefficient.

We employ the hierarchical pyramids both in encoder
and decoder with lateral connections to tackle the second
multiscale insufficiency problem. As we adopt the patchwise
attention in FPPformer, the patches are merged before sent to
the next stages in the bottom-up architecture of encoder and
opposite operations, i.e., the splitting, are performed in the
top-down architecture of decoder. The feature map of input
sequence gets deeper and more coarse-grained within later
stages, which is also the property shared by encoders of many
TSFTs. However, things get different when we attempt to
construct the prediction sequence from the position embedding

Fig. 2. Overview of FPPformer’s hierarchical architecture with two-stage
encoder and two-stage decoder. Different from the vanilla one in Fig. 1, the
encoder owns bottom-up structure while the decoder owns top-down structure.
Note that the direction of the propagation flow in decoder is opposite to that
in Fig. 1 to highlight the top-down structure. “DM” in the stages of encoder
means “diagonal masked.”

and encoder feature maps. Recall how we decompose and
reconstruct an arbitrary sequence from a certain multireso-
lution analysis {Vj}j∈Z of L2(R) and wavelet spaces {Wj}j∈Z
in wavelet theory [35], which owns a transcendent position
in signal processing. When we decompose certain sequence
fi+1(t) ∈ Vj+1, we decompose it into coarser spaces Vj and
Wj. Whereas the reconstruction is opposite, i.e., we recover
the sequence in finer space fi+2(t) ∈ Vj+2 from Vj+1 and
Wj+1. Omitting the existence of wavelet space Wj, which
contains the information of details or noises, we can find
that the encoder and decoder processes separately correspond
to the decomposition and (re)construction processes in mul-
tiresolution analysis. From another perspective, the unknown
prediction sequence is initialized with zero or other parameters
not pertaining to the ground truths at first. Thereby, when
we strive to construct it from input sequence features, it
is natural to commence with the most universal features to
ensure the exactitude of general characteristics of prediction
sequence features, then we can prudently take steps to seek
finer features of prediction sequence to avoid over-fitting. The
success of FPN [19], which also employs bottom-up and top-
down architectures, in CV fields further confirms the preceding
idea. Therefore, we keep splitting the patches in decoder and
commence the hierarchical prediction sequence constructions
with the feature maps from encoder, separately with identical
resolutions, via lateral connections. The encoder in FPPformer
presents a bottom-up architecture while the decoder presents
a top-down architecture. Differences between the hierarchical
design in Crossformer [8], whose decoder architecture is
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(a) (b)

Fig. 3. Comparison of hierarchical architecture of (a) FPPformer and (b) Crossformer. The discrepancies are highlighted with red. Obviously, the decoder
structure of Crossformer is nearly a duplicate of encoder’s bottom-up structure whereas the decoder of FPPformer owns a different “top-down” structure.

merely a replication of that encoder.1 Shabani et al. [9] also
noticed the analogous thing but they neither expound the
reasons of doing so nor they carry out any change to decoder.

C. Combined Elementwise Attention and Patchwise
Attentions

The preceding two problems are shared by the majority
of TSFTs and we would like to mention another specific
problem of TSFT with patchwise attention. We name this
type of transformer PTFST for brevity. Different from the
elementwise attention of vanilla TSFT, which seeks the cor-
relations of sequence elements, the patchwise attention seeks
the correlations of different patches or segments of sequences
to improve the efficiency and reduce the risk of over-fitting.
PatchTST [16] and Crossformer [8] are such PTSFTs and
their experiments have proven the superiority of patchwise
attention. However, they neglect the inner-relations of the
elements inside the patches or only employ simple linear
projections to mix them up. Therefore, we make different
changes in employed patchwise attention in encoder and
decoder for the sake of extracting more fine-grained features
in encoder or pursuing finer prediction sequence construction
in decoder.

As shown in the schematic of Fig. 2, a elementwise
attention block is arranged before each patchwise block in
every encoder stage to extract the inner-relationships of all
patches before seeking their inter-relationship. This element-
wise self-attention is patch-independent so that the additional
complexity is O(P2 ×L/P) = O(L×P) , which is linear with
input sequence length. P is the patch size and L is the input
sequence length in the last complexity expression. Observing
that the elementwise attention requires the preservation of
independent sequence elements information, therefore we
cannot directly map the initially segmented patches into the
latent space like other PTSFTs otherwise the elementwise
information is no longer preserved and elementwise attention
cannot be implemented. To address this issue, we adopt
a channel-independent and element-independent embedding
method. As illustrated in Fig. 4 and Table I, the input sequence
elements of different timestamps do not interfere with each
other during the embedding process and reshaping operations

1In effect, the decoder of Crossformer even does not own a pyramid
architecture. We use this statement since the hierarchical process of con-
structing the unknown prediction sequence is determined by how the model
hierarchically uses the encoder features and for the more vivid comparison
between FPPformer and Crossformer in Fig. 3.

Fig. 4. Changes in the size of a single input sequence when propagating
through the first encoder stage. The batch size and the variable dimension
are omitted. The red and blue letters in the last two sizes separately refer to
the token dimension and its latent representation dimension. The reshaping
operation is used to treat the features of all elements in a single patch as
a unity for the sake of connecting elementwise self-attention and patchwise
attention.

TABLE I
ARCHITECTURE OF THE FIRST STAGE IN ENCODER

are performed for the different needs of tensor shapes of
elementwise attention and patchwise attention.

The changes to decoder’s attention are analogous but not
completely. Since decoder itself has already owned two
attention blocks, we maintain the patchwise attention in cross-
attention block to ensure the general construction of prediction
sequence via auto-regressive process. Simultaneously, the
masked self-attention block of vanilla TSFT is transformed
to elementwise self-attention block, which is also patch-
independent, in FPPformer. Just as we mentioned in the
preceding sections, the prediction sequence is unknown so
that we need to foremost guarantee the correctness of its
general characteristics, manifested by placing patchwise atten-
tion before the elementwise attention in decoder, then we
can pursue the fine-grained features of prediction sequences
without over-fitting. As the patchwise cross-attention treats
each patch as a unity, the respect to causality within prediction
sequence, i.e., the masking to the upper triangular parts of
query-key match matrix, is superfluous in the decoder of
FPPformer.
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Fig. 5. Example of query-key matching matrices in DM elementwise self-
attention and patchwise self-attention. The total sequence length is 48 and
the sequence is divided into four patches, each with the length of 12, in
this example. The white hollow boxes denote the normal unchanged matrix
elements while the black solid boxes, i.e., the matrix elements at the diagonal,
denote the masked matrix elements.

D. Diagonal-Masked Self-Attention

It is known that outliers always occur in real-world systems,
especially for IoT systems owning immense and diverse
data. These anomalies sometimes exist in the form of small
patches [36] so that patch-attention cannot be immune to them.
Compared with smoothing with filters [6], [7], which is natural
but not flexible enough, it is better to devise mechanisms inside
the networks to circumvent the negative effects of outliers in
the latent space. Representation learning is a fair answer [16]
but needs heavy parameter tuning and not very stable. Directly
masking the input sequence [37] gives rise to another problem
analogous to the preceding position embedding problem in
decoder since the fixed parameters cannot sufficiently rep-
resent the dynamic sequence features. Enlightened by [38],
we mask the diagonal of query-key matching matrix of both
elementwise and patchwise self-attention blocks in encoder,
as sketched in Fig. 5. Thereby, any element (patch) during the
attention can merely be expressed by the values of the rest
of the elements (patches). Those elements or patches whose
characteristics confine with the general ones are scarcely
affected but the outliers are impossible to be expressed by
normal elements (patches), hence their values are restored to
approach the general level and the negative effects of them are
mitigated.

E. Projection

The prediction sequence is acquired through the summation
of the linear projections of encoder output and decoder output.
The first linear projection is supposed to represent the linear
correlations of input and prediction sequence while the second
linear projection, together with the entire decoder, is supposed
to represent the nonlinear correlations. The loss function (2)
is the summation of MSE function (3) and MAE function (4)
according to [39], [40]

Loss = MSE
(

x1:V
t2:t3 , y1:V

t2:t3

)
+ MAE

(
x1:V

t2:t3 , y1:V
t2:t3

)
(2)

MSE(x, y) = 1

n

n∑
i=1

(xi − yi)
2 (3)

TABLE II
NUMERICAL DETAILS OF EIGHT MULTIVARIATE DATA SETS

MAE(x, y) = 1

n

n∑
i=1

|xi − yi|. (4)

V. EXPERIMENTS

We attempt to answer three questions via the experiments
on FPPformer.

1) Can FPPformer outperform temporarily state-of-the-art
TSFTs and TSFMs on commonly used benchmarks with
the settings of both short input sequence length and long
input sequence length (Section V-C)?

2) Are the unique mechanisms proposed to be applied in
FPPformer literally effective or useful (Section V-D) and
what is about their parameter sensitivity (Section V-E)?

3) Why does FPPformer own better or worse performances
than other baselines? Can we figure it out via visualiza-
tion (Section V-G)?

A. Baselines and Data Sets

To unveil the empirical forecasting capability of FPPformer,
we perform multivariate forecasting experiments on eight
benchmarks involved in four types of IoT systems, including
electricity consumption (ETTh1, ETTh2, ETTm1, ETTm2 [15],
and ECL [41]), traffic flow (traffic [42]), meteorological con-
ditions (weather [43]), and solar power production (solar [44]).
Their numerical details are presented in Table II. Eight tem-
porarily state-of-the-art forecasting baselines, including four
TSFTs (Triformer [10], Crossformer [8], Scaleformer [9], and
PatchTST [16]) and two TSFMs (FiLM [6] and TSMixer [30]),
are employed to make comparison with FPPformer. It is
worth mentioning that they are all superb forecasting meth-
ods proposed in the recent two years. Especially, besides
Scaleformer, the other three of four TSFTs are PTSFTs so that
FPPformer does not have an edge on pure attention mechanism
design. Furthermore, we notice that these six forecasting
baselines own different variable treatment strategies, e.g., some
of them are channel-independent while some of them are not,
which means that multivariate forecasting results cannot fully
typify their forecasting capabilities. Therefore, we additionally
perform univariate forecasting results on M4 data set [45],
which is a competition data set qualified for univariate fore-
casting, rather than delibrately choosing a variate within the
above multivariate forecasting data sets to perform univariate
forecasting experiments like many other researches [6], [8],
[9], [10]. Its details are elaborated in Table III.
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TABLE III
NUMERICAL DETAILS OF FOUR M4 SUBDATA SETS

B. Implementation Details

We would like to present a persuasive and fair comparison
of FPPformer and other baselines, therefore we set the hyper-
parameters of FPPformer identical to the commonly used ones.
The input sequence lengths are different in different subex-
periments but are kept identical for all baselines. The number
of stages are 3 in both encoder and decoder of FPPformer,
and the size of the initial segmented patch is 6, which are
in accordance with those of Crossformer [8]. The embedding
dimension D (in Fig. 4) is 32. As for hyperparameters with
respect to the training process, FPPformer is trained via an
Adam optimizer with the learning rate of 1e-4, which decays
by half per epoch with totally ten epochs and the patience
of one. The batch size is 16 and the dropout rate is 0.1.
These are all commonly employed settings. All experiments,
which are conducted on a single NVIDIA GeForce RTX
3090 24-GB GPU, are repeated for five times with casual
seeds and the average results are presented. The source
codes are implemented by Python 3.8.8 and Pytorch 1.11.0
in https://github.com/OrigamiSL/FPPformer. Correspondingly,
the other baselines used in this work also merely employ the
fixed hyperparameters and settings, which are chosen after
referencing their default ones. As for those with multiple
choices and versions, we choose the one that owns the best
general performance. How we use the other baselines for
experiment can all be found in our provided GitHub repository.
The best results in each table are highlighted with bold and
italic and the second best are highlighted with underline and
italic, barring a special table in Section V-D.

C. Quantitative Results

We commence with the multivariate forecasting experi-
ments, whose results are shown in Tables IV and V. Under
many real-world occasions, training samples are limited so
that long input sequence length is not always available for
some deep forecasting methods needing it for satisfactory
performances. Therefore, we first measure the performances
of FPPformer and its six competitors in eight multivariate
benchmarks with input sequence length of 96, which is
ascribable to well-known Autoformer [24] in Table IV. The
prediction lengths are commonly agreed-upon {96, 192, 336,
720}. Then we evaluate the performances of the same seven
models and data sets using longer input sequence length within
{192, 384, 576}, whose results are shown in Table V. MSE (3)
and MAE (4) are utilized as the evaluation metrics. The
average results of eight benchmarks with prediction length of
720 are given in Table V to refrain from tedious data stacking.
Full results are given in our released repository provided in

Section V-B. “—” refers to the fact that certain model is out
of the memory (24GB) even batch size is set to 1.

As Tables IV and V show, FPPformer outperforms other
baselines in most of situations with both short and long input
sequence lengths. When input sequence length is set to 96,
FPPformer obtains 31.7%/60.0%/10.5%/6.4%/12.8%/14.7%
MSE reduction compared with Triformer/Crossformer/
Scaleformer/PatchTST/FiLM/TSMixer, which illustrates the
superb forecasting capability of FPPformer with the setting of
short input sequence length. Though it seems that FPPformer
fails to own a superior performance when experimenting on
Solar data set, FPPformer reconquers its leading position
with longer input length when handling the same data set
(concrete results are available at github repository provided
in Section V-B). Furthermore, if also equipped with cross-
variable attention2 like Crossformer, which means that a
cross-variable attention module proposed by Crossformer is
arranged at the end of each stage of the encoder and decoder in
FPPformer, the modified FPPformer, denoted by FPPformer-
Cross in Table VI, is capable of completely outperforming
Crossformer and itransformer [46], which is another state-of-
the-art model employing cross-variable attention, under Solar
data set.

When prolonging the input sequence length within
{192, 384, 576}, FPPformer achieves better forecasting
performances and, respectively, obtains 9.5%/12.3%/13.0%
general MSE reduction when compared with the FPPformer
with short input length in Table IV. Moreover, FPPformer
obtains 67.4%/72.3%/40.2%/3.5%/9.5%/7.5% MSE reduction
compared with Triformer/Crossformer/Scaleformer/PatchTST/
FiLM/TSMixer with longer input lengths in general. These
phenomena illustrate the superb forecasting performances of
FPPformer especially handling longer input sequence.

Then we compare the univariate forecasting capability of
FPPformer with other six baselines on M4. We omit the first
two subsets with sampling frequencies of a year and a quarter
since many of their instance lengths are too short, and only
perform experiments on the rest of four subsets. The prediction
lengths, which are regulated by [45], are {18, 13, 14, 48} for
{M4-monthly, M4-weekly, M4-daily, M4-hourly}. The input
sequence lengths for them are separately {72, 65, 84, 336}
after consulting [29]. We change these four input sequence
lengths a little to {72, 72, 96, 384} for the sake of rendering
them fitting the patchwise attention in FPPformer. The M4-
specifical metrics SMAPE (5) and OWA (7) are used for
measurement. m refers to the periodicity of series and naïve2
refers to the results of a seasonally adjusted forecast model
by [45] for scaling in OWA

SMAPE = 200

t3 − t2

∑
t∈[t2,t3)

|yt − xt|
|yt| + |xt| (5)

MASE = 1

t3 − t2

∑
t∈[t2,t3)

|yt − xt|
1

t3−t1−m

∑
j∈[t1+m+1,t3) |xj − xj−m|

(6)

2We use the statement of “cross-variable,” rather than “cross-dimension” in
Crossformer, to maintain the identical description of the variable dimension
throughout this work.
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TABLE IV
MULTIVARIATE FORECASTING RESULTS WITH SHORT INPUT LENGTH

TABLE V
AVERAGE MULTIVARIATE RESULTS WITH LONG INPUT LENGTHS

OWA = 1

2

(
SMAPE

SMAPENaïve2
+ MASE

MASENaïve2

)
. (7)

The univariate forecasting results are shown in Table VII.
It could be observed that FPPformer gains 88.6%/47.8%/
21.0%/54.1%/50.8%/20.8% MSE reduction in general when
compared with Triformer/Crossformer/Scaleformer/PatchTST/
FiLM/TSMixer, which is more persuasive to verify the fore-
casting capability of FPPformer.

TABLE VI
COMPARISON OF MODELS EMPLOYING CROSS-VARIABLE ATTENTION

D. Ablation Study

We conduct ablation studies to validate the functions of the
architecture of FPPformer and its components. All variants are
experimented with multivariate benchmarks with prediction
sequence length of 720. The results of all eight benchmarks
are presented in Table VIII. Each value is the average of
four subexperiment results with input sequence lengths of
{96, 192, 384, 576}. As expected, only using pointwise
attention like canonical TSFT gives rise to a losses increasing
of 84.6% (Average loss: 0.345→0.637). Meanwhile, only
using patchwise attention like other PTSFTs does not suffer
a severe performance degradation but still owns apparently
worse performance than our proposed combined patchwise
attention and pointwise attention (Average loss: 0.380 versus
0.345). As for the decoder architecture design, FPPformer
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Fig. 6. Results of training time per epoch (1), GPU memory computation (2), and inference time per instance (3) in two experiments (a) and (b) of Complexity
Analysis Experiment. FPPformer-Enc in (b) refers to FPPformer without decoder.

TABLE VII
UNIVARIATE FORECASTING RESULTS

surpasses the same models but replacing the decoder archi-
tecture of FPPformer with that of Crossformer (Average loss:
0.345 versus 0.389) or simply substituting the entire decoder
with a linear projection like PatchTST (Average loss: 0.345
versus 0.376). Besides, removing DM mechanisms in the self-
attention blocks of encoder also results in worse performances
(Average loss: 0.345→0.379). Conclusively, the efficiency and
necessity of all unique parts and architectures of FPPformer
are verified.

E. Parameter Sensitivity Analysis

It is well-known that TSFT cannot own too many layers
or stages, otherwise the risk of over-fitting substantially rises.
Thereby, we perform parameter analysis on the stage number
of FPPformer in this section to check out whether FPPformer
is capable of handling this problem. The parameter analysis
of patch size is no longer tested as it has been well studied
by [8], [10], and [16]. The input sequence length is chosen as
576 for using more stages for FPPformer and other models
use their default input sequence lengths, which are supposed
to be best for them (96 for {Scaleformer, Triformer}; 512
for PatchTST; 336 for Crossformer). The number of stages
are chosen in {1, 2, 3, 4}. The prediction sequence length
is set as 720 and the average results (MSEs) of all eight

multivariate benchmarks are presented in Table IX. The result
of each model with stage number of one is utilized as
the normalization factor to further measure their absolute
performance deviations with more stage numbers which are
manifested by

Dev =
4∑

i=2

|M̃i − M̃1|, M̃i = Mi/M1. (8)

Mi(i = 1, 2, 3, 4) are the original average MSE results and
M̃i(i = 1, 2, 3, 4) are the normalized ones. When comparing
the performances and performance deviations of five TSFTs,
it is evident that FPPformer not only keeps its leading
position (smaller errors) among all TSFTs with different stage
numbers but also maintains its robustness ascendancy (smaller
deviations) over other TSFTs.

F. Complexity Analysis

We compare the training time per epoch/the GPU memory
computation/the inference time per instance on GPU of
FPPformer and Crossformer [8], and the identical four measur-
ing criteria of FPPformer without decoder and PatchTST [16]
during multivariate forecasting under Solar data set. Solar data
set is selected in that it owns the intermediate variable number
among all data sets. Crossformer and PatchTST are chosen as
they are also patchwise attention-based models. The decoder
of FPPformer is removed when compared with PatchTST
since PatchTST does not employ the decoder architecture.
The input sequence lengths are chosen within {96, 192, 384,
576} and the prediction sequence length is 96. The other
hyperparameters and settings are identical with those used
in the quantitative multivariate results, barring the size of
the hidden(embedding) dimension. The size of the hidden
dimension, which is the one that exceedingly affects the model
complexity, is identical for all baselines in this experiment so
that the model architecture design can determine the model
complexity to the utmost extent. These two experiment results
are shown in Fig. 6(a) and (b), respectively.

As Fig. 6(a) shows, the full FPPformer owns linear com-
putation and space complexity with input sequence length.
Moreover, Fig. 6(b) illustrates that the encoder of FPPformer
(FPPformer-Enc for short) also only owns linear complexity
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TABLE VIII
ABLATION RESULTS WITH PREDICTION LENGTHS OF 720

(a) (b) (c)

(d) (e) (f)

Fig. 7. Forecasting windows of FPPformer and other four TSFTs from six data sets. The black line is the ground truth, the red line is the forecasting curve
of FPPformer, and the rest are the forecasting curves of other TSFTs. (a) ETTh1. (b) ETTm2. (c) Solar. (d) Traffic. (e) Weather. (f) ECL.

TABLE IX
MSE RESULTS OF PARAMETER SENSITIVITY ON STAGE NUMBERS

and the complexity of FPPformer and PatchTST are analogous,
demonstrating that the elementwise attention, which is almost
the only difference between PatchTST and FPPformer-Enc,
merely brings minuscule additional complexity.

G. Case Study

To more vividly illustrate the outstanding forecasting
performance of FPPformer, we visualize several forecasting
windows of FPPformer and other TSFTs from different data
sets in Fig. 7. Benefitting from exploiting better decoder
and attention mechanism, FPPformer excels in capturing the
features of trends [Fig. 7(a)], seasons [Fig. 7(b)] and their
hybrids [Fig. 7(c)] so that smaller forecasting errors than oth-
ers can be obtained. Moreover, its preponderance of robustness
and immunity against outliers are revealed in Fig. 7(d)–(f)
where certain distribution shifts occur in partial distincts. In

addition, we present some visualizations of the feature maps
of FPPformer and several competitors in the latent space to
validate the functions of its unique modules.

1) We visualize the attention score distribution of the
first DM patchwise and DM elementwise attention
in FPPformer with a certain input window of length
96 in ETTh1 data set, via heat map in Fig. 8. As
illustrated in Fig. 8(b1), the attention score distribution
is uniformly distributed if applying the DM patchwise
attention during the training phase. Even substituting
the DM patchwise attention with the normal attention
solely in the testing phase [Fig. 8(b2)] will not lead
to the self-matches with high scores, demonstrating the
enhancement of DM attention mechanism on universal
feature extraction. However, it can be observed in
Fig. 8(b3) that the highest attention score chiefly lies
in the fifth patch, which corresponds to an outlier patch
with a exorbitant dip. The visualization [Fig. 8(c)] of
the three different elementwise attention score heat maps
of that outlier patch in Fig. 8(b) also manifests the
same phenomenon, i.e., the excessive high or low values
can result in the excessive high-attention scores which
burden the universal feature extraction.

2) As the additional elementwise attention is employed in
FPPformer to reinforce the inner-patch feature extrac-
tion, we visualize the feature maps outputted by each
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(a)

(b1) (b2) (b3)

(c1) (c2) (b3)

Fig. 8. Visualization of DM patchwise (b) and elementwise (c) self-attention
score distributions via heat map. All figures are obtained by FPPformer or
its variants with the identical input sequence (a). Especially, the elementwise
attention score heat maps stem from the fifth patch, which is supposed to be
anomalous and marked with red in (a).

patchwise attention in the encoders of FPPformer,
PatchTST and Crossformer by T-SNE [47] in Fig. 9.
To get rid of the influences from other different mod-
ules, this experiment is performed as a reconstruction
experiment, which reconstructs the input sequences via
the ultimate encoder features, and we remove the DM
technique in the patchwise attentions of FPPformer
but keep the DM elementwise attention. The input
sequence length is set as 576 to provide enough data
points in the T-SNE figures. Apparently, the distances
of the data points in three FPPformer-related figures
are the smallest among three models, indicating that the
DM elementwise attentions can literally assist in better
representing the features of each patch in the latent
space so that it is easier for the following patchwise
attentions in FPPformer encoder to extract the universal
features among different patches and FPPformer can
have an edge on extracting universal features compared
with other two baselines.

3) To vividly illustrate that the top-down architecture
in decoder can genuinely render the construction of
prediction sequence feature maps more general in
the latent space, we visualize the patchwise cross-
attention score distributions of different decoder layers
in FPPformer and Crossformer via heat maps in Fig. 10.
Obviously, with the stage number grows, the atten-
tion score matrix size is getting bigger in FPPformer
and smaller in Crossformer, illustrating the differences

(a)

(c1) (c2) (c3)

(d1) (d2) (d3)

(b)

Fig. 9. (a) Visualization of the feature maps of the patches in different
encoder stages (b) in PatchTST, (c) Crossformer, and (d) FPPformer via T-
SNE. The points with different colors denote different patches. Only the
feature map of the last encoder stage of PatchTST is shown since it is not
hierarchical.

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 10. Visualization of the cross-attention score distribution of different
decoder stages in Crossformer (a) and FPPformer (b) via heat map.

between “bottom-up” and “top-down” decoder architec-
ture. Meanwhile, it can be observed that the highest
attention scores in Crossformer primarily locate at the
last patch, especially the third stage, indicating that the
construction of the prediction sequence features heavily
rely on the rear end of input sequence features and it
fails to build up the prediction sequence in an universal
manner. On contrary, the cross-attention scores in the
decoder uniformly distribute along the temporal dimen-
sion, which implies the preponderance of the top-down
architecture in FPPformer decoder. In effect, the instance
in Fig. 10. is not a particular situation. We collect the
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Fig. 11. Distribution of the highest cross-attention score positions of the
third stage in Crossformer (a) and the (b) first stage in FPPformer.

highest attention score positions of the third stage in
Crossformer and the first stage in FPPformer, where the
most coarse-grained features lie in, when handling the
whole ETTh1 data set, i.e., with over 100 000 instances.
The result is shown in Fig. 11. Apparently, the highest
attention score distribution of FPPformer is much more
uniform than that of Crossformer, indicating the success
of the top-down decoder design in FPPformer.

VI. DISCUSSION

Though FPPformer has achieved state-of-the-art perfor-
mances, it still owns at least two limits.

1) The hierarchy in FPPformer can be more exquisitely
devised. The “merging” operation in the encoder of
FPPformer is too simple to well represent the feature
map of the bigger patch via the two smaller patch ingre-
dients. So does the “splitting” operation in the decoder.
The cutting-edge methods to handle the combination or
the split of patches, e.g., SwinTransformer [48], in CV
field, where patchwise attention is also prevailing, can
be learned, imitated and modified in TSFT.

2) Currently, the outlier is tackled via DM self-attention,
which roughly mask the entire diagonal of the self-
attention score matrix, in FPPformer. Notice that the
outliers shall be fewer than the normal segments of
time-series sequences, which implies that the majority
of masked patches are indeed normal and the masking
behavior can negatively influences the feature extraction
of input sequences. We believe that applying a prior
anomaly detection method to each input sequence before
forecasting and then only masking the detected anoma-
lous patches can be a better format of utilizing the DM
self-attention.

Both of the foregoing two limits and potential solutions will
be our future research directions.

VII. CONCLUSION

In this work, we attempt to further develop the TSFT from
the perspective of decoder. We lucubrate the existing decoder
designs, point out their drawbacks and propose our solutions.
The ultimate product, i.e., FPPformer, achieves state-of-the-art
performances in multiple benchmarks, including multivariate

and univariate ones, leveraging from refined attention mech-
anism and enhanced encoder–decoder architecture proposed
by us.
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