
7724 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

GPU and VPU Enabled Virtual Mobile
Infrastructure for 3-D Image Rendering

and Its Application in Telemedicine
Zhipeng Fu , Jun Zhou, Wanpeng Xu, Changguo Guo, and Qingbo Wu

Abstract—Telemedicine for 3-D images on mobile devices
presents promising development opportunities. Being constrained
by computing power and storage capacity on mobile devices,
the processing performance of 3-D medical images is insufficient
for more demanding tasks. Using virtual mobile infrastructure
technology to utilize cloud resources is a common solution.
But it encounters the challenge of poor performance in data
transmission, image rendering and image coding. This article
presents a graphics processing unit (GPU) and video process unit
(VPU) enabled open virtual mobile infrastructure (OpenVMI)
for 3-D image rendering to solve the challenge. It makes two
improvements. First, a bespoke GPU driver is developed in the
Android Docker, optimizing the transmission workflow for data
transmission and image rendering. Second, a VPU is added
to the hardware layer to code rendered results in H.264 for-
mat, replacing CPU coding which consumes a large amount
of CPU resources. By adopting the OpenVMI, the telemedicine
training system proposed in this article presents an easy-to-set
up, cheap and low-latency solution that is particularly helpful
for telemedicine training in remote and underdeveloped areas.
Performance experiments suggest that the OpenVMI delivers bet-
ter performance than existing state-of-the-art systems, even in
mobile devices with weaker hardware capabilities. Concurrency
experiment suggests that a single host server can support up
to 24 concurrent training sessions, which makes the OpenVMI
very helpful for telemedicine training that demands high concur-
rency. The OpenVMI-based solution proposed in this article is
not restricted to the use of telemedicine training, but also suitable
for other application areas, such as virtual reality and augmented
reality in mobile environments.

Index Terms—3-D image, graphic rendering, graphics process-
ing unit (GPU), mobile device, telemedicine, video process unit
(VPU), virtual mobile infrastructure (VMI), virtual reality(VR).
video process unit (VPU).

Manuscript received 24 January 2023; revised 16 May 2023 and 23 August
2023; accepted 11 September 2023. Date of publication 18 September 2023;
date of current version 21 February 2024. This work was supported in part
by the Key-Area Research and Development Program of Guangdong Province
under Grant 2020B010166001; in part by the Major Program of Guangdong
Basic and Applied Research under Grant 2019B030302002; and in part by
the Major Research and Development Program of PCL, China, under Grant
PCL2021A09. (Corresponding authors: Jun Zhou; Wanpeng Xu.)

Zhipeng Fu, Wanpeng Xu, and Qingbo Wu are with Industrial Internet of
Things Research Institute, Department of New Pattern Network, Peng Cheng
Laboratory, Shenzhen 518055, China (e-mail: zhipengfu518@gmail.com;
Xuwanpengg@gmail.com; qingbo.wu@pcl.ac.cn).

Jun Zhou is with Industrial Internet of Things Research Institute,
Department of New Pattern Network, Peng Cheng Laboratory, Shenzhen
518055, China, and also with the School of Computer Science and
Engineering, Sun Yat-sen University, Guangzhou 510006, China (e-mail:
izhoujun@163.com).

Changguo Guo is with Yuzhou Big Data Laboratory, Chongqing 400050,
China, and also with the Advanced Institute of Big Data, Beijing 100195,
China (e-mail: guochangguo@yzbdl.ac.cn).

Digital Object Identifier 10.1109/JIOT.2023.3316698

I. INTRODUCTION

MEDICAL resources in China are unequally distributed
and skills of medical professionals in remote areas

often lag behind their urban peers. Medical staff from
renowned hospitals often participate in exchange programs
and go on secondments in less developed areas. These solu-
tions are temporary and they require physical traveling, which
may not be feasible during difficult times, such as pandemic
outbreaks.

Telemedicine solutions, such as remote consultation,
are commonly used to overcome these geographical con-
straints [1], [2]. Facilitated by advancements in technologies,
such as artificial intelligence (AI), the fifth generation of wire-
less networks (5G) [3] and the Internet of Things (IoT), med-
ical staff can also engage in more advanced implementations,
such as telesurgery and teleimaging [2]. Using telemedicine
training as an example, the scope of training is no longer
restricted to static data and images. Analysis of data of various
dimensions, ranging from treatment records to complex time-
varying 3-D image results also becomes feasible thanks to
breakthroughs in information technology [4], [5], [6], [8] that
offers large storage capacity and high-performance computing
power required by advanced telemedicine solutions [9].

Additionally, doctors increasingly rely on the use of smart-
phones and tablets in their work for the flexibility and
portability of mobile devices [10], [11], [12], [13]. As a result,
there is also a growing demand for telemedicine on mobile
devices [5], [6]. Despite significant improvements in com-
puting power in recent years, the processing performance of
complex data on mobile devices is still not sufficient for more
demanding tasks [12], [14], [15], [16], such as 3-D scans of
human organs and blood vessels in real time. The seamless dis-
play of medical 3-D images in mobile environments therefore
becomes a key challenge in the development of telemedicine.

A possible workaround is the use of virtual mobile infras-
tructure (VMI) technology, which refers to a client-server
framework with a Virtual Mobile Operating System running on
a cloud-based server [17]. Users can access the virtual system
remotely from their local mobile devices. The telemedicine
application will be initiated in the cloud and displayed on
various mobile devices via wire/wireless transmission. In this
way, all the computation of the medical 3-D images will be
implemented in the cloud and the mobile device is used for
display and interactions only. This workaround makes use of
the high-performance computing capacity and large storage

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0383-7602
https://orcid.org/0009-0001-9102-9890

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7725

capability of the cloud servers. It provides an easy, low-cost
and convenient solution for telemedicine systems that work
with 3-D images in mobile environments.

But existing VMI solutions have three problems impeding
the system performance.

1) There are high-transmission delays that slow down
image rendering.

2) There is a lack of commercially developed graph-
ics processing unit (GPU) drivers adapted for mobile
environments to invoke cloud GPU resources directly.

3) The coding capacity of open-source drivers is not suffi-
cient for implementing image rendering and data coding
at the same time.

This article proposes the open virtual mobile infrastructure
(OpenVMI), a VMI-based solution specifically designed for
the display of interactive 3-D images in mobile environments.
To reduce transmission delays and the consumption of CPU
resources, the OpenVMI solution makes two major improve-
ments upon typical VMI systems. This includes developing
a bespoke GPUs driver to invoke GPU resources directly for
rendering, eliminating multiple stages of instruction translation
between OpenGL ES and OpenGL. Also, a video process unit
(VPU) is added to the hardware layer to code rendered results
in H.264 format, replacing CPU coding which consumes a
large amount of CPU resources.

The contributions of this article are the followings.
1) An improved VMI solution specifically designed for

the display of 3-D images in mobile environments, the
OpenVMI, is proposed. The OpenVMI achieves better
performance than existing VMI solutions by integrating
the CPU, GPU, and VPU.

2) In order to reduce transmission delays, a bespoke GPU
driver is developed for Android Docker to invoke GPU
directly.

3) A VPU is added to replace CPU to code rendered results.
4) The OpenVMI is used in a real-life telemedicine training

application.
The rest of this article is organized as follows. Section II

reviews the current literature. Section III introduces the struc-
ture and workflow of the OpenVMI. The improvements
made in the OpenVMI are detailed in Section IV. An
implementation of the OpenVMI, the Telemedicine Training
System, is introduced in Section V, followed by experi-
ments of performance comparison and device concurrency
in Section VI. Section VII discusses system features, lim-
itations and development prospects. Conclusion is made in
Section VIII.

II. LITERATURE REVIEW

A. Telemedicine Applications on Mobile Devices

Telemedicine application on mobile devices has been grow-
ing in popularity in recent years [18], [20], [21], [22], [23],
[24], [25], [40]. They are advantageous since the mobile
devices act as a portable and widely accessible health data
collector to assist point-of-care (POC) diagnostics, offering an
alternative to laboratory-based medical experiments [23].

Current POC applications on mobile devices cover a wide
range of medical specialties. It is particularly useful dur-
ing the Covid-19 pandemic for contact tracing and remote
healthcare monitoring [1], [2], [26], [27], [28]. For example,
Vedaei et al. [26] used an IoT health tracking node that notifies
users to maintain a safe physical distance during the pandemic.

To obtain more comprehensive health data, one commonly
adopted method is to wear a tracker on the human body
that keeps tracking human activities and sending data to the
mobile application. For example, Nornaim et al. [27] proposed
an IoT-based electrocardiograph (ECG) monitoring system,
enabling users to monitor their ECG signals and share data
with their caretaker and physician from the mobile applica-
tion. Latha et al. [20] presented the wireless body area network
(WBAN), which monitors blood viscosity, blood pressure and
blood sugar level in real time, enabling doctors to respond to
emergencies promptly. Angelucci et al. [3] presented a contin-
uous home telemonitoring system, which features a wearable
respiratory and activity monitor, an environmental sensor and
a pulse oximeter. The monitoring system sends tracked data
through a fifth generation of wireless network (5G) smart-
phone to a multiedge computing server. Guo [29] used the
smartphone to power a medical dongle that analyzes blood
glucose or uric acid from a test strip.

Apart from wearing an external tracker, there are also
attempts to utilize the built-in sensors and hardware in a
mobile device. This approach often relies on machine learning
to assist diagnosis. Lauraitis et al. [30] presented a smart-
phone application to examine central nervous system motor
disorders in patients suffering from Huntington’s, Alzheimer’s,
and Parkinson’s diseases. A patient will be asked to touch
designated positions on the screen and the trajectory data
is evaluated by a back-propagation neural network classifier.
Results will be used as a support for the patient’s medical
evaluation. Qi et al. [31] utilized the inertial sensors in a smart-
phone to monitor human activities. The collected data will be
subsequently analyzed by AI.

The camera of a mobile device can be used to acquire
medical image data. Askarian et al. [24] presented a cataract
detecting approach that uses a smartphone to capture the
patients’ eye images. Gong et al. [32] used a smartphone to
catch retinal images for teleophthalmology. Zhang et al. [33]
used the smartphone to recapture the scoliosis radiograph
images.

Mobile device can also be used as a voice acquirer. Hoyos-
Barceló et al. [34] presented a smartphone-based cough detec-
tor that uses a smartphone as a voice catcher to acquire audio
signal. Cheffena [35] developed an automated fall detection
system based on audio features.

Apart from being a data acquirer, mobile devices are used
as a display device. For example, the MobileHeart application
supports patients with ischemic heart disease by displaying
a patient’s prescribed exercise programs and helping to track
the patient’s medication adherence [36]. Estai et al. [18], [19]
developed a cloud-based store-and-forward telemedicine plat-
form called “Remote-I,” allowing the access of dental images
remotely on an Android application. Similarly, Liu et al. [37]

7726 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

proposed a smart dental health-IoT system that supports AI
analysis of dental images in the cloud.

B. Image or Video Processing in Mobile Environments

Existing mobile telemedicine applications use mobile
devices simply as a data collector and an information display
because of their constraints in computing and storage capabil-
ities. When more complicated data types, such as streaming
data, are acquired via mobile devices, the task of further
data processing is often delegated to desktop computers with
more powerful CPUs and GPUs or cloud servers instead. For
example, Guo et al. [38] attempted to improve 3-D face recon-
struction by utilizing an iPhone X to capture RGB-D images.
The data processing task is completed on a desktop PC with
the help of GPU computing. Schwartz et al. [14] hoped to use
deep learning to provide an alternative to existing image signal
processor (ISP) in mobile devices. The camera image process-
ing pipeline they proposed handles tasks, such as demosaicing,
denoising, and color correction. However, their solution is
desktop-based and relies on the TITAN X graphics card. In
terms of video data, mobile devices may struggle even with
low-level tasks. Nie et al. [39] aimed to improve the qual-
ity of videos captured by hand-held mobile devices, but the
video-stitching task is not handled on mobile devices.

There is also a problem of transmitting a large amount of
data. One of the solutions is to optimize the data selection
process. For better data quality assessment, Korhonen [41]
proposed a two-level approach that preselects videos based on
low-complexity features in the first level, reducing the amount
of data processing in the subsequent level. Wu et al. [12]
attempted to improve the data transmission process by setting
up a set of criteria for the metadata of smartphones, enabling
the cloud servers to select photographs that are most useful to
upload.

Apart from improving the data selection process,
Minseok et al. [42] adopted the mobile ad hoc cloud
technology, which connects multiple mobile devices together
to create a virtual supercomputing node. An individual mobile
device can thus have access to the high-processing power and
large storage space on the cloud.

C. VMI Solutions

VMI technology provides another promising solution to
overcome problems of limited computing power in mobile
devices. There are many attempts to improve performance in
VMI-based solutions.

Liu et al. [43] presented a lightweight VMI platform named
cMobiDesk which employs Linux Container to build multiple
Android containers by leveraging a noninvasive method to
avoid modifying the source code of the mobile OS.

In order to improve the energy-efficiency ratio of VMI
system. Anastasopoulos et al. [44] presented a stochastic-
programming-based problem formulation that minimizes the
VMI energy consumption and satisfies QOS specifications.

For communication problems between identical applications
on the local device and the remote VMI server after the same
apps are being installed separately, Wang et al. [45] proposed

a unified application model named FUSION which classi-
fies inter process communication (IPC) events into two types:
1) the IPC events without accessing local resources and 2) the
IPC events accessing local resources.

For problems of large-scale services producing more socket
system calls and greater network bridge CPU loads in the
VMI system, Choi and Hong [46] proposed an improved
Linux kernel-based virtual machine (KVM) hypercall scheme,
which reduces the host machine’s workload on data exchange,
allowing the operation of more guest machines.

In order to improve VMI performance, Su et al. [10]
designed a VMI-based solution named vMobiDesk, which
optimizes the network transfer mechanisms for the display
of virtualized data. The solution redirects users’ input events
and supports remote audio and camera function with low-
virtualization overhead.

Existing VMI-based solutions mainly focus on improving
the transmission performance of the VMI [10], [45], [46].
Studies on the rendering and processing of 3-D images in
mobile environments have been scarce mainly because of the
difficulties in utilizing GPU directly in mobile devices. First,
GPU manufacturers have yet to provide commercial drivers for
mobile environments. Therefore, most image rendering tasks
are still finished on a server or PC workstation. Second, exist-
ing open-source drivers are not sufficient for implementing
image rendering and image coding at the same time.

Among open-source VMI software, the popular ones include
Anbox,1 Waydroid,2 and Robox.3 Anbox meaning “Android
in a box,” runs an Android under the GNU/Linux by using the
container technology. The first version of anbox was released
in April 2017 and the last version in February 2023. Anbox
is no longer actively developed. The limitation of anbox is
that, as a desktop application, only one anbox can run under
a single GNU/Linux system. It works almost like an Android
emulator, and it does not support the use of the GPU on the
host computer.

Waydroid, first released in September 2021, is another
container-based Android emulator-like desktop VMI software
under GNU/Linux. Waydroid is superior to anbox in terms of
system performance and hardware compatibility. Nonetheless,
Waydroid does not support the Nvidia GPU and a large number
of the AMD GPUs, such as AMD RX6800.

Robox, first released in April 2018, is built upon anbox and
co-developed by Huawei and Linaro,4 the latter being an inter-
national organization that develops Arm-based software and
aims to foster the Arm software ecosystem. Robox improves
upon anbox by introducing extra features like Arm-supporting
function and multi-instance virtualization function. Similar to
anbox and waydroid, the use of the host server GPU is not sup-
ported by robox. Its commercial version, monbox, released in
February 2020 by Huawei,5 supports the use of the host GPU,
but since it is proprietary, its access and testing are unavailable
publicly.

1https://github.com/anbox/anbox
2https://github.com/waydroid/waydroid
3https://github.com/lag-linaro/robox
4https://www.linaro.org/
5https://www.huaweicloud.com/special/free-yunshouji-xsms.html

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7727

D. VDI Solutions Using GPUs

In contrast to existing VMI-based solutions that seldomly
use GPU acceleration, virtual desktop infrastructure (VDI)
solutions have been relying on cloud-based GPU to handle
complicated rendering tasks, providing valuable insights into
the use of GPU acceleration in VMI-based implementations.
For example, Bentele et al. [47] summarized four approaches
of virtualizing GPUs for virtual machines and presents a solu-
tion of GPU-accelerated open source VDI for OpenStack.
Wan et al. [48] presented a VDI framework that invokes
GPU-accelerator in the graphics hardware abstraction layer.
Fornito et al. [49] proposed an infrastructure-as-code method
that treats the GPU resource as software and presents a GPU-
enabled VDI to provide media service in the cloud. In order to
provide cheap GPU service for virtual reality (VR) and aug-
mented reality (AR), Wu et al. [50] presented a VDI-based
render farm platform that uses the VMware Horizon Client to
provide 32 core vCPU, 8 GB of vGPU and 50 GB of RAM for
each virtual desktop. The CMA Meteorological Observation
Center [51] provides VDI system that contains NVIDIA vGPU
to meet demand for 3-D modeling and CUDA computing.

Empirical studies show that GPU acceleration leads to
better system performance. Li et al. [52] presented a GPU-
accelerated VDI-based platform for better teaching experience
on a virtual desktop. In their comparison of three virtualiza-
tion technologies with or without GPU for graphics computing
acceleration, the cloud service performance improved signifi-
cantly by using GPU accelerator. Empirical results of another
study conducted by Chang et al. [53] further supported this
finding. Dong et al. [54] compared VDI capabilities on graph-
ics processing for video playback tasks with or without GPU-
virtualization. The result shows that when GPU-virtualization
is enabled, VDI even with the lowest specification can deliver
videos of excellent quality to end-users.

III. OPENVMI SYSTEM

Inspired by the development of VDI, mobile developers
are also trying to develop applications on the cloud, which
has prompted the rise of VMI. The key feature of VMI is
that multiple virtualized mobile operating systems, such as
Android, are created in the cloud using virtualization tech-
nology. After signing in to the cloud-based virtual operating
system, a mobile client device can perform the normal func-
tions expected in a smartphone. The key difference between a
virtualized cloud-based smartphone and a localized system is
that the local device is used only for display and interaction
in VMI-based implementation. Applications are stored and run
in the cloud. Using a VMI-based solution in mobile environ-
ments has the advantages of high security, high convenience
and high portability, which makes it increasingly popular in
recent years [55], [56]. Inspired by this and built upon the
current anbox system, we developed our own VMI software,
called the OpenVMI (the OpenVMI), to solve the 3-D medical
image rendering problem in telemedicine.

A. Structure of the OpenVMI

Until now, existing VMI schemes use KVM [10], [45],
[46], VirtualBox [10], Xen [10], or Linux Container [43],

Fig. 1. Structure of the OpenVMI.

few use Docker. This article adds multi-instance binder
(the service process used for different Android processes
to communicate with each other) and Ashmem (anonymous
shared memory, which is used for Android system to share
memory) to the Linux kernel in the cloud operating system
to support the Android operating system inside the Docker
container.

The structure of the OpenVMI system consists of six layers
as illustrated in Fig. 1. From top to bottom, these are the client
SDK layer, the Android Docker layer, the K8S cloud layer, the
DockDroid layer, the Cloud Operating System layer and the
hardware server layer. The detailed functions of the Client
SDK layer, the Android Docker layer, the DockDroid layer
and the Cloud Operating System layer are as follows.

1) Client SDK Layer: The OpenVMI can be accessed
under Android, the iPhone IOS and smart display with
HTML5(H5) system. Therefore the OpenVMI mainly provides
three types of client SDK to connect to the server, including
the Android SDK, IOS SDK, and H5 SDK as shown in Fig. 1.
If a user uses an Android smartphone to access the OpenVMI,
then the client application of the OpenVMI of Android SDK
will be installed into the customer’s Android smartphone.

2) Android Docker Layer: The Android Docker layer,
shaded in orange in Figs. 1–3 and 5, consists of multiple
Android Dockers. The main function of Android Docker is to
provide an Android-like running environment, so that Android
application can run in this environment. In addition, Android
Docker also provides services to process different tasks like
rendering, streaming, coding and displaying. Each Android
Docker runs with four modules as illustrated in Fig. 2. These
are the Android App module, the Basic Service module, the
OpenGL ES module, and the Streaming and Coding module.

The OpenGL ES [57] module implements a subset of Open
GL [58] specifically pruned for embedded/mobile system. The
OpenGL ES API is a standard allowing individual and orga-
nizations to implement and import packages in the Android
operating system. The OpenVMI system implements it into
dynamic libGL_**.so DLLs.

7728 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 2. Module structure of the OpenVMI.

Fig. 3. Rendering workflow of data transmission in OpenVMI system.

The Streaming and Coding module, whose domain is
com.gray.boxstream, is mainly used to capture the rendered
result, encode it in H.264 format and send the encoded data
to the VMI client device.

3) DockDroid Layer: The DockDroid layer, shaded in
green in Figs. 1–3, consists of multiple DockDroid processes
that execute in this layer. Each DockDroid process matches
with one Android Docker in the Android Docker layer. This
module is responsible for receiving OpenGL ES instructions,
translating the instructions to OpenGL instructions, transmit-
ting data between Android Docker and the Cloud Operating
System, as well as enabling the Android application to invoke
hardware resources, such as GPUs for instruction execution.

4) Cloud Operating System Layer: The Cloud Operating
System layer, shaded in blue in Figs. 1–3, provides the basic
software environment. Typically, a GPU driver is installed in
this layer to execute various GPU computing tasks.

B. Workflow of the OpenVMI

For the typical OpenVMI system, the workflow of a ren-
dering task involves multiple layers and multiple modules.
Workflow process ①②③④⑤ in Fig. 3 shows the process of
image rendering in the typical OpenVMI-based system. When
an application requests for 3-D image rendering, the Android
Docker will load the render request in OpenGL ES instruc-
tions and send the instructions to DockDroid. DockDroid will

translate the instructions in OpenGL format and send the
instructions to GPU Driver for execution.

The rendered results are pixels in RGBA format. They will
be returned first back to DockDroid and subsequently back to
the OpenGL ES module in Android Docker. The Streaming
and Coding module then captures the rendered results frame
by frame at a rate of 60 fps. It encodes the results in H.264
format and sends them to the VMI client. This is shown as
workflow process ⑥-⑨ in Fig. 3.

IV. IMPROVEMENTS IN THE OPENVMI SYSTEM

GPU acceleration is often used in VDI-based solutions for
processing graphical data. However, there are still difficul-
ties in using GPU accelerator directly in VMI, constraining
the display of 3-D images in VMI. There are mainly three
challenges.

1) Current literature demonstrates that the performance
especially the transmission performance of existing VMI
is not good enough for image rendering.

2) There is a lack of commercially developed GPU drivers
adapted for mobile operating system, such as the
Android Operating System. Few GPU manufacturers
provide such adaptations. As a result, unlike VDI-based
implementation, applications in Android Docker cannot
invoke GPU resources directly.

3) For AMD GPU with open-source drivers, their coding
capacity is not sufficient to perform image rendering and
data coding at the same time.

To overcome the three challenges in the processing and
rendering of 3-D images in mobile environments, two impor-
tant improvements are elaborated. In order to evaluate the
effectiveness of each improvement, an experiment for each
improvement is conducted.

A. Direct GPU Invocation

The workflow of the typical OpenVMI system in Fig. 3
shows that the data transmission process involves multiple
layers and multiple modules, including the DockDroid layer,
the OpenGL ES module, and the Streaming and Coding mod-
ule in the Android Docker layer. Preliminary test data of the
unimproved VMI design showed a high-transmission delay,
possibly due to the multiple transmission nodes among differ-
ent modules in different layers. Too much data transmission
might also overburden CPU.

A possible improvement could be transmitting the rendered
results directly from DockDroid to the Streaming and Coding
module in Android Docker, thus reducing transmission nodes
involving the OpenGL ES module.

For further investigation, performance experiments of data
transmission, including OpenGL ES (INCLUDED) and trans-
mission omitting OpenGL ES (OMITTED), are performed.
The parameters of interest are frame per second (fps) of the
rendered results on display in a client device and CPU uti-
lization of DockDroid. The upper limit of fps is set at 60 fps.
Theoretically, the higher the value of fps and the lower the
rate of CPU utilization, the more desirable a scheme is. The
Huawei Kunpeng Dual-CPU Server is used, which includes

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7729

TABLE I
COMPARISON OF TWO DIFFERENT DATA TRANSMISSION SCHEMES

48*2 cores, 512-GB RAM, 480-GB SSD, 4000-GB SATA,
AMD Radeon W6800*2 GPU. The 96 CPU cores are serial-
ized from 0 to 95. The performance parameters are tracked
by Perfdog,6 an fps performance test and analysis tool. The
performance experiment is repeated separately for eight times
with different number of CPU cores assigned to Android
Docker and DockDroid.

The results of the experiment are detailed in Table I.
The number of CPU cores assigned to Android Docker and
DockDroid is detailed in column 2 and column 3, respectively.
The serial number of the CPU core used is specified within the
square bracket. For example, 2 [19, 20] means that two CPU
cores, namely, the Number 19 core and the Number 20 core,
are assigned to the process. Key observations from Table I are
as follows.

1) For the INCLUDED scheme, the maximum, mean and
minimum fps of the eight experiments are 51, 46.9, and
40 fps.

2) If converted to time taken to process a frame, the corre-
sponding time per frame are 19.6, 21.3, and 25 ms for
the INCLUDED scheme.

3) For the OMITTED scheme, the maximum, mean and
minimum fps are 59, 56.5, 50 fps.

4) If converted to time per frame, they correspond to 16.9,
17.7, 20 ms for the OMITTED scheme.

The fps of the INCLUDED scheme is consistently lower
than that of the OMITTED scheme by 8%-23% in the 8
experiments. If converted to time per frame, data transmis-
sion with OpenGL ES is slower than without OpenGL ES by
2.5–5 ms for each frame, which means each frame spends
an extra 2.5–5 ms on transmission through the OpenGL ES
module.

The last two columns in Table I show the CPU utilization
of Dockdroid, which is used to infer CPU consumption of
the OpenGL ES module, as the two are inversely related. The
amount of data processing is the same for both schemes in
DockDroid. Assuming the workload processed by DockDroid
as 1 unit of workload, then the amount of total workload the
CPU is burdened with is (1/CPU utilization of DockDroid). In
experiment No.1, this corresponds to 1.92 units of workload
(1/0.52 = 1.92) for the INCLUDED scheme, and 1.54 units

6https://perfdog.wetest.net/

of workload (1/0.65 = 1.54) for the OMITTED scheme. This
gives a workload difference of 0.38 units. In other words, the
CPU is about 25% more loaded in the INCLUDED scheme as
more data transmission tasks are involved. The INCLUDED
scheme consistently causes a greater amount of workload,
ranging between 0.06 to 0.74 more units of workload, over
the remaining seven experiments. The mean value of the
INCLUDED scheme’s extra workload is 0.338 units, corre-
sponding to about 25% more CPU workload of which is
consumed by the OpenGL ES module. The experiment sug-
gests that eliminating the OpenGL ES module thus reducing
the number of transmission nodes can significantly reduce
latency and CPU resource consumption.

Over the eight experiments, experiment No. 3 gives the
lowest fps value. This is because in the Huawei Kunpeng
server, every four CPU cores are grouped as one CPU cluster.
CPU core number 0–3 are grouped as one cluster and CPU
core number 4–7 are grouped as another cluster and so on.
CPU cores from the same cluster share one level 3 cache,
whose cache access is much quicker than cache in other levels.
In experiment No.3, three CPU cores, including core num-
ber 3, 4, and 5, are used by Android Docker. However, the
three CPU cores come from different clusters. Core number 3
comes from one cluster whereas core number 4 and 5 come
from another cluster. As a result, the three cores do not share
the same level 3 cache so that fps performance is compro-
mised. Furthermore, CPU core number 3 is shared between
Android Docker and DockDroid so that it is more loaded,
further undermining fps performance.

Further improvements could be directly invoking GPU
resources from Android Docker. This will reduce the num-
ber of transmission nodes as data no longer passes through
the DockDroid layer.

In classical design, render requests are sent to DockDroid
for instruction translation from OpenGL ES format into
OpenGL format that are recognizable by the GPU. After a
rendering task is being finished, rendered results in RGBA
format are sent by DockDroid to the Streaming and Coding
module in Android Docker.

Despite being simple and easy to set up, this compromised
solution not only results in higher transmission delays but
also undermines CPU performance, as extra CPU resources
are consumed during the translation process.

7730 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 4. Two different GPU invocation methods.

The instruction translation process is necessary due to an
absence of commercially developed Android GPU drivers,
preventing the Android environment from invoking GPU
resources directly. As such, a bespoke GPU driver is developed
and placed in Android Docker. The function of the bespoke
GPU driver is that it can let the GPU recognize the OpenGL
ES instruction and execute it directly in Android Docker.
This helps to eliminate the need for the DockDroid module
to translate the OpenGL ES instruction to OpenGL instruc-
tion. Instructions no longer need to pass through DockDroid.
The classical GPU invocation method involving DockDroid is
denoted as Scheme one where as the improved GPU invocation
method is denoted as Scheme two in Fig. 4. The data transmis-
sion workflow of the improved OpenVMI scheme is detailed
in Fig. 5. A render request goes through workflow process
①②③, and the returns of rendered results are illustrated by
workflow process ④⑤⑥.

B. VPU Coding

The hardware layer is capable of executing the render-
ing and coding of the rendered results. However, the coding
capability of the hardware is not utilized because existing
open-source GPU drivers are not powerful enough to handle a
coding task. Instead, CPUs are often assigned the task of data
coding. Under this arrangement, rendered results in RGBA for-
mat are sent from GPU to the Streaming and Coding module
in Android Docker, which encodes the data into H.264 for-
mat. This compromised solution overloads CPU significantly.
Preliminary analysis indicated that more than 90% of the CPU
capacity is occupied by the stream coding task.

To replace CPU coding, a VPU is added to the hardware
layer in the virtual server to code RGBA data into H.264
format, freeing up CPU resources for other tasks thus improv-
ing service performance. This improved workflow is shown as
workflow process ⑤ in Fig. 5.

Fig. 5. Improved rendering workflow after direct GPU invocation and VPU
coding.

TABLE II
COMPARISON OF CPU CODING AND VPU CODING

In order to compare the system performance between CPU
coding and VPU coding, an experiment of CPU and GPU uti-
lization with respect to different types of coding and different
server specifications is conducted. Two types of servers are
used, they are the Phytium server which has 64 cores in one
CPU and the Huawei Kunpeng dual-CPU server which has
48*2 cores. The CPU utilization is measured in terms of uti-
lization of a single CPU core. In Table II, the CPU utilization
reaches 165% for the Phytium 2000+ server and 108% for the
Kunpeng 920 server if the coding task is executed by the CPU,
meaning that the CPU coding task consumes more than one
CPU core. In contrast, VPU coding frees up significant CPU
resources so that its CPU utilization is 7–12 times lower than
CPU coding. The results of the experiment suggest that adopt-
ing VPU coding has reduced CPU consumption and improved
system performance significantly.

After the two improvements, the workflow of the improved
OpenVMI is illustrated as Fig. 5.

V. OPENVMI-BASED TELEMEDICINE TRAINING SYSTEM

The OpenVMI system is deployed in a real-life implemen-
tation, the Telemedicine Training System, which is designed
to live-stream telemedicine training for analyzing medical 3-D
images on mobile devices. The system supports low-latency
rendering of human bones, blood vessels and organs. It also
supports interactive functions, such as movements, rotations,
and scaling of medical images.

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7731

Fig. 6. Topological structure of the telemedicine training system.

A. Topological Structure of the System

The topological structure of the Telemedicine Training
System is shown in Fig. 6. It consists of an Intranet zone,
a demilitarized zone (DMZ), a mobile network zone and
multiple mobile clients. Unlike other telemedicine training
applications that connect the mobile devices directly to a
cloud server [25], [59], a DMZ is added to the Telemedicine
Training System for the virtualization of Android devices
in the cloud server. The training system is a layered struc-
ture, rather than a mesh-like structure that integrates multiple
applications, such as the system in Attila et al. [60] that
integrated the interconnection telemedicine systems, hospital
information systems, legacy health care systems, smart health
devices, and health-related smartphone-apps into a unified
service architecture.

The Intranet zone is where the servers of the training appli-
cation are located. Medical data of different types, such as
clinical records, CT/PET-CT imaging results, and MRI results,
is stored here.

The DMZ is mainly composed of cloud management servers
and virtual Android servers. The module structure of each
virtual Android server is as detailed in Fig. 1.

Clients refer to various mobile client devices that have the
VMI client application installed to access the training applica-
tion by connecting to the Mobile Network zone. They can be
smartphones, tablets, and smart displays. Each VMI training
service can connect to multiple VMI clients simultaneously.
For example, if three clients are online at the same time, one
will be the trainer client and the other two will be the trainee
clients. Demonstrations on the trainer client will be displayed
on the trainee clients in real time. Communication between the
VMI Client Application and the DMZ requires authentication.

To ensure security, the Intranet Firewall is located between
the Intranet zone and the DMZ to protect the servers of the
Telemedicine Training System. The Internet Firewall is located
between the DMZ and the Mobile Network zone to protect
both the DMZ and the Intranet zone. Additionally, the system
administrator can grant access only to mobile devices with
registered MAC addresses.

Fig. 7. Telemedicine training system UI can be displayed on multiple clients
at the same time, for example a smartphone and a smart display.

Fig. 8. Interface of the OpenVMI-based telemedicine training system.

The system UI can be displayed on multiple clients at the
same time. For example the UIs on a client smartphone and a
client smart display are shown in Fig. 7. An interface of the
Telemedicine Training System is shown in Fig. 8.

B. Achieved Functionalities That Are Hard to Achieve in
Normal Smartphone

By operating in a cloud-based virtual Android and being
accessed via the VMI client application installed in a physical
mobile device, the OpenVMI-based Telemedicine Training
System supports low-latency 3-D image rendering, which is
hardly achievable in a local training application. Movements,
rotation and scaling of medical images are rendered in real
time. The key features supported by the Telemedicine Training
System include the following.

1) Multiple Rendering Modes: Multislice and multiplane
rendering are often required in a medical imaging
training session for the clear demonstration of human
structures. The different rendering modes available in
the Telemedicine Training System helps to deliver high-
quality training.

2) Customized Textures: The Telemedicine Training System
offers a selection of texture materials for a vivid display
and a clear distinction between human organs.

3) Image Transformation: A medical image can be trans-
formed flexibly. The instructor is able to perform differ-
ent functions, including moving, scaling, rotating, and

7732 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE III
COMPARISON BETWEEN ANBOX, WAYDROID, ROBOX, AND OPENVMI

Fig. 9. Structure of the comparison experiment.

resizing a specific selection of an image. Annotation in
smartphone is also supported.

VI. EXPERIMENTS

A. Performance Comparison Experiment

We compare the OpenVMI qualitatively with anbox, way-
droid and robox, the other state-of-the-art open-source VMI
systems mentioned in Section II-C, in Table III. Anbox and
waydroid are desktop applications and each host server can
start only one instance. In contrast, each host server can start
multiple cloud-based OpenVMI instances. In addition, the
OpenVMI system also supports many functions not found in
anbox and waydroid, such as GPU and VPU usage. As such,
the performance of the OpenVMI system is not compared
quantitatively with that of anbox and waydroid.

Robox, the cloud-based VMI system co-developed by
Huawei and Linaro, shares similar system structure with the
OpenVMI. But unlike the OpenVMI, it does not support direct
GPU invocation. Monbox, its proprietary commercial version,
supports direct GPU invocation. But monbox is publicly inac-
cessible. As a result, a quantitative comparison is carried out
only between the OpenVMI and robox.

The structure of the comparison experiment is shown in
Fig. 9. Robox and the OpenVMI are installed separately on a
host server of the same hardware and software configuration as
detailed in Table IV. The host servers are named as the Robox
Server and the OpenVMI Server. The Telemedicine Training

TABLE IV
SYSTEM CONFIGURATION FOR PERFORMANCE COMPARISON

TABLE V
RESULTS OF THE PERFORMANCE COMPARISON EXPERIMENT

Application, which accesses the Telemedicine App server, is
installed on the Android Docker built in the Robox Server and
the OpenVMI Server. When the telemedicine client application
is initiated in the client device, performance of the system is
tracked by Perfdog. We mainly focus on four performance
parameters: 1) the fps; 2) the CPU utilization of the host
server; 3) RAM usage of the host server; and 3) the initia-
tion time of the telemedicine training system (time required
between the initiation of the client application and the display
of the default UI). The CPU utilization is measured in terms of
the CPU used by running processes as a percentage of a single
CPU core. The host server is the Huawei TaiShan200-2280V2
Multicore CPU Server, which has 96(48*2) CPU cores, so
theoretically the maximum CPU utilization is 9600%. The
experiment is repeated for ten times and the means of the
parameter, as detailed in Table V, are used for comparison.

In Table V, the mean fps of the robox-based experiment is
7.8, which means the robox-based system takes an average
of 128 ms to process and display one frame. This is much
higher than that of the OpenVMI-based experiment, which
only takes 32.2 ms to process and display one frame, based
on a sample mean fps of 31. In contrast to the OpenVMI‘s
direct invocation of GPU resources in Android Docker, the
robox-based system does not support direct GPU rendering
and VPU coding. Data has to be transmitted to the host oper-
ating system for rendering. The rendered results have to be
transmitted back to Android Docker and coded from RGBA
to H.264 format before being transmitted to the client appli-
cation. A large amount of CPU resources is consumed on data
transmission between Android Docker and the host operating
system, resulting in the robox-based system’s prolonged frame
handling. For the same reason, the mean CPU utilization of
the robox-based experiment is 921.8%, which is much higher
than the 20% utilization in the OpenVMI-based experiment.
Since OpenVMI has more modules to initiate than robox, more
RAM space and time are needed for data processing. We there-
fore expect the OpenVMI-based experiment to underperform

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7733

TABLE VI
CPU UTILIZATION IN TEN DIFFERENT ROBOX-BASED EXPERIMENTS

Fig. 10. Snapshot of the host server CPU utilization by using the “top”
command for the robox-based experiment.

Fig. 11. Structure of the performance experiment.

in RAM usage and system initiation time. Results of the exper-
iment show that the RAM usage of host server is 1.92 GB in
the robox-based experiment, which is 5% smaller than the 2.02
GB in the OpenVMI-based experiment. Also, the system ini-
tiation time is 15.5 seconds for the robox-based experiment,
almost two times faster than the OpenVMI-based experiment.

The mean CPU utilization of the host server reaches 921.8%
in the robox-based experiment. This means that in the 96-core-
host server, the robox-based system consumes an average of
more than nine CPU cores to support the initiation of the
Telemedicine Training Application. Table VI shows the CPU
utilization of the host server in robox-based experiment for
each experiment. Fig. 10 is a snapshot of the real-time CPU
utilization of the host server during an experiment of the
robox-based system.

B. System Performance Experiment

The Telemedicine Training Application is deployed locally
and in cloud for a comparison of application performance.
In cloud deployment, illustrated as test scheme 2 in Fig. 11,

TABLE VII
CONFIGURATION OF THE MOBILE PHONE

the OpenVMI Client Application is installed in the client
handset to start the OpenVMI-based Telemedicine Training
System. Performance parameters, including fps, CPU utiliza-
tion of the client device, RAM usage of the client device,
and the required initiation time are tracked by Perfdog. In
local deployment, illustrated as test scheme 1 in Fig. 11, the
Telemedicine Training Application is installed locally in the
client handset. The same parameters are tracked.

The Telemedicine Training Application is initiated for ten
times for each deployment modality and the means of the
parameters of interest are used for comparing application
performance. The experiment is repeated in two different client
devices.

A Huawei smartphone and a Smartisan smartphone are used
as the client device. The Smartisan smartphone has weaker
hardware configuration so that we can compare application
performance across client devices of different capabilities.
A dual-core CPU, 8 GB of RAM and 32 GB of Flash
Memory are used in Android Docker, as early stage investi-
gation suggested that such configuration is capable to run the
Telemedicine Training Application smoothly while minimiz-
ing resource usage. The configuration of the devices involved
in the experiment is detailed in Table VII.

The results of the experiment are detailed in Table VIII.
Unlike the higher RAM usage of the host server as shown in
Table V, which arises from the image rendering task and the
coding task, RAM usage of the client device is much lower
as the RAM of the client device is used only for displaying
the rendered results.

The fps of the OpenVMI-based application is only 0.91 fps
higher than the local application in the Huawei smartphone.
The fps of the local application is not compromised thanks to
Huawei’s powerful hardware configuration. CPU utilization of
the OpenVMI-based application in the Huawei smartphone is
only 15% as the Huawei smartphone is used only for display
and interaction. In contrast, the Huawei smartphone also exe-
cutes the initiation of the Telemedicine Training Application
so that more CPU resources are consumed, explaining the local
application’s higher CPU utilization than the OpenVMI-based
application. The RAM usage is 30% higher in the OpenVMI-
based Telemedicine Training System because the OpenVMI
Client Application consumes extra RAM space. Finally, the
initiation time of the local Telemedicine Training Application
is almost twice faster than the cloud-based application. There
are three reasons.

7734 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE VIII
RESULTS OF THE PERFORMANCE EXPERIMENT ON MOBILE PHONE AND VIRTUAL MOBILE PHONE

1) The Huawei smartphone is powerful so it can start a
local application quickly.

2) Extra data transmission occurs when the Telemedicine
Training Application is initiated in cloud, leading to
higher latency in the cloud-based initiation.

3) The OpenVMI client application has to be initi-
ated before it can initiate the Telemedicine Training
Application in cloud, further adding to initiation time.

In conclusion, for client devices of powerful hardware con-
figuration, deploying the Telemedicine Training Application
in cloud via the OpenVMI produces only slightly better
performance compared to local deployment.

In contrast, the Smartisan smartphone, with its weaker hard-
ware capabilities, has 1.5 fps (666.7 ms taken per frame), 1%
CPU utilization, 390-MB RAM usage and an initiation time
of over 1 min when the Telemedicine Training Application
is initiated locally. CPU utilization is low because the local
Telemedicine Training Application cannot be initiated nor-
mally and it cannot work properly. Since the local initiation
performed significantly better in the Huawei smartphone, the
low performance in the Smartisan smartphone can be attributed
to its weak hardware When the training application is initiated
in cloud via the OpenVMI Client application in the Smartisan
smartphone, average fps has significantly improved by a fac-
tor of 20 times and the average initiation time is reduced
by half to under 30 s compared to local initiation. The CPU
utilization increases from 1% to 15% and the RAM usage
increased from 390 to 581 MB. Furthermore, performance
of the OpenVMI-based initiation has been consistent across
the Huawei smartphone and the Smartisan smartphone, sug-
gesting that an OpenVMI-based application performs almost
independently of the hardware configuration of a client device.
The OpenVMI provides a feasible solution for devices of
weaker hardware capabilities to access resource-demanding
applications.

In addition, once purchased, the hardware configuration
of a smartphone is fixed, whereas the configuration of
Android Docker can be easily upgraded on demand, giving
an OpenVMI-based application a greater degree of flexibility.

C. System Concurrency Experiment

The OpenVMI-based solution proposed by this article sup-
ports multiple Android Dockers hence multiple concurrent
telemedicine training sessions on a host server. An experiment
is conducted to investigate the optimal number of concur-
rent Dockers on one single host server. First, 8, 12, 16, 24,
32, and 48 concurrent Android Dockers are virtualized on
one host server, respectively. Second, for each virtualization,
the server utilization performance is monitored. Finally, the

Fig. 12. Structure of concurrency experiment.

TABLE IX
SYSTEM CONFIGURATION ON CLIENT AND VIRTUAL ANDROID

server performance with different concurrency is compared
for deciding on the optimal number of concurrency.

In the concurrency experiment, two Windows worksta-
tions (Workstation 1 and Workstation 2) are connected
to the OpenVMI host server via the Internet as illus-
trated in Fig. 12. Workstation 1 acts as a client device
simulator and Workstation 2 acts as performance tracker.
Multiple Android Operating Systems are simulated in
Workstation 1 for running multiple OpenVMI client devices
at the same time. A single Android Operating System
simulator is installed in Workstation 2. PerfDog and the
OpenVMI Client application are installed in the Android
simulator in Workstation 2 to obtain the test result of
the host server performance. The system configuration
of the two workstations is detailed in Table IX. The
system configuration of the host server is specified in
Table X.

To test for the optimal number of concurrent Android
Dockers, eight concurrent Android Dockers are created on a
host server at first, each of which runs the training applica-
tion. For test purpose only, each Android Docker is connected
to one simulated client device in Workstation 1. Each client
device will open the third file in default order, a 3-D human
head and neck anatomy, in the com.yysmart.volumerender data

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7735

TABLE X
SYSTEM CONFIGURATION OF THE CLOUD SERVER

Fig. 13. Main interface using in the concurrency experiment.

Fig. 14. Screen snapshot of workstation 1, 15 simulated client devices.

package, as shown in Fig. 13. The system runs for 2 h con-
secutively, with the average value of GPU utilization, VRAM
utilization and Docker CPU utilization being documented.

The experiment is repeated for the virtualization of 16, 24,
32, 48 concurrent Android Dockers. A single GPU is used
when the number of virtualized smartphones is 32 and below.
Dual-core GPUs are used when 48 smartphones are virtual-
ized. Fig. 14 shows a screen snapshot of Workstation 1 when
testing for the concurrency of 16 client devices.

The results of the experiment detailed in Table XI show
that GPU utilization and VRAM utilization increased with the
number of virtualized smartphones. GPU utilization reaches
70% and VRAM utilization reaches 83.6% when the con-
current Docker number is 24. As a comparison, a relatively
efficient use of GPU resources without overloading the GPU
is at about 80% GPU utilization. When the concurrent Docker

number increases to 32, GPU utilization is 76% which is still
below 80%, but the average RAM utilization reaches 91.3%,
which may undermine system performance at peak usage.
When the Docker number further increases to 48, GPU uti-
lization reaches 90% and 85%, respectively, for the dual cores
and the VRAM utilization reached 89.3% and 88.6%, respec-
tively. Despite with 16 more concurrent Dockers, the VRAM
usage in the dual-core GPU with 48 concurrent Dockers is
actually slightly lower than that in the single-core GPU with
32 concurrent Dockers, as the workload is shared between the
dual cores. The experiment suggests that the optimal number
of concurrent training sessions is 24 for a single host server.

We have also tested for the optimal number of connected
clients that one Android Docker supports. The test results show
that each Android Docker can connect to five client devices
without compromising system performance.

Experiments of concurrency suggest that a single host server
supports 24 concurrent Android Dockers, hence 24 concurrent
live training sessions for cloud server configuration as detailed
in Table X. Each training session allows the connection of five
client devices, with one client device being the trainer device,
and four others being the trainee device.

It should be noted that the number of optimal concurrent
Android Dockers is influenced by the server’s CPU, ROM and
GPU configuration. As CPU and ROM configuration improve,
the optimal number of concurrent devices becomes increas-
ingly driven by GPU configuration. The more powerful GPU
is, the more concurrent Android Dockers the cloud server sup-
ports. However, there is a tradeoff between GPU configuration
and financial cost. For example, the Nvidia Tesla V100 GPU
costs 61 000 RMB in China, whereas the less powerful AMD
WX5100 GPU accelerator costs only 3100 RMB. Cost effec-
tiveness is also an important factor determining the optimal
server configuration hence the number of optimal concurrent
Android Dockers.

VII. DISCUSSION AND FUTURE WORK

A. Technical Features of the System

The technical features of the OpenVMI-based Telemedicine
Training System for 3-D images are as follows.

1) High Efficiency: Direct GPU invocation leads to less
transmission nodes and the elimination of multiple
stages of instruction translation between OpenGL ES
and OpenGL. In addition, as a VPU is added to the
hardware layer to code rendered results in H.264 for-
mat, a large amount of CPU resources can be spared for
other tasks.

2) Multidevice Concurrency: A large number of Android
Docker can be started in parallel in a host server. A sin-
gle virtualized client application in each Android Docker
supports live streaming across multiple devices. It also
allows real-time interactions between different devices.

3) High Performance: Empowered by the powerful host
server, the OpenVMI-based Telemedicine Training
System has high-performance computing power, high-
rendering power and a large storage capacity such
that it is able to perform resource-demanding graphic

7736 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE XI
RESULTS OF THE PERFORMANCE EXPERIMENT ON DIFFERENT NUMBER OF CONCURRENT DEVICES

rendering. The physical client devices are used for
display and interactions only, making the training system
highly deployable.

B. System Advantages

The OpenVMI-based Telemedicine Training System has
several advantages as follows.

1) High Security: The training system is hosted in a cloud-
based server. System functions and system updates are
implemented on the server. The physical local mobile
device is used only for display and interaction. As a
result, any malfunctions of the local device will not
impact server functioning and the data stored on the
server remains intact. In this way, the system can ensure
system stability and data security. Since user data is
stored in the cloud, data can be retrieved even when the
physical client device is lost or damaged. With security
protection at the Management Platform, combined with
well established authentication scheme, problems of data
breach, data loss and data damage can be contained
effectively.

2) High Flexibility: By using the OpenVMI technology,
the Telemedicine Training Application can be run seam-
lessly in client smartphones regardless of their hardware
configuration. Furthermore, the configuration of Android
Docker can be easily upgraded on demand, whereas the
hardware configuration of a smartphone is fixed after
being purchased.

3) Easy Promotion: As the physical local device is used
for display and interactions only, the technical require-
ments for it can be easily met by existing hospital-owned
devices and personal devices. This helps to lower capital
investment cost.

4) User Privacy Protection: Virtualized applications run-
ning in the virtual environment only have security access
to the server location instead of the location of a phys-
ical client device, freeing data breach problem from a
client device.

C. Limitations and Future Work

The performance of the local Telemedicine Training
Application installed in a powerful Huawei smartphone is
comparable to the OpenVMI-based version in terms of fps,
CPU utilization and RAM usage. The Huawei smartphone
even initiates the application faster than the OpenVMI-
based application does. This implies that if the hardware
configuration of a mobile device is powerful enough, it

can also run resource-demanding tasks like image rendering
well. Nonetheless, there exists a tradeoff between hardware
capabilities and financial cost, especially in less developed
areas.

The OpenVMI is applied in telemedicine training in this
article. We hope to explore a greater number of applications
of the OpenVMI system as the demand for 3-D image-based
applications grow.

The OpenVMI is highly deployable in devices of various
hardware capabilities. It provides flexibility and it utilizes
the high-computing capabilities of the cloud, making it par-
ticularly useful in applications based on VR and AR. The
practicability of the OpenVMI in VR and AR will be studied
in the future.

The early version of the OpenVMI is hosted open source in
the following address: https://github.com/DockDroid/openvmi.
The improvements mentioned in this article have been inte-
grated into the commercial version of the OpenVMI. It
will also be hosted open source in the GitHub in the near
future.

VIII. CONCLUSION

The OpenVMI system proposed by this article presents a
low-cost solution for the display of interactive 3-D images in
mobile environments. It improves upon a typical VMI in two
ways.

1) Direct invocation of GPU resources is achieved by
developing a bespoke GPU driver installed in Android
Docker.

2) Rendered results are coded in H.264 format by a VPU.
Both improvements result in less transmission delays and a
lower consumption of CPU resources, empowering the display
of interactive 3-D images via the cloud.

By adopting the OpenVMI, the Telemedicine Training
System is an effective way to overcome problems, such as
geographical immobility, limited computing power in mobile
devices, and capital under investment, that limits the scope
of medical training in undeveloped areas. The results of vari-
ous performance experiments suggest that an OpenVMI-based
application is highly deployable across devices of different
hardware capabilities and the OpenVMI supports 24 concur-
rent training sessions, each of which can connect with five
client devices at the same time for a single host server.

Finally, since the OpenVMI supports the display of 3-D
images across multiple devices concurrently, its application
can be extended to other areas that rely on 3-D image
rendering heavily, such as VR and AR.

FU et al.: GPU AND VPU ENABLED VIRTUAL MOBILE INFRASTRUCTURE 7737

REFERENCES

[1] A. C. Smith et al., “Telehealth for global emergencies: Implications for
coronavirus disease 2019 (COVID-19),” J. Telemed. Telecare, vol. 26,
no. 5, pp. 309–313, 2020.

[2] A. Moglia et al., “5G in healthcare: From COVID-19 to future chal-
lenges,” IEEE J. Biomed. Health Inform., vol. 26, no. 8, pp. 4187–4196,
Aug. 2022.

[3] A. Angelucci, D. Kuller, and A. Aliverti, “A home telemedicine system
for continuous respiratory monitoring,” IEEE J. Biomed. Health Inform.,
vol. 25, no. 4, pp. 1247–1256, Apr. 2021.

[4] S. Jiang, Design and Implementation of Telemedicine System Based on
Unity 3D. Beijing, China: Beijing Jiaotong Univ., 2017.

[5] M. L. E. Jin, M. M. Brown, D. Patwa, A. Nirmalan, and P. A. Edwards,
“Telemedicine, telementoring, and telesurgery for surgical practices,”
Curr. Problems Surg., vol. 58, no. 12, pp. 1–31, 2021.

[6] Y. Li, Y. Li, Z. Deng, and Z. Zhu, “A collaborative telemedicine platform
focusing on paranasal sinus segmentation,” in Proc. Int. Conf. Intell.
Interact. Multimedia Syst. Services, 2018 pp. 238–247.

[7] K. Belgacem, M. Kenoui, F. Bouguerra, M. Laidi, A. Semrani, and
C. Sellah, “Collaborative visualization and annotations of DICOM
images for real-time Web-based telemedicine system,” in Proc. 2021
Int. Conf. Recent Adv. Math. Informat. (ICRAMI), 2021, pp. 1–6.

[8] S. Elmoghazy, E. Yaacoub, N. V. Navkar, A. Mohamed, and A. Erbad,
“Survey of immersive techniques for surgical care telemedicine applica-
tions,” in Proc. 10th Mediterr. Conf. Embedded Comput. (MECO), 2021,
pp. 1–6.

[9] C. K. Scott, P. Karem, K. Shifflett, L. Vegi, K. Ravi, and M. Brooks,
“Evaluating barriers to adopting telemedicine worldwide: A systematic
review,” J. Telemed. Telecare, vol. 24, no. 1, pp. 4–12, 2018.

[10] K. Su, P. Liu, L. Gu, W. Chen, K. Hwang, and Z. Yu, “vMobiDesk:
Desktop virtualization for mobile operating systems,” IEEE Access, vol.
8, pp. 213541–213553, 2020.

[11] M.-M. Moazzami, D. E. Phillips, R. Tan, and G. Xing, “ORBIT: A plat-
form for smartphone-based data-intensive sensing applications,” IEEE
Trans. Mobile Comput., vol. 16, no. 3, pp. 801–815, Mar. 2017.

[12] Y. Wu, Y. Wang, W. Hu, and G. Cao, “SmartPhoto: A resource-aware
crowdsourcing approach for image sensing with smartphones,” IEEE
Trans. Mobile Comput., vol. 15, no. 5, pp. 1249–1263, May 2016.

[13] H. Cui, D. Tu, F. Tang, P. Xu, H. Liu, and S. Shen, “VidSfM: Robust
and accurate structure-from-motion for monocular videos,” IEEE Trans.
Image Process., vol. 31, pp. 2449–2462, 2022.

[14] E. Schwartz, R. Giryes, and A. M. Bronstein, “DeepISP: Toward learning
an end-to-end image processing pipeline,” IEEE Trans. Image Process.,
vol. 28, no. 2, pp. 912–923, Feb. 2019.

[15] S. Katakol, B. Elbarashy, L. Herranz, J. van de Weijer, and A. M. López,
“Distributed learning and inference with compressed images,” IEEE
Trans. Image Process., vol. 30, pp. 3069–3083, 2021.

[16] R. G. Alakbarov and O. R. Alakbarov, “Selection virtual machine
in mobile cloud computing,” in Proc. 2018 9th Int. Conf. Comput.,
Commun. Netw. Technol. (ICCCNT), 2018, pp. 1–4.

[17] S.-C. Oh, K. Kim, K. Koh, and C. Ahn, “ViMo (virtualization for
mobile): A virtual machine monitor supporting full virtualization for
ARM mobile systems,” in Proc. Adv. Cogn. Technol. Appl., COGNITIVE,
2010, pp. 48–53.

[18] M. Estai et al., “End-user acceptance of a cloud-based teledentistry
system and Android phone app for remote screening for oral diseases,”
J. Telemed. Telecare, vol. 23, no. 1, pp. 44–52, 2015.

[19] M. Estai et al., “A proof-of-concept evaluation of a cloud-based
store-and-forward telemedicine app for screening for oral diseases,” J.
Telemed. Telecare, vol. 22, no. 6, pp. 319–325, 2016.

[20] R. Latha, P. Vetrivelan, and S. Geetha, “Telemedicine setup using wire-
less body area network over cloud,” Procedia Comput. Sci., vol. 165,
pp. 285–291, Feb. 2020.

[21] J. Qian, “Analysis of intelligent telemedicine system based on Internet
of Things,” Electron. Compon. Inf. Technol., vol. 5, no. 7, pp. 9–10,
2021.

[22] W. Luo et al., “Development of telemedicine system for military forces
based on WeChat micro-program,” China Med. Dev., vol. 34, no. 10,
pp. 984–986, 2019.

[23] X. Xu et al., “Advances in smartphone-based Point-of-Care diagnostics,”
Proc. IEEE, vol. 103, no. 2, pp. 236–247, Feb. 2015.

[24] B. Askarian, P. Ho, and J. W. Chong, “Detecting cataract using
smartphones,” IEEE J. Transl. Eng. Health Med., vol. 9, pp. 1–10,
2021.

[25] R. D. Chand, A. Kumar, A. Kumar, P. Tiwari, R. Rajnish, and
S. K. Mishra “Advanced communication technologies for collaborative
learning in telemedicine and tele-care,” in Proc. 2019 9th Int. Conf.
Cloud Comput., Data Sci. Eng. (Confluence), 2019, pp. 601–605.

[26] S. S. Vedaei et al., “COVID-SAFE: An IoT-based system for automated
health monitoring and surveillance in post-pandemic life,” IEEE Access,
vol. 8, pp. 188538–188551, 2020.

[27] M. H. Nornaim, N. A. Abdul-Kadir, F. K. C. Harun, and M. A. A. Razak,
“A wireless ECG device with mobile applications for Android,” in
Proc. 7th Int. Conf. Electr. Eng., Comput. Sci. Informat. (EECSI), 2020,
pp. 168–171.

[28] R. Wang, J. Xu, Y. Ma, M. Talha, M. S. Al-Rakhami, and A. Ghoneim,
“Auxiliary diagnosis of COVID-19 based on 5G-enabled federated
learning,” IEEE Netw., vol. 35, no. 3, pp. 14–20, May/Jun. 2021.

[29] J. Guo, “Smartphone-powered electrochemical biosensing dongle for
emerging medical IoTs application,” IEEE Trans. Ind. Informat., vol. 14,
no. 6, pp. 2592–2597, Jun. 2018.

[30] A. Lauraitis, R. Maskeliūnas, R. Damaševičius, D. Polap, and
M. Woźniak “A smartphone application for automated decision support
in cognitive task based evaluation of central nervous system motor dis-
orders,” IEEE J. Biomed. Health Inform., vol. 23, no. 5, pp. 1865–1876,
Sep. 2019.

[31] W. Qi, H. Su, and A. Aliverti, “A smartphone-based adaptive recogni-
tion and real-time monitoring system for human activities,” IEEE Trans.
Human-Mach. Syst., vol. 50, no. 5, pp. 414–423, Oct. 2020.

[32] C. Gong et al., “RetinaMatch: Efficient template matching of retina
images for teleophthalmology,” IEEE Trans. Med. Imag., vol. 38, no. 8,
pp. 1993–2004, Aug. 2019.

[33] T. Zhang, Y. Li, J. P. Y. Cheung, S. Dokos, and K.-Y. K. Wong
“Learning-based coronal spine alignment prediction using smartphone-
acquired scoliosis radiograph images,” IEEE Access, vol. 9,
pp. 38287–38295, 2021.

[34] C. Hoyos-Barceló, J. Monge-Álvarez, M. Zeeshan Shakir,
J.-M. Alcaraz-Calero, and P. Casaseca-de-la-Higuera, “Efficient
k-NN implementation for real-time detection of cough events in
smartphones,” IEEE J. Biomed. Health Inform., vol. 22, no. 5,
pp. 1662–1671, Sep. 2018.

[35] M. Cheffena, “Fall detection using smartphone audio features,” IEEE
J. Biomed. Health Inform., vol. 20, no. 4, pp. 1073–1080, Jul. 2016.

[36] I. Frederix, S. Sankaran, K. Coninx, and P. Dendale, “MobileHeart, a
mobile smartphone-based application that supports and monitors coro-
nary artery disease patients during rehabilitation,” in Proc. 2016 38th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2016, pp. 513–516.

[37] L. Liu, J. Xu, Y. Huan, Z. Zou, S.-C. Yeh, and L.-R. Zheng, “A smart
dental health-IoT platform based on intelligent hardware, deep learning,
and mobile terminal,” IEEE J. Biomed. Health Inform., vol. 24, no. 3,
pp. 898–906, Mar. 2020.

[38] Y. Guo, L. Cai, and J. Zhang, “3D face from X: Learning face shape from
diverse sources,” IEEE Trans. Image Process., vol. 30, pp. 3815–3827,
2021.

[39] Y. Nie, T. Su, Z. Zhang, H. Sun, and G. Li, “Dynamic video stitching via
shakiness removing,” IEEE Trans. Image Process., vol. 27, pp. 164–178,
2018.

[40] Z. Fu, J. Zhou, and W. Xu, “A GPU-enabled mobile telemedicine
training system for graphic rendering,” in Proc. Int. Conf. Mobile
Comput. Netw. (MobiCom’22). ACM, Sydney, NSW, Australia, 2022,
pp. 877–879, doi: 10.1145/3495243.3558269.

[41] J. Korhonen, “Two-level approach for no-reference consumer video qual-
ity assessment,” IEEE Trans. Image Process., vol. 28, pp. 5923–5938,
2019.

[42] J. Minseok, P. Myong-Soon, and S. C. Shah, “A mobile ad hoc cloud
for automated video surveillance system,” in Proc. Int. Conf. Comput.,
Netw. Commun. (ICNC), 2017, pp. 1001–1005.

[43] P. Liu, Y. Chen, L. Fu, M. Yan, and Z. Wang, “cMobiDesk: A lightweight
solution for android desktop virtualization,” in Proc. 7th Int. Conf. Cloud
Comput. Big Data Analyt. (ICCCBDA), 2022, pp. 234–239.

[44] M. P. Anastasopoulos et al., “Planning of dynamic mobile optical virtual
network infrastructures supporting cloud services,” in Proc. 2014 Eur.
Conf. Netw. Commun. (EuCNC), 2014, pp. 1–5.

[45] C.-M. Wang, Y.-S. Wu, and H.-H. Chung, “FUSION: A unified appli-
cation model for virtual mobile infrastructure,” in Proc. IEEE Conf.
Dependable Secure Comput., 2017, pp. 224–231.

[46] E. Choi and J. Hong, “Design and implementation of virtual machine
control and streaming scheme using Linux kernel-based virtual machine
hypercall for virtual mobile infrastructure,” in Proc. Conf. Res. Adapt.
Converg. Syst., 2019, pp. 57–60.

http://dx.doi.org/10.1145/3495243.3558269

7738 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

[47] M. Bentele, D. Von Suchodoletz, M. Messner, and S. Rettberg, “Towards
a GPU-accelerated open source VDI for Openstack,” in Proc. Int. Conf.
Cloud Comput., 2022, pp. 149–164.

[48] F. Wan, N. Chang, and J. Zhou, “Design ideas of mobile Internet desktop
system based on virtualization technology in cloud computing,” in Proc.
Int. Conf. Adv. Ambient Comput. Intell. (ICAACI), 2020, pp. 193–196.

[49] K. Fornito, C. Zembower, and S. Sneddon, “Using infrastructure-as-code
and the public cloud to power on-air media creation platforms,” in Proc.
SMPTE, 2019, pp. 1–9.

[50] J. Wu, C.-C. Kuo, S.-T. Hsiao, K.-H. Chang, and S.-H. Liu, “A cloud
experiment for virtual reality and augmented reality in NCHC render
farm,” in Proc. 2020 Nicogr. Int. (NicoInt), 2020, pp. 78–81.

[51] Y. Wang, S. Lv, and W. Li, “The meteorological cloud desktop system of
CMA meteorological observation center,” in Proc. Int. Conf. Meteorol.
Observ. (ICMO), 2019, pp. 1–3.

[52] J.-Y. Li et al., “The implementation of a GPU-accelerated virtual desktop
infrastructure platform,” in Proc. 2017 Int. Conf. Green Inform. (ICGI),
2017, pp. 85–92.

[53] C.-H. Chang, C.-T. Yang, J.-Y. Lee, C.-L. Lai, and C.-C. Kuo, “On con-
struction and performance evaluation of a virtual desktop infrastructure
with GPU accelerated,” IEEE Access, vol. 8, pp. 170162–170173, 2020.

[54] H. Dong et al., “Towards enabling residential virtual-desktop com-
puting,” IEEE Trans. Cloud Comput., vol. 11, no. 1, pp. 745–762,
Jan./Mar. 2023.

[55] T.-D. Nguyen, P. P. Hung, T. H. Dai, N. H. Quoc, C.-T. Huynh, and
E.-N. Huh “Prediction-based energy policy for mobile virtual desktop
infrastructure in a cloud environment,” Inf. Sci., vol. 319, pp. 132–151,
Oct. 2015.

[56] T. T. Adeliyi and O. O. Olugbara, “Optimizing remote access using
mobile cloud virtual desktop infrastructure,” in Proc. 2021 Conf. Inf.
Commun. Technol. Soc. (ICTAS), 2021, pp. 1–4.

[57] D. Ginsburg, B. Purnomo, D. Shreiner, and A. Munshi, OpenGL ES 3.0
Programming Guide. Reading, MA, USA: Addison-Wesley, 2014.

[58] J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.5 With SPIR-V.
Reading, MA, USA: Addison-Wesley, 2016.

[59] Y. Granot, A. Ivorra, and B. Rubinsky, “A new concept for medical
imaging centered on cellular phone technology,” PLoS One, vol. 3, no. 4,
pp. 1–7, 2008.

[60] A. Attila, Á. Garai, and I. Péntek, “Common open telemedicine hub and
infrastructure with interface recommendation,” in Proc. IEEE 11th Int.
Symp. Appl. Computat. Intell. Inform. (SACI), 2016, pp. 385–390.

Zhipeng Fu received the B.S., M.S., and Ph.D.
degrees in computer science and technology from the
School of Computer, National University of Defense
Technology, Changsha, China, in 2003, 2006, and
2014, respectively.

He is currently an Engineer with the Industrial
Internet of Things Research Institute, Department
of New Pattern Network, Peng Cheng Laboratory,
Shenzhen, China. His research interests include
mobile operating system, computer vision, artificial
intelligence, and Internet of Things.

Jun Zhou is currently pursuing the Ph.D. degree
with Sun Yat-sen University, Guangzhou, China.

He is with the Industrial Internet of Things
Research Institute, Department of New Pattern
Network Peng Cheng Laboratory, Shenzhen, China.
His research interests include mobile operating
system, cloud computing, graphic computing, and
resource scheduling.

Wanpeng Xu received the B.S. and M.S. degrees
in remote sensing science and technology from
Space Engineering University, Beijing, China, in
2008 and 2013, respectively, and the Ph.D. degree
in information and communication engineering
from the School of Aerospace Information, Space
Engineering University, Beijing, in 2022.

His research interests include computer vision,
virtual reality, and automated driving.

Changguo Guo received the B.S., M.S., and Ph.D.
degrees in computer science and technology from the
School of Computer, National University of Defense
Technology, Changsha, China, in 1996, 1998, and
2002, respectively.

He is currently a Professor and the Vice
President of the Advanced Institute of Big Data,
and the Director of Yuzhou Big Data Laboratory,
Chongqing, China. His research interests include big
data, Internet of Things, and cloud computing.

Qingbo Wu received the Ph.D. degree in computer
science and technology from the National University
of Defense Technology, Changsha, China, in 2010.

He is currently a Professor and the Director of
the Industrial Internet of Things Research Institute,
Department of New Pattern Network, Peng Cheng
Laboratory, Shenzhen, China. His research interests
include operating system, Internet of Things, and
cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

