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Abstract—Sleep is an essential activity that affects an individ-
ual’s health and ability to perform activities of daily living (ADL).
Inadequate sleep reduces cognitive capacity and leads to health-
related issues, such as cardiovascular diseases. Sleep disorders
are more prevalent in older adults. Therefore, it is essential to
recognize sleep patterns and support older adults and their care-
givers. In our study, we collect data in real-world unconstrained
and nonintrusive environments. This article presents a novel sleep
activity recognition method using motion sensors for recogniz-
ing nighttime and daytime sleep, which can further enable the
development of insightful healthcare applications. The research
objectives are to evaluate the application of using multiarmed
bandit (MAB) methods to 1) learn normal sleep patterns; 2) eval-
uate sleep quality; and 3) detect anomalies in sleep activity for
11 elderly participants living in single-resident smart homes. We
evaluate the performance of Thompson sampling (TS), random
selection, and upper confidence bound MAB methods. TS outper-
formed the other two methods. Our findings show most elderly
participants slept between 6 and 8 h with 85% sleep efficiency
and up to three awakenings per night.

Index Terms—Anomaly detection, elderly healthcare, Internet
of Things (IoT), multiarmed bandits (MABs), reinforcement
learning, sleep patterns, smart homes.

I. INTRODUCTION

NTERNET of Things (IoT) for real-world applications
Iin different domains has witnessed significant growth in
recent years. IoT applications have seen rapid developments
in different domains, such as medical diagnosis and energy
management applications based on IoT systems for e-health
and scheduling home appliances, to save energy [1], [2].
Developing diagnosis models in health applications is impor-
tant, especially during pandemic times. Shankar et al. [3]
proposed a classifier of the COVID-19 model to control
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the disease. For classification, they used fuzzy bilateral
filtering (FBF) to preprocess Chest X-Ray Images and deep
convolutional neural networks (DCNNs). The proposed model
showed promising results compared to other evaluated models,
with an average accuracy of over 96%.

In 2020, there were about 1.37 billion connected devices,
with about 0.36 billion within the healthcare sector, mainly for
monitoring patients [4]. Sensors alone contributed $15 trillion
to the IoT market in 2020, and by 2030 this number will
reach $100 trillion [5]. By 2025, the market for IoT services
in the healthcare sector will likely reach $1.6 trillion in annual
income, rising from $0.2 trillion in 2015. Smart home devices
embedded in the physical environment or attached to human
bodies are increasingly used to support health monitoring
systems [6]. Specifically, IoT services have the potential to
facilitate nonintrusive sleep monitoring for older adults living
independently [7]. In real-life environments, motion sensors in
smart homes can recognize activities of daily living (ADLs),
such as leaving home and sleeping [8], and track sleep behav-
ior [7]. In general, these motion sensors are better accepted
by older adults than other devices (smart watches) [9] due to
their practicality, nonintrusiveness, and robustness to changes
in the surrounding environment [10]. IoT platforms integrate
these motion sensors and collect and process the data to run
different healthcare applications. Advanced IoT devices and
off-the-shelf sensors enable lowering the cost of data collec-
tion [8]. Detecting abnormal behaviors by ADL applications
in healthcare systems could help healthcare providers conduct
their work more effectively, particularly in elderly care.

Sleep is an essential activity that affects an individual’s
health and ability to perform ADL. Inadequate sleep can
impact daily behavior [11], reduce cognitive throughput [12],
and increase the risk of cardiovascular diseases [13], [14].
Adequate sleep, a combination of the right amount of sleep
duration and quality, is associated with aspects of healthy liv-
ing, such as a healthy diet and regular meal patterns [15].
However, older adults are more affected by insomnia and other
sleep disorders than younger people because they are more
likely to have medical conditions [16], [17].

The Swedish National Study on Aging and Care investigated
1400 older adults and showed that about 60%—76% of people
aged 66 years or older had sleep problems, which tended to
increase with age [16]. Another study of 876 participants aged
65-79 reported that about 24% of women and 13% of men had
sleep problems, and 44% of participants had complaints about
continuing sleep [18]. In another study, over half of the 9000
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Fig. 1. Real-life apartment layout with smart home sensors (for example,
motion sensors in each room) connected to an IoT gateway.

participants had sleep complaints, with 23%—-34% complaining
of insomnia [19]. The findings of large-scale studies of the
elderly suggest that adherence to daily routines is associated
with better sleep quality and reduced insomnia [14].

The current study also investigated daytime sleep behavior,
as there is a paucity of such information in [7]. Also, 20%
of people over 65 years old have longer sleep duration during
the daytime than nighttime, which might indicate sleep Apnea
and Alzheimer’s [20]. About 32% of older men and 23% of
older women complained of daytime sleepiness [18], which
agrees with another study in northern Sweden [21].

In our study, we targeted older adults who live indepen-
dently in their homes because they have particular challenges
with recent technological advances that can provision health-
care to them [22]. There are over 266 000 men and 497 000
women between 65 and 95 years old living in single-resident
households in Sweden—about 28% and 51% of men and
women, respectively, and about 38% of the total population
of +65 years old are living independently [23].

In this article, we use off-the-shelf IoT devices installed in
single-resident elderly homes to identify sleep patterns and
any health-related anomalies to support these older adults to
live independently for longer, as illustrated in Fig. 1. Perez-
Pozuelo et al. [7] can allow for early diagnosis of sleep
disorders by clinicians and assist individuals in changing their
habits [24].

Data collection through nonintrusive sensors present in the
individual’s smart homes has the potential to track changes
in sleep patterns [24] and help epidemiological studies [7].
Several studies have used wearable devices to capture data
for low-level activities, such as walking, falling, and ges-
tures [8], [25], as well as smartphones to recognize human
behaviors [26].

However, these devices can be impractical—the elderly user
may forget to use the device or dislike wearing it, design
constraints may inhibit 24/7 use, or the users may already
wear other emergency buttons on their wrists necessary for
their well-being. Furthermore, vision-based techniques raise
privacy concerns and may not be the best option for monitoring
ADLs [10], [27]. Various studies have explored sleep patterns
by collecting data from PSG/EEG, wearable devices, actigra-
phy, and accelerometry sensors [7]. However, challenges, such
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as usability, privacy, and human annotation of the sleep EEG
remain [27]. Nonintrusive IoT devices were found to be more
accepted by users than these other devices [9].

In addition to the challenges of using wearable devices, col-
lecting historical data to recognize higher activity abstractions,
such as behaviors or ADLs, to build an anomaly detection
system is emphasized in different human activity recogni-
tion (HAR) systems [27], [28]. However, the collection of
long-term activity data from real-world smart homes is a chal-
lenge, especially in the case of older residents. Most existing
approaches require large amounts of training data sets to learn
the user’s behavior [27], however finding the right number
of data sets—enough to learn the behavior without taking
too long, but not too few to learn the behavior correctly—
is an open issue that needs to be explored. Multiarmed bandit
(MAB) methods are applied in different application domains
where it successfully learns the different variations in patterns
through periods of exploration and exploitation at the same
time. It treats the sleep recognition problem as a classical
reinforcement learning problem. The MAB identifies differ-
ent sleep behaviors of a person as a bandit and rewards them
based on the highest probability, which then is recognized as
normal behavior, and the arms with lower probability repre-
sent the less likely behavior, which can also sometimes be
identified as an anomaly.

MAB methods learn human behavior faster with less train-
ing data than ML and statistical approaches. MAB, a reinforce-
ment learning method, is more adaptable to changes in human
behavior. In our use case, we had multiple elderly pilots for
which we had a requirement to learn sleep patterns with less
training data and identify abnormal patterns in sleep. In our
previous work [29], we applied a statistical method to learn
behavior which worked well. However, we needed to collect
data for more extended periods.

The research objectives are 1) to investigate if nonintru-
sive off-the-shelf IoT motion sensor devices can identify sleep
patterns and 2) to evaluate the use of MAB algorithms in
discovering sleep patterns and identifying anomalies.

In this article, in our proposed system, we used three meth-
ods of reinforcement learning known as MABs were evaluated
on data sets of between 62 and 324 days: 1) Thompson
sampling (TS); 2) upper confidence bound (UCB1); and 3) ran-
dom selection (RS). The correctly classified percentage (PCC)
was used to assess the overall accuracy and compare the
performance of the methods [30]. The highest PCC in our
tests represented the best of the three proposed methods.

The contribution to our research is as follows.

Contribution:

1) We proposed, developed, and evaluated a framework to
learn sleep patterns (nighttime and daytime) with MAB
algorithms TS, UCB1, and RS for 11 elderly participants
with a median age of 89 years living in single-resident
apartments for approximately two years. Each method’s
performance was evaluated using 88-463 days of night
sleep, training, and a testing ratio is 30:70.

2) We classified the outcomes of the MAB algorithms
with a high and low probability of returning expected
rewards as corresponding to normal and abnormal days,
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respectively. We further investigated the arms with the
highest probability by classifying them into good or
poor sleep quality based on sleep efficiency (SE) scores
and the number of awakenings per night recommended
by sleep literature in [31]. Similarly, we classified the
predicted arms with the lowest probability as abnormal
sleep days.

This study was part of a project, “The IoT within health
and care” (iVO) [32], which was started in 2018 and focuses
on older people living independently in smart home envi-
ronments.! Participant apartments were in three Swedish
municipalities: 1) Skellefted; 2) Kiruna; and 3) Uppsala. We
collected data for analysis during the project for approximately
two years to model sleep behavior for each household. We
considered the ethical principles raised and applied to the
project in collaboration with the Department of Homecare at
Skellefted municipality. The participants consented to the use
of their data and the installation of in-home sensors. The
project complied with the EU GDPR guidelines [33]. The
Regional Ethical Board approved the study method and data
collection and processing included in this study in Umea,
Sweden (diary no. 2018-189/31).

II. MULTIARMED BANDITS FOR HAR
AND ANOMALY DETECTION

MAB is a simple formulation of reinforcement learning. It
is concerned with decision-making problems where the algo-
rithm tries to maximize its rewards by selecting the possible
correct arm/action or choice [34], which is a “learning-by-
doing” method. The motivation and advantages for using MAB
in our work as compared to other ML methods are presented
as follows.

1) Most machine learning solutions learn from the under-
lying distribution of data. However, human behavior
changes over time under different circumstances, and we
do not know the probability distribution of each partici-
pant’s sleep data. We need to think of a system adaptable
to these changes that applies in uncertain conditions,
i.e., where we have many variations in data.

2) Most existing HAR techniques that follow a supervised
learning approach requires annotation before implemen-
tation. They also require extensive training data sets [27].
MAB addresses the challenges of collecting large data
sets since its learning is based on repetitive tasks [35].
For early participation in the deployments, participants
with insufficient training data could benefit from the
MAB method as it learns and adapts quickly, even
though it might not initially be the correct guess.

3) With MAB, there is no need to test all data to show sta-
tistical significance—the optimization of the outcomes
of the arms is either rewards or losses. When the rewards
are high, TS and UCBI1 will converge quickly—within
only a few data samples. Hence, a few data samples are
sufficient to learn unsupervised fashion.

livo: https://skelleftea.se/digitalisering/digitalisering-i-skelleftea-
kommun/arkiv/iot/2020-12-31-ett-forsta-steg-mot-stor-samhallsnytta
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TABLE I
APPLICATIONS OF DIFFERENT MAB METHODS IN MARKETING,

RECOMMENDATION, MEDICAL APPLICATIONS, AND
ANOMALY DETECTION IN IOT DEVICES

Ref. | Year Application Data
1461 | 2015 Or}lmg website marketing opti- Synthetic data
mization
Psychology and Neuroscience for | 107 students played 200 games
[47] | 2018 . o
human learning each for 15 trials
Personalized recommendation of | Yahoo! Front Page Today Module
[48] | 2012 . L
news articles dataset, 33 million events
[49] | 2015 Ovnlme‘. momlonng of  high- Solar flare data (satellite images)
dimensional streaming data
One synthetic data set and two
[45] | 2020 Anomaly detection real datasets (Twitter, Yahoo! To-
day Module)
[44] | 2017| Anomaly detection Synthetic and real data (Twitter)
[50] | 2020 Database activity monitoring and | Simulated data of 10 datasets, for
for anomaly detection 200 users for 3,000 timeframes
31| 2019 Anomaly detection on attributed | Three real datasets attributed net-
networks works (BlogCatalog, Flickr, ACM)
[51] | 2020| Monitoring IoT devices for Net- | ;. 1.1eq data of 1500 ToT devices
work accessing

Thus, using MAB, it is possible to build an activity
recognition learning-based model that works well on a small
training data set to find a balance between learning from
historical data. In the next section, we present MAB and HAR-
related work to identify the gaps that intersect HAR and MAB
research-related topics.

A. Related Work

Most health conditions impact a human’s sleep activity and
vice versa; thus, analysis of sleep patterns is essential for
both daytime and nighttime. This analysis of sleep patterns
using motion sensor data is valuable in our research, as we
consider both temporal and spatial data of daily activity behav-
iors [36], [37]. Spatial aspects are considered by looking at
motion behavior across different rooms in the apartment/home.
Various IoT-based systems using motion sensors for HAR exist
to detect the presence and track the movement of residents
indoors [27]. This tracking mainly involves current activities
ignoring the important (habits) of the residents [28]. The use of
sufficient historical data helps to analyze individual behavior
patterns better since these discovered patterns provide insights
into the habits of the residents. This could enable us to iden-
tify ADLs and anomalies that can be helpful for elderly care,
and healthcare [28].

Anomaly detection reduces human resource costs by
informing caregivers about these anomalies. Also, long-
term behavioral changes in users with underlying health
issues [38] require offline evaluation of long-term activities.
This evaluation can help detect and diagnose diseases, such as
Alzheimer’s and analyze disturbed sleep patterns, indicating
other health issues [39]. These observations could be part of
health condition analysis systems for older adults.

Table I summarizes MAB-based applications in literature
focusing mainly on anomaly detection. MAB was studied
in 1933 by William Thompson to address the exploration-
exploitation dilemma [40] and is used in applications, such
as clinical trials [41] and Microsoft’s AdPredictor [42], where
TS is used to predict ad click-through rates on the Bing
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TABLE 11
HAR SYSTEMS IN SMART HOME ENVIRONMENTS USING MOTION
SENSORS AND WEARABLE DEVICES

Rel. | Year Sensors Data Subject Info | Setting Method Performance
Start time, dura-
PIR, door | ion, the  transi- . RH, 65 | Probabilistic 96%-100% accu-
152 | 2020 | sensors, pressure A single resident
5 tion between the days model racy
sensors TOOMS
(531 | 2000 | S PRsemsorsin | 30 Households oF | Rit, 355 | Long Short-Term | 0.52.0.88 AUC
> each household ime duration ngle TESICENS, - g,y Memory-VAE
multi occupants Y
Motion, _door, S )
[37] | 2017 | and temperature | Time duration 20 Single resi- | gy Np | LRSVM, deci- | gie ooy
and dents sion trees, RF
(54 | 2000 | PO Charse | Time duration | 30 voluneer st | 106 LSTM-RNN 60% accuracy
device dents days Y
ActiGraph R . 929 and 89% ac-
[60] | 2016 | GT3X+l Time duration 92 Adults One. o™ B curaey
accelerometer "
RH (5 days) | o
and in-lab :—'\" "
Entryfexit of bed, dults
Y 9% - %
[61] | 2020 | Bed sensor movement, and | SPements (181 g o | Shannon entropy | 208% - 9973%
posture changes older Y
adults
wained
18-48
years
old and
vali 16 accurac
[56] 202 | dccelerometer UCI dataset Smartphones dated on | LSTM 89.07% accuracy
and gyroscope ‘
14 par
ticipants
66-86
years
old
One
|02 | e Two elderly resi- | Multi-resident week of | Decision Tree | achieved 96%
o dents’ datasets smart homes (DT) classifier
sensors
data
yroscope, Opportunity
o o .
(581 | 200 | accelerometer, | datwset from 12 | 05 hours | oy 88.57%
and persons of data
8 participants 21-28
(59] | 2023 | &vromeope 4 pele smart watches | Y LST™ 94% accuracy
< © observations vities

search engine. Anomaly detection using MABs in attributed
networks [43] and website data have been studied [44] using
a statistical threshold known as the K-sigma rule. This works
well with a normal distribution, but there are drawbacks to
using this rule with skewed distributions [45]. We implemented
the MAB algorithms epsilon-greedy, TS, and UCBI to detect
anomalies in attributed networks in real-world data sets, such
as BlogCatalog and ACM [43]. Similarly, Ban and He [45]
proposed an MAB algorithm that evaluated synthetic and real-
world data sets (Twitter and Yahoo Webscope), and the model
achieved 98% accuracy.

Table II summarizes previous studies in the pervasive
computing area for sleep activity recognition and anomaly
detection using IoT-based devices in smart homes. Passive
infra-red (PIR), switch sensors [52], thermostat sensors [53],
and ambient sensors [37] were used to identify sleep pat-
terns and detect anomalies in sleep from physical activity
during waking time using different deep learning methods and
probabilistic approaches. Furthermore, in the pervasive and
wearable computing research area, wearable sensors capture
daily physical data to analyze sleep patterns and measure sleep
quality [54], [55].

Hayat et al. [56] proposed LSTM with twofold and tenfold
cross-validation methods to classify activities like walking and
sitting in a sample of the University of California Irvine (UCI)
data set within the 18-48 age group. The model classification
accuracy reached 89.07%.

Naccarelli et al. [57] proposed a method for monitoring and
measuring two older adults’ activities in multiresident smart
homes using motion sensors; the goal is to detect walking,
moving the arms, and standing events among different persons.
The decision tree (DT) classifier achieved 96% in identify-
ing the identity of residents in a supervised test compared to
other ML methods. The results vary depending on the distance
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between the sensor and the person, with a better capacity for
detecting movements like walking and moving arms.

Javeed and Jalal [58] proposed a monitoring system using
motion-based wearable sensors to analyze motion patterns
which may lead to identifying health issues. When evaluated
on the Opportunity HAR data set, the CNN model outper-
formed other state-of-the-art methods, with an accuracy of
88.57% in classifying actions, such as standing, walking, and
sitting.

Kandpal et al. [59] proposed LSTM to recognize the actions
of an individual wearing a smartwatch using gyroscope and
accelerometer data. They collected and labeled data from 8
participants between 21 and 28 years old. The proposed model
achieved an overall accuracy of 94%.

In Table I, we show that recent works in MAB applica-
tions have not investigated HAR task and anomaly detection
research topics within a smart homes context. This observa-
tion motivated us to explore the use of MAB algorithms to
achieve the goals mentioned in section (II). MAB is rarely
implemented within IoT-based systems and is mainly evalu-
ated on attributed networks’ real-world and synthetic data sets.
Therefore, we foresee the potential of exploring the opportu-
nities of applying the MAB methodology for learning sleep
activity and anomaly detection of older adults living in single-
resident smart homes. Furthermore, In Table II, we highlight
the recent work for the HAR system for recognizing sleep
patterns, mainly focused on wearable devices [56], [58], [59].
Wearable devices are considered uncomfortable and imprac-
tical for the elderly, as users forget to wear them before
sleep [27].

Similar to our study, several studies have also attempted
to evaluate sleep quality based on SE [54], [55], [60].
However, the methodology is based on DL methods requir-
ing large training data sets to achieve a relatively acceptable
model’s performance. For example, for real-time analysis,
Clemente et al. [61] proposed a nonintrusive system for
sleep monitoring of older adults using a bed sensor that
detects movement, posture changes, and other functionali-
ties. They showed high-prediction accuracy in detecting bed
usage, entries and exits, movements, posture, and falls from
bed. This may be useful with specialized sensors installed
in beds; however, our approach focuses only on the off-
the-shelf motion sensors installed in smart homes, similarly
to [37], [52], [53], and [57]. In contrast to our study, which
focuses on sleep patterns, as mentioned above, these stud-
ies [54], [56], [58], [59], [60] targeted recognizing other
activities, such as standing, sitting, and typing. In our study,
we analyzed data for nighttime and daytime sleep to iden-
tify sleep patterns and measure the quality of nighttime sleep
patterns.

III. PROPOSED SYSTEM

This section describes our research method, including the
experimental setup, iVO architecture for sleep activity recog-
nition, and anomaly detection service, identifying participant
sleep routines and reported needs from interviews, data sets,
installed sensors, and proposed MAB methods.
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TABLE III
PARTICIPANTS’ REPORTED SLEEP TIME BASED ON INTERVIEWS. THE
TOTAL NUMBER OF DAYS OF PROCESSED DATA WAS BETWEEN 88
TO 463 DAYS AND OCCURRED BETWEEN APRIL 2019 AND
FEBRUARY 2021. THE TOTAL NUMBER OF DAYS USED FOR
TRAINING WAS 70% OF THE TOTAL NUMBER, AND THE
SIZE OF PREPROCESSED MOTION SENSOR DATA
RANGED FrROM 0.37 TO 3.4 MB

IoT Devices, . . No. of .
nsors Wake-Sleep Historical datasets No. of - Size
Z:“."m ] () Household time date spans From-To total days tr::;l:g MB
ﬂ — ID1 05:00_22:00 2019-04-05 to 2020-10-01 463 324 1.9
House/Apartment 1 House/Apartment 11 D2 07:00_22:00 | 2020-04-23 t0 2020-10-28 | 189 132 34
1D3 07:00_22:00 2020-06-15 to 2021-02-20 | 238 166 1.5
. . . . . . 1D4 05:00_22:00 2020-04-23 to 2020-11-03 161 112 0.75
Fig. 2. Slé.:ep monitoring service using off-the-shelf smart home motion D5 07:00.22:00 | 20200423 10 2021-02.20 | 284 199 059
sensors running atop our IoT platform for 11 apartments. D6 07:00_21:00 | 2020-04-23 to 2021-02-20 | 297 271 037
D7 05:00_22:00 2020-04-23 to 2021-02-20 | 245 172 1.7
1D8 05:00_21:00 2020-04-23 to 2021-02-20 | 290 203 0.4
. . D9 06:00_23:00 2020-04-23 to 2020-10-28 | 88 62 0.66
A. Sleep-iVO Architecture D10 05:00_21:00 | 2020-04-23 t0 2020-10-01 | 168 118 04
This article continues the research work from our previous L 17002200 | 2019:04:01 to 2020-01-11 | 200 140 L
prestudy on the experiences .and chal}enges of prov1d1ng TABLE IV
IoT-based care for the elderly in a real-life smart home envi- IN-HOME PIR MOTION SENSORS FOR RESIDENTS
ronment [29], [62]. Fig. 1 shows a real-life single-resident
older adult (Ewa) in her smart home equipped with IoT devices
: Trigger for Sensor D
and a gateway to collect, transmit, and process data for non- o Place of | Function data ata
. . e . . . . . type
intrusive ADL monitoring, including sleep monitoring. We firing installation upload P
collected data from single-resident smart homes that were
. . . . . . . .. Motion.
equipped with different IoT devices (Fig. 1), offering individ- -
! pp_ . ( _g ), ,g Detects Tumi- Sends
uals different types of services when integrated with an IoT movement |y nance, signals
platform, as shown in Fig. 2. using (near the Ther- every 30
Our IoT architecture runs a sleep quality service with a PR | Coiling) in | MOMe- | seconds if ) Binary
. . . . Sensor. all rooms ter, no change
a horizontal integration of diverse off-the-shelf sensors and Range set Battery, | in  state
IoT devices for multiple smart homes. It is built using up to 7m Battery | detected
FIAWRE [63], connecting off-the-shelf sensors and IoT alarm

devices via an IoT platform, Societal development through
Secure IoT and Open Data (SSiO) [64]. The SSiO plat-
form was designed and implemented for IoT applications and
services within a smart city. A detailed description of the iVO
architecture is described in [62]. The installed sensors are con-
nected via gateways to a service provider to push the sensor
data into the SSiO platform, as shown in Fig. 2. For this study,
we collected data from motion sensors in each room of the par-
ticipants’ apartments, such as the lounge, kitchen, bedroom,
hall, and bathroom, to extract the necessary features.

B. Collected Data Sets

Data collected from interviews helped us validate our data-
driven analysis and contributed to data analytics and the
minimization of false alarms [29]. Adherence to regular daily
routines by the elderly contributes to improved sleep qual-
ity [14]. We obtained the routine data for sleep time as shown
in Table III from interviews where the participants were asked,
“What is your usual sleep time (possible to give approx. time
range)?” and to list activity(ies) they do before going to sleep
at night. Most participants reported that they woke between
05:00 and 07:00 and went to sleep between 21:00 and 22:00.
We collected data from the motion sensors of each participant
between 2019 and 2021. The number of days varied between
88 and 463. The size of each collected motion sensor data
set was 0.4 to 3.5 megabytes (MB), as shown in Table III
There was variation in the data set size, even though they

were collected within the same period as, for example, the
case with ID1 and ID2. This can be due to differences in each
participant’s ADLSs triggering the motion sensors differently.

C. Sensors and Data Preprocessing

In this study, we looked only at the motion sensors for each
apartment. Table IV shows the functionality of the motion sen-
sors, and we used only the function detecting movement in
the room [65]. We collected data from single-resident smart
homes where the individuals have no pets or relatives. The
sensors are installed in locations that cover the whole room
without overlapping with other motion sensors in other rooms
and thus be able to detect only the older adult—e.g., was not
facing a window, so it did not detect someone else outside or
other moving objects, in addition, most of the apartments has
a similar floor plan.

An example of the sensor installation and floor plan of an
elderly home is shown in Fig. 1. Data cleaning was essential
to the first phase of the study implementation. It is unavoid-
able that sensors fail, readings are lost, and duplicated, leading
to vagueness and imprecision, and false alarms [66]. This has
great importance in elderly care health monitoring systems.
Data cleaning applies in particular to motion sensors, redun-
dant data being removed, and missing reading values being
identified. An example of a motion sensor reading value is
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TABLE V
MOTION SENSOR DATA

Timestamp Trigger
2019-01-31 14:39 non-active
2019-01-31 14:40 2019-01-31 14:40:02 lounge
2019-01-31 16:45 non-active
2019-01-31 16:46 active
2019-01-31 16:46 non-active
2019-01-31 16:47 2019-01-31 16:46:59 kitchen
2019-01-31 19:21 non-active

Probability Distribution Sleep Nighttime 22:05
Fit: mean = 2.14

Probability

0.00 T — T T T T T
0 5 10 15 20 25 30 35 40

Number of Sensor Triggers

Fig. 3. Poisson probability distribution of raw data from motion sensors,
with the mean number of motion triggers (1) = 2.14 within 22:00 and 05:00
o’clock at night for all participants.

depicted in Table V. The motion sensor is triggered when
a motion is detected in the covered area. The time duration
elapses in between a sensed movement to an inactive state
in the room represents the activeness/movement duration and
vice versa. The sensor sends an update every 30 s and when
there is a change in the state.

In Fig. 3, we show the distribution of the motion sensor
data of the 11 participants: How many times the sensors were
triggered between 22:00 and 05:00?

D. Features Engineering

We considered both temporal and spatial data during our
analysis of motion patterns, as shown in Table VI. These fea-
tures were calculated using the algorithm in Fig. 4. These
parameters were used to define the sleep variables and to clas-
sify sleep quality as good or poor using the principles and
desired benchmarks of sleep quality that the National Sleep
Foundation defined. We used a time window specified as the
start and end times of wake-sleep times, as shown in Table III.
The algorithm calculated duration based on the person’s pres-
ence in the bedroom, either moving or still. During the stillness
instance, if a movement is detected in another room, it is iden-
tified as a transition. In Fig. 4, we identify room transition and
activity/inactivity in rooms.

When the state changed from inactive to active, we looked
for movement in other rooms, and then that sensed movement
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TABLE VI
EXTRACTED FEATURES FROM MOTION SENSOR DATA

Nighttime sleep Daytime sleep

Duration of the participant’s
presence in the bedroom

Duration of the participant’s
presence in the bedroom

Duration of the participant’s ac-
tiveness or motions

Number of transitions; leaving
the bedroom to another room

instance in the other room became the transition time. An
example of processed data after implementing the algorithm
is shown in Table VIII. The feature of the duration of stay
in the bedroom combining both movements and stillness is
meaningful information that can indicate a change in health,
e.g., an increased time spent in the bedroom during the day
shows an increased need for the body to rest. Another feature
is the duration the sensor is activated (activeness) compared
with the stillness duration, providing a better understanding of
health conditions. For example, in the Restless Leg Syndrome
scenario [36], the bedroom’s duration of stillness (quietness)
is very short during sleep time. The bedroom motion sensor is
triggered all night, indicating the body is continuously moving,
causing the sensor to activate.

In sleep science studies [67], [68], good sleep quality for
older adults (> 65 years) is defined by different variables.

1) Sleep Latency (SL): The time spent trying to fall asleep

being not more than 30 min.

2) Sleep Awakening (AW): The number of sleep awakenings
that last more than 5 min during the night and up to two
awakenings per night.

3) Wakefulness Time (WT): The time being awake after
sleep onset being not more than 20 min.

4) SE: The actual time spent sleeping in a bed, which is
required to be 85% of total sleep time (TST) (S¢ime)-

The National Sleep Foundation recommends that normal sleep
for older adults lies between 7 and 8 h daily, although between
5 and 6 h can also be considered appropriate [31]. Sleep
quality variables are shown in Table VII.

In our study, we calculated sleep variables based on
extracted features: the WT as the time being active in the
bedroom during the participant’s predefined sleep night; SL is
the active time during the participant’s first hour of reported
sleep; AW is the number of times the person transited from the
bedroom to another room and returned; and we assumed that
the transition would take 5 min or more. In addition, we con-
sidered the total time spent in the bedroom during the daytime
as the time between waking up in the morning until bedtime
sleep. We use these features to train MAB algorithms for sleep
behavior analysis of elderly participants during nighttime and
daytime.

E. Real-World Data Sets

We assume the underlying distribution of the hourly sleep
time duration at night and daytime is binomial for the 11
participants, as depicted in Fig. 5(a) and (b). Each line rep-
resents the frequency of sleeping duration in hours for each
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Search for movement in room X
IF
trigger value in room X# 0 and in room Y==0 THEN
Transition to room X is registered and continuous duration in room Y ends.

IF sensor states x-0 THEN elapsed time is .
duration of Activeness in room X Continuous duration

of stay in room X

e
sensor state 0-x THEN elapsed time ih‘

. duration of Stillness in room X 4
~_ _—
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Search for movement in room Y
IF
trigger value in room Y# 0 and in room X==0 THEN
Transition to room Y is registered and continuous duration in room X ends.

Fig. 4. Algorithm for extracting features from motion sensors data, one sensor located in each room.

Continuous duration
of stay in room Y

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

IF sensor states x-0 THEN elapsed time is
duration of Activeness in room Y

e e

— —
(/If sensor state 0-x THEN elapsed time\ls\

A gration of Stillness in rooml e

—

TABLE VII
NOTATIONS AND VARIABLES
Term Abbreviation

Total Sleep Time Stime
Sleep Latency SL
Sleep-Awakening AW
Wakefulness Time WT
Sleep Efficiency SE
Actual Time Sleeping ATS
Internet of Things IoT
Activities of Daily Living ADL
Human Activity Recognition HAR
Multi-Armed Bandits MAB
Thompson Sampling TS
Upper Confidence Bound UCBI
Random Selection RS
Correctly-classified percentage pPCC
Passive Infra-Red PIR
Megabytes MB
Independent Identically | IID
Distributed
Swedish Association of Local | SKL
Authorities and Regions
General Data Protection Regula- | GDPR
tion
Variational autoencoder VAE
Support vector machine SVM
Random forest RF
Logistic regression LR

participant. Several abrupt spikes can be spotted in each
participant’s sleep duration, such as participant ID1, due to
changing sleep routines or health-related issues, as shown in
Fig. 5(a). Daily routines in a population could have common
features, especially if they have the same health conditions,
are of the same age group, and live in the same geographical
area. This could manifest as having similar sleep distribution,
i.e., independent identically distributed (IID) sleep routines.
The data drawn from one individual may deviate from nor-
mal. Such deviations demonstrate that each participant has a
unique sleep routine due to age and health issues—a non-IID
data set.

100
80
Iy
c
g 60
T
o
* 40
20
0
1 2 3 4 5 6 7 8 9 10 1 12 13 14
Duration in Hours
(a)
250
—— ID1
ID2
200 —e— ID3
—¥— D4
—— ID5
2 150 —— D6
e D7
g —=— D8
T
] ID9
L= 100 —e— ID10
—+— D11

<))
=}
E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Duration in Hours

(b

Fig. 5. Frequency distribution of 11 participants’ sleep time (a) at night and
(b) during the day. Each line represents the frequency of sleep duration of
each participant in the bedroom; the number of days is between 88 and 463
from April 2019 until February 2021.

F. MAB Terminology

The terms of MAB are explained in Table IX and are
used throughout this article within the sleep recognition
context.

G. Problem Formulation

In our study, we consider the problem of sleep pattern
recognition and anomaly detection using MAB as a tuple of
a set of a known number of bins and unknown probability
distributions over the values of the binned data, i.e., sleep
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TABLE VIII
PROCESSED MOTION SENSOR DATA

Timestamp Trigger/Transition | Duration | Place
2019-01-31 14:39 | non-active 0.283 bedroom
2019-01-31 14:40 | transition 0.0 lounge
2019-01-31 16:45 | non-active 0.5 bedroom
2019-01-31 16:46 | active 0.7 bedroom
2019-01-31 16:46 | non-active 0.12 bedroom
2019-01-31 16:47 | transition 0.0 kitchen
2019-01-31 19:21 | non-active 04 bedroom
2019-01-31 19:22 | transition 0.0 lounge
2019-01-31 19:36 | non-active 0.52 bedroom
2019-01-31 19:37 | active 0.5 bedroom

TABLE IX

MAB TERMINOLOGY WITHIN THE SLEEP RECOGNITION CONTEXT

MAB terms Our study’s problem terms
Arm Bin of duration or transition
Episode A day or a night sleep

An extracted feature is a collec-
tion of bins

Bandit is a collection of arms

Value of time duration or num-
ber of transitions

Reward

Expected reward Average duration or transition

Exploration A learning function of partici-
pants’ sleep duration preferences
uses the posterior distribution of
rewards to get more information
about the estimated mean dura-

tion of the other bins.

Exploitation Optimize decisions based on
current knowledge/ observed
data so far to select a bin that is
selected most of the time

Bins with the highest probabil-
ity; normal behaviour

Winner

Non-Winner Bins with the lowest probability;

outliers

duration and transitions. The MAB method is good at adapting
and learning from the data normal sleep patterns as well as
anomalous behavior. Each day, the method selects a bin in
the bandit to maximize the total accumulated rewards, assum-
ing they have a uniform distribution. Deciding the length
of sleep duration is challenging, as is deciding which dura-
tion and number of awakenings are required to classify sleep
as poor. Hence, the identification of anomalous sleep behav-
ior is difficult. The solution involves selecting a few binned
data (duration/transitions) among many alternatives that have
unknown distribution. This decision dilemma can be viewed
as a testing problem as we have multiple cases comprising
participants’ different duration and transition values. We for-
mulate the MAB for this problem by considering each test
case as binned duration/transition values instead of the arm.
The MAB allows us to continuously update our estimates of
the probability distribution of the duration and transitions of
each bin. For instance, if the highest expected reward falls
within 5-6 h of sleep time at night, it is considered appro-
priate, and the participant has good sleep habits. However, if
interruptions during sleep time occur more than two to three
times, it is classified as poor sleep [31] but is considered a
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Fig. 6. MAB framework for exploration and exploitation policy of a
feature/bandit for three arms/bins: (a) RS, (b) TS, and (c) UCBI.

normal sleep behavior because it has accumulated the highest
rewards.

H. Input Features for MAB

The extracted features of duration in state and transition
between rooms are different continuous variables of various
participants. Preprocessing these continuous variables by bin-
ning them allows for a better representation of the knowledge
than continuous values. Since the number of continuous values
can be infinite, binned values are fewer. The proposed MAB
algorithms require discrete values for duration and transition
variables [69]. The bin intervals include the minimum and
maximum time shown in Table X. We binned each feature
Stime> WT, and SLs as 0-60, 0-15, and 0-5 min, respec-
tively. We exploited this frequency for each hour duration
and room transition to estimate the expected reward and map
each bin into an MAB arm. At each episode, we selected
an arm (i.e., a predicted bin duration/transition) as shown in
Fig. 6. For instance, in the case of the Sime feature, we kept
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TABLE X
EXAMPLE OF BINS/ARMS OF Stimg CASE WITH 60-MIN INTERVALS

Bins 0-60 | 60-120 | 120-180 | 180-240 | 240-300 | 300-360 | 360-420
Hours | 1 2 3 4 5 6 7

a fixed 1-h frequency value to simulate a sample every day.
Initially, we did not have any information on the estimated
rewards value of each bin. Each bin was explored, and as
time passed, this estimate eventually converged toward the
true reward value. We initialized each bin’s value to zero.
The algorithm selected all bins with equal probability, with
about 10-11 bins. Depending on each participant’s total sleep
duration, each was chosen with an 11.11% probability.

1) Random Selection or Greedy Policy: The RS algorithm
selects a bin randomly at each trial. The algorithm performs a
uniform exploration over the bins, i.e., at the same rate, by ini-
tializing the value of each bin to zero. When a bin is selected, a
reward is obtained. However, there is no consideration of what
has been observed previously to choose from the best available
options for the exploitation phase. The algorithm selects the
bin’s value with the maximum estimated reward without con-
sidering previous observations. This approach only exploits the
bin with the maximum reward and no exploration policy to try
other alternatives. As shown in Fig. 6(a), the algorithm locks
to the bin with the highest estimated reward as time progresses.
Each day, the bins tried to maximize the accumulative rewards.
The other options with higher long-term returning rewards
were missed, and their reward estimates cannot converge to
the true value

q(b) = E[ri|b; = b]. (D

The action-value function in (1) where ¢ is the value for select-
ing the bin b € B at time ¢ is equal to expected reward r at
that time. At each trial, each selected bin will have a different
reward value

by = argmax (q1(D)). 2)

The policy selects a bin with the highest expected reward,
known as the greedy policy. This policy is shown in (2), where
the choice of the bin is based on maximizing the current value.

2) Thompson Sampling Bayesian Bandits: Thompson
Sampling (TS) addresses the explore-exploit dilemma in the
MAB problem with a long-term policy that generates a model
of reward probabilities. This method extends the estimated
reward to a probability model to sample from to select the
optimal bin, which provides confidence in the rewards that
increase as we progress. The learning function in TS has
only two possible outcomes, a value of 1 or 0, which has a
behavior described by the prior Bernoulli distribution. The
goal is to find the bin with the highest probability of returning
a reward rather than the bin that gives the maximum reward.
In (3) and [34], each bin is assigned a Beta distribution
with the hyperparameters (o), which counts for successes
as S and (B), which counts for failures as F, and initialized
to one to generate the uniform distribution. Observing the
successes S;(f) at time ¢ with reward is equal to the value of
the selected bin and F;(¢) as the failures with reward as O in
bi(t) selecting a bin i

0;(1) = Beta(S; + 1, F; + 1). 3)
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We built a probability model as shown in Fig. 6(b), where
values are drawn from a Beta distribution, using («) and (8) as
its parameters. This new probability is known as Posteriors.
The algorithm then selects a bin with the probability of its
mean being the largest, as depicted in

bin; () = argmax 0;(1)). 4)

Then, the algorithm updates the counts of the number of
times a bin is selected with a reward by increment («).
Otherwise, it updates () as shown in (5)

if reward > 0

Si=8+1,
otherwise.

Fi=Fi+1, ©)

As time progresses, the confidence in each bin’s estimated
reward increases since the distribution concentration is around
the mean. The mean of Beta is

o
a+p

X =

This is shown when the probability distribution narrows,
and the sampled value is closer to the true mean, as shown
in Fig. 6(b) first bin’s distribution. Hence, it increases the
frequency of selecting the bins with the highest probability
of the estimated rewards, and those with a low estimate will
quickly be dropped from the process. Consequently, explo-
ration will decrease, and exploitation will increase. Different
studies explored TS in online settings like Netflix and Twitter,
where many alternatives must be selected. As time passes,
the strategy is readjusting (i.e., the distribution of the other
options) to give more weight to the best bins [34].

3) Upper Confidence Bound: The UCBI1 algorithm follows
an optimistic policy [70]. The algorithm selects the bin with
the highest probability of returning the expected reward within
a confidence interval. The bin with the highest upper bound is
determined based on each day’s updated confidence interval, as
shown in Fig. 6(c). In (6), the first term computes the average
reward X of that bin j, representing the exploitation policy
which lies within a confidence interval. The second term is
the confidence level of exploration for each bin j at time step
T, n_j is the number of times that bin j was selected, and
T is the overall total number of times bins were chosen so
far. ¢ is a hyperparameter that measures the uncertainty of
the bin’s expected reward. This confidence bound shrinks by
trying that specific bin more often and increases with the total
number of bins we have tried. As time passes, the smaller the
confidence bounds become, the smaller the uncertainty; hence
the exploration chance decreases. Then, the selection of the
bins will be mainly based on exploitation

Jelg T

b(, T) = X; +
n;

(6)

The outputs from MAB algorithms are Sime, SL, WT, and
AW bins with high and low probability. In the next section, we
will exploit the outcomes of high-probability bins to estimate
the SE of each participant and classify sleep quality as poor or
good based on 85% SE of TST and two to three awakenings
per night.
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Features Engineering
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Fig. 7.

1. Framework for Sleep Quality

Different variables define sleep quality [67], [68]. We used
the identified sleep time duration with the estimated high-
probability rewards of S¢me, SL, and WT predicted by MAB
algorithms at nighttime to further evaluate sleep patterns as
good or poor sleep quality based on the SE [54], [55], [60]
and a number of awakenings of each participant. SE in (9) is
the ratio between actual time sleeping (ATS) and Sjme. We
designed a framework based on data from the off-the-shelf
sensors and IoT devices installed in homes to learn sleep pat-
terns, evaluate sleep quality, and detect anomalies, as depicted
in Fig. 7.

There are three stages in this study framework’s design for
preprocessing the data and features engineering. We used a
fixed window based on sleep time reported from the interviews
to model the data, Table III. Motion sensor data (Table V) are
preprocessed to avoid errors that lead to false outliers. The
Poisson distribution of sensor activation of 11 participants,
shown in Fig. 3, is further processed to build features based
on our algorithm as shown in Fig. 4.

In the third phase, we used the distribution of the sleep
duration at nighttime and daytime [Fig. 5(a) and (b)] and
exploited the frequency of each bin’s bandits to estimate each
day’s expected sleep variables (S¢ime, SL, WT, and AW in the
night). We then used them as bandits for MAB algorithms
RS, TS, and UCBI1 to learn the patterns and detect anoma-
lies. We analyzed the outcomes of each bandit for each of the
11 participants to evaluate sleep quality using the National
Sleep Foundation scores [31] and to identify abnormal sleep
behavior based on the resulting bins with high and low prob-
ability. Identifying inadequate sleep and anomalies could be
used as alerts to caregivers in decision making to identify other
health-related issues.

IV. EVALUATION AND RESULTS

In this section, we present the results of testing the MAB
models. Our sleep activity recognition method is primarily
based on feature extraction algorithms for nighttime and day-
time sleep by quantifying the daily duration of staying in
the bedroom, counting the number of transitions, and then
learning the behavior by employing MAB models. We trained

SE <75 % Sgime
AW >3

Poor Sleep Tesee
Yes Quality BIVES,
S—

SE > 75 % & < 85% Sfime
&AW =23

Good Sleep
Quality

Framework to identify normal sleep quality and detect anomalies using MAB.

the proposed models on the Sime, WT, SL, and AW features
for nighttime and daytime sleep twice for each environment to
evaluate the effectiveness of the proposed models. We trained
the MAB models on 70% of each participant’s original data
set. With the assumption that MAB requires few training
data [35], the training samples ranged between 62 and 324
days for different participants in this study.

A. Performance Evaluation of MAB

Fig. 8 shows experiments for 9 participants regarding the
nighttime sleep behavior during the May—July months and
shows the performance of each MAB algorithm in terms of
the collected rewards versus the time needed to converge, as
well as how each algorithm is adaptable to the changes present
in sleep behavior in each day. RS achieves this by taking the
bin that currently gives the maximum reward without exploring
and randomly trying other bins. On the other hand, UCB1 and
TS present more complex solutions than RS. UCB1 selects the
bins with the highest reward to ensure most bins are tested. TS
locks onto the best bin to exploit, resulting in a high reward.
It builds and updates a probabilistic model of the rewards for
each bin, sampling from this distribution to select the bins.
TS identifies and locks onto the optimal bin and converges
early to choose the best bin by updating the hyperparame-
ters without any tuning, providing confidence in the returned
rewards as time progresses. Within the first 30-40 trials/days,
TS determined the best bin compared to the other algorithms.

Initially, all bins are equally distributed with the same priors,
with a rate of choosing the best bin set at 11.11%, i.e., a ran-
dom chance to select the best out of 10 bins. The results show
that TS progression is smoother and more gradual than UCB1
and random algorithms. By the end of 80 days, it averages
about 8000 cumulative rewards among all participants, outper-
forming Random and UCBI1. The deterioration of these two is
also due to the slight difference between the returned rewards
from the bins. TS outperforms RS and UCBI, and it con-
verges quicker than both of them. The TS algorithm identifies
the best bin early on and accumulates rewards quicker than the
UCBI and RS policies. Therefore, we selected the TS model
to evaluate and classify the learned sleep patterns as good or
poor quality, trained on 70% of the data sets. Our objective is
a long-term behavioral analysis of sleep patterns [39], [54].
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Cumulative Reward vs Time (ID1)

Cumulative Reward vs Time (ID2)
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Fig. 8.

We separated a portion of the real-world data set to run
the accuracy evaluation—a 30% test set. The number of test
days correctly guessed within the winner bins has the highest
probability, and the nonwinner bins have the lowest probability
of returning the expected rewards. We selected the cutoff score
to classify days as normal days using the first three bins with
the highest probability for the Sime feature, and we selected
the first bin for the AW, WT, and SL features as the winner bin.
We considered the rest of the bins with the lower probabilities
as nonwinners or as an indication of anomalous behavior.

We evaluated the performance of each MAB method using
PCC as a metric to assess the overall accuracy of each method,
as shown in (7). We used 30% of the data for evaluation. Each
day’s sleep time values and sleep AW fall within the list of
winner bins considered correct predictions. PCC is the ratio
of correct predictions, i.e., the number of days (p) within the
winner bins list divided by the total number of test days (m).
The TS models showed higher PCC rates than RS and UCB1
of the Siime and AW features for nighttime sleep (Table XIII).
Also, most participants reported waking between 05:00 and
07:00 and sleeping between 21:00 and 22:00; the PCC rates
of predicted regular daytime patterns by the TS model had a
higher classification rate than other models (Table XIII)

pcc="2,
m

)

B. Nighttime and Daytime Sleep Behavior

The best bins by TS model of Sijme duration in hours and
AW patterns of each participant are shown in Table XI. The
most probable sleep time Sime in hours identified by TS of
most households was between 6 and 9 h. For example, the
predicted sleep time of participant ID6 is 9 h, the next most
probable sleep time is 11 h, and the third most probable sleep
time is 10 h, in addition to one-time awakening (AW). There
is a pattern among most households in terms of the total time
asleep during the night. The awakening frequency during the

Performance of MAB algorithms converging over 90 days of sleep nights in the bedroom from May to July for nine households.

TABLE XI
HIGHEST PROBABILITIES OF NIGHTTIME SLEEP IN HOURS Stimg AND
FREQUENCY OF AWAKENINGS (AW)-LEARNED PATTERNS
IDENTIFIED BY TS MODEL

Ist highest [2nd highest [3rd highest | 1st highest

Households [Prob.TST _ |Prob.TST _ [Prob.TST Prob. AW
ID1 2 7 9 2-3
1D2 7 9 8 2-3
D3 8 9 3 23
D4 2 7 8 0-1
D5 7 8 6 4.5
ID6 9 11 10 0-1
1D7 6 7 8 0-1
ID8 9 7 8 0-1
D9 1 5 3 0-1
ID10 9 8 10 0-1
IDI11 8 7 6 2-3

night, predicted by the TS model, shows that most households
woke at least two to three times each night. The awakenings
occurred when the participant transited from the bedroom to
another room.

Also, the TS model identified the hours spent in the bed-
room as sleeping/resting during the daytime. For example, the
most probable amount of time spent in the bedroom between
07:00 and 21:00 for participant ID6 is one hour, the second
is 2 h, and the least probable amount of time is 6 h. Also,
we observed that the most probable amount of daytime sleep-
ing/resting for most participants is between 1 and 3 h, as
shown in Table XII.

C. Sleep Efficiency Scores Evaluation

We evaluated the sleep quality of the identified sleep pat-
terns based on sleep scoring data of ATS and SE calculated
in (8) and (9). The S¢me predicted by the TS model for most
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TABLE XII
HIGHEST PROBABILITIES OF DAYTIME SLEEP/RESTING IN HOURS
Stime-LEARNED PATTERNS IDENTIFIED BY TS MODEL

Lst highest 2nd highest 3rd highest
Households Prob. Prob. Prob.
ID1 8 7 9
1D2 7 S 6
1D3 5 7 8
1D4 6 7 8
IDS 1 2 3
1D6 1 2 6
1D7 7 5 6
1D8 2 4 6
1D9 7 8 2
D10 1 2 5
ID11 3 2 1
TABLE XIII

PCC OBSERVATIONS OF THE WINNERS AND NONWINNERS BINNED DATA
OF NIGHTTIME SLEEP FEATURES ACHIEVED BY TS, RS, AND UCBI1
FROM 70% OF THE TRAINED DATA OF EACH HOUSEHOLD

PCC% ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 | ID10 | ID11
Stime TS 0.6 092 052 |0.57 |0.6 0.65 |0.84 [0.65 |0.96 |0.74 0.6
Stime RS 0.2 0.5 031 048 027 |0.09 |04 0.2 0 0.28 0.04
Stime UCB1 0.0l |0.01 |0.16 |0.57 {047 |0.048 |0.13 |0.65 |0.1 0.08 0.53
AW TS 081 | 1.0 0.55 073 |0.84 |0.85 |0.84 |0.74 |0.52 |0.97 0.82
AW RS 0.3 0.6 025 |0 0.46 040 1047 074 022 |0.97 0.82
AW UCBI1 0.74 ]0.14 ]0.62 |0 0.05 |[0.51 |0.45 |0.24 |0.04 |0.022 |0.71
Stime Daytime TS 0.6 0.6 0.6 0.56 |0.73 |0.76 |0.63 | 045 |0.61 |0.7 0.77
Stime Daytime RS 0.3 0.3 0.04 0.2 0.07 |0 0.17 ]0.14 [0.71 |0 0.3
Stime Daytime UCB1 | 0.16 | 0.1 0.57 0.3 0.07 076 |0.05 |04 0.01 ]0.05 0.51

households was 6 to 9 h. The ATS, shown in Fig. 9(a), was
between 6.5 and 8.5 h for most households. Most households’
SE was above 85% [Fig. 9(b)] of all actual time sleep ranks
identified by TS. According to sleep-related studies, SE of
75% is considered uncertain and 85% as appropriate effi-
ciency [68]. One of the participants had a SE score of 66%,
which related to lack of Sijme in the bedroom and identified as
a regular pattern for this participant. The TS model predicted
the duration patterns of WT and SL as 0—15 min and 0-5 min
for each participant, respectively. Most participants had WT
and SL less than 20 or 30 min [68]. Also, the ranked proba-
bilities of all participants identified similar sleep behavior as
shown in Fig. 9(a)

ATS = Stime — SL — WT. ®)
ATS in (8) is the difference between Sme and SL plus WT

: ATS
Sleep Efficiency = x 100. )

time

D. Anomaly Detection in MAB

In this article, we studied the problem of anomaly detec-
tion in MAB settings, considering the bins with the lowest
probability of returning low rewards that significantly deviate
from others. Such bins can be insightful in healthcare applica-
tions [44]. In Table XIV, we show an example of the normal
behavior of the detected bins with high-expected rewards, (the
first three bins) for Sime and (first two arms) for AW fea-
tures. The rest of the remaining bins are identified as abnormal
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TABLE XIV
EXAMPLE OF IDENTIFIED NORMAL (N) AND ANOMALOUS (A) DAYS OF
BOTH Stime AND AW BY TS MODEL TRAINED ON 70% OF EACH
HOUSEHOLD

Sleepnight | IDI | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 | ID10 | IDIL
Sume N—A |81 [58]53]4[37]35[36[32]53[3568]37]69]28]47]25]1 [26]46]16]42]29
AW N—A [136]3 [s58]0[41[33[17]6 [73]14]74]13]75]14]64]22]14]13]43]1 [50]11

ATS Hours

§ & & § & & & & & 5 5
§ & & § & ¢ § 8§ § §
Housholds
(a)

Sleep Efficiency %
o o
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«
/

N
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(b)

Fig. 9. Three identified bins by the TS Algorithm with the highest probability
of actual time sleep and SE: (a) ATS and (b) SE scores based on ATS values
and Sgjme prediction outcomes by the TS algorithm

behavior. This enables us to analyze the observations of each
participant in terms of any sleep feature.

For example, participants ID1, ID4, and ID9 had less than
85% SE, as shown in Fig. 9(b). ID9 returned the highest accu-
mulated rewards of the selected duration of 2-h sleep as seen
in Fig. 9(a). This is a normal pattern of night sleep for par-
ticipant ID9, which is considered an alarming normal sleep
behavior given the ATS and SE scores. Meanwhile, identify-
ing the bins with lower expected rewards as anomalous days
helped us identify anomalies from a data-driven analysis per-
spective. The identified anomalous bins could belong to either
good or poor sleep quality.

We used score indicators related to sleep science stud-
ies [67], [68] to classify sleep as having a good or poor quality
for older adults (> 65 years), defined by different variables.
For example, good sleep is defined by a number of AWs < 2
per night; and SE of at least 85% of TST (Stime). The National
Sleep Foundation recommends normal sleep for older adults
between 7 to 8 h daily, although between 5 and 6 h can be
considered appropriate [31]. Most participants slept less than
5 h, which is not recommended [31]. In our study, as shown
in Table XV, we classified AW and SE as appropriate, uncer-
tain, or inappropriate. AW and SE indicator scores are based
on scores from [68]. As our participants in the study were
elderly adults, an AW of 0-2 was considered appropriate, 2—3
as uncertain, and >3 as inappropriate. For SE, we considered
> 85% as appropriate, 75%—-84% as uncertain, and <74% as
inappropriate. In our study, we use these indicators to assess
sleep quality.
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TABLE XV
PARTICIPANTS’ SLEEP QUALITY BASED ON THE TS MODEL.
APPROPRIATE (AP), UNCERTAIN (U), AND INAPPROPRIATE
(I) SLEEP FOR OLDER ADULTS [68]

Household AW SE Sleep quality
Good/Poor
D1 2-3 (U) 82% (U) Poor
1D2 2-3 (U) 96% (AP) Good
D3 2-3 (U) 96% (AP) | Good
1D4 0-1 (AP) 82% (U) Good
D5 4-5 (1) 95% (AP) | Poor
D6 0-1 (AP) 94% (AP) | Good
1D7 0-1 (AP) 93% (AP) Good
1D8 0-1 (AP) 95% (AP) Good
D9 0-1 (AP) 65% (I) Poor
ID10 0-1 (AP) 92% (AP) Good
IDI11 2-3 (U) 96% (AP) Good

1) If both indicators belong to an uncertain category, they
are classified as poor sleep quality.
2) If one indicator is appropriate and the other is uncertain,
it is classified as good sleep quality.
3) If an indicator is inappropriate, it is classified as poor
sleep quality.
Given the fact that the elderly participants’ median age was 86
years old in this study, the use of wearable devices was consid-
ered to be inconvenient in this study. Instead, we used a fixed
window based on sleep and wake-up time from the interviews
of each participant, Table III and the hourly distribution of the
sleep duration at night and day, shown in Fig. 5(a) and (b) to
validate the outcomes. In this way, we could evaluate the out-
comes of the MAB algorithm versus the distribution of hourly
sleep. For example, the TS algorithm predicted the most prob-
able amount of nighttime sleep for ID6 participants 9 h, as
shown in Table XI using 70% of the data set, also TS was
quick to identify the sleep duration (9 h) using only 30% of
the data set. That number of hours is close to the participant’s
hourly sleep distribution of 10 h, as shown in Fig. 5(a).

V. DISCUSSION

Healthcare for disease diagnosis [3] showed promising
results for improving the health of individuals and making
healthcare more efficient. Sweden is the second-largest coun-
try in the OECD that dedicates resources to elderly care. The
Swedish Association of Local Authorities and Regions (SKL)
considers human resources a challenge for health organizations
in the coming years. There is a need to improve efficiency by
providing more services (scaling up) using the same resources,
thus lowering costs. Therefore there is an opportunity for cost
savings without affecting the quality of elderly care [22].

Various health and sleep analysis applications rely on wear-
able devices to track sleep [7] and depend on the unknown
implementation of data processing and modeling methods.
Hence, further research on the methods used is necessary to
maximize the potential for sleep studies in healthcare. The
advantage of our approach is that we assessed sleep quality
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in smart homes, where motion sensors are embedded in the
elderly participants’ environment. Wearable devices, such as
smartwatches or trackers, might not be convenient for older
adults since they are placed on the body. Users might for-
get to wear them or charge them. Also, considering their
socioeconomic background, smartphones can be challenging
to use [71].

Therefore, nonintrusive technologies that are invisible to
the users can be easily embedded into the environments, such
as walls, beds, etc., to monitor sleep patterns. Sleep trackers
might overestimate TST and SE [71]. For example, bed-based
sensors have shown promising results and can be convenient
sleep monitoring devices since they are nonintrusive. They
mainly use the body’s movements and respiration with a pres-
sure mattress underneath the bed that provides in-bed and
out-of-bed states [72]. However, these sensors only collect data
when the person lies on the bed and cannot provide continuous
monitoring [71].

In this study, we implemented MAB algorithms TS, UCBI,
and RS in real-world environments of 11 elderly participants
using data sets between 2019 and 2021. We conducted experi-
ments to compare the proposed MAB algorithms’ performance
after training on 70% data sets. In our study, we sought to
determine which algorithm performs better in predicting sleep
patterns. We decided that an anomaly occurred when the model
predicted a set of bins (3) with the lowest probability of return-
ing a reward, nonwinner bins. The percentages of correctly
classified results shown in Table XIII indicate that the TS
method performed best. The overall accuracy in terms of PCC
showed that the TS model could predict most observations
within the winner bins for most of the 11 participants.

TS models can, therefore, easily detect people with abnor-
mal sleep behavior. Also, TS converged more quickly over
the same period than UCBI1 and RS, as shown in Fig. 8. In
summary, TS predicted ATS between 6.5 and 8.5 h for most
participants, which is the recommended sleep duration for
adults over 65 and indicates healthy eating habits [15], [31].

Our study focused on predicting sleep quality based on
sleep metrics used in sleep studies. For most of the evaluated
sleep variables (SL, AW, WT, and SE), the committee in [67]
and [68] agreed that these measures are appropriate indica-
tors of sleep quality in different age groups [11], [13], [15].
We identified sleep patterns and quantified the overall SE to
differentiate between poor and good sleep quality, which is
crucial for health. Three participants, ID1, ID4, and ID9, slept
less than 5 h, which is not recommended [31]. They may be at
risk of cognitive decline and irregular meal patterns [15]. Short
sleepers who sleep 5 to 6 h tend to have a poor diet and irreg-
ular meal patterns [15]. In a follow-up interview, a relative of
participant ID9 showed concerns that their parent might not be
taking lunch and dinner regularly. For ID4, the participant had
irregular sleep patterns and visited the bathroom more often
than normal. Such conditions need attention from healthcare
providers, and in this case, after she received a diagnosis and
treatment, her condition improved, returning to normal sleep.
The TS model identified five participants sleeping/resting 5 to
7 h during the daytime, as shown in Table XII. This is an indi-
cation of sleep apnea or excessive daytime sleepiness [20]. Our
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findings in Table XV show that most participants transited up
to three times per night from the bedroom to another room,
which is an indicator of inappropriate sleep [68]. However,
most participants had high-SE scores and good sleep quality.

Our approach allows for understandable features from raw
motion sensor data as shown in the designed framework
in Fig. 7. This approach is not limited to sleep activity
assessment—it can be used for other human activities, such as
eating time and the level of activeness of the person, in terms
of how many times they transit from one room to another or
movements while staying in a room. From a medical expertise
perspective, it is essential that the development of algorithms
is transparent to all stakeholders [7] to help them understand
the relationships between different sleep and awake features
to use them to support their decision making. Our models
work well when evaluating small data sets, ranging between 62
and 324 days (Table III), as shown in Fig. 8 and Table XIII.
Given the current interest in ML algorithms, which require
large data set samples, our study shows that MAB can achieve
good predictions with less training data. Our study attempted
to classify sleep quality solely by relying on motion sensor
data.

VI. CONCLUSION AND FUTURE WORK

Our study showed the feasibility of MAB in predicting sleep
quality using motion sensor data from sleep and awake periods
and a few data sets to learn the behavior. We showed we could
identify and learn sleep patterns from simple off-the-shelf
motion sensors installed in 11 single-resident elderly apart-
ments. This approach alleviated the privacy concerns raised
by the participants regarding vision-based techniques [9]. The
TS method outperformed RS and UCBI in terms of overall
accuracy. Our results show that 70% training, i.e., about 62
to 324 days for different participants, was sufficient to learn
sleep patterns.

Our study discovered that most elderly participants slept
between 6 and 8 h with 85% SE per night. Considering the
11 apartments and the AW in relation to SE, we identi-
fied three participants who suffered from poor sleep qual-
ity and eight who had good sleep quality, as shown in
Table XV. For most of the participants in the 11 apart-
ments, the anomalies belonged to poor sleep quality. In our
approach, we built one model per participant since there
is a need to personalize sleep analysis from a healthcare
perspective.

Sleep quality analysis is important to observe how health
evolves and how participants react to, for example, certain
medications. This may help diagnose various health conditions
linked to irregular/abnormal sleep patterns, thus contributing to
preventive healthcare. We foresee many single-resident older
adults using such a system for self-awareness of their sleep
routines, as it has the advantage of having a nonintrusive setup.
In the future, combining motion and bed sensors could enable
a more accurate long-term sleep evaluation. Also, we see the
need for a global model to identify overall health and sleep
trends at the population level, which could be a direction for
future research.
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