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Abstract—Implementing innovative farming practices becomes
imperative for a country whose economy relies heavily on
agricultural products. Over recent years, the swift process of
urbanization and the depletion of forests have influenced farm-
ers. Due to the lack of rainwater harvesting and changing
weather patterns, many crop failure cases have been registered
in the last few years. To prevent loss of annual crop pro-
duction, many researchers propose the technology-driven smart
farming method. Smart agriculture involves utilizing technol-
ogy to create a controlled environment for the management of
the crops. Smart farming increases crop production and pro-
vides small farmers with an alternative income source. The
government initiated many pilot projects to promote smart agri-
culture in India. Yet, the absence of technological assistance and
skilled procedures poses a challenge for most farmers aiming to
thrive in this industry. This paper introduces a smart freshwater
recirculating aquaculture system based on IoT technology. The
proposed system has integrated sensors and actuators. The sensor
system monitors the water parameters, and actuators maintain
the aquaculture environment. An intelligent data analytics algo-
rithm played a significant role in monitoring and maintaining
the freshwater aquaculture environment. The analytics derived
the relationship between the water parameters and identified the
relative change. From the experimental evaluation, we have iden-
tified that the M5 model tree algorithm has the highest accuracy
for monitoring the relative change in water parameters.

Index Terms—Aquacalture, edge computing, fog computing,
Internet of Things (IoT), recirculating aquaculture system (RAS).

I. INTRODUCTION

IN RECENT years, we have seen a significant
transformation in regular farming. Many urban cities

are utilizing their building spaces for intelligent farming.
Smart farming is a technology-driven control for monitoring
and maintaining the proper growth environment [1], [2].
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However, smart farming is still tricky for many unskilled
farmers [3]. In India, 70% population directly or indirectly
depends on agriculture. Indian agriculture has a significant
contribution to the Indian economy [3]. Over the past few
years, the changing weather patterns and global warming
have significantly impacted annual crop production [2]. A
substantial number of farmers are affected by the loss of
annual crop production. To cut short their loss and provide an
alternative source of income, the Indian government initiated
many pilot projects to promote integrated aquaculture-based
farming. India has 2.36 million hectares of ponds and
tanks, which offers immense opportunities for aquaculture.
Aquaculture is the mean of livelihood for 28 million people in
India. Unlike other aquaculture, freshwater pearl cultivation
is the most profitable business in current scenarios. In
2020, India imported 1.59 trillion rupees worth of pearls,
precious and semi-precious stones. To make India self-reliant
on pearl production, the Indian government supports the
farmers through subsidies and free training programs. Despite
government efforts, the annual pearl production has not made
significant progress. The lack of technological intervention
and skill-oriented manual operation is the primary cause
of poor production. In India, freshwater aquaculture-based
farming is still operated manually. Aquaculture farming is
very new to most farmers in India.

This article presents a smart IoT-based freshwater recir-
culating aquaculture system. The proposed system smartly
manages the optimal requirement for aquaculture. The system
has three significant designs: 1) physical; 2) network; and
3) logical. In physical configuration, we have edge devices
integrated with sensors and actuators. The sensors monitor the
water parameters, and actuators control the habitable aquacul-
ture environment. The communication network between the
physical devices manages data and control flow. The network
design has an integrated network between the edge, fog, and
gateway devices. The gateway operates the virtual private
network (VPN) servers for secure communication in the pub-
lic network. At the same time, the network between the edge
node and fog node communicates using a socket. In log-
ical design, we have an abstract representation of entities
and processes. The logical design included a front-end data
visualization and interactive control utility provided through
the Danjgo Web framework. At the back-end, we have a
relational database for managing the data. A data analytics
algorithm utilizes the relational data for forecasting the change
in the water parameters and control for the actuators. The
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whole operation for monitoring and management is sched-
uled through a real-time clock (RTC). The model selected
for data analytics is a nonlinear decision tree-based model
random forest (RF), M5 Model tree, and gradient boosting
machine (GBM).

The proposed system has the following main contribution.
1) An intelligent-IoT-driven monitoring and management

of freshwater pearl farming.
2) An inexpensive regent replacement-based sensor system

designed for ammonia testing.
3) A relational data analytics to forecast problem, sen-

sor fault detection, and inexpensive monitoring and
management.

The remainder of this article is organized as follows. Section II
presents the related work. Section III presents the baseline
data. Section IV presents the components of the proposed IoT
system for aquaculture management and presents the aqua-
culture management using data analytics. Section V presents
the experiments and results. Finally, Section VI presents the
conclusion.

II. RELATED WORK

The rapid expansion of the IoT brought ubiquitous net-
worked devices and sensors integration in a variety of intel-
ligent applications [4], [5]. The generated data from these
devices requires computational intelligence to extract the
knowledge from the data [6]. We have identified a few research
works centered around water quality monitoring in the lit-
erature review. Most research works focus on water quality
monitoring rather than system affordability. It is worth noting
that the adoption of technology-driven control farming remains
costly for many farmers. Using relational data analytics tech-
niques, researchers forecast the change in water parameters
relative to some know parameters. This technique keeps the
system in a stable state with minimal hardware requirements.

Gao et al. [7] proposed an intelligent-IoT-based control and
traceability system to forecast and maintain water quality for
freshwater fish farming. The whole system is divided into two
modules, i.e., an intelligent module and tracking module. The
intelligent management module includes the integrated sensor
assembly [pH, water, temperature, dissolved oxygen (DO), and
turbidity], data acquisition, data analysis, and database man-
agement. The tracking module includes the data visualization,
chart, and data presentations. The intelligent module processes
the fish pond monitoring data and forecasts the change in
the water parameters. The alterations in water parameters
empower farmers with the ability to oversee and manually
regulate conditions using actuators. The system suggested by
Gao et al. [7] manages water quality factors and offers farmers
visual depictions to facilitate manual intervention.

Zhu et al. [8] introduced a wireless network to oversee
the water quality in fish cultivation. Their proposed method
employs ANN to conduct a predictive analysis of water qual-
ity. The intelligent module of the system employs key variables
like water temperature, pH, and salinity as benchmarks to
predict the forthcoming patterns in dissolved oxygen levels.

Zhu et al. [8] system tackles the measurement and control of
water parameters.

Simbeye et al. [9] developed a wireless sensor network
(WSN)-based mechanism for monitoring aquaculture. The
collected water quality information from the sensors is trans-
mitted to a nearby server through a gateway. Afterwards, the
data is displayed through a graphical user interface (GUI)
via a local server. The primary focus of the study was on
enhancing aquaculture management, optimizing power usage,
and improving network efficiency. Simbeye et al. [9] devised
the approach to oversee aquaculture within the confines of a
personal area network.

Dabrowski et al. [10] proposed a machine-learning approach
to predict the DO using pH and water temperature. The
data collected from the aquaculture prawn ponds was used
for this study. Dabrowski et al. [10] analyzed the accuracy
of DO prediction using long short-term memory (LSTM),
linear regression (LR), ANN, and LDs. The experimental
results show that the LSTM algorithm produces the opti-
mum results with minimum normalized root mean-squared
error (NRMSE). Dabrowski et al. [10] research show the
accuracy of the machine learning approach for water quality
forecast.

Chen et al. [11] introduced a system equipped with water
quality sensors. The sensor captures data from a fish pond
and forwards it via zigbee to a microcontroller. The pro-
cessed data is sent to a terminal device through a wirless
interface. This terminal device empowers the user to moni-
tor the agricultural. A graphical user interface (GUI) enables
the data visualization. Chen et al.[11] provided a comprehen-
sive description of a system that functions within a confined
network. Mahfuz et al. [12] introduced an aquaculture monitor-
ing system driven by a smart microcontroller. A user-friendly
mobile application is employed to display the sensor-acquired
data. The system is linked to a solar power setup to ensure
continuous power supply. Any alteration in water parameters
prompts notifications in the form of straightforward text mes-
sages. The suggested system required a manual intervention
to manage the aquaculture.

Vernandhes et al. [13] presented aquaponics monitoring
system that utilizes the Internet of Things (IoT) paradigm.
The application interface provides an end user remote access
to individual physical components of the system. The proposed
system consists of sensors, actuator, relay, Ethernet, and router.
The aquaphonic system integrated actuators and sensor main-
tain the control environment for better growth of the plant. The
proposed system in future plan to extend for indoor farming
of other crops

The work in [14] used the multivariate LR and ANN to
forecast the DO relative to pH, water temperature, and elec-
trical conductivity (EC). Similar work extends in [10] and
shows the comparative performance of ANN and LR with
support vector machine (SVM). All the competing models
have shown a significant accurate forecast of DO. However,
these model accuracy of forecast relies on short interval high
amount of historical data. Currently, we have identified var-
ious ANN models, such as LSTM and deep belief networks
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TABLE I
IDEAL WATER PARAMETERS FOR FRESHWATER PEARL FARMING [32]

that are considered to be an appropriate to solve the forecast
problem [15], [16].

Recently, certain studies have explored comprehensive water
quality monitoring and management systems utilizing cul-
tural knowledge models and forecasting models [17], [18],
[19], [20], [21], [22], [24], [26]. Nevertheless, these systems
did not specifically target the current requirement for devel-
oping a fully automated aquaculture setup. Moreover, their
setups failed to attain the intended real-time data exchange and
control, thereby affecting both water quality and aquaculture
production.

This paper introduces an Internet of Things (IoT) system
that effectively manages freshwater aquaculture. The system is
developed for freshwater pearls aquaculture, which considers
the distinct water quality and management prerequisites. The
proposed system can also dynamically accommodate the needs
of other freshwater culture breeds.

III. BASELINE DATA

We have collected the baseline data from the Central
Institute of Freshwater Aquaculture Bhubaneswar (CIFA
Bhubaneswar) [32]. Table I illustrates the Optimal water con-
ditions for pearl farming aquaculture. In an aquaculture, the
primary focus should be monitoring the alkalinity and hardness
of water parameters. The regional water bodies in differ-
ent states have different alkalinity and hardness. Alkalinity
is the indicator of resistance to acidification. Water bodies
that have good alkalinity can prevent the sudden change in
pH. Alkalinity indicates acid resistance, with higher alkalin-
ity in water bodies helping prevent abrupt pH fluctuations.
The connection between alkalinity and hardness is noteworthy,
as total hardness is linked to calcium and divalent magne-
sium ions. The optimal water conditions for pearl farming
recommends an alkalinity level of 100 PPM and a hard-
ness level of 60 PPM. Research has shown that hard water
proves more advantageous for productivity than soft water,
although soft water is more conducive to the enhanced pro-
duction of freshwater mussels. Alkalinity, a variable influenced
by time, correlates with pH and temperature. Mornings typ-
ically see elevated pH levels along with moderate to high
alkalinity. The intricate interplay between temperature and var-
ious biological and chemical reactions is evident, as warmer
water hampers the solubility of atmospheric dissolved oxygen.
Mussels inhabiting warmer waters necessitate a more excel-
lent supply of dissolved oxygen. Likewise, DO is important
in assessing water quality. Adequate oxygen levels are imper-
ative for the well-being of pearl-farming mussels within the
aquatic environment. However, in stagnant water, the diffusion

of atmospheric oxygen is notably lower. To address this, we
employ an oxygen pump and agitation to directly infuse atmo-
spheric air into the water, augmenting the essential DO levels.
photosynthetic activity in aquatic plants constitutes another
source of dissolved oxygen. In the context of pearl farming,
mussels feed on plankton. The presence of uneaten plankton
further influences the habitable under water conditions. During
daylight hours, these algae consume CO and release Oxygen.
Consequently, DO levels experience an increase during the
day, followed by a decrease at night and on heavily cloudy
days. During nighttime hours and mainly overcast days, algae
consume oxygen for respiration. Consequently, an abundance
of algae growth leads to an elevation in the biological oxygen
demand (BOD). The BOD is increased by mixing the ample
nutrients in the pond. It also has a relation to time and tem-
perature. During the night, the plankton algae consume the
DO rapidly. The plankton density has a relation with DO and
pH. However, the pH also has a relation to total alkalinity.
The fluctuations in pH are less common in higher alkalinity.
Similarly, carbon dioxide also has an ill impact on mussels.
The higher concentration of carbon dioxide fluctuates the pH.
However, the rate of change in pH is relatively less at higher
total alkalinity. Carbon dioxide (CO2) concentration increases
due to lack of photosynthesis and die-off of phytoplankton.
There is a significant need to monitor the pond’s DO concen-
tration to minimize the impact of carbon dioxide. Similarly,
ammonia concentration is highly lethal for aquatic animals.
Ammonia has a relation with DO, pH, and carbon dioxide.
The ammonia increases, often decreasing the DO and increas-
ing CO2. Ammonia toxicity is more pronounced at elevated
pH levels. The primary sources of ammonia are the excre-
tions of aquatic animals and the decomposition of organic
matter. Maintaining control over ammonia levels is of utmost
importance for optimal growth. Table II summarizes some of
the recent available literature on the topic. Although some
intelligent aquaculture systems have been proposed in the lit-
erature, more work needs to be done to integrate the factors that
accurately determine the water quality, fault behavior analysis,
optimal schedule for feeding, and fault-tolerant monitoring and
management. Moreover, the existing systems cannot analyze
and interpret real-time data rather monitor through some Web
application. Still, much work needs to address for real-time
control of the system parameters and intelligent data analytics
integration at the edge devices or fog devices. As a result, the
gap addressed in this article is relevant to the study.

IV. COMPONENT OF PROPOSED IOT SYSTEM

FOR AQUACULTURE MANAGEMENT

This section introduces the proposed smart IoT-based
system for managing the aquaculture. The comprehensive
system is organized into four distinct phases of development:

1) physical design;
2) network design;
3) logical design;
4) intelligent forecasting models.

Fig. 1 illustrates the conceptual layout of a smart aquaculture
system based on IoT.
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TABLE II
EXISTING AQUACULTURE MONITORING SYSTEMS

Fig. 1. Conceptual design of intelligent-IoT-based aquaculture system.

A. Physical Design

The physical layer is responsible for collecting the data from
the sensors. System-integrated sensors gather the water quality
parameters, and actuators manage the water quality parame-
ters. The sensing nodes in the proposed system are integrated
with analogue base DO, pH, Electric conductivity (EC), RTC

Fig. 2. Edge node integrated sensors and actuators (adapted from [32]).

Fig. 3. Test equipment setup.

timer, and temperature sensors, as shown in Fig. 2. These sen-
sor assemblies are kept outside the aquaculture tanks, as shown
in Fig. 3. To accurately measure the change from the sensor
data, we have integrated the edge node with ADS1115 16-
bit precision analog-to-digital converter (ADC) [26]. Through
the I2C interface, ADS1115 ADC communicates the sen-
sor data to the edge node. The 1-wire DS18B20 temperature
sensor directly interfaces with the edge node. For edge com-
putation and networking, we have selected the Beagle-bone
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Black. The Beagle-bone black has a variety of general-purpose
input–output ports, which allows interaction with various com-
munication interface protocols. The onboard 4-GB internal
flash memory provides sufficient space to organize the data
in the relational data model. The board has a 1-GHz ARM
cortex processor, consuming less power and providing ade-
quate processing capability. We have employed actuators such
as aerator, submersible pumps, bio-filters, heaters, and valves
to maintain a habitable aquaculture environment. The direct
current (DC) operated actuators are connected through the
L293 driver. The alternate current (AC) ran actuators are con-
nected through relays. The proposed system has the following
subsystem for aquaculture management:

1) test setup;
2) regent replacement-based ammonia sensor system;
3) power management;
4) automated smart feeder;
5) RAS.
1) Test Setup: In the proposed system design, we have

an edge node equipped with temperature sensors (DS18B20),
pH sensor (DFRobot Gravity, model SEN0161), and DO
(DFRobot Gravity model no: DFR1628), ammonia sensor,
and water EC sensor. Similarly, we equipped the edge node
with actuators like water pumps, aerators, feeders, biofilters,
water heaters, and solenoid valves. Except for the temperature
sensor, all the sensors are kept outside the main harvesting
tank, as shown in Fig. 3. This arrangement prevents the sensor
monitoring tip from corrosion and extends their lifetime. The
integrated actuator, comprising a submersible pump and valve,
facilitates water transfer from the main tank to the test setup.
After the water quality assessment, the valve attached to coni-
cal funnel releases the water. A non-contact water level sensor
is employed to regulate the activation and deactivation of the
valve and submersible pump to manage the water overflow in
the conical funnel. After each water quality assessment, the
distilled water is pumped to clean the sensor probe. The water
quality assessment is scheduled through a RTC. Our experi-
mental investigation determined that water quality within the
culture pond does not change abruptly. Numerous factors, such
as water temperature, weather conditions, feeding, and the
discharge of by-products, influence water quality parameters.
These parameters often exhibit inconsistency multiple times
throughout the day. After analyzing a month’s recorded data,
we have established an optimal schedule for managing the
freshwater pearl aquaculture system.

2) Regent Replacement-Based Ammonia Sensor System:
Ammonia is directly toxic to culture breeds in the union-
ized form, which is favored at high temperatures and pH. It
also reduces the ability of culture breeds to utilize oxygen.
Ammonia gets introduced into the water through excreted
metabolic waste and the decomposition of organic mat-
ter. We have designed an inexpensive regent replacement-
based ammonia sensor system to automate ammonia testing.
The regent replacement-based ammonia sensor system auto-
mates manual regent-based ammonia testing. In the regent
replacement-based ammonia sensor system, we have used the
water level sensor, drop counter, and color sensor. Similarly,
we have used the actuators like water pump, overhead steerer,

Fig. 4. Regent replacement-based ammonia sensor system.

check valve, and solenoid valve, as shown in Fig. 4. The
scheduled set for water quality monitoring activates the ammo-
nia sensor system. At the scheduled time, the edge not
integrated DC submersible pump and solenoid valve start their
operation to carry the water for quality test. The noncontact
water level sensor immediately closes the solenoid valve and
pumps when the required amount of water is in the conical fun-
nel. Ammonia testing regent is available in the burette, which
is controlled through a check valve. The overhead stepper
motor pushes the check valve to make an air entry, resulting in
ammonia regent drop released into the conical funnel. To man-
age the required amount of regent drop, we have a drop counter
which signals to the stepper motor and closes the check valve.
The drop counter is designed through an optical QRD 114
proximity sensor, invert Schmitt trigger (SN74HC14N), and
OR gate (MN4072B IC). The regent in conical funnel mixes
with overhead stirrer motor. The test result is recorded through
an RGB color sensor and translated into the corresponding
numeric PPM value. The test water in the conical funnel is
released through the solenoid valve. After the test experiment,
we pump the distilled water to clean the testing site for the next
test. The filtered water is adequately mixed with the overhead
stirrer motor and released from the solenoid valve.

3) Power System: In the power subsystem design, we have
implemented using a 160-W, 12-V mono-crystalline solar
panel, a 24-V 30 Amp solar controller, 12-V lead-acid bat-
teries, a 12-V relay, a 200-W AC inverter, and a 12-V DC-DC
buck converter to ensure an uninterrupted power supply, as
depicted in Fig. 5. The proposed strategy for overseeing and
managing the aquaculture system is synchronized via an RTC
lock. The absence of a proper schedule could impact the
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Fig. 5. Power subsystem.

Fig. 6. Automated smart feeder.

productivity of aquaculture. Water parameters exhibit inconsis-
tency and undergo multiple fluctuations throughout each day.
Consequently, maintaining a consistent and well-monitored
schedule for the aquaculture system is paramount. Therefore,
missing a schedule monitoring and management may impact
aquaculture productivity. The proposed power subsystem oper-
ates the DC and AC devices. A DC–DC buck converter
supplies the required power to the DC-operated overhead
stirrer, solenoid valve, and stepper motor. Similarly, the AC
inverter operates the 20-W submersible pump, 15-W air pump,
and 50-W water heater.

4) Automated Smart Feeder: A crucial aspect of the aqua-
culture system is the necessity for accurate monitoring of
mussel feeding. Neglecting proper feed management can have
multifaceted effects on the overall well-being of the mussels.
Overfeeding, for instance, results in not only the loss of mus-
sel life but also exacerbates the levels of food-based pollutants
within the water [15] [31]. This overfeeding further amplifies
the presence of excreted by-products in the water, subsequently
elevating the concentrations of harmful ammonia and nitrate.
Both ammonia and nitrate pose significant threats to the mus-
sels’ health. At night, uneaten algae consume dissolved oxygen
while introducing increased carbon dioxide (CO2) into the
aquatic environment. Conversely, similar algae release the DO
as a by-product of photosynthesis during daylight hours.

For the equilibrium of the aquaculture ecosystem, it is
imperative to uphold an appropriate feed. The repercussions of
overfeeding and the prolonged presence of residual matter in
the water can profoundly affect the quality of the water. Green
algae are water-soluble and readily consumable by mussels and
play a vital role in their diet. As demonstrated in Fig. 6, the
smart feeder system comprises a submersible pump and agi-
tator. These agitators effectively blend the solution of green
algae, which is then transported to the harvesting tank by the
submersible pump.

Fig. 7. RAS [32].

Fig. 8. Network configuration between the nodes [32].

The RAS is responsible for purifying the cultured water,
subsequently re-utilizing it after appropriate treatment. This
recirculating system effectively channels the water through
bio-filters, which serve to eliminate by-products from aquatic
organisms and decomposing residues present within the water.
The absence of technological support hampers aquaculture
farmers in their efforts to oversee and sustain water qual-
ity manually. In open pond aquaculture, the water is polluted
with diverse waste materials. These waste components undergo
decomposition, thereby exerting an influence on the overall
quality of the water.

This RAS configuration transfers water from the harvesting
tanks to the bio-filter chamber via pumps, as shown in Fig. 7.
Subsequently, the purified water is directed back into the main
tank. This recirculating procedure is initiated after each feed-
ing cycle. The innovative RAS design effectively addresses
the primary issue of ammonia concentration and regulates pH
levels.

B. Network Design

The network design incorporates a communication frame-
work connecting sensing, fog, and gateway nodes, as illus-
trated in Fig. 8. The socket communication API facilitates
sensor data and controls communication between the edge and
fog nodes. The gateway is the mediator of this communication
between private and public networks. In the proposed network
design, fog node placement is essential for data analysis and
control. Fog nodes have local databases and analytics algo-
rithms to process the data. The time scheduled monitoring
and management are controlled by the fog node. However,
the Amazon Web Services (AWS) EC2 infrastructure-as-a-
service also runs an identical Web server. Data processing near
the sensing node offers the benefit of maintaining the system
optimally, ensuring adherence to scheduled monitoring and
management tasks. The existing capacity of the public cloud
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Fig. 9. Logical representation of the network configuration between the
nodes.

needs to be improved to effectively address challenges such
as latency and bandwidth constraints [31]. Relying solely on
the cloud server for comprehensive analysis and control could
yield undesirable outcomes. The potential for interruptions in
connectivity between the sensing node and cloud servers raises
the risk of timely scheduled operations being compromised at
the sensing node. To mitigate these concerns, we have strate-
gically positioned cloud analysis closer to the sensing node
through fog nodes, thus averting disruptions to scheduled data
analysis and control. However, the fog nodes primarily serve
as data processing and storage intermediaries. The responsibil-
ity of managing scalable storage and processing of sensor data
remains within the purview of the public cloud. The Rest API
serves as the web server’s communication channel for data and
control. Encoding of both data and control information is car-
ried out using the base64 format. Furthermore, a combination
of MQTT and RestAPI protocols is utilized to facilitate the
communication between the nodes. The local network between
the nodes communicate to Amazon cloud EC2 instance via
gateway router, as depicted in Fig. 9. We have employed
the TP-link router for this gateway setup. This router fea-
tures dual bands: IEEE 802.11ac/n/a at 5 GHz and IEEE
802.11n/b/g at 2.4 GHz, offering bandwidths of 450 Mbps
and 1300 Mbps, respectively. We harnessed supplementary
router capabilities such as the virtual private network (VPN)
and Network Address Translation (NAT) features to enhance
security and functionality. Notably, the VPN server integrated
within the router furnishes a safe network environment for
remote access from the public network. The secure tunnel
also provides remote users to monitor and manage aquaculture
operations.

C. Logical Design

In a Data Processing layer, we have composed distinct func-
tional components, each contributing to functions like data
visualization, control, command, and processing. We have
used the Python web framework for the front-end aspect.
The graphical user interface (GUI) on the front end offers
an array of functions, as illustrated in Fig. 10. The graph-
ical user interface (GUI) was created using the technology
stack of JQuery, Chart.js, CSS, and HTML5. The back-end
is constructed using the MYSQL database. The web server
is deployed at Amazon cloud EC2 instance and at fog node
within the network. To streamline cloud-based data analytic,

Fig. 10. IoT dashboard [32].

Fig. 11. Container-based visualizations.

we have implemented visualization using docker containers.
This approach simplifies the challenges inherent in applica-
tion development. Container-based visualizations require the
application and its associated binaries and libraries. The iso-
lation of containers occurs at the kernel level, eliminating
the need for a separate guest operating system and minimiz-
ing resource duplication. Each container runs isolated data
analytic models, enabling seamless scaling or updating of
micro-services without disrupting other application function-
alities, as depicted in Fig. 11. It is a swift, low-cost, and
elegant isolation framework. The isolated containers forecast
the change in water parameters through different nonlinear
decision tree-based models. The IoT dashboard has additional
features like recalibration, fault detection, and status monitor-
ing of sensors and actuators. The data analytics visualize the
forecasted data along with actual data. This feature lets us
know the difference between real sensor data and analytics-
driven predicted data. In order to safeguard the identity of each
device, a distinct and random API key has been employed.
This key is specific to each device within the network. The
API key is unique to every device in a network. The cus-
tomer signs up and changes the API key. The remote login
to the edge device is protected through a VPN server run-
ning the TP-link AC1750 wireless dual-band gigabit gateway
router.

D. Intelligent Forecasting Models

We have adopted a data analytic approach to manage aqua-
culture operations. The predictive model analyses the change
in water parameters and effectively operates the actuators. In
this study, we analyze the feasibility of the tree-based model to
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TABLE III
COMPARISON OF FORECASTING MODELS

forecast the water parameter in the presence of a low amount
of data. We focus on two main scenarios: 1) estimating water
parameters based on the relative change in other parameters
and 2) predict alterations in water conditions using histori-
cal data. Besides, we also compare the performance of the
tree-based model with existing multivariate LR and ANN. The
prime focus of this study is to analyze the DO forecast relative
to pH, water temperature, and TDS.

The most common approaches for water quality prediction
in aquaculture include the following:

1) autoregressive moving average (ARMA);
2) autoregressive integrated moving average (ARIMA);
3) Markov model;
4) support vector regression (SVR).

These models are inappropriate for prediction in aquaculture
water quality parameters as they only consider the linear rela-
tionship. The water quality parameters are inconsistent due to
various environmental factors; hence linear prediction mod-
els are inefficient in correlating the relationships between
multiple predictors and their respective variables. These mod-
els also take a long prediction time, making them unsuitable
for predicting the nonlinear relationship [25], [27]. Deep learn-
ing models like LSTM may need to be more stable for
predicting all real-time dynamics. The predictive processes
can be linear to a single target quality parameter and its
dynamics over time between multiple predictors and their
respective variables. LSTM and gated recurrent unit (GRU)
are flexible in capturing the nonlinear relationship in water
quality parameters [28]. Due to its outstanding results in time-
series prediction, LSTM is the most popular forecasting DL
technique. For time-series prediction, LSTM and GRU mod-
els could be better at keeping long-term memory, especially
for extended sequences. In time-series forecasting, historical
observations influence the prediction value at the present step.
In certain circumstances, the observation step that had a signif-
icant impact may have appeared long before the current step.
Recent research has shown that the ability of LSTM mod-
els to extract information about long-term relationships from

historical observations remains a crucial performance con-
straint. Theoretically, it has been demonstrated that ordinary
LSTM lacks long memory from a statistical standpoint [29].
Compared to Naive Bayes, K Nearest Neighbors, and SVM,
decision tree learning and neural networks result in better and
more consistent performance. Known as KIG-ELM, the hybrid
DO prediction model combines K-means, enhanced genetic
algorithms (IGAs), and extreme learning machines (ELMs)
and is based on edge computing architecture. This model
distributes data acquisition, processing, and DO prediction
among sensing nodes, routing nodes, and servers. For DO
prediction, an ELM is implemented. Because of the unsta-
ble prediction performance constraint, it takes a lot of time
to obtain high precision using the multiscale decomposition
method. Multiparameter methods, which use several related
parameters as input and the DO content as an output to fore-
cast future DO, still have some significant issues, such as
insufficiently processing DO data effectively and failing to
recognize the characteristics of DO content changing. The DO
time-series data is volatile. During sunrises and sunsets, fore-
cast accuracy typically drops off quickly [30]. In our proposed
method, we have compared the accuracy of models like ANN,
GBM, RF, and M5 model trees. We have chosen the models
mentioned above due to certain advantages of these models.
Table III summarizes the befits and limitations of the selected
models.

For designing a predictive model, we employ a model tree
(M5) and benchmark its performance against a GBM, RF, and
artificial neural network (ANN). Unlike linear models, tree-
based models accommodate non-linear relationships, making
them apt for monitoring real shifts in water parameters [27].
Random forest comprises multiple individual random decision
trees functioning as an ensemble, with each tree acting as
an independent predictor. The ensemble predictions, formed
from low-correlation individual trees, surpass the accuracy of
solitary predictions. Optimal RF predictions require careful
feature vector selection instead of random sampling, aiming
for low correlation within the distinct decision trees. Similarly,



4214 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Fig. 12. Aquaculture main harvesting tank [32].

gradient boosting progressively enhances the performance of
the CART algorithm. Initially assigning equal weights dur-
ing decision tree training, subsequent modifications refine
prediction quality. Weight adjustments focus on harder-to-
classify instances, strengthening their influence, while easing-
to-classify ones see reduced weight. Subsequent trees yield
improved forecasts over their predecessors. The ultimate
prediction rests upon an ensemble’s weighted sum of prior tree
predictions. Furthermore, model tree-based predictive analysis
forms a decision tree hierarchy using elementary models like
linear regression, logistic regression etc. Initially, the given
feature vector is fitted with a linear model. Later, the error
is estimated between the actual target and predicted values.
The least error features are chosen as the conditional branch
of the decision tree. The subsequent split goes until the leaf
node has an optimized linear model fitted on the partial fea-
ture vector. The trained model tree effectively forecasts the
change in water quality parameters. The recursive optimization
of the decision tree may lead to an overfitting problem. To
deal with the overfitting problem, we have used the preprun-
ing method to filter out the anomalies in the data set using
the local outlier factor (LOF) [32]. Similarly, we have applied
the post-pruning method to prevent the decision tree growth to
its full depth. The post-pruning method simplifies the model
tree and optimizes the prediction accuracy. Similarly, the ANN
models are the conventional approach for time-series forecast-
ing. However, unlike the tree-based model, ANN-based models
need a larger data set for training and testing, and it is not easy
to interpret the information from the trained model. We ana-
lyze the performance of the multilayer perception ANN model
with a ReLu activation function.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup and Control System

We have used the glass aquarium for freshwater pearl
farming. The Lammelidens marginalis mussel species is used
for pearl production, as shown in Fig. 12. Each mussel is
implanted with two designed, crafted mussel shell nuclei. In
the implantation process, each mussel passes through a surgi-
cal procedure. After successful implantation, each mussel is
placed within tanks dedicated to post-operative care, where
antibiotics and an oxygen pump are administered. Some mus-
sels might reject the implanted foreign particles and die, while
others accept them. Those mussels that accept the foreign par-
ticles are transferred from the post-operative care tanks to the
primary harvesting tank. Maintaining a controlled environment

is imperative to ensure optimal pearl production. The proposed
system has sensors and actuators that manage the habitable
underwater environment [31].

In the initial stages of data processing, we investigated how
temperature influences biological and chemical reactions. The
fluctuation in temperature notably impacts water parameters
over an entire day. Hence, we’ve established five distinct time
intervals for data acquisition. The first acquisition, scheduled
at 6:00 AM, coincides with the lowest temperature and DO
levels, alongside the highest pH and moderate alkalinity. The
second interval, at 10:00 AM, aligns with the initiation of the
smart feeder system and aeration. At 3:00 PM, the third acqui-
sition takes place, coinciding with peak temperature, pH, and
DO levels. The fourth instance, at 10:00 PM, corresponds to the
commencement of the recirculating aquaculture system. This
system involves water passing through a bio-filter to elimi-
nate residual plankton feed, as nocturnal plankton consumption
affects dissolved oxygen. Analytical algorithms oversee DO
changes and aeration operation. The fifth interval, at 1:00 PM,
analyzes aeration requirements through data analysis. RTC
control manages system operations. We validate the control
system by simulating changes in water parameters to observe
system behavior [31]. The smart data analytics algorithm
schedule the requirement for aquaculture management based
on the change in the water parameters. The intelligent data
analytics algorithm schedules the requirement for aquaculture
management based on the change in the water parameters.

B. Data Preprocessing

The sensing node simplifies raw sensor data for processing.
In some initial data, sensor data may be missing, potentially
leading to erroneous predictive analysis. To address this, data
imputation is executed at the fog node due to sensing node
constraints. The sensing node aggregates sensor data using
base64 encoding, forwarding it to the fog node. Upon receipt,
the fog node decodes and validates the data before predictive
analysis. For missing sensor values, the fog node employs data
processing to determine correlations between historical and
current data. Scheduled RTC data acquisition simplifies corre-
lating current and similar-timestamp historical data. Utilizing
the KD tree, the missing sensor feed is imputed by analyzing
non-missing neighbouring sensor data. The Kd tree searches
the nearest neighbor of similar timestamps from the historical
n proximity sensors and imputes the missing sensor feed by
reading the nearest neighbors’ sensor feeds. Subsequently, the
sensor data undergoes pre-processing to identify anomalies.
Anomalies within the dataset are eliminated by applying the
LOF, made by Singh et al. [32]. This technique identifies aber-
rant data points by assessing their local deviation compared to
neighbouring points. The resulting LoF score is then utilized
to ascertain the presence of outliers in the data

⎧
⎨

⎩

LOF(k) ∼ 1 data point in a same cluster
LOF(k) < 1 data point is Inlier
LOF(k) > 1 data point is outlinear.

In the equation above, the variable “k” denotes the local-
ity concerning its kth neighbours. To assess the efficiency of
LOF, we introduced an additional outlier data point into the
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Fig. 13. Outlier detection between DO and pH [32].

Fig. 14. Outlier detection between DO and temperature [32].

Fig. 15. Aquaculture control system.

dataset. The experimental findings indicate that LOF profi-
ciently identifies outliers within the dataset, as Figs.13 and 14
illustrate.

C. Aquaculture Control System

The actuators respond to control signals generated by the
data analytic algorithm. This algorithm utilizes past data to
predict shifts in DO levels, taking into account correlated
water parameters like temperature and pH. Relying solely
on sensor data for system operation can lead to imprecise
monitoring. Prolonged usage of sensors often introduces inac-
curacies in measurements. Despite any discrepancies in sensor
measurements, we counteract deviations from the desired state
by considering the historical data recorded at similar time
instances. We have considered the water temperature, EC, and
relative pH parameters for predicting DO levels. Likewise, we
have considered the interdependent parameters of DO, elec-
trical conductivity (EC), and water temperature for predicting
pH values. To evaluate the precision of the DO sensor data,
we compare the pH and water temperature data with historical
records from similar time intervals. We have integrated a K-D
tree to improve the search procedure, as depicted in Fig. 15.

The predicted DO values, and those extracted from histori-
cal records might display either close resemblances or notable
disparities. Should the relative variation remain below 0.5 parts
per million (PPM) between the predicted and retrieved DO

TABLE IV
PEARSON CORRELATION ANALYSIS RESULTS [32]

values, the system functions smoothly without sensor mal-
functions, adhering to a schedule derived from the analytic
process. Conversely, suppose the relative divergence surpasses
0.5 PPM. In that case, it triggers a re-calibration of the sensors,
resulting in an adjusted schedule based on other correlated
parameters such as EC and water temperature. A combination
of multiple temperature probes and EC sensors is employed to
ensure precise prediction as they are robust and cost-effective
relative indicators for forecasting DO and pH levels. Likewise,
the relationship between pH and DO is influenced by various
factors. pH fluctuations are attributed to changes in water ion
composition, which can be readily deduced through the EC
sensor. In cases where the pH sensor produces inaccurate read-
ings, the EC sensor is employed to stabilize both DO and pH
variations. An absolute difference exceeding 1 part per million
(PPM) prompts a system alert, indicating a potential sensor
malfunction, prompting a transition to alternative parameters
(EC and water temperature). Enhanced precision in prediction
is achieved through the combined utilization of correlated rel-
ative parameters. Our initial investigation encompasses pH,
DO, EC, and water temperature as interconnected parameters
for comprehensive water quality analysis. Integrating multiple
relevant sensor inputs contributes to the refined forecast.

The incorporation of the actuator system is designed in
response to variations in the target water parameters, as out-
lined in Table I. The gathered data orchestrate diverse actuator
actions through the Real-Time Clock (RTC). Overnight accu-
mulation of by-products and leftover feed leads to alterations
in pH and DO levels within the water, which are normal-
ized through the operation of the Recirculating Aquaculture
System (RAS) and the aerator system, scheduled at 6 A.M.
Later at 10 A.M., smart feeder system pumps the plankton
algae mixture into the harvesting tank and operates the aera-
tor to supplement desired to DO requirement. The third sensor
measurement time was set to 3 P.M. when mussels excreted
by-product, and temperature variation may fluctuate the DO
and pH. To balance the DO and pH, the proposed system,
based on the requirement, may operate the RAS system and
aerator. At 10 P.M., scheduled actuator operation, we balance
the DO and pH through RAS and aerator. Similarly, at the 1
P.M. overnight schedule, the proposed system analyzes the DO
requirement and accordingly operates the aerator. We adjust
the water parameters to validate the functionality of the con-
trol system. The intelligent data analytics algorithm schedules
the aquaculture management requirement based on the water
parameters.

D. Performance Evaluation for Predictive Analysis

The cleaned data serves as input for predictive analysis.
Initially, we computed bilateral Pearson correlations among
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Fig. 16. Generated model tree with maximum depth = 4.

TABLE V
RESULT OF DO PREDICTED FROM NONLINEAR FORECASTING MODELS

the water parameters. Subsequently, we aggregated the highly
correlated data elements for predictive analysis. The out-
comes of the bilateral Pearson correlations are presented in
Table IV. The examination unveils a significant correlation
between DO and temperature, demonstrated by correlation
coefficients of 0.52. Similarly, pH exhibits correlations with
DO and temperature, indicated by correlation coefficients of
0.73 and 0.82, respectively. Given the pivotal role of DO and
pH as aquaculture indicators, they have been incorporated into
the training dataset. Furthermore, water temperature exerts
notable influence over chemical and biological reactions. The
inclusion of water temperature in our feature vector has been
undertaken. Considering the interrelation between DO, pH,
and water temperature, we have designed the model train-
ing process where pH and temperature serve as independent
variables, and DO functions as the dependent variable. We
contrast tree-based models with the ANN model to evaluate
performance. We used the multilayer perceptron with ReLu
as the activation function for the ANN model. Due to lim-
ited test measurement from the aquaculture site, we have kept
1000 validation runs using a training set of 160 samples and a
test set of 40 samples to obtain the convergence of mean and
standard deviation on the performance indicators. In M5 model
tree construction, we have used the parameters such as linear
model, maximum depth of decision tree = 4, the minimum
number of samples at leaf = 10, and greedy search strategy.
The model tree training generates the ten rules, as shown in
Fig. 16. For DO prediction, the M5 model tree shows a strong
correlation R = 0.877 between the actual and predicted data.
The model estimated mean absolute error (MAE) was 0.963.
Table V shows the comparative performance of the M5 model
tree for DO prediction with other nonlinear decision tree-
based predictors. The training process encompasses 80% of
the sample data (160 instances), while the remaining 20% (40
instances) is designated for testing the model’s performance.
The non-linear RF, GBM, and M5 model tree are assessed with
a maximum tree depth set at 4 and a sample size 40. All the
nonlinear tree-based model RF, GBM, and M5 model trees
showed better performance compared to ANN. The slightly

TABLE VI
RESULT OF PH PREDICTED FROM NONLINEAR FORECASTING MODELS

Fig. 17. Correlation between actual versus predicted DO values.

Fig. 18. Correlation between actual versus predicted pH values.

lower performance of ANN is due to the smaller size of the
training data set with multiple input parameter.

The comparative performance analysis obtained the low-
est MAE of 0.963 from the M5 model tree. The model
performance is validated using the new data set from the sen-
sors. Similarly, we have evaluated the model performance for
pH prediction using a training sample containing DO, pH, and
temperature water parameters. Table VI shows the comparative
performance of the model tree for pH prediction with other
nonlinear decision tree-based predictors.

Figs. 17 and 18 display the correlation outcomes of the M5
model tree for pH and DO, comparing actual and predicted
values. The correlation between predicted and actual DO val-
ues stands at 0.8775, accompanied by a satisfactory MAE of
0.963. Similarly, the pH prediction yields a high correlation
of 0.974, alongside a minimal MAE of 0.01239. The exper-
imental evaluation shows that the M5 model tree algorithm
can predict the changing water parameters better than other
RF, ANN, and GBM nonlinear predictors. In the comparative
study, we found M5 model tree is slightly better than other
nonlinear RF, GBM, and ANN models. Despite less training
data, we obtain a better result with the M5 model tree due to
its inherent features of grouping the high correlations data for
constructing the M5-model tree.

The employed M5 model tree performs the group analyses
of relative water parameters. We adopt the pruning meth-
ods for the model to generalize well to unseen data. The
pruning method optimizes the tree structure without affect-
ing the classification accuracy. The REP algorithm pruned
the growing tree and used the information gained as the
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branching criteria. Redundant subtrees were pruned to solve
the overfitting problem and maximize the forecasting accuracy.

VI. CONCLUSION

This article introduces a holistic Internet of Things (IoT)
system designed to oversee and uphold aquaculture opera-
tions. The proposed system design has a physical, network,
and logical design. The physical design provided the hardware
configuration details. In contrast, the network design shows
the communication network between the physical devices. In
this design, we have addressed the requirement of a fog node
for intelligent data analytics and control. In the logical design,
we have discussed the front-end and back-end implementation
details. It also highlighted the importance of container-based
virtualization and the various design features. This article
also discusses the importance of the core intelligent analyt-
ics algorithm for monitoring and managing aquaculture. The
closed-loop control system ran through intelligent nonlinear
decision tree-based models. This article shows the compara-
tive performance of the M5 model tree, RF, ANN, and GBM.
The experimental evaluation found that the M5 model tree
has the highest prediction accuracy for DO prediction with
a correlation of 0.877 with an MAE of 0.963. Similarly, the
M5 model tree outperforms PH prediction with a correlation
of 0.975 and an MAE of 0.0123.

Future research in this direction includes more robust rel-
ative water sensors to make the system more affordable and
accurate. In future research, we also include analyzing and
developing a more accurate forecasting model.
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