
8552 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Virtual Network Embedding Based on Hierarchical
Cooperative Multiagent Reinforcement Learning

Hyun-Kyo Lim , Ihsan Ullah , Ju-Bong Kim, and Youn-Hee Han , Member, IEEE

Abstract—Virtual network embedding (VNE) is a promising
technique enabling 5G networks to satisfy the given require-
ments of each service via network virtualization (NV). For
better performance of the embedding algorithm, it is neces-
sary to automatically detect the network status and provide
an optimal embedding decision. However, existing VNE algo-
rithms disregard the long-term effect by focusing on selecting
only one virtual network request (VNR) from the waiting queue,
without considering all waiting virtual network requests con-
currently. In this study, we propose a hierarchical cooperative
multiagent reinforcement learning (MARL) algorithm to optimize
the VNE problem by maximizing average revenue, minimizing
average cost, and also improving the request acceptance ratio.
The proposed algorithm applies two RL algorithms: 1) two-level
hierarchical RL (HRL) to efficiently solve the problem by divid-
ing it into subproblems and 2) multiagent-based cooperative RL
to improve algorithm performance through the cooperation of
multiple agents. In order to evaluate and analyze the proposed
scheme from the long-term perspective, four performance param-
eters are evaluated: 1) revenue; 2) cost; 3) revenue-to-cost ratio;
and 4) acceptance ratio. The simulation results demonstrate that
the proposed VNE algorithm based on hierarchical and MARL
outperforms the existing RL-based approaches.

Index Terms—Hierarchical reinforcement learning (HRL),
multiagent reinforcement learning (MARL), virtual network
embedding (VNE).

I. INTRODUCTION

IN RECENT years, the commercialization of 5G networks
has had a significant impact on the general network man-

agement systems. In particular, the rapid growth of the IoT
device market has led to significant challenges for current
network infrastructures in meeting the increasing resource
demands [1]. Due to limited network resources, it is impos-
sible to meet the requirements of all services offered by
service providers (SPs) or expand the infrastructure resources
based on user needs. Moreover, the current network system

Manuscript received 13 July 2023; revised 8 September 2023; accepted
21 September 2023. Date of publication 26 September 2023; date
of current version 21 February 2024. This work was supported by
two Basic Science Research Programs through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education under
Grant NRF-2023R1A2C1003143 and Grant NRF-2018R1A6A1A03025526.
(Corresponding author: Youn-Hee Han.)

Hyun-Kyo Lim, Ju-Bong Kim, and Youn-Hee Han are with the
Future Convergence Engineering, Korea University of Technology and
Education, Cheonan 31253, South Korea (e-mail: glenn89@koreatech.ac.kr;
rlawnqhd@koreatech.ac.kr; yhhan@koreatech.ac.kr).

Ihsan Ullah is with the Advanced Technology Research Center, Korea
University of Technology and Education, Cheonan 31253, South Korea
(e-mail: ihsan@koreatech.ac.kr).

Digital Object Identifier 10.1109/JIOT.2023.3319542

architecture is rigid and unyielding to change, which makes it
challenging to incorporate emerging technologies and services
due to network ossification [2].

Network slicing (NS) and network virtualization (NV) tech-
nology is a potential solution to the problem of network
ossification [3], [4]. It partitions a static physical network
and configures custom virtual networks to lease resources
from the Internet provider (InP) according to the needs of
the end users. Efficient SP and InP management techniques
increase the effectiveness of the substrate network and boost
revenue for both providers. In the context of 5G networks, vir-
tual network embedding (VNE) is important, especially with
regard to NS and NV [5]. As 5G technology enables dynamic
NS and NV, VNE plays a pivotal role in efficiently allocat-
ing virtual resources across diverse slices for quality service
delivery. VNE refers to the process of efficiently allocating
substrate network resources to meet the constraints of virtual
network requests (VNRs) with respect to virtual nodes and
links. network service providers (NSPs) are responsible for
mapping VNRs onto the underlying substrate network.

However, the VNE problem is NP-hard due to the exten-
sive search space, even with single VNRs or single virtual
nodes, and is further compounded by the NP-hard character-
istic of mapping VNRs onto substrate networks [6]. So, many
VNE algorithms exist to facilitate the efficient allocation of
network resources for embedding VNRs into the underlying
substrate network. Several heuristic-based algorithms [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15] and bio-inspired algo-
rithms [16], [17], [18], [19], [20] have been proposed to solve
VNE problems where several subgoals are sometimes incor-
porated in different ways. While heuristic-based algorithms
often use greedy optimization and may not yield optimal solu-
tions, bio-inspired methods, such as ant colony optimization,
genetic algorithms, and particle swarm optimization, have
shown effectiveness in solving VNE problems. However, these
bio-inspired methods require significant solution search time,
especially when dealing with large or dynamic networks.

In recent years, several intelligent networks have been
proposed by applying machine learning techniques to network
management problems. One of such techniques is reinforce-
ment learning (RL) [21], [22]. An RL agent learns to
find the optimal VNE solution through interaction with the
network environment, and it obtains a policy model that
maximizes a predefined reward function. Several RL algo-
rithms, including simple Q-learning, deep Q-learning (DQN),
advantage actor–critic (A2C), asynchronous advantage actor–
critic (A3C), proximal policy optimization (PPO), and deep

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8807-1158
https://orcid.org/0000-0002-5204-2283
https://orcid.org/0000-0002-5835-7972

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8553

deterministic policy gradient (DDPG), have been utilized to
improve the performance of VNE algorithms [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32]. Most existing meth-
ods solve the VNE problem by first embedding all nodes
without considering link embedding information. However,
such approaches can lead to suboptimal link embeddings due
to decisions made without explicitly considering the require-
ments and characteristics of the links. So, recently, graph
neural network models-based RL methods have been intro-
duced to address these limitations by considering both nodes
and links information within the substrate network topology,
enabling more effective node embedding [33], [34], [35], [36],
[37]. Moreover, the existing RL methods to the VNE problem
often overlook the long-term perspective of revenue, cost, and
acceptance ratio. To address these issues, a hierarchical RL
(HRL)-based technique [37] has been proposed. The HRL-
based technique involves decomposing the VNE problem into
smaller subproblems and learning policies for each subprob-
lem. By using HRL, the technique tries to optimize revenue,
reduce cost, and improve acceptance ratio over a longer time
horizon. However, a limitation of the technique is that it
assigns only one VNR per time step throughout the entire
RL time horizon, and does not consider a group of VNRs and
their resource demand systematically. This may result in sub-
optimal resource allocation and placement, leading to lower
revenue and acceptance ratio in the long-term perspective.

In the context of VNE problem, it is common to
have multiple VNRs waiting for resources simultaneously.
Considering all waiting VNRs concurrently is crucial for RL
algorithms to achieve optimal resource allocation and VNR
placement. It ensures that all available resources are utilized
efficiently, which can result in improved revenue and accep-
tance ratio over a longer time horizon. The decision-making
process involved in selecting which VNRs to accept or reject
during embedding is a complex and challenging problem.
To overcome this challenge, a novel coordinated approach is
required to optimize the performance of VNE.

To address the complex problem of selection in multiple
VNRs, a multiagent RL (MARL) approach can be employed.
One potential approach is to create a logical link between each
VNR and an agent, allowing for cooperative decision mak-
ing among agents. This approach can help to optimize VNR
placement and resource allocation, resulting in improved rev-
enue and acceptance ratio. In particular, MARL has gained
significant attention for network resource allocation recently.
Most of the existing research applying MARL has primarily
focused on resource allocation in wireless environments [38],
[39]. However, designing an effective MARL algorithm for
VNE requires addressing how to facilitate efficient cooper-
ation among agents. Particularly, with the advancement of
5G networks and the rapid growth of the IoT device market,
there is a growing demand for a sophisticated and efficient
algorithm that can autonomously embed VNRs to support
diverse services. The automated VNE algorithm should have
the capacity to concurrently handle multiple VNRs, enhance
the revenue and acceptance ratio for NSP, and efficiently
embed network resources at a reduced cost for SP. This
study proposes a hierarchical and cooperative solution for

VNE problem by incorporating HRL with MARL, named
HCMARL-VNE. It employs HRL for efficient long-term
exploration and MARL to accelerate VNE solutions via agent
collaboration. To achieve an optimal link embedding solu-
tion, our approach also generates an augmented graph that
encompasses the substrate network, virtual network nodes, and
link information. GCNs model [33] is employed to extract
network features and information by identifying the relation-
ships between each node and link. Typical RL methods often
require much exploration to solve problems, which can be
computationally expensive. In contrast, HRL can break down
problems into smaller and more manageable subproblems.

The proposed HRL algorithm divides the embedding task
into two levels. At the high level (HL), MARL is applied
to evaluate the VNRs in the waiting queue. The evaluation
determines whether each waiting VNR should be embedded
immediately or postponed for later embedding based on their
long-term revenue potential. The collaboration of multiple
agents in MARL leads to the maximization of long-term rev-
enue. At the low level (LL), single-agent RL is used to select
the best substrate node for embedding the virtual nodes of
the VNRs, that have been chosen by the HL, based on the
short-term embedding cost as well as the short-term revenue.

The main contributions of this study are summarized as
follows.

1) To the best of our knowledge, this is the first study that
MARL has been applied to the VNE problem to promote
collaboration between individual agents and to improve
the overall VNE performance.

2) The proposed algorithm divides the VNE problem into
subproblems and utilizes HRL to enable agents at
different levels to focus on enhancing their performance.

3) To automatically extract features, the proposed algorithm
incorporates substrate and virtual network information
into a newly defined augmented graph. The GCN is then
employed to identify relationships between nodes and
links in the network.

The remainder of this article is organized as follows.
Section II describes the research status of RL-based VNE
algorithms and the preliminaries of our work. In Section III,
the substrate network and VNR models are described and our
VNE problem is formalized. Section IV describes the details
of the proposed algorithm. In Section V, the performance
evaluation and comparison results are presented. Finally, the
conclusions and future work are described in Section VI.

II. RELATED WORK

A. Heuristic and Bio-Inspired Algorithms for VNE

In [7], the PageRank algorithm [40] is referenced to mea-
sure the relative importance of nodes by considering the
topological attributes of substrate network components. The
topology-aware node ranking is a method to measure the rela-
tive importance of nodes in a network based on their resource
and topological attributes. It uses a Markov random walk
model to compute the node rank, which reflects the CPU and
bandwidth resources of the node and its neighbors, as well
as the connectivity between them. In [14], node weight is

8554 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

determined by factoring in node degree within the network
topology as well as the available resources at each substrate
node. An ego-network is then established around the substrate
node with the highest weight, followed by link mapping where
neighboring nodes meeting the VNR’s demand constraint are
selected. In [17], a genetic algorithm employing parallel com-
putation and a novel fitness function is employed to discover
nearly optimal solutions for the link mapping phase. Initially,
a path pool is generated using the k-shortest path algo-
rithm, considering only the substrate nodes complying with
the VNR’s virtual node resource constraints. Subsequently,
the genetic algorithm undergoes iterative evaluation, selec-
tion, crossover, and mutation processes to ascertain a suitable
path for link mapping. However, many existing heuristics and
bio-inspired algorithms often yield suboptimal solutions due
to their reliance on approximation techniques or simplified
optimization strategies. This can lead to inefficient resource
utilization and revenue loss for service providers. Therefore,
recently, RL-based VNE algorithms have been proposed to
overcome resource utilization, load balancing, revenue, cost
and acceptance ratio.

B. Reinforcement Learning Algorithms for VNE

In [21] and [22], RL is used to generate the possibility
of training abstractions on a high-dimensional state space;
however, exploration tasks using sparse feedback remain a
major challenge. To this end, Boltzmann search and Thomson
sampling [41], [42] use a rudimentary level algorithm to out-
perform the ε-greedy algorithm. Recently, RL has gained
significant attention for efficiently allocating limited resources
of substrate networks with various VNRs [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [34], [35], [36].

Wang et al. [29] proposed an RL-based VNE algorithm
using a pointer network model [43]. The algorithm employs
the attention mechanism to focus on a specific substrate node,
and the pointer network model comprises an encoder–decoder
that takes the substrate node’s features as input. The decoder
outputs the probability of attention to the substrate nodes,
which correspond to the virtual nodes of the VNR. The RL
agent selects a substrate node by sampling the final out-
come obtained by multiplying the attention probability with
the masking information generated by a rule-based function.
However, existing RL-based algorithms lack sufficient consid-
eration for link embedding when the RL agent makes node
selections.

The VNE algorithm introduced in [36] combines GCN and
RL algorithms to solve the VNE problem. By utilizing GCN
model to comprehend the relationships between nodes, node
selection can be performed more efficiently. It combines the
information in the substrate node and virtual node features for
the input of GCN. Subsequently, the output of GCN is directly
used to select the substrate node. The algorithm is developed
based on the actor–critic concept, which means that the actor
selects a substrate node depending on the current policy, and
the critic evaluates the currently selected action, that is, the
selected substrate node, whereby, the critic’s state value is used
to update the model.

Yan et al. [34] adopted an advanced deep RL technique,
using the A3C policy gradient method [44], to solve the VNE
problem. To speed up the training procedure and generate the
training experience more efficiently, they trained the policy-
generation algorithm using A3C. To extract spatial features
from network information (raw state) more efficiently, they
designed a 3-ordered layer GCN inside the training agent.
While using GCN for node embedding takes into account link
embedding as well, it exists an issue where the dimension of
the state–action space that a single agent needs to consider
becomes too large.

In [37], the presented solution for the complex VNE
problem employs HRL and GCN. While GCN is used for
feature extraction based on node and edge relationships, the
approach involves an HL agent for ordering waiting VNRs
and an LL RL agent for selecting suitable substrate nodes.
However, this approach focuses solely on the VNRs at the
current step without considering future rewards and revenue
implications sufficiently. This lack of future-oriented decision
making can lead to inefficient resource allocation, potentially
resulting in reduced long-term revenue and acceptance rates.
In addition, the most significant contribution of our scheme
lies in utilizing a MARL framework to allow multiple agents
to simultaneously choose actions in a cooperate way, and
also in introducing a “postponing” action in the HL decision-
making process, which deliberately defers the embedding of
certain VNRs. They empower multiple agents for efficient
VNR embedding, a critical factor for accommodating multiple
VNRs concurrently, and its distributed architecture enhances
scalability, making it ideal for complex real-world networks.

C. Hierarchical Reinforcement Learning

HRL algorithm is a new approach in the field of RL that
aims to enhance the efficiency and effectiveness of learning in
complex environments that provide sparse rewards and com-
plex tasks [45], [46], [47]. It introduces a hierarchical structure
in which multiple levels of agents or controllers work together
to solve a problem.

Particularly in [45], an HRL-based approach is used to solve
a problem by hierarchically dividing the main objective into
subgoals, with HRL agent learning options to explore com-
plex and sparse reward issues. This study proposes a novel
approach for important concepts in RL: temporal abstraction.
Temporal abstraction refers to the ability of an RL agent to
reason and make decisions at different levels of time scales or
levels of abstraction. The proposed method uses a hierarchi-
cal architecture where the agent learns at different levels of
abstraction, allowing it to make decisions based on long-term
goals and short-term actions.

D. Cooperative Multiagent Reinforcement Learning

Using MARL can provide several advantages compared
to single-agent RL [48], [49], [50]. One advantage is that
it allows multiple agents to learn and interact in the same
environment, leading to better coordination and cooperation
between agents. This can lead to more efficient use of substrate
resources and better overall performance. Additionally, MARL

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8555

can handle complex and dynamic tasks, where the behavior of
one agent may impact the behavior of other agents. By con-
sidering the actions of multiple agents, MARL can generate
more robust and adaptive policies.

Challenges arise when using single-agent RL with a cen-
tralized method or fully decentralized method for multiple
agents. The former faces difficulty in finding an optimal solu-
tion, while the latter struggles to learn the desired cooperative
or competitive behavior through MARL. To address these
issues, MARL methods have been developed to enable organic
cooperation among agents for efficient actions. One popular
approach is centralized training with decentralized execu-
tion (CTDE) [51]. Representative models of MARL include
value-decomposition networks (VDN) [52] and Q-value mix-
ing (QMIX) [53], based on state–action values. QMIX is
a representative MARL algorithm designed to learn decen-
tralized policies for cooperative tasks in partially observable
settings. The core idea of QMIX is to generate a joint action-
value function by mixing the individual agents’ action-value
functions (Q-values). To do this, QMIX configured with a
hypernetwork [54] to generate weights and biases for the mix-
ing network. The hypernetwork takes the global state as input
and produces the weights and biases for the mixing network,
which in turn combines the agents’ Q-values to obtain the
joint action-value (Q-total) through an average pooling process
called readout.

In this study, multiple agents are created, equal to the num-
ber of waiting VNRs, with each VNR being associated with
an agent. At each time step, these agents need to coopera-
tively decide whether to embed their corresponding VNRs or
postpone them to optimize the overall network performance
and resource allocation. The QMIX algorithm is employed in
this context to learn a decentralized decision policy for the
VNE problem. By using QMIX, the agents can learn to work
together and make coordinated decisions on VNR embedding,
taking into account the constraints and resource availability of
the substrate network.

III. FORMALIZATION OF THE VNE PROBLEM

In this section, we describe the system models for the VNE
problem and provide the definition of the problem objective.
The major notations used in the proposed system model are
listed in Table I.

A. Substrate Network Modeling

The substrate network S is a physical network managed
by an InP. It is typically modeled as an undirected graph
GS = (NS, ES, c(·), σ (·)), where NS and ES refer to the sets
of substrate nodes and links, respectively. The substrate node
ns(∈ NS) and link es(∈ ES) are associated with the capacities
of c(ns) and c(es), respectively. c(ns) represents the maximum
amount of computational resources, such as CPU or memory,
that can be allocated to the node, and c(es) the maximum
amount of data that can be transmitted through the physical
link, typically referred to as the bandwidth capacity. In addi-
tion, each substrate node and link has a per-unit capacity cost,

TABLE I
NOTATIONS OF NETWORK MODELING

Fig. 1. Example of VNE. Triangles represent the nodes of VNR 1, squares
represent the nodes of VNR 2, and pentagons represent substrate nodes.
Triangles and squares attached near pentagons indicate that virtual nodes have
been embedded on this substrate node, while solid lines close to dashed lines
represent embedded virtual links.

denoted by σ(ns) and σ(es), respectively. These costs repre-
sent the cost per unit of capacity that the InP or NSP must
pay to provide and maintain the physical infrastructure.

B. Virtual Network Modeling

In VNE, a virtual network V is created by an SP to
allocate network resources to the InP. The VNR is typi-
cally modeled as an undirected graph, denoted by GV =
(NV , EV , d(·), dt, dd, ds). NV and EV denote the sets of virtual
nodes and links, respectively, where nv(∈ NV) and ev(∈ EV)

represent the virtual nodes and links associated with the
resource demand, denoted by d(nv) and d(ev), respectively.
Additionally, dt represents the VNR arrival time. Furthermore,
dd represents the maximum delay time in the waiting queue
for the VNR, while ds denotes the service duration time of the
VNR. By modeling the VNR as an undirected graph with these
parameters, we can more accurately represent the demands and
constraints of virtual networks in the process of embedding
them onto the substrate network.

8556 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 2. In-depth view of the VNE procedure.

C. VNE Procedure

Fig. 1 provides an example of substrate network onto which
VNRs are mapped. Multiple virtual nodes from different
VNRs can be assigned to a substrate node concurrently (e.g.,
the virtual nodes “a” and “f” are assigned to the same substrate
node “A”). Similarly, multiple virtual links can be assigned to
one substrate link, or a virtual link can be mapped to multiple
substrate links (e.g., the virtual link of two nodes “b” and
“c” are mapped onto substrate links C-E-F). However, virtual
nodes and links from the same VNR cannot be assigned to the
same substrate node and link, respectively [23]. This constraint
can improve network reliability and assists in preventing
potential congestion or resource bottleneck.

There are multiple VNRs in the queue waiting to be
serviced, and at each step the RL agent selects the most
appropriate VNRs for embedding. In the VNE problem, the
embedding consists of two main parts, node embedding and
link embedding, as explained in Fig. 2. For a selected VNR,
node embedding maps a virtual node to a substrate node, while
link embedding maps a virtual link to a path in the substrate
network. Once both the node embedding and link embedding
are successful, the corresponding VNR service is activated and
the resource gets occupied based on the VNR’s demand. Once
the VNR’s service time ds has elapsed, the occupied resources
are released and restored. In case the node or link embedding
fails, the VNR is postponed and placed again in the waiting
queue for reallocation in the next step. In some cases, a VNR
may be postponed multiple times and remain in the queue for
an extended period. However, if the maximum delay time dd

for a VNR expires, it is rejected and removed from the queue.

D. Formal Definition of Our VNE Problem

MV
N and MV

E refer to the functions that define how the
nodes and links of a virtual network GV are embedded onto a
given substrate network GS, respectively. The node mapping is

denoted as MV
N : NV→NS. On the other hand, the link mapping

is denoted by MV
E : EV→Power(ES), where Power(ES) rep-

resents all subsets of ES. In our algorithm, the virtual nodes
and virtual links are limited to only having CPU and band-
width requirements, respectively. A virtual node nv ∈ NV can
be embedded into a substrate node ns ∈ NS if the remaining
capacity of ns is greater than or equal to the CPU demand
d(nv) of the virtual node, i.e., c(MV

N(nv)) ≥ d(nv). A vir-
tual link can be embedded into the links composed of a
loop-free substrate path if the substrate links have a larger
capacity than its required bandwidth, i.e., c(es) ≥ d(ev) for
each es ∈ MV

E (ev).
In this study, the main objective of the VNE problem is

to accept as many VNRs as possible while maximizing long-
term average revenue and minimizing long-term average cost.
To measure the effectiveness of a VNE algorithm, we use
four metrics: 1) revenue; 2) cost; 3) revenue-to-cost ratio (R/C
ratio); and 4) acceptance ratio. Revenue is the primary met-
ric for evaluating the profit earned by InP or NSP from SP
through VNR embeddings, and it increases with more VNRs
embedded. Revenue at each time step t can be expressed as

REVt =
Pt∑

i=1

⎛

⎝
∑

nv∈NVi

d
(
nv)+

∑

ev∈EVi

d
(
ev)

⎞

⎠ (1)

where Pt represents the total number of the serving VNRs
and the new VNRs embedded at time step t. REVt represents
the sum of the CPU demand of the virtual nodes and the
bandwidth demand of the virtual links of all the VNRs. The
overall performance evaluation of a VNE algorithm is based
on the long-term average revenue, as follows:

lim
T→∞

∑T
t=1 REVt

T
. (2)

The cost refers to the amount of resources, i.e., CPU and
bandwidth, consumed during the embedding process. When

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8557

a virtual node nv with CPU demand d(nv) is embedded into
the substrate node ns with CPU unit capacity of σ(ns), the
total node embedding cost is σ(ns) · d(nv). When a virtual
link ev with bandwidth demand d(ev) is embedded into the
substrate path (es

1, es
2, . . . , es

K), where each bandwidth unit
capacity σ(es

1), σ (es
2), . . . , σ (es

K), the total link embedding
cost is

∑K
k=1 σ(es

k) · d(ev). The cost incurred at each time
step t can be defined as

COSTt =
Pt∑

i=1

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

nv∈NVi ,

ns = MVi
N (nv)

σ
(
ns) · d(

nv)

+
∑

ev ∈ EVi , es
k ∈ MVi

E (ev),

K = ∣∣MVi
E (ev)

∣∣

K∑

k=1

σ
(
es

k

) · d(
ev)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3)

On the other hand, the long-term objective is to minimize the
following average cost:

lim
T→∞

∑T
t=1 COSTt

T
. (4)

The R/C ratio takes into account both the revenue and cost
for the VNR embeddings. The R/C ratio at time step t has a
range of 0 to 1, and defined as follows:

αt = REVt

COSTt
(5)

and the long-term average R/C ratio is calculated as

lim
T→∞

∑T
t=1 αt

T
. (6)

The acceptance ratio is a metric that expresses the ratio of
embedded VNRs to waiting VNRs in the queue at each time
t, and it can be defined as

βt = NUM
V
t

NUMV
t

(7)

where NUM
V
t is the number of embedded VNRs at time step

t and NUMV
t is the number of waiting VNRs in the queue.

Finally, the long-term average acceptance ratio is

lim
T→∞

∑T
t=1 βt

T
. (8)

IV. PROPOSED HIERARCHICAL COOPERATIVE

MULTIAGENT REINFORCEMENT LEARNING

In this section, the proposed hierarchical cooperative
multiagent RL called HCMARL-VNE is explained in detail.

A. Designing Process

In this section, we explain the overall design of the proposed
HCMARL-VNE. We divide the embedding decision into two
levels, i.e., the HL and the LL, and HRL is utilized to solve our
VNE problem. In our HRL, multiple HL agents collectively
determine the subgoal to be achieved. The subgoal is to decide
which VNRs to select for embedding and which VNRs to
postpone, among the waiting VNRs in the queue. The LL
agent makes decisions to solve the VNE problem in the given
subgoal. That is, the LL agent learns a policy to decide and
select a substrate node for each virtual node in VNRs that
have been selected by the multiple HL agents.

Here, is a more exploration on the design process. At each
time step, the multiple HL agents are created, matching the
number of VNRs in the queue. The agents then select the
appropriate subgoal, i.e., VNRs to be embedded, based on
the current state of the environment. They share a single
Q-network for a proper selection of action. During the training
of the Q-network, the QMIX framework is utilized. It involves
a mixing network based on the Q-values of the actions selected
by each agent. Based on the multiple agents’ Q-values, the
mixing network calculates the Q-total value and updates the
shared Q-network in the HL. Then, the LL agent executes
its policy for that subgoal until it attempts to embed all vir-
tual nodes of the selected VNRs from HL. Once the subgoal
is achieved, the LL agent reports back to the multiple HL
agents, who then select the next subgoal and assign it to the LL
agent. The process continues until the predefined number of
time steps is reached. Throughout the process, the multiple HL
agents learn their policies that select subgoals based on the cur-
rent state, i.e., the information of the overall substrate network
and VNRs. We design the action chosen in the multiple HL
agents to be critical to maximizing long-term revenue. The
LL agent also learns a policy for each subgoal. We design
the action chosen in the LL agent to be critical to maximiz-
ing the short-term R/C ratio over the duration of the subgoal.
By breaking down the VNE problem into smaller subgoals
and assigning them to an LL agent, the overall task becomes
more manageable and can be achieved more efficiently and
effectively. The hierarchical structure also allows the agents
to adapt to changes in the information of the overall sub-
strate network and VNRs, and to leverage prior knowledge and
experience.

Fig. 3 demonstrates an example of steps involved in the
proposed HCMARL-VNE algorithm. It employs an augmented
substrate graph (ASG) composer function that creates states
and observations using the overall current information of the
substrate network and waiting VNRs. Further details on the
ASG composer are provided in Section IV-C. First of all,
multiple HL agents simultaneously select VNRs #1 and #3 to
be embedded into the substrate network, while VNR #2 has
been decided to be postponed for embedding at a later time.
At the LL steps, the LL agent prioritizes the embedding of the
VNR with the highest revenue when choosing between VNR
#1 and VNR #3. A single agent selects a proper substrate
node for each virtual node, and continues this process until it
attempts to embed all virtual nodes of the selected VNRs.

8558 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 3. Example of steps involved in the proposed HCMARL-VNE procedure at a time step (�N and �L represent the final node and link embedding
information).

B. Markov Decision Process for HCMARL-VNE

In the proposed algorithm, the VNE problem is formulated
as a hierarchical decentralized partially observable Markov
decision process (HDec-POMDP), which consists of HL-MDP
and LL-MDP. With fully cooperative multiagents, HL-MDP
can be expressed as 〈SH, NH, OH, UH, tH, rH, yH〉, where sH ∈
SH is the true state of the environment and is common to the
HL agents, NH is the number of HL agents and equals the
number of waiting VNRs for embedding, oH,i ∈ OH is the
observation for the HL agent i, uH,i ∈ UH is an action for
the HL agent i, tH is the HL state transition probability which
the multiple HL agents do not know, rH is the HL reward
function, and yH is the discount factor.

The LL-MDP is based on single-agent RL which for select-
ing appropriate substrate nodes for the virtual nodes of the
VNRs. The number of internal steps in the LL-MDP is equal
to the number of virtual nodes in VNRs chosen by multiple
HL agents. Therefore, the LL-MDP can be defined as a gen-
eral MDP, unlike the HL Dec-POMDP. The LL-MDP can be
defined as 〈SL, UL, tL, rL, yL〉, where sL ∈ SL is a state for the
LL agent, uL ∈ UL is an action for the LL agent, tL is the LL
state transition probability which the LL agent does not know,
rL is the LL reward function, and yL is the LL discount factor.

C. States, Actions, and Rewards

In our algorithm, the state representation includes
information about the overall substrate network and VNRs at
each time step. The ASG composer serves as a crucial compo-
nent in constructing the ASG model. The ASG model captures
the resources and connectivity of the substrate network, and
is further augmented with information about serving VNRs
(or embedding VNRs) and waiting VNRs. By utilizing ASG

in the state construction, several critical factors are taken into
account when the multiple HL agents select VNRs in the wait-
ing queue, or the LL agent chooses appropriate substrate nodes
for the selected VNRs. These factors include 1) the availabil-
ity of resources and connectivity within the substrate network;
2) the allocation status of currently serving VNRs; and 3) the
status of waiting VNRs in the queue.

At time step t, ASG is defined as GA
t = (NA

t , EA
t) where NA

t
is the set of ASG nodes and EA

t is the set of ASG links. NA
t

is defined as follows:

NA
t = NS ∪

⋃

Vs∈�V
t

NVs ∪
⋃

Vw∈�V
t

NVw (9)

where NS is the set of substrate nodes, �V
t is the set of cur-

rently serving VNRs, and �V
t is the set of waiting VNRs in

the queue.
On the other hand, EA

t comprises different types of links,
including substrate links and virtual links of waiting VNRs
in the queue. Additionally, augmented links are added to EA

t
to establish the relationship between VNRs and the substrate
network. The augmented links serve two primary functions.

1) They connect the virtual node of currently serving VNRs
to the embedded substrate node, reporting the current
mapping and allocation of network resources.

2) They connect the virtual nodes of waiting VNRs to the
candidate substrate nodes that can embed these virtual
nodes, facilitating the selection of appropriate resources
for the pending VNRs.

Accordingly, EA
t is defined as follows:

EA
t = ES ∪

⋃

Vw∈�V
t

EVw

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8559

∪
⎧
⎨

⎩
(
MV

N

(
nv), nv)

∣∣∣∣M
V
N

(
nv)∈NS, nv∈

⋃

Vs∈�V
t

NVs

⎫
⎬

⎭

∪
⎧
⎨

⎩
(
ns, nv)

∣∣∣∣n
s ∈ NS, nv∈

⋃

Vw∈�V
t

NVw , c
(
ns) ≥ d

(
nv)

⎫
⎬

⎭.

(10)

1) States: For a time step t, a state sH
t configured by the

ASG composer consists of ASG node features NFt, ASG edge
index EIt, and action masking AMt. For a node in AGS, NFt

consists of seven features denoted by [T, A, B, C, D, E, X].
1) T represents whether a node is a substrate node (denoted

by 0), a serving VNR node (denoted by 1), or a waiting
VNR node (2).

2) A represents the remaining or demanded resource of
the corresponding node, depending on whether it is a
substrate or a virtual node.

3) B is the node degree.
4) C is the number of postponements if this node is a virtual

node in a waiting VNR.
5) D is the remaining delay time if this node is a virtual

node in a waiting VNR.
6) E is the service duration time if this node is a virtual

node in a waiting VNR.
7) X can take on values of 0 or 1 if this node is a virtual

node in a waiting VNR. The value varies based on the
agent type and will be described in more detail later.

It is noted that C, D, E, and X are set to −1 for a substrate
node or a virtual node in a serving VNR. On the other hand,
EIt simply represents the adjacency of each node, and it is
formed using EA

t at every step t.
AMt refers to the binary action masking information for

candidate substrate nodes that are suitable for embedding each
virtual node of a VNR. For a virtual node, candidate substrate
nodes are masked when they have been already mapped to
other virtual nodes of a VNR, and the amount of remaining
CPU in the candidate substrate node is less than the demanded
CPU for the virtual node. This AM helps to ensure that
unmasked candidate nodes have sufficient remaining CPU and
memory are available for use, resulting in better RL learning
performance.

As shown in Fig. 3, the ASG composer configures the
observation oH,i

t for each HL agent i by using the current iden-
tical state sH

t . Each oH,i
t consists of NFt and EIt included in

sH
t , but the last feature X of NFt is set to one for virtual nodes

in the VNR associated with the HL agent i, and set to zero
to other virtual nodes. Therefore, each HL agent uses unique
observation as its input, allowing it to make independent deci-
sions. This observation enables the HL agents to consider
various features, such as the specific VNR’s requirements and
the substrate network’s current status, when deciding whether
to embed or postpone the associated VNR.

The ASG composer then configures the state sL
z for each

internal step z of the LL agent. For each internal step z, the
LL agent attempts to sequentially embed a virtual node of the
VNRs selected by multiple HL agents. For an HL time step
t, sL

z is configured by utilizing NFt, EIt, and AMt included in

sH
t , as well as by incorporating the VNRs selected by the HL

agents (i.e., the action information of the HL agents). However,
the last feature X in NFt is set to one for the virtual node being
targeted for embedding by the LL agent at internal step z, and
is set to zero for all other virtual nodes. For each internal
step z, NFt, EIt, and AMt are denoted by NFz

t , EIz
t , and AMz

t ,
respectively, and changed by the ASG composer to reflect the
remaining resources of substrate nodes and links, which have
been reduced due to virtual node embedding in the previous
internal steps.

2) Actions: At time step t, each HL agent i makes a deci-
sion on embedding (1) or postponing (0) the VNR associated
with the HL agent based on its policy, and takes the corre-
sponding action uH,i

t . Then, uH
t is formed by collecting the

individual actions {uH,i
t }NH

i=1 of multiple HL agents. uH
t is also

used for the ASG composer to configure the state for the LL
agent.

On the other hand, the LL agent chooses a substrate node ns

for a virtual node being targeted for embedding at an internal
step z for the time step of the HL agents, and takes the corre-
sponding action uL

z . The virtual nodes targeted for embedding
are selected in order of their resource demand, so that the LL
agent first selects the virtual node with the highest demand. If
the LL agent is unable to find an appropriate substrate node
for a virtual node in a VNR, the entire VNR is postponed and
added to the queue of waiting VNRs. Then, uL

t is formed by
collecting the individual actions {uL

z }NL

k=1.
The HL and LL agents interact with the environment by

executing both uH
t and uL

t actions, and receiving feedback
in the form of rewards. After taking actions and receiving
rewards, the agents update their policies to improve future
decision making.

3) Rewards: We use HL agents to embed high-revenue
VNRs while postponing lower revenue ones to maximize long-
term cumulative revenue. Therefore, the HL agent’s reward is
based on the revenue generated by both the VNRs currently
being served and the revenue of any new VNRs embedded
during the current time step t. If the LL agent fails to embed
a VNR that was selected by an HL agent, then the revenue
generated by that VNR is not added to the HL agent’s reward.
The reward function for the HL agents’ action uH

t is defined
as follows:

rH
t =

∑

Vs∈�V
t

⎛

⎝
∑

nv∈NVs

d
(
nv)+

∑

ev∈EVs

d
(
ev)

⎞

⎠

+
∑

Vn∈πV
t

⎛

⎝
∑

nv∈NVn

d
(
nv)+

∑

ev∈EVn

d
(
ev)

⎞

⎠ (11)

where �V
t is the set of currently serving VNRs and πV

t is the
set of new VNRs embedded at time step t.

For a virtual node of VNRs chosen by the HL agents, we
use the LL agent to find a high-revenue and low-cost sub-
strate node for each of the virtual nodes. This means that the
LL agent will try to avoid long paths when embedding links
between the virtual nodes, as longer paths tend to have higher
costs. Because the LL agent’s decisions are made based on the

8560 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

HL agents’ long-term goal, the LL agent needs to consider the
short-term goals and make decisions. For a time step of the
HL agents, the reward function for the LL agent’s action at an
internal step z (i.e., the reward for the LL agent’s action uL

z)

is defined as follows:

rL
z =

∑

Vn∈πV
t

⎛

⎝
∑

nv∈NVn

d
(
nv)+

∑

ev∈EVn

d
(
ev)

⎞

⎠

− α
∑

Vn∈πV
t

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

nv∈NVn

ns = MVn
N (nv)

σ
(
ns) · d(

nv)

+
∑

ev ∈ EVn , es
k ∈ MVn

E (ev),

K = ∣∣MVn
E (ev)

∣∣

K∑

k=1

σ
(
es

k

) · d(
ev)

⎞

⎟⎟⎟⎟⎟⎟⎠
(12)

where α determines how much weight is given to the cost
against the reward. It should be noted that the reward rL

z is
calculated based on both the node embedding and the link
embedding.

D. High-Level Mixed Q-Network Model and Training

Our proposed algorithm aims to maximize long-term rev-
enue by training multiple HL agents using the QMIX algo-
rithm. As shown in Fig. 4, the Q-network of each HL agent
is used to select an action based on the ASG node features
(NFt) and ASG edge index EIt configured by the ASG com-
poser. The proposed HL agent Q-network consists of GCNs
and the gated recurrent units (GRUs) [55]. In VNE prob-
lems, it is important for RL agents to recognize the spatial
characteristics of the substrate network and virtual networks.
GCNs are used to extract the features based on the relation-
ship between nodes and edges in the configured ASG. As
explained in Section IV-C, the ASG’s augmented nodes and
links represent the diverse relations among the serving VNRs,
the pending VNRs, and the substrate nodes, so that the fea-
tures extracted by the GCN model can be useful in selecting
appropriate VNRs for embedding. In the proposed HL agent’s
Q-network, GRUs are used to model the temporal dependen-
cies of the agents’ actions and states, which is particularly
useful in partially observable environments. The final output
layer of Q-network is configured by a fully connected layer.
The LL agent’s Q-network produces Q-values for all possible
actions from the final output layer. These Q-values estimate the
future rewards for each action. During the training phase, the
HL agent selects the action to take using an ε-greedy method
based on the Q-values.

The proposed GCN-based HL mixing network, as shown in
Fig. 5, is designed to enhance the QMIX algorithm by incor-
porating GCNs for better representation learning of the global
state, which is also modeled as the ASG. It utilizes a hyper-
network [54] to generate weights and biases for the mixing

Fig. 4. Q-network structure for the HL agent i.

Fig. 5. Mixing network structure for the cooperation of the multiple HL
agents.

Fig. 6. Q-network structure for the LL agent at internal step z.

network based on the global state. These parameters are then
employed by the mixing network to combine agents’ Q-values
and compute the joint action-value (Q-total) using an average
pooling process known as readout.

During the training of HL agents, for each time step t, the
following pieces of information are collected.

1) sH
t and s̃H

t : The global state and the next global state
shared by all HL agents and configured by using NFt

and EIt.
2) oH,i

t and õH,i
t : The HL agent i’s observation and the

agent’s next observation configured by using NFt and
EIt.

3) hH,i
t and h̃H,i

t : The HL agent i’s hidden information and
the agent’s next hidden information.

4) uH,i
t : The HL agent i’s action.

5) rH
t : The HL reward.

It is noted that sH
t , s̃H

t , oH,i
t , and õH,i

t are configured by using
NFt and EIt. The collected information for each time step
and each HL agent is referred to as an HL transition. The
HL agents’ transitions from all time steps are stored in the
replay memory for later use in training both the HL mixing
Q-network and the Q-network of each HL agent. In QMIX, the
replay memory (also known as experience replay buffer) plays
a crucial role in stabilizing and improving the learning process.
The replay memory allows the QMIX algorithm to reuse past

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8561

Fig. 7. Overall training procedure for the proposed models.

experiences multiple times. This helps improve the sample
efficiency and accelerate the learning process. During training,
the QMIX algorithm samples mini-batches of HL transitions
from the replay memory to update the agents’ Q-networks and
the mixing network.

For a mini-batch sampled from the replay memory and the
index τ representing an HL transition within the mini-batch,
they are trained together in an end-to-end manner to minimize
the following temporal-difference (TD) error:

LossH =
B∑

τ=1

(
rH
τ + γ H ·MixQ

H
(

s̃H
τ ,

{
max

u
Q

H(
õH,i
τ , u, h̃H,j

τ

)}ÑH

j=1

)

−MixQH
(

sH
τ ,

{
QH(

oH,i
τ , uH,i

τ , hH,i
τ

)}NH

i=1

))2

(13)

where B represents the batch size, and other notations are
defined as follows.

1) QH: The Q-value of each HL agent.
2) MixQH: The mixing network’s total Q-value.
3) Q

H
: The target Q-value of each HL agent.

4) MixQ
H

: The mixing network’s target Q-value.
5) NH: The number of HL agents τ .
6) ÑH: The number of HL agents at the next time step.

By configuring the loss function in (13), the QMIX algorithm
can effectively train the HL agents’ Q-networks and the mix-
ing network. Fig. 7 illustrates the overall training process of
the model from Section IV, starting from Section IV-B to
Section IV-F. The environment’s state, denoted as sH , is pro-
vided as input to the MARL-based HL agents through the
ASG composer, generating observations oH,i. Subsequently,
the HL agents employ their Q-networks to select Q-values
and actions, denoted as uH . The selected actions uH from the
HL agents, along with state sL, are then input into the LL Q-
networks, determining Q-values and uL. Following this, both
the HL and LL agents update their respective replay buffers.
In the case of the HL agents, they undergo additional mixing
network operations for cooperation before updating.

The procedure depicted in Fig. 7 involves training the HL
agent Q-network and mixing network, which allows them to
learn a decentralized decision policy. This policy involves
determining whether to embed or postpone the VNR asso-
ciated with each HL agent. By repeating this procedure,
the agents can work together to learn and improve their
decision-making abilities in a collaborative manner.

E. Low-Level Q-Network Model and Training

The proposed LL agent Q-network utilizes a similar archi-
tecture to the Q-network used by the HL agent. Specifically,
the LL agent Q-network is composed of GCNs and GRUs,
as shown in Fig. 6. GRU uses the hidden state hL

z to receive
additional input to recognize information about the substrate
node previously selected by the LL agent. Moreover, the LL
agent Q-network operates in a similar manner to the HL
agent Q-network. However, action masking is employed by
the LL agent to filter out substrate nodes that have already
been embedded with virtual nodes, as well as those that do
not have sufficient remaining CPU and memory to support
the virtual node at the internal step. By using action masking
in this way, the LL agent can focus on selecting only those
substrate nodes that are viable candidates for mapping vir-
tual nodes, which can ultimately lead to more efficient and
effective resource allocation.

During the training of LL agents, for each internal step z,
the following pieces of information are collected.

1) sL
z : The LL agent’s internal state.

2) s̃L
z : The LL agent’s next internal state.

3) hL
z : The LL agent’s hidden information.

4) h̃L
z : The LL agent’s next hidden information.

5) uL
z : The LL agent action.

6) rL
z : The LL reward.

It is noted that sL
z and s̃L

z are configured by using AMz
t as

well as NFz
t and EIz

t . As described in Section IV-C3, it is
important to note that the LL reward rL

z is calculated based on
both the node embedding and the link embedding. The link

8562 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

embedding process involves finding a suitable substrate path
by using the k-shortest path algorithm [6]. It helps ensure that
the virtual links are mapped to substrate paths that can sup-
port their bandwidth requirements, and also helps to minimize
bandwidth consumption by the link embedding. By incorporat-
ing both node and link embedding into the reward calculation,
the LL agent can make more informed decisions for VNE.

The collected information for each time step is referred to
as an LL transition. The LL transitions from all internal steps
are stored in the replay memory for later use in training the
Q-network of the LL agent. This is accomplished through the
DQN training method, which involves updating the Q-network
by minimizing the TD-error between the predicted Q-values
and the target Q-values. The target Q-network is updated peri-
odically (less frequently than the Q-network) by copying the
parameters from the Q-network. This helps stabilize the target
Q-value estimates.

For a mini-batch sampled from the replay memory and the
index τ representing a transition within the mini-batch, the
Q-network is trained to minimize the following TD error:

LossL =
B∑

τ=1

(
rL
τ + γ L ·maxuQ

L(
s̃L
τ , u, h̃L

τ

)− QL(
sL
τ , uL

τ , hL
τ

))2

(14)

where B represents the batch size, QL is the Q-value of the LL
agent, and Q

L
is the target Q-value of the LL agent. The pro-

cedure depicted in Fig. 7 also involves training the LL agent
Q-network. By repeating this procedure, the LL agent can
learn and improve its decision-making ability to select the best
possible substrate nodes for the virtual nodes.

F. HCMARL-VNE Procedure With Trained Models

After training all the network models of the HL and LL
agents, they can be used for VNE using Algorithm 1 called
HCMARL-VNE. For each time step, the HL agents to select
the proper VNRs for embedding based on their learned deci-
sion policy (lines 7–12). Once the VNR selection is complete,
the LL agent performs the node and link embedding proce-
dure (lines 13–40). If a suitable substrate node is not identified
for a virtual node through the action mask, the correspond-
ing VNR embedding is deferred to the next time step (lines
20–22). Only when suitable substrate nodes are successfully
identified for all virtual nodes in a VNR (lines 24–28), the
LL agent initiates the link embedding process to find a suit-
able substrate path for each virtual link of the VNR (lines
30–33). This process involves using a k-shortest path algo-
rithm to ensure that the virtual links are mapped to the most
suitable substrate paths possible. If a suitable substrate path is
not found for a particular virtual link, the corresponding VNR
embedding is also postponed until the next time step (lines
35 and 36). If the node and link embedding for a VNR are
successfully performed, the embedding information is stored
to the final embedding information at the current time step.
After the node and link embeddings have been carried out
for all VNRs, the actual embeddings are performed using the
final embedding information (line 41). On the other hand, the
VNRs that are classified as postponed ones are placed into the
queue of waiting VNRs for the next time step (line 42).

Algorithm 1: Proposed Overall Procedure of HCMARL-
VNE at a Time Step t

1 �V
t ← the waiting VNRs

2 NFt, EIt, AMt ← the current ASG
3 uH

t ← ∅ /* HL agent’s action */

4 �N
t ← ∅ /* final node embeddings */

5 �L
t ← ∅ /* final link embeddings */

6 �t ← ∅ /* VNRs decided to be postponed */

7 foreach Vi ∈ �V
t do

8 Update NFt, EIt, AMt

9 Gather sH,i
t , oH,i

t , and hH,i

10 uH,i
t ← maxuQH(oH,i

t , u, hH,i
t)

11 uH
t ← uH

t ∪ {uH,i
t }

12 Save hH,i for next time step

13 foreach uH,i
t ∈ uH

t do
14 Vi ← the corresponding VNR
15 z← 0 /* internal step */

16 if uH,i
t is ‘Embedding’ then

17 �
Ni
t ← ∅ and �

Li
t ← ∅

18 for n ∈ NVi do
19 Update NFz

t , EIz
t , AMz

t
20 if no available substrate node in AMz

t then
21 �t ← �t ∪ {Vi}
22 break
23 else
24 Gather the updated sL

z and hL
z

25 uL
z ← maxuQL(sL

z , u, hL
z)

26 �
Ni
t ← �

Ni
t ∪ {(n �→ uL

z)}
27 Save hL

z for next internal step
28 z← z+ 1

29 if all nodes ∈ NVi are embedded then
30 for e ∈ EVi do
31 Find the substrate path p using the

k-shortest paths while increasing k
32 if p is found then
33 �

Li
t ← �

Li
t ∪ {(e �→ p)}

34 else
35 �t ← �t ∪ {Vi}
36 break

37 if all links ∈ EVi are embedded then
38 �N

t ← �N
t ∪�

Ni
t and �L

t ← �L
t ∪�

Li
t

39 else
40 �t ← �t ∪ {Vi}
41 Perform the embeddings �N

t and �L
t to the substrate

networks
42 �V

t+1 ← �V
t+1 ∪ �t for the procedure at the next time

step t + 1

In Algorithm 1, the time complexity of the k-shortest path
algorithm is O(ms + ns log ns + k) [37], where ms, ns, and
mv refer to the number of substrate nodes, substrate links
and virtual links, respectively. Therefore, the overall time

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8563

TABLE II
PARAMETER SETTINGS OF THREE SIMULATED NETWORKS

complexity of the proposed HCMARL-VNE is denoted as
O(mv(n+ ms + ns log ns + k)).

V. PERFORMANCE EVALUATION

This section describes the performance evaluation of the
proposed algorithm. The simulation environment is set up
using an i9-9900K CPU with 64-GB RAM and an RTX 3090
GPU with a Linux Ubuntu 20.04 LTS. The proposed algo-
rithm is implemented with Python 3.8 and PyTorch 1.9.0
where the NetworkX 2.5.1 Library is utilized to config-
ure the network environments. In addition, Torch-geometric
1.7.2 is used to construct the GCN model. The parame-
ters of three simulated network environments are described
in detail in Table II. The parameters of the HCMARL-VNE
algorithm are also described in detail in Table III. The param-
eters of the HCMARL-VNE algorithm are selected based on

TABLE III
LEARNING PARAMETER SETTING

our experiments to achieve the best results and appropriate
experimental runtime.

A. Simulation Environment

1) Didactic Network I: Didactic network I refers to a sim-
plistic and easy-to-understand environment used for represent-
ing our algorithm’s superiority. The experiment demonstrates
that a better episode reward can be achieved by postponing
the second VNR. This means that delaying the embedding of
the second VNR allows for more efficient resource allocation.

As described in Table II, three VNRs arrive sequentially at
time epoch 1, 2, and 3, where their CPU resource demands
are [6, 6, 6], [1, 1, 1], and [3, 3, 3] for all three virtual
nodes. In the substrate network, there are a total of three sub-
strate nodes, each with a CPU capacity of 10. Given these
constraints, it becomes infeasible to embed the virtual nodes
of all three VNRs into the substrate nodes. In the specified
didactic network, the substrate network’s capacity is limited
to embedding a maximum of two VNRs. The length of an
episode is equivalent to five time steps. Embedding the first
and second VNRs consumes seven CPU units, and thus it is
impossible to accommodate the third VNR. Consequently, this
approach does not yield optimal long-term revenue. To achieve
better long-term revenue, it is better to embed the first and third
VNRs while postponing the second VNR.

2) Didactic Network II: In the didactic network II, the sub-
strate network’s scale is expanded and the number of incoming
VNRs has increased to five. In the substrate network, the
substrate nodes and links have diverse CPU capacities and
bandwidth resources. Additionally, the five VNRs possess
varying CPU and bandwidth demands for their three virtual
nodes and two or three virtual links. They arrive sequentially
to the waiting queue at time epoch 1, 2, 3, 4, and 5. For the
VNRs, the maximum delay times on the waiting queue are
consistently five time units, but their service duration times
after successful embedding differ, with values of 10, 9, 8,
7, and 6, respectively. The length of an episode is equiv-
alent to 10 time steps. The combination of heterogeneous
substrate resource capacities and diverse VNR demands add
complexity to the VNE problem. In addition, it is crucial
to carefully consider the maximum delay time and the ser-
vice time when making decisions related to the problem.
All these factors underscore the necessity of developing an

8564 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE IV
EXISTING VNE ALGORITHMS FOR PERFORMANCE COMPARISON

effective VNE algorithm to optimize embedding performance
and efficiently manage network resources.

3) ISP Network: In alignment with a specification for
medium-sized ISPs, we have configured the substrate network
to comprise 100 nodes and 500 links. The CPU resources allo-
cated to the substrate nodes are uniformly distributed within
the range of 50–100 units. Similarly, the bandwidth resources
assigned to the substrate links are also uniformly distributed
within the range of 50–100 units. The arrival rate of VNRs
aligns with a Poisson distribution, with an average occurrence
of one VNR every 20 time units. The delay expiration time
at the waiting queue is set to 200 time units, while the serv-
ing duration follows an exponential distribution with a mean
of 500 time units. The number of virtual nodes for the VNR
is uniformly distributed within the range of 5–15 nodes. The
probability of a connection between two nodes is 0.5. The
CPU and bandwidth demands for virtual nodes and links are
uniformly distributed between 10 and 30 units. The overall
time span extends to a duration of 56 000 time steps, indicat-
ing that the length of an episode is equivalent to 56 000 time
steps.

B. Performance of Proposed Algorithm

The proposed HCMARL-VNE algorithm is compared with
four existing VNE algorithms, namely: 1) the heuristic base-
line (called Baseline) [6]; 2) RL algorithm using A3C and
GCN (called A3C+GCN) [34]; 3) the attention mechanism
using pointer networks (called PN) [29]; and 4) HRL-based
algorithm using DQN (called HRL-VNE) [37]. Table IV
describes the four VNE algorithms.

Fig. 8 represents the results of a comparison between
the proposed algorithm and existing VNE algorithms in the
didactic network I. The proposed HCMARL-VNE algorithm

Fig. 8. Effectiveness of the proposed algorithm in the didactic network I.
(a) Revenue results. (b) Cost results. (c) R/C ratio results. (a) Acceptance ratio
results.

Fig. 9. Effectiveness of the proposed algorithm in the didactic network II.
(a) Revenue results. (b) Cost results. (c) R/C ratio results. (a) Acceptance ratio
results.

demonstrates lower revenue, cost, and acceptance ratio than
other VNE algorithms until the time step 2. This result can be
attributed to an HL agent’s choice of “Postponing” action for
the second VNR. However, by embedding the third VNR in
the time step 3, the proposed algorithm achieved the highest
revenue (34 revenue) compared with the one (25 revenue) of
the other VNE algorithms. Although the cost increases due
to the embedding of the third VNR, the R/C ratio and the
acceptance ratio remain unchanged. The proposed HCMARL-
VNE algorithm is expected to achieve similar performance to
HRL-VNE if all VNRs are added to the queue at time step
t = 1. However, in the cases where VNRs are accumulated
step by step, such as in the didactic network I, HRL-VNE
would embed VNR #2 as it lacks the “Postponing” action. In
contrast, the proposed HCMARL-VNE would not embed, but
choose to postpone VNR #2, because it is trained to maximize
the overall long-term revenue.

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8565

Fig. 10. Effectiveness of the proposed algorithm in the ISP network. (a) Long-term average revenue results. (b) Long-term average cost results. (c) Long-term
average R/C ratio results. (d) Long-term average acceptance ratio results.

The experimental results in the didactic network II are
shown in Fig. 9. In this particular network, the embedded
VNRs for each respective algorithm are as follows.

1) HCMARL-VNE: VNR #1, VNR #2, VNR #3, VNR #5.
2) HRL-VNE: VNR #1, VNR #2, VNR #3, VNR #4.
3) A3C+GCN: VNR #1, VNR #2, VNR #3, VNR #4.
4) PN: VNR #1, VNR #2, VNR #3.
5) Baseline: VNR #1, VNR #2, VNR #3.

Therefore, the performance of HCMARL-VNE, HRL-VNE,
and A3C+GCN surpasses that of both PN and Baseline in
terms of generated revenue. Moreover, the highest revenue
is achieved by the proposed HCMARL-VNE (76 revenue)
in comparison to HRL-VNE (70 revenue) and A3C+GCN
(70 revenue). This outcome can be attributed to HCMARL-
VNE’s strategic decision to postpone the low-revenue VNR
(the 4th VNR) while embedding the high-revenue VNR (the
fifth VNR). Also, with respect to the cost, HCMARL-VNE
(76 cost) is more efficient than HRL-VNE (76 cost) and
A3C+GCN (78 cost) because it postpones the high-cost VNR
(the 4th VNR) while embedding the low-cost VNR (the fifth
VNR). As a result, it can be confirmed that HCMARL-VNE
has the best R/C ratio. Hence, the proposed HCMARL-VNE
demonstrates the optimal results in terms of most performance
metrics.

In contrast to the results presented in Figs. 8 and Fig. 9,
Fig. 10 presents the long-term outcomes of a proposed algo-
rithm and provides a comparison with existing VNE algo-
rithms in the ISP network. Fig. 10(a) and (b) presents the

long-term average revenue and cost obtained up to 56 000
time steps. The HCMARL-VNE algorithm, as proposed, out-
performs all other compared VNE algorithms in terms of
both revenue generation and cost efficiency. Specifically, the
algorithm achieves the highest revenue among all compared
algorithms, while also recording the lowest cost. In contrast,
the baseline algorithm performs the worst in terms of rev-
enue generation, while also having the highest cost among
all compared algorithms. The PN and A3C+GCN algorithms
exhibit similar revenue performance. However, A3C+GCN
demonstrates superior cost performance compared to PN. This
suggests that A3C+GCN may be a more cost-efficient solution
than PN, while still achieving comparable revenue outcomes.
To summarize once again, the proposed HCMARL-VNE algo-
rithm efficiently manages the allocation of physical resources
to VNRs while embedding virtual nodes using potentially
shorter paths. These results obtained can be also validated at
Fig. 10(c), which provides a long-term perspective of the R/C
ratio for the four VNE algorithms. The efficient use of CPU
and bandwidth resources makes the proposed HCMARL-VNE
algorithm the best choice in terms of R/C ratio.

In Fig. 10(d), we also compare the long-term acceptance
ratio of the proposed algorithm with existing VNE algorithms.
For all the algorithms under consideration, the initial accep-
tance ratio is initially high, as the substrate network has
sufficient resources available to embed a large number of
VNRs. However, as time goes by, it often happens that VNRs
waiting in the queue cannot be embedded due to insufficient

8566 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 11. Results of ablation studies of without-HL, without-mixing network, and HCMARL-VNE. (a) Long-term average revenue results. (b) Long-term
average cost results. (c) Long-term average R/C ratio results. (d) Long-term average acceptance ratio results.

resources, so the acceptance ratio gradually decreases, and
after some time, it converges to a certain value based on
the performance of each algorithm. As also shown in the
figure, the proposed HCMARL-VNE algorithm exhibits the
best performance in terms of the acceptance ratio. Because it
allocates the CPU and bandwidth resources efficiently, it can
embed more VNRs than others VNE algorithms. We assert
that the reason for this outcome is attributed to the effective
learning of the HL agent, enabling it to strategically per-
form the “Postponing” action for a waiting VNR. Furthermore,
the cooperation between multiple HL agents in selecting
VNRs to be embedded also contributes to achieving optimal
results.

C. Ablation Study

In this section, we show how effective the HRL and MARL
used in HCMARL-VNE are in improving the performance
of the VNE algorithm in an explicit manner. We imple-
ment two comparative versions of HCMARL-VNE. The first
one is “without-HL,” which just uses the LL single agent.
This algorithm treats all VNRs equally and allows agents to
process VNRs with the highest revenue first, ignoring the long-
term impact of each VNR embedding. The second one is a
“without-mixing network,” which still uses the HL agents,
but does not utilize the mixing network designed for coop-
eration in the training of the HL agents. This removes the
part where each agent comprehensively evaluates the actions
selected by others through a mixing network for cooperation
during training.

The results are shown in Fig. 11, which clearly demon-
strates that the proposed scheme outperforms the two com-
parative versions of it in terms of all performance metrics.
Furthermore, it indicates that the performance is significantly
lower when using only the LL single agent. Additionally, it
shows the beneficial impact of having multiple HL agents
on overall performance, even in the absence of the mixing
network.

VI. CONCLUSION

The study proposes a new approach called HCMARL-VNE
to efficiently solve the VNE problem through hierarchi-
cal cooperative MARL. This approach is novel and aims
to improve upon existing methods for addressing the VNE
problem. It divides the VNR embedding task into two lev-
els of agents: 1) HL agent and 2) LL agent. The HL agent’s
role is to choose the most feasible VNR from the waiting
queue with the highest long-term revenue potential. The LL
agent’s responsibility is to embed the selected VNR onto
the substrate network while taking into account the embed-
ding cost. This hierarchical approach aims to improve the
efficiency and effectiveness of VNR embedding. The simu-
lation results demonstrate that HCMARL-VNE outperforms
existing VNE algorithms in terms of long-term revenue, R/C
ratio, acceptance ratio, and reduced long-term cost. These
results suggest that HCMARL-VNE has the potential to pro-
vide significant improvements in VNR embedding efficiency
and cost-effectiveness. Therefore, the proposed HCMARL-
VNE has the potential to efficiently allocate network resources

LIM et al.: VIRTUAL NETWORK EMBEDDING BASED ON HIERARCHICAL COOPERATIVE MARL 8567

for various VNRs from SPs. This could be a significant con-
tribution to NS and NV, especially in the context of the
expanding 5G network and IoT market. As a future research
direction, HCMARL-VNE could be extended by incorporating
an explicit RL-based optimal path algorithm to further enhance
the performance of link embedding. Additionally, we will fur-
ther enhance the performance of the algorithm and address the
issue of long learning time.

REFERENCES

[1] J. A. Stankovic, “Research directions for the Internet of Things,” IEEE
Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[2] I. Alam et al., “A survey of network virtualization techniques for Internet
of Things using SDN and NFV,” ACM Comput. Surveys, vol. 53, no. 2,
pp. 1–40, 2020.

[3] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-
oriented network virtualization toward convergence of networking and
cloud computing,” IEEE Trans. Netw. Service Manag., vol. 9, no. 4,
pp. 373–392, Dec. 2012.

[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[5] X. Li, C. Guo, J. Xu, L. Gupta, and R. Jain, “Towards efficiently
provisioning 5G core network slice based on resource and topology
attributes,” Appl. Sci., vol. 9, no. 20, p. 4361, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/20/4361

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.

[7] X. Cheng et al., “Virtual network embedding through topology-aware
node ranking,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 2,
pp. 38–47, 2011.

[8] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
the degree and clustering coefficient information,” IEEE Access, vol. 4,
pp. 8572–8580, 2016.

[9] M. Feng, L. Zhang, X. Zhu, J. Wang, Q. Qi, and J. Liao, “Topology-
aware virtual network embedding through the degree,” in Proc. Nat.
Doctoral Acad. Forum Inf. Commun. Technol., 2013, pp. 1–6.

[10] Z. Wang, Y. Han, T. Lin, H. Tang, and S. Ci, “Virtual network embedding
by exploiting topological information,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2012, pp. 2603–2608.

[11] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc.
IEEE Conf. Comput. Commun., 2014, pp. 1–9.

[12] H. Cao, Y. Zhu, L. Yang, and G. Zheng, “A efficient mapping
algorithm with novel node-ranking approach for embedding virtual
networks,” IEEE Access, vol. 5, pp. 22054–22066, 2017.

[13] S. Haeri and L. Trajković, “Virtual network embedding via monte
carlo tree search,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 510–521,
Feb. 2018.

[14] I. Ullah, H.-K. Lim, and Y.-H. Han, “Ego network-based virtual network
embedding scheme for revenue maximization,” in Proc. Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC) 2021, pp. 155–160.

[15] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[16] L. Wang, H. Qu, J. Zhao, and Y. Guo, “Virtual network embedding with
discrete particle swarm optimisation,” Electron. Lett., vol. 50, no. 4,
pp. 285–286, 2014.

[17] K. T. Nguyen and C. Huang, “Distributed parallel genetic algorithm for
online virtual network embedding,” Int. J. Commun. Syst., vol. 34, no. 4,
2021, Art. no. e4691.

[18] P. Zhang, Y. Hong, X. Pang, and C. Jiang, “VNE-HPSO: Virtual
network embedding algorithm based on hybrid particle swarm
optimization,” IEEE Access, vol. 8, pp. 213389–213400, 2020.

[19] L. Boyang, W. Muqing, and Z. Haosen, “Virtual network embedding
based on hybrid adaptive genetic algorithm,” in Proc. IEEE 5th Int.
Conf. Comput. Commun. (ICCC), 2019, pp. 1197–1202.

[20] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang,
“Distributed virtual network embedding system with historical archives
and set-based particle swarm optimization,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 51, no. 2, pp. 927–942, Feb. 2021.

[21] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[22] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[23] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing,
vol. 284, pp. 1–9, Apr. 2018.

[24] M. He, L. Zhuang, S. Tian, G. Wang, and K. Zhang, “Multi-objective
virtual network embedding algorithm based on Q-learning and curiosity-
driven,” EURASIP J. Wireless Commun. Netw., vol. 2018, no. 1,
pp. 1–12, 2018.

[25] S. Wang, J. Bi, J. Wu, A. V. Vasilakos, and Q. Fan, “VNE-TD:
A virtual network embedding algorithm based on temporal-
difference learning,” Comput. Netw., vol. 161, pp. 251–263,
Oct. 2019.

[26] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “Evolutionary
actor-multi-critic model for VNF-FG embedding,” in Proc.
IEEE 17th Annu. Consum. Commun. Netw. Conf. (CCNC) 2020,
pp. 1–6.

[27] Y. Yuan, Z. Tian, C. Wang, F. Zheng, and Y. Lv, “A Q-learning-based
approach for virtual network embedding in data center,” Neural Comput.
Appl., vol. 32, no. 7, pp. 1995–2004, 2020.

[28] H. Afifi and H. Karl, “Reinforcement learning for virtual network
embedding in wireless sensor networks,” in Proc. 16th Int.
Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), 2020,
pp. 123–128.

[29] C. Wang et al., “Modeling on virtual network embedding using rein-
forcement learning,” Concurr. Comput. Pract. Exp., vol. 32, no. 23,
2020, Art. no. e6020.

[30] D. Andreoletti, T. Velichkova, G. Verticale, M. Tornatore, and
S. Giordano, “A privacy-preserving reinforcement learning algorithm for
multi-domain virtual network embedding,” IEEE Trans. Netw. Service
Manag., vol. 17, no. 4, pp. 2291–2304, Dec. 2020.

[31] S. Zhang, C. Wang, J. Zhang, Y. Duan, X. You, and P. Zhang, “Network
resource allocation strategy based on deep reinforcement learning,” IEEE
Open J. Comput. Soc., vol. 1, pp. 86–94, 2020.

[32] M. Elkael, M. A. Aba, A. Araldo, H. Castel-Taleb, and B. Jouaber,
“Monkey business: Reinforcement learning meets neighborhood search
for virtual network embedding,” Comput. Netw., vol. 216, Oct. 2022,
Art. no. 109204.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[34] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph con-
volutional networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6,
pp. 1040–1057, Jun. 2020.

[35] A. Rkhami, T. A. Q. Pham, Y. Hadjadj-Aoul, A. Outtagarts, and
G. Rubino, “On the use of graph neural networks for virtual network
embedding,” in Proc. Int. Symp. Netw., Comput. Commun. (ISNCC),
2020, pp. 1–6.

[36] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu, “Dynamic vir-
tual network embedding algorithm based on graph convolution neural
network and reinforcement learning,” IEEE Internet Things J., vol. 9,
no. 12, pp. 9389–9398, Jun. 2022.

[37] J. Cheng, Y. Wu, Y. Lin, E. Yuepeng, F. Tang, and J. Ge, “VNE-HRL:
A proactive virtual network embedding algorithm based on hierarchical
reinforcement learning,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 4, pp. 4075–4087, Dec. 2021.

[38] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slicing
in 5G using multi-agent correlated Q-learning,” in Proc. IEEE 32nd
Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), 2021,
pp. 1179–1184.

[39] M. Sulaiman, A. Moayyedi, M. Ahmadi, M. A. Salahuddin, R. Boutaba,
and A. Saleh, “Coordinated slicing and admission control using multi-
agent deep reinforcement learning,” IEEE Trans. Netw. Service Manag.,
vol. 20, no. 2, pp. 1110–1124, Jun. 2023.

[40] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
Web search engine,” Comput. Netw., vol. 30, pp. 107–117, Apr. 1998.
[Online]. Available: http://www-db.stanford.edu/ backrub/google.html

[41] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Proc. Adv. Neural Inf. Process. Syst., vol. 29,
2016, pp. 1–18.

[42] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing explo-
ration in reinforcement learning with deep predictive models,” 2015,
arXiv:1507.00814.

[43] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” 2015,
arXiv:1506.03134.

8568 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

[44] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” 2016. arXiv:1602.01783.

[45] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum,
“Hierarchical deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 29, 2016, pp. 1–9.

[46] Y. Ma et al., “A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems,” in
Advances in Neural Information Processing Systems, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds. Red Hook, NY, USA:
Curran Assoc., 2021.

[47] A. S. Vezhnevets et al., “FeUdal networks for hierarchical reinforcement
learning,” 2017, arXiv:1703.01161.

[48] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
Reinforcement Learning and Control. Studies in Systems, Decision and
Control. Cham, Switzerland: Springer, 2021, pp. 321–384.

[49] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” Appl. Intell., vol. 53, pp. 13677–13722,
Oct. 2022.

[50] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor–critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 6382–6393.

[51] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 2145–2153.

[52] P. Sunehag et al., “Value-decomposition networks for cooperative multi-
agent learning,” 2017, arXiv:1706.05296.

[53] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Monotonic value function factorisation for deep multi-
agent reinforcement learning,” J. Mach. Learn. Res., vol. 21, no. 1,
pp. 7234–7284, 2020.

[54] D. Ha, A. M. Dai, and Q. V. Le, “HyperNetworks,” in Proc. Int. Conf.
Learn. Represent., 2017, pp. 1–18.

[55] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

Hyun-Kyo Lim received the B.S. degree in com-
puter science and engineering and the M.S. degree in
computer science engineering from Korea University
of Technology and Education, Cheonan, South
Korea, in 2015 and 2017, respectively, and the Ph.D.
degree from the Department of Interdisciplinary
Program in Creative Engineering, Korea University
of Technology and Education, in 2022.

Since 2022, he has been a Postdoctoral Researcher
with the Future Convergence Engineering, Korea
University of Technology and Education. He stud-

ied mobility management during his master’s course and he especially
researched distributed mobility management in software-defined networking.
He is studying deep learning and reinforcement learning during his doctoral
and postdoctoral studies. He is also exploring ways to apply deep learning
and reinforcement learning to the network and is working on applying deep
learning and reinforcement learning to a variety of applications.

Ihsan Ullah received the B.S. and M.S. degrees in
computer science from the University of Peshawar,
Peshawar, Pakistan, in 2001 and 2004, respectively,
and the Ph.D. degree in computer engineering from
Sungkyunkwan University, Suwon, South Korea, in
2019.

From September 2019 to August 2020, he
was a Postdoctoral Research Fellow with the
Ubiquitous Computing Technology Research
Institute, Sungkyunkwan University. Since 2020,
he has been a Research Professor with the School

of Computer Science and Engineering, Korea University of Technology
and Education, Cheonan, South Korea. His research interests include data
aggregation, data fusion, virtual network embedding, network slicing (5G),
Internet of Things, artificial intelligence, deep reinforcement learning, and
cloud computing.

Ju-Bong Kim received the B.S. degree, the M.S.
degree, and the Ph.D. degree in computer engi-
neering from Korea University of Technology and
Education, Cheonan, South Korea, in 2017, 2019,
and 2022, respectively.

Since 2022, he has been a Postdoctoral Researcher
of Computer Engineering with Korea University
of Technology and Education. He has been con-
tinuously conducting research applying deep rein-
forcement learning to various applications, such as
machine autonomous control, financial portfolios,

and smart factory since 2017. Particularly, during his doctoral studies, he
focused on research aimed at enhancing the exploration performance of agents
in multiagent reinforcement learning.

Youn-Hee Han (Member, IEEE) received the B.S.
degree in mathematics and the M.S. and Ph.D.
degrees in computer science and engineering from
Korea University, Seoul, South Korea, in 1996, 1998,
and 2002, respectively.

From 2002 to 2006, he was a Senior Researcher
with the Next Generation Network Group, Samsung
Advanced Institute of Technology, Suwon, South
Korea. Since 2006, he has been a Professor with the
School of Computer Science and Engineering, Korea
University of Technology and Education, Cheonan,

South Korea. He also served as a Visiting Professor with the Department
of Computer Science, State University of New York at Albany, Albany,
NY, USA, from September 2013 to January 2015. Since 2002, his activ-
ities have focused on mobility management, media-independent handover,
and cross-layer optimization for efficient mobility support. He has published
approximately 270 research articles on the theory and application of mobile
computing and has led 45 patents regarding the information and communica-
tion technology domain. He is currently very interested in artificial intelligence
technology, especially reinforcement learning, and he has been in charge of
many research projects regarding improving the performance of reinforce-
ment learning algorithms for various fields, such as intelligent networking on
5G and 6G, Internet of Things, economics, and financial engineering. He has
made several contributions to IETF and IEEE standardization. He actively par-
ticipated in the IEEE 802.21 Working Group and was also an author of IETF
RFC 5181, RFC 5270, and RFC 7864. His current research interests include
the theory and application of computer networks, including protocol design
and mathematical analysis, mobile sensor/actuator networks, social network
analysis, machine learning, deep learning, and reinforcement learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

