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Abstract—Precise positioning is fundamental to the Internet
of Things (IoT) that delivers insights into everything from large-
scale business to ordinary smart life. Accurate localization and
positioning in global navigation satellite system (GNSS) denied
environments, such as indoor-, underground-spaces, and forests,
is one of the most prosperous research fields because of the great
complexity prompted by various challenging application scenar-
ios. Different sensors, algorithms, and combinations of those have
been developed in past decades, which provided a great variety
of possible solutions that deliver different positioning accuracies.
However, a rigorous evaluation of the positioning accuracy of
different mainstream solutions is missing, mainly because of the
difficulties in acquiring reliable ground truth for referencing and
the lack of comparable test/application conditions. A comprehen-
sive benchmarking was carried out in this study based on the
comparisons of six solutions that consist of different combinations
of five positioning technologies, i.e., 1) ultrawideband (UWB) and
inertial measurement unit (IMU); 2) UWB, IMU, and camera;
3) UWB and light detection and ranging (LIDAR); 4) UWB
and radio detection and ranging (RADAR); 5) IMU, camera,
and LIDAR; and 6) UWB, IMU, camera and LIDAR. The five
technologies, i.e., UWB, IMU, camera, RADAR, and LIDAR,
were commonly regarded as those that are with high applica-
bility, accuracy, and robustness. New anchors self-positioning
algorithm and integrity monitoring algorithm were proposed to
further aid the compared solutions and the benchmark. High-
precision survey (millimeter)-level ground truth references were
acquired at indoor and outdoor test locations and applied in
the evaluations, to assist reliable quantitive benchmarks about
the positioning accuracies and stabilities of the compared solu-
tions. The strengths, limitations, and potentials of each solution
were analyzed. It was revealed that all relative positioning solu-
tions accumulate positioning errors over time. Such accumulation
was of the highest significance for RADAR, followed by camera.
LIDAR is presented to be the most robust solution for relative
positioning. Compared to camera, LIDAR, and RADAR alone,
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the integration of different technologies clearly improved the
performance. The tight coupling (TC) performed slightly supe-
rior to loose coupling, and the unscented Kalman filter with TC
had a higher positioning accuracy in most cases.

Index Terms—Absolute and relative positioning (ARP), data
fusion, global navigation satellite system (GNSS) denied environ-
ment, integrity monitoring (IM), Internet of Things (IoT), tight
and loose coupling (LC).

I. INTRODUCTION

ROBUST, accuratem and real-time positioning as the
first step before other tasks are essential for almost all

intelligent or smart services and applications in the Internet
of Things (IoT) [1] and mobile geomatics [2]. Accurate
and real-time positioning is the prerequisite for the suc-
cessful implementation of IoT applications, such as intelli-
gent logistics management [3], target positioning and track-
ing [4], autonomous vehicles and vehicle dynamic monitor-
ing [5], [6], [7], the collaboration between unmanned vehicles
and drones [8], and mobile health monitoring [9]. For exam-
ple, in the application of human mobile health monitoring, a
real-time and accurate positioning system can not only provide
patients with in hospital navigation services and guide patients
to their destinations quickly but also be an important means
for hospitals to monitor patients in real time. Once an abnor-
mal situation occurs, medical staff can take accurate measures
to avoid accidents.

Specifically, positioning under the global navigation satel-
lite system (GNSS) denied environments were confronted with
many profound difficulties [10], [11] especially when the envi-
ronmental perception and cognition tasks relied on real-time
sensing and processing on board and/or on edge. After years of
demanding efforts, the localization and positioning in GNSS
denied environments achieved a stage where it could sat-
isfy most of the applications requiring meter-level accuracy,
e.g., in automated logistic services, autonomous driving, etc.
However, great challenges remained when higher positioning
accuracy, i.e., centimeter or even millimeter level accuracy,
was required [12].

In general, technologies for positioning can be divided into
two groups: first, relative positioning, such as inertial naviga-
tion system (INS) and simultaneous localization and mapping
(SLAM) type of odometers, determines a location in relation to
a reference location in a local coordinate system; second, abso-
lute positioning, which fixes a location in a specific coordinate
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framework, i.e., using GNSS, or using local communication
technologies, such as the fifth generation (5G) mobile commu-
nication [13], wireless fidelity (Wi-Fi), Bluetooth low energy
(BLE), and ultrawideband (UWB) [14], [15]. Specifically,
for high-accuracy positioning (better than centimeter level)
in GNSS denied environments, both relative and absolute
positioning technologies have their strengths and weaknesses.

Absolute positioning technologies can be relatively stable
over time, however, their signals are susceptible to interference
from external factors, which may lead to large positioning
deviations. The positioning accuracy of Wi-Fi and BLE is
commonly limited to 2–10 m [16], [17], [18], [19]. Taking
advantage of UWB short pulse interval and high time resolu-
tion can achieve centimeter-level positioning accuracy under
the line-of-sight (LOS) conditions [20], [21], [22], [23], [24],
[25]. However, when UWB comes to non-LOS (NLOS) con-
ditions when the direct path between the radio transmitter and
receiver is blocked, e.g., due to occlusions and interferences
by external factors, the positioning accuracy of UWB typically
declines sharply.

Relative positioning technologies are self-dependent, flex-
ible, and accurate in a short span of time. However, their
positioning error accumulates while the operational time
extends. Optical-vision-based positioning using, e.g., a cam-
era, which depends on detecting and matching visual features,
is vulnerable to illumination changes. Its performance sharply
degenerates in geometric degeneration conditions with few
textures or features, e.g., in long straight tunnels and pla-
nar environments or in spaces with all-white or glass walls
or empty areas. Laser-based positioning has a more intuitive
3-D representation, robust performance in low-light or texture-
less scenes and can capture fine details of an environment at
a relatively long range. light detection and ranging (LIDAR)
can achieve positioning accuracy at very high accuracy given
sufficient accurate distance measurements, e.g., at a subcen-
timeter level using survey-level terrestrial laser scanning [26].
However, the performance of LIDAR positioning significantly
deteriorates in large-scale open areas due to limited features.
The millimeter wave (mmWave) radio detection and ranging
(RADAR) is robust for the interference of fog, smoke, dust,
and other small particles owing to the longer wavelength [27].
Thus, it is more suitable for hostile environments than the opti-
cal camera and LIDAR. Nevertheless, the density of RADAR
measurements is much lower than that of LIDARs and cam-
eras [28]. Therefore, RADAR is commonly used in target
detection and obstacle avoidance [29], but not for positioning
purposes.

Therefore, when high-precision localization and position-
ing were required, especially in GNSS denied environments,
the trend is to integrate the absolute and relative positioning
(ARP), so that they can be combined, and the weaknesses can
be remedied. Such fusion of different technologies is com-
monly referred to as a hybrid positioning system (HPS), and
the most popular fusion methods include filtering-based and
factor graph optimization (FGO). The FGO method consid-
ers all the historical information and converts the probability
expression into the nonlinear least square optimization. It
requires multiple iterations to obtain the optimal solutions that

are computational complex [30]. Thus, it is difficult to meet
the real-time requirements especially when the amount of posi-
tioning system data is large. In contrast, the filtering-based
methods are more computationally efficient and have ease of
implementation. Thus, filtering-based methods were used to
achieve the HPSs in this study.

Various HPS solutions were proposed, and a more compre-
hensive review of different mainstream solutions is provided in
Section II of this article. The greatest challenge now is that the
actual performances, i.e., the applicability in different scenar-
ios, the absolute accuracy, and the robustness of various HPSs
are not yet clarified. A rigorous evaluation was missing, mainly
because of the difficulties in acquiring reliable ground truth for
referencing and the lack of comparable test/application condi-
tions. Consequently, it was difficult to quantitatively evaluate
different positioning solutions to understand their performance
and their potential for different applications.

Previous research, as reviewed in Section II, had investi-
gated the possibility to use HPS in different scenarios, but
seldom discussed their accuracy and repeatability, thus, a
proper understanding of the HPS reliability and applicabil-
ity became difficult. This article compared a series of HPSs
strategies to evaluate the accuracy of popular solutions. The
proposed UWB and inertial measurement unit (IMU) position-
ing system supports a fast anchor self-positioning function,
and the HPSs with an integrity monitoring (IM) function
can effectively detect and eliminate outliers, thereby improv-
ing the accuracy and robustness of the positioning system.
Furthermore, to the best of our knowledge, this work con-
ducted the first study on the fusion of RADAR and UWB
for positioning applications. RADAR is often used for tar-
get detection and obstacle avoidance in robotic applications.
Its positioning accuracy and reliability are, however, relatively
low in comparison to other vision positioning technologies.
In this study, RADAR and UWB were fused in order to
improve RADAR positioning accuracy. The performance and
potential of RADAR positioning and corresponding HPSs
were evaluated and explored in detail in indoor and out-
door scenarios in this study. Experiments were carried out
using an unmanned ground vehicle (UGV) in four indoor and
outdoor field test scenarios with LOS or NLOS conditions.
Six HPSs were implemented based on the combination of
one high-accuracy absolute positioning, i.e., UWB, and four
popular relative positioning sensors, i.e., the IMU, camera,
LIDAR, and RADAR. A comparative analysis was con-
ducted to evaluate the performance of loose coupling (LC),
tight coupling (TC), and semi-tight coupling (STC) algo-
rithms in various indoor and outdoor scenarios, aiming to
validate the effectiveness of the proposed positioning system
architecture. High-precision references were acquired using
high-performance Leica Nova TS60 total stations [31] and
were applied to quantitatively evaluate positioning accuracy
to reveal the strength, weakness, and potentials of the HPS
solutions in GNSS denied/challenged environments. The main
contributions of this benchmark include the following.

1) Quantitatively analyzed and evaluated the performance
of the six HPSs through benchmarked comparisons with
millimeter-level reference and individual positioning.
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Explore and benchmark the accuracy and performance
of popular ARP in different indoor and outdoor GNSS-
denied/challenged environments.

2) Proposed a UWB anchor self-positioning algorithm
that simultaneously estimates the positions of UWB
anchors and tracks UWB tag at a centimeter level
in real time, and overcomes the drawbacks of man-
ually time-consuming measured anchor positions in
advance.

3) Proposed an IM algorithm that effectively mitigates the
adverse NLOS impacts on positioning and improves the
accuracy and robustness of the positioning system.

4) Evaluated the potentials of HPSs through quan-
titative benchmarked comparisons under GNSS
denied/challenged environments, and present a practical
suggestion for sensor selection and integration in vari-
ous positioning applications according to the potentials
of benchmarked HPSs.

As mentioned before, a thorough review of relevant
previous works was provided in Section II of this article.
Sections III and IV introduced the experiments and rele-
vant methods developed for the benchmark study. Section V
presented and discussed the results of the benchmark, and the
main findings were concluded in Section VI.

II. LITERATURE REVIEW

This section summarized the principles, advantages, and
disadvantages of the ARP technologies applied in this arti-
cle, and then elaborates on previous research and common
algorithms used in HPSs positioning and navigation, includ-
ing sensor fusion, anchor self-positioning, and the mitigation
of UWB NLOS effects. The review work also revealed
that most previous studies lacked a rigorous evaluation of
positioning results, e.g., only relevant tests were carried
out [32], [33], [34] without the ground truth. Consequently,
it is impossible to quantitatively evaluate the performance of
the hybrid systems and fusion algorithms, and impossible to
evaluate their potentials in various applications.

A. Sensors

The principles, advantages, and disadvantages of the ARP
sensors studied in this benchmark, i.e., UWB, IMU, camera,
LIDAR, and mm Wave RADAR, are summarized in Table I.

B. Methods of Sensor Fusion

Fusion can be done in both loose and TC approaches,
and commonly used fusion algorithms include the linear
Kalman filter [35], [36], extended Kalman filter (EKF) [21],
[22], [24], [37], [38], [39], [40], [41], unscented Kalman
filter (UKF) [21], [23], [25], [42], and particle filter
(PF) [43], [44], [45].

The LC fuses the positioning results of each positioning
subsystem to obtain the final positioning results. The TC com-
bines each subsystem’s observations. One advantage of TC
is that it uses the raw data of each subsystem to suppress
the negative impacts on positioning accuracy, even in a situa-
tion that one subsystem positioning does not work at all. For

instance, when IMU and UWB are used in 3-D positioning, TC
works when only one UWB range measurement is available,
while LC requires at least three UWB range measurements.
However, if the TC algorithm crashes, e.g., due to filter diver-
gence, the positioning will completely fail. In contrast, one
can get the positioning result from subsystem results even if
the LC program does not work. In theory, the accuracy of TC
could be better than that of LC as the TC employs raw mea-
surements in nonlinear problems. In addition, the STC fuses
the raw data and subsystem positioning results to obtain the
final positioning result.

Linear Kalman filtering typically gives low accuracy or even
divergence since the fusion models are generally nonlinear.
The PF algorithms are based on the Monte Carlo method,
which uses a large number of particles to simulate the state
of the system and estimate the probability density function
of the measurement model [45]. This method obtains higher
positioning accuracy when a large number of particles are
deployed, but has high computational complexity and is not
optimal for systems requiring real-time positioning. The EKF
approximates linearization by performing a Taylor first-order
expansion for nonlinear models. It is effective when models
are slightly nonlinear, but gives large truncation errors when
a model is highly nonlinear. UKF uses an unscented trans-
formation [unscented transform (UT)] on the nonlinear model
instead of the Taylor expansion to generate a series of particles
to simulate the posterior probability density functions of the
system state and measure models. UKF does not ignore higher-
order terms, which effectively overcomes the shortcomings of
EKF. Its estimates are at least equivalent to the precision of
the second-order Taylor expansion of nonlinear models [46]
while the computational complexity of the UKF is much lower
than that of the PF.

C. Integration of Absolute and Relative Positioning
Technologies

The UWB-IMU fusion has been studied in recent
years [20], [22], [23], [24], [25], [35], [36], [37], [38], [39],
[41], [42], [45], [47], [48], [49], [50]. The fusion of UWB and
IMU reduces the IMU accumulated error [20] and improves
the system’s reliability and accuracy [20], [40], [51]. In NLOS
environments, the fusion positioning accuracy of UWB and
IMU reached centimeter level [22], [24].

Both EKF and UKF have been used in the fusion,
e.g., in [20], [21], [22], [24], [39], [41] and [21], [23], [25],
[42], respectively. Feng et al. [42] and You et al. [25] reported
loosely coupled cases using EKF and UKF, respectively, which
showed the UWB-IMU fusion could reach a centimeter-level
accuracy in LOS environments.

Hybrid UWB-vision systems were reported to have higher
accuracy than individual systems [52], [53], [54], [55], [56].
The UWB-vision fusion was reported for UAVs [52], [54]
and pedestrian [55] positioning. Extra stationary markers with
known positions were required, e.g., in [52]. The UWB and
UWB-vision positioning accuracies were around 0.300 and
0.200 m, respectively [55]. A tightly coupled UWB-aided
monocular visual SLAM system in [56] achieved positioning
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TABLE I
PRINCIPLE, ADVANTAGES, AND DISADVANTAGES OF ARP SENSORS

accuracies at around 3.000 m using monocular vision and
about 0.400 m using the UWB-aided visual SLAM in an open
area. The UWB, monocular vision, and their combination got
0.300, 1.000, and 0.250 m positioning accuracies, respectively,
in a rectangular open space [53].

The UWB-LIDAR fusion not only improved the UWB
positioning accuracy but also removed the accumulated error
in the LIDAR SLAM algorithm, which suits infrastructure-
less and ad-hoc applications without prior environment
information. Major challenges exist in geometric degeneration
scenes, such as long straight tunnels and planar environ-
ments, where the reliability of LIDAR-tracked features drops
sharply. Song et al. [32] studied the UWB-LIDAR fusion

in a 2-D SLAM. For achieving robust localization in geo-
metrically degenerated environments like the tunnels, Zhen
and Scherer [33] presented a degeneration characterization
model using UWB and LIDAR to estimate the positioning
performance at a given location in a prior map and combined
IMU, LIDAR, and UWB based on a probabilistic sensor fusion
method. Zhou et al. [34] used EKF to fuse UWB and LIDAR
loosely in a geometric degeneration environment. The results
showed that it might not be able to provide reliable positioning
accuracy in the UWB NLOS environment.

The mmWave RADAR received extensive attention due to
its ability to work effectively in harsh environments. However,
since mmWave RADAR has low cross-range resolution and
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sparse measurements [57], it often needs to be fused with
other sensors for better performance. There are few studies on
the use of RADAR for positioning, especially the research on
fusion with absolute positioning sensors. Tan et al. [58] applied
5G mobile communication and mmWave RADAR to air traffic
management, where RADAR was used for target detection and
recognition. Yao et al. [59] presented a TC study of UWB and
mmWave RADAR in an indoor environment based on EKF.
The average positioning accuracies of RADAR and fusion
were around 0.770 and 0.320 m, respectively. In addition, the
RADAR-IMU fusion was reported to achieve the positioning
of the ground robot [27] and ego-velocity estimation in visu-
ally degraded environments [60], RADAR-IMU fusion reached
positioning accuracy at around 1.000 m. In [57], the fusion of
the monocular camera and mmWave RADAR used a trained
deep neural network and long short-term memory (LSTM)
approach to realize target tracking.

D. Anchor Self-Positioning

Anchor positions are manually measured in advance as prior
information in most UWB-based positioning solutions [20],
[21], [22], [23], [24], [25], [39], [41] to locate the UWB tag.
Manually measuring anchor positions requires extra measur-
ing tools, such as a laser meter and is time-consuming and
labor-intensive. It is not suitable for emergency applications
where the place is inaccessible or dangerous, such as areas
with harmful gas or high radiation, or the task is time critical,
such as disaster rescue and firefighting, or the anchor positions
change during the positioning process, such as the cooperative
positioning of multiple drones or unmanned vehicles.

Anchor self-positioning was studied in [43], [45], [48],
[50], [56], [61], [62], [63], and [64]. The realization of the
anchor self-positioning function reduced the error caused by
the manual measurement of the anchor position and improved
the efficiency. Tian et al. [45] used UWB and pedestrian
dead reckoning (PDR) based on multilateration to achieve
anchor self-positioning in post-processing, which is not suit-
able for positioning anchors in scenarios where the anchors
need to move. The results showed decimeter-level anchors
positioning for only one anchor. Centimeter-level anchor posi-
tioning using simulation data was reported in [50]. Hamer and
D’Andrea [48] reported a centimeter-level UWB anchor self-
positioning based on multiple micro-unmanned aerial vehicle
platforms. It required communication between anchors to cal-
culate the distance between them, and clock synchronization
and additional hardware communication to calculate the time
difference of arrival (TDOA). Nguyen et al. [64] reported
a geometric method to calculate anchor coordinates, given
known distances between anchors.

Anchors self-positioning function of some other position-
ing sensors was presented in [43], [61], and [62]. In [56]
and [63], the bundle adjustment method was used to fuse
the camera, IMU, and UWB, and the centimeter-level UWB
anchor position was estimated based on the visual-inertial
derivative combined with the UWB pseudo ranges (PRs).
Esslinger et al. [62] used the optoacoustic sensor and the
IMU to achieve centimeter-level anchor positioning, but the

transmitter requires four optoacoustic sensors. Lee et al. [43]
used the IMU and 802.15.4a chirp spread spectrum (CSS)
radio for beacon self-positioning based on particle filtering.
The average value of the particles is used as the position of
the beacon when the particles converge. The position accu-
racy of the beacon is at the meter level, and the calculation
complexity is high due to the use of particle filtering.

E. UWB NLOS Identification and Mitigation

A common factor that affects the UWB positioning accuracy
is the NLOS radio propagation. Research has been carried out
to identify, mitigate, or eliminate the NLOS impacts on UWB
positioning [49], [65], [66], [67], [68], [69], [70].

Zhang et al. [68] proposed an NLOS identification method
based on UWB PR and an empirical threshold. The report
showed that the method improved UWB positioning accu-
racy, given redundant PRs existed. Nevertheless, using only
the PRs to identify the NLOS cannot eliminate the impact of
the NLOS when the given empirical threshold is inaccurate. Li
and Wang [70] used a factor graph method to alleviate NLOS,
which is highly computationally complicated.

Machine learning and deep learning have been studied in
recent years in NLOS identification [49], [65], [66], [67], [69].
Yu et al. [49] proposed a fuzzy comprehensive evaluation
method for NLOS identification in complex environments.
This method was reported to be able to effectively iden-
tify NLOS. Support vector machines (SVM) were reported
to be able to effectively identify NLOS [65], [66], [67].
Zeng et al. [67] identified NLOS using SVM by train-
ing channel impulse response (CIR) data, this method can
effectively identify NLOS, given a suitable kernel function.
Jiang et al. [69] used deep learning to identify NLOS based
on convolutional neural network (CNN) and LSTM, using
CNN-LSTM to train UWB CIR offline data. Machine learning
or deep learning requires offline data learning and training.
Insufficient offline data will lead to under- or over-fitting
problems in model training.

III. DESIGN OF SYSTEM AND EXPERIMENTS

This section presents the experiment platform, sensors, and
test setups used in the tests.

A. Platform and Sensors

The equipment used in the experiment is shown in Fig. 1.
The mobile platform was the SCOUT mini model UGV
(AgileX Robotics, Shenzhen, China). The positioning sensors
included a set of LinkTrack P-B UWB devices (NoopLoop
Technology Company, Ltd., Shenzhen, China), a RealSense
Tracking Camera T265 (Intel, Santa Clara, CA, USA), a
PandarXT-32 laser LiDAR (Hesai Technology, Shanghai,
China), an Eagle mmWave RADAR (Oculii, Dayton, OH,
USA). The onboard computing unit was an Intel NUC com-
puter (Intel, Santa Clara, CA, USA).

The LiDAR had a 0.5-centimeter (cm) ranging accuracy,
a 120-m measuring range, a 360◦/31◦ horizontal/elevational
field of view (FOV), and a 0.18◦ horizontal angular reso-
lution, and a 10-Hz scan rate at 32 lines/sec. The RADAR
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Fig. 1. Experiment equipment. (a) Multisensors positioning platform. (b) Total station and UWB anchors.

TABLE II
EXPERIMENT SITES AND SETUP

had a 0.86-m ranging accuracy, a 400-m measuring range,
a 120◦/45◦ horizontal/elevational FOV, <1◦ horizontal angu-
lar resolution, and a 15-Hz scan rate. The UWB had a tag
and four anchors. The T265 camera includes two fisheye lens
sensors with a combined 163◦ FOV (+/− 5◦). The UWB
tags and T265 camera all have low-cost MEMS-IMU. The
UWB tag has MPU-6500 (InvenSense Company, San Jose,
CA, USA), and the T265 has BMI055 (BOSCH Company,

Stuttgart, Germany). Their detailed specifications can be found
in [71] and [72].

The reference trajectories, or the ground truths, were
collected using a Leica TS60 total station and a GRZ4
360◦ prism (Leica, Heerbrugg, Switzerland) fixed on the
UGV. The GRZ4 360◦ prism delivers an overall accuracy
of 2–5 mm and an automatic target recognition of up to
600 m [73].
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B. Experiment Setup

The performances of the ARP solutions were evaluated and
compared in four indoor and outdoor experimental scenes in
this article. In each experiment, a roughly repeated route was
gone through three times. Single and repeated routes were
compared, to evaluate the drifting effects over time of the
relative positioning, i.e., IMU, camera, LIDAR, and RADAR.

Table II summarized experimental scenes and their ground
truth. The experiments were numbered according to the site
and trajectory number. For instance, the experiments in the
indoor meeting room with single and repeated trajectories were
named Indoors I-1 and I-3, respectively.

C. UWB Sensor Networks

In absolute positioning, the positioning accuracy is affected
by both the algorithm and geometry of UWB sensor networks,
similar to the satellite constellation. The dilution of precision
(DOP), an indicator of satellite geometry for the satellite con-
stellation, was used to evaluate the network configuration. The
2-D plane positioning accuracy within the UWB networks
was simulated to reveal the impacts of the geometry of UWB
networks, i.e., the horizontal DOP (HDOP). A smaller HDOP
value represents a more optimal geometry of sensor networks
for positioning. The method detailed for calculating HDOP can
be found in the previous work [18], [74]. Readers are referred
to Appendix A for the simulated result of the HDOP in four
experimental scenes.

IV. ALGORITHMS AND SOLUTIONS

IN THE BENCHMARKING

This section presents the six HPS solutions that were bench-
marked in this study. Moreover, different methods for the
fusion of technologies in each HPS solution were also studied.
Two new algorithms, i.e., one for anchor self-positioning, and
one for IM, were introduced to improve the state of the art
of positioning accuracy of relevant HPS solutions. Technical
and algorithm details are presented in this section to support
an in depth and convenient understanding of the benchmarked
solutions.

A. Overview of Six Benchmarked HPS Solutions

HPS-1 integrates UWB and IMU, and four fusion methods,
i.e., EKF-LC, EKF-TC, UKF-LC, and UKF-TC, were
compared to analyze their performances. The UKF fusion
algorithm was tested only in HPS-1 because the state models
of HPS-2, -3, and -4 and the measurement model of HPS-5
are linear. The integration between UWB and CAMERA in
HPS-2, and HPS-3, as well as between LIDAR and RADAR
in HPS-4 are carried out using EKF-TC, to study the perfor-
mances of different combinations of the relative and absolute
positioning. HPS-5 evaluated only the relative positioning
performance, i.e., IMU, CAMERA, and LIDAR, based on
EKF-LC. HPS-6 tested the performance of multiple posi-
tioning subsystems based on STC, i.e., when UWB, IMU,
CAMERA, and LIDAR are all combined.

In the experiments, the strap-down inertial navigation
system (SINS) [75], [76], [77], [78] used IMU positioning,

TABLE III
DETAILED INFORMATION OF THE SIX HPSS

the ORB-SLAM3 algorithm [79] in a stereo-inertial mode used
CAMERA positioning, and the A-LOAM algorithm [80] was
used for LIDAR and RADAR positioning.

A new IM algorithm was proposed to tackle the nega-
tive impacts of UWB-NLOS, which integrates PRs outlier
detection (PROD) and innovation-based integrity monitor-
ing (IBIM) phases for the detection of measurement outliers
caused by radio NLOS propagation, thus, further improving
the precision and robustness of the positioning system.

Table III summarizes the fusion engines, the relative posi-
tioning algorithms, and the IM algorithms of the six bench-
marked HPSs.

The structures of the six HPSs are illustrated in block
diagrams in Figs. 2–5.

HPS-1 included both TC and LC, where TC is shown in
Fig. 2 as an example. The pseudo ranges between the UWB
anchors and tag were based on the time of flight (TOF). The
outliers of pseudo ranges affected by NLOS were eliminated
in the IM, and the filtered pseudo ranges were input into the
fusion engine. The anchor positions were estimated by the
proposed UWB anchor self-positioning algorithm in real time
(see Section IV-E). In the IMU positioning subsystem, the
real-time position, velocity, and attitude (PVA) were obtained
by the SINS algorithm given initial IMU PVA, acceleration,
and gyroscope zero bias. The ranges between the anchors and
IMU can be estimated using anchor and IMU positions in real
time.

In the fusion engine, the discrete-time error state space the
model was given based on the SINS algorithm. The system
measurement model referred to the difference between the esti-
mated ranges from the UWB anchor positions to the IMU
position and pseudo ranges calculated by the UWB. The
proposed IBIM further improved the accuracy and robustness
of the positioning system by further removing measurement
outliers. The real-time estimated state vector error (PVA error,
acceleration, gyroscope zero bias, and anchors error) was then
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Fig. 2. Block diagram of the HPS-1 based on the tightly couple.

Fig. 3. Block diagram of the HPS-2 (UWB+CAMERA+IMU), HPS-3 (UWB+LiDAR), and HPS-4 (UWB+RADAR) based on TC.

Fig. 4. Block diagram of the HPS-5 based on the LC.

Fig. 5. Block diagram of the HPS-6 based on the STC.
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feedback to the SINS and UWB anchors position estimation.
The final fusion result was obtained through the error feedback
correction.

HPS-2, -3, and -4 integrated the absolute positioning
subsystem UWB and the relative positioning subsystem
camera-IMU, LIDAR, and RADAR, respectively. The system
error state model refers to the distance error between UWB
anchors and the tag. The system measurement model refers
to the difference between the estimated ranges inferred
by the relative position subsystem and pseudo ranges cal-
culated by the absolute position subsystem. The optimal
state estimate after filtering would feedback to the esti-
mated range between the UWB anchors and relative posi-
tioning sensors (i.e., CAMERA, LIDAR, and RADAR)
as shown in Fig. 3. The corrected range estimation was
used to solve the final position information by the least
square.

HPS-5 combined three relative positioning sensors,
i.e., IMU, CAMERA, and LIDAR, as shown in Fig. 4. The
system state model was the same as that of HPS-1. The
system measurement model referred to the difference between
CAMERA and IMU positions, and the LIDAR and IMU
positions. The proposed IBIM was performed to improve the
accuracy as well as the robustness of the positioning system.
The real-time estimated state vector errors were feedbacked
to the SINS and the fusion results were obtained through the
error feedback correction.

HPS-6 combined all ARP sensors as shown in Fig. 5. HPS-
6 added two relative positioning of CAMERA and LIDAR
in addition to HPS-1. To compensate for the shortcomings of
the tight and loose coupling, the fusion engine adopts a semi-
tight couple method. In the fusion engine, the system state
model was the same as that of HPS-1. The system measure-
ment model was divided into two parts. The first part was the
difference between the estimated range from the UWB anchors
positions to the IMU position and pseudo ranges calculated
by the absolute position subsystem. The second part was the
difference between the position of the camera and the position
of the IMU and the position difference between the position
of the LIDAR and the IMU. The proposed IM detects outliers
in real time. The real-time estimated state vector errors were
feedbacked to the SINS and the fusion results will be obtained
through the error feedback correction.

B. Relative Positioning Based on IMU Sensor

The SINS algorithm was based on the classical Newtonian
mechanical theory, using the specific force f and angular rate
ω integral provided by the IMU accelerometer and gyroscope
to calculate the object PVA [76], [81]. The PVA of the SINS
update algorithm was as follows [75], [76], [77], [78]:

⎧
⎪⎨

⎪⎩

qn(k)
b(k) = qn(k−1)

b(k−1)

⊗
qb(k−1)

b(k)
vn

k = vn
k−1 + �vn

f ,k + �vn
g/cor,k

ρn
k = ρn

k−1 + 1
2

(
vn

k + vn
k−1

)
dt

(1)

qb(k−1)
b(k) =

[
cos‖0.5φk‖
sin‖0.5φk‖‖φk‖ φk

]

(2)

Fig. 6. Conceptual diagram of an INS.

where qn(k)
b(k) is the unit quaternion representing the rotation

from the body frame (i.e., b frame) to the navigation frame
(i.e., n frame) at the k moment. The notation

⊗
represents the

quaternion multiply, the φk is the equivalent rotation vector of
the b frame from the time k to k-1 [78]. vn

k and vn
k−1 are the

velocity of the n frame at the time k and k–1, respectively.
dt is the IMU sampling interval. �vn

f ,k is the specific force
velocity increment. �vn

g/cor,k is the velocity increment caused
by gravity and Coriolis force. ρn

k is the position of the n frame
at the k time. A detailed derivation of the SINS algorithm can
be found in [75], [76], [78], [81], and [82]. The conceptual
diagram of a SINS is shown in Fig. 6.

The f n = Cn
bf b is the specific force in the frame n in Fig. 6,

Cn
b is the corresponding rotation matrix of the qn

b, ωb
ib is the

angular rate of the body frame, and v̇n is the velocity differen-
tiation or the body motion acceleration in the frame n. When
the motion acceleration v̇n is accurately estimated, the velocity
can be calculated by integrating the v̇n, and the position can
be obtained by integrating again.

The system discrete-time error state-space model based on
the SINS update algorithm can be derived according to the
standard additive error definition for the PVA, and accelerom-
eter and gyroscope biases (̂x ∼= x + δx). Discrete-time error
state-space model at the k time can be described as follows
when the SINS sampling interval dt [83], [84]:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δρn
k+1 = δρn

k + dtδvn
k

δvn
k+1 = δvn

k + dt
[
Cn

b,kf b
k

]×
δϕn

k + dtCn
b,k

(
δba,k + nf ,k

)

δϕn
k+1 = δϕn

k − dtCn
b,k

(
δbg,k + nω,k

)

δba,k+1 = δba,k + dtnδf ,k

δbg,k+1 = δbg,k + dtnδω,k

(3)

where ρ, v, ϕ, ba, and bg are the PVA, accelerometer biases,
and gyroscope biases. [ • ]× denotes the skew-symmetric
matrix representation of the cross-product operation. The nδf
and nδω are the accelerometer and gyroscope bias increments,
respectively, which are modeled as white Gaussian noises. nf

and nω are temporally uncorrelated zero-mean noise processes
of the accelerometer and gyroscope, respectively.

C. Absolute Positioning Based on UWB Sensor

The PR between the UWB anchors and the tag was com-
monly calculated by the time of arrival (TOA) [85], [86], [87],
the TDOA [87], [88], and TOF [50], [89]. The TOA required
clock synchronization for anchors and tags. TDOA required
clock synchronization only for the anchors. The TOF did not
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Fig. 7. DS-TWR exchange.

require clock synchronization. It was calculated by the Double-
sided two-way ranging (DS-TWR) method [89] and was used
to solve the PR in the experiment. Fig. 7 shows a DS-TWR
exchange.

According to Fig. 7, the round-trip time from the tag send-
ing a poll message to receiving the response message from the
anchor Ra, and the round-trip time from the anchor sending
a response message to receiving the final message from a tag
Rb can be expressed as follows:

{
Ra = 2Tf + Db

Rb = 2Tf + Da
(4)

where Tf is the TOF from tag to anchor, the delays Da and
Db of the tag and anchor are constants and known parameters
from the hardware.

Therefore, the Tf between tag and anchor can be calculated
as follows:

Tf = RaRb − DaDb

Ra + Rb + Da + Db
. (5)

And, the PR dm between tag and anchor can be written as
follows:

dm = Tf × c = ‖ρn
m − Pn

candidates‖ + ϑ,ϑ ∼ N
(

0, σ 2
)

(m = 1, . . . , M) (6)

where c is the speed of light; ‖ • ‖ is the Euclidean dis-
tance (2-norm); ρn

m is the 3-D coordinates of the mth anchor
in the navigation frame n; Pn

candidates is the position of rel-
ative positioning sensors in the navigation frame n, which
is the IMU-position estimate Pn

imu in HPS-1, -5, and -6,
the camera-position estimate Pn

camera in HPS-2, the LiDAR-
position estimate Pn

LiDAR in HPS-3, the RADAR-position
estimate Pn

radar in HPS-4; ϑ is the ranging error with zero-
mean Gaussian normal distribution; and M is the number of
available anchors.

The tag position (x, y, z) can be calculated by multilateration
combined with the Gauss–Newton iteration [18], [90]. Details
are in Appendix B.

D. Fusion of Relative and Absolute Positioning Information

The relative and absolute positioning sensors are integrated
using EKF and UKF algorithms.

Given the state and measurement models of a system
{

Xk = f (Xk−1, μk−1) + Wk−1
Zk = h(Xk) + Vk

(7)

where f is the nonlinear state function, h is the nonlinear mea-
surement function, Wk and Vk are the process and measure-
ment noise with uncorrelated zero-mean white Gaussian noise
and covariances Qk and Rk, respectively, i.e., Wk ∼N(0, Qk)
and Vk ∼N(0, Rk). The TC and LC processes of EKF and
UKF for the HPSs are presented in Sections IV-D1 and IV-D2,
respectively.

1) TC and LC Based on EKF: The main core idea of the
EKF algorithm is to linearize the nonlinear state or mea-
surement models by the Taylor series expansion and retain
the first-order terms, which omit the second-order and above
terms. The detailed process of the EKF algorithm can be
referred to in [42].

a) System error state models: According to (3), the
system error state model of HPS-1, -5, and -6 can be written
as follows:

δX = [
δρT δvT δϕT δba

T δbg
T]T

. (8)

Hence, the linearized state-space system model of the
discrete-time process is

δXk+1 = FkδXk (9)

Pk+1 = FkPkFk + GkQkGT
k (10)

where δXk is the error state at time k, δXk+1 is the predicted
error state vector, Pk+1 is the priori covariance matrix, and
Fk denotes the state transition matrix, Gk denotes the noise-
driving matrix

Fk =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I dtI 0 0 0

0 I dt
[
Cn

b,kfb
k

]×
dtCn

b,k 0

0 0 I 0 − dtCn
b,k

0 0 0 I 0
0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (11)

Gk =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
dtCn

b,k 0 0 0
0 − dtCn

b,k 0 0
0 0 dtI 0
0 0 0 dtI

⎤

⎥
⎥
⎥
⎥
⎦

Qk =

⎡

⎢
⎢
⎣

σ 2
an

I
0
0
0

0
σ 2

ωn
I

0
0

0
0

σ 2
aω

I
0

0
0
0

σ 2
ωω

I

⎤

⎥
⎥
⎦ (12)

where I and 0 represent the 3×3 identity matrix and 3×3 zero
matrices, respectively, the σan and σωn represent the standard
deviation of white Gaussian noise for acceleration and angular
velocity, respectively, and σaω and σωω represent the standard
deviation of white Gaussian noise for acceleration and angular
velocity bias, respectively.

The system error state model δX of the HPS-2, -3, and -4
are as follows:

δX = [δd1δd2δd3δd4] (13)

where the δX denotes the distance error between the UWB tag
and anchors. Since the total numbers of UWB anchors were
four in this study, the state transition matrix Fk is the identity
matrix diag (1, 1, 1, 1) in the HPS-2, -3, and -4.
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b) System measurement models: Assume the coordinates
of the available UWB anchors in the navigation coordinate
system are ρn

m (m = 1, 2, . . . , M), according to (6), the mea-
surement models of the HPS-1, -2, -3, and -4 can be expressed
as follows:

Zk = ‖ρn
m − Pn

candidates‖ − dm, m = 1, 2, . . . , M. (14)

By linearizing (14), the measurement equation can be
written as follows:

Zk = HkδXk + vk (15)

where Zk is the measurement error vector and vk is the
measurement noise with the covariance matrix Rk = E(vkvk

T).
In the HPS-1, the Hk is the Jacobian matrix as follows:

Hk = [
JF 0M×3 0M×3 0M×3 0M×3

]
(16)

where

JF = Pn
imu − ρn

m

‖ρn
m − Pn

imu‖
, m = 1, 2, . . . , M. (17)

In the HPS-2, -3, and -4, the Hk is the identity matrix diag
(1, 1, 1, 1), the δX in (13) represents the optimal state esti-
mate after filtering, which will feed back the estimated range
between the UWB anchors and relative positioning sensors in
the HPS-2, -3, and -4, i.e., CAMERA, LiDAR, and RADAR,
respectively. The corrected range estimation is used to solve
the final position of the HPS-2, -3, and -4 by the least square.

In the HPS-6, the measurement model is written as follows:

Zk =
⎧
⎨

⎩

‖ρn
m − Pn

imu‖ − dm, m = 1, 2, . . . , M
Pn

camera,k − Pn
imu,k

Pn
lidar,k − Pn

imu,k.

(18)

By linearizing (18), the measurement equation can be
written as follows:

Zk = HkδXk + vk

where Hk is the Jacobian matrix as follows:

Hk =
⎡

⎣
JF 0M×3 0M×3 0M×3 0M×3
I 0 0 0 0
I 0 0 0 0

⎤

⎦ (19)

where JF is the same as (17), the I and 0 represent the 3 × 3
identity and zero matrices, respectively.

The LC is realized based on the EKF in the HPS-1 and
-5. The LC measurement model of the HPS-1 is expressed
as follows:

Zk = Pn
uwb,k − Pn

imu,k (20)

where Pn
uwb,k is the UWB tag position calculated by the abso-

lute positioning subsystem in the n frame at k time, Pn
imu,k is

the IMU position calculated by the relative positioning sub-
system in n frame at k time. Further, the relationship between
system measurement and state is as follows:

Zk = HkδXk + vk. (21)

In this case, Hk = [I 0 0 0 0].

In the HPS-5, the loosely coupled measurement model is
written as follows:

Zk =
{

Pn
camera,k − Pn

imu,k
Pn

lidar,k − Pn
imu,k.

(22)

In this case

Hk =
[

I 0 0 0 0
I 0 0 0 0

]

(23)

where I and 0 represent the 3×3 identity matrix and 3×3 zero
matrices, respectively.

2) TC and LC-Based UKF: The UKF is a nonlinear filter-
ing algorithm based on the UT. It overcomes the limitations
of the EKF algorithm that only uses the first-order approxima-
tion in the Taylor expansion by generating a series of particles
to simulate the posterior probability density functions of the
system state and measure models.

In this study, the system error state vector of HPS-1 using
the UKF-TC and UKF-LC is the same as that in the EKF
algorithm as shown in (8), the measurement model for the
UKF-TC and -LC are in (14) and (20), respectively.

In UKF, the prestate distribution of the system is to generate
a series of Sigma points by UT. Consider an n-dimensional
random variable X with a mean of x̂ and covariance of P,
transformed by a nonlinear function f (•). The UT generates
a Sigma Vector X with a dimension of 2n+1 and a set of
weights W, as follows:

⎧
⎪⎨

⎪⎩

X(0) = x̂

X(i) = x̂ + (√
(n + λ)P

)T
i (i = 1, 2, . . . , n)

X(i + n) = x̂ − (√
(n + λ)P

)T
i (i = 1, 2, . . . , n)

(24)

⎧
⎪⎨

⎪⎩

W(m)
0 = λ

n + λ

W(c)
0 = W(m)

0 + (
1 − α2 + β

)

W(m)
i = W(c)

i = 1
2(n + λ)

(i = 1, 2, . . . , 2n)

(25)

λ = α2(n + κ) − n (26)

where λ is a scaling parameter to reduce the total prediction
error, α determines the propagation speed of the Sigma sam-
pling point around x̂ and is usually set to a small positive
number (1E-4 ≤ α ≤ 1), κ usually takes 0 in the calculation,
(
√

(n + λ)P)i represents column i of the square root matrix,
and the candidate parameter β is a nonnegative weight coef-
ficient that is usually 2. W(m)

i and W(c)
i represent the weight

of the mean and covariance of the ith sigma sample point,
respectively.

The UKF algorithm processing includes the predicted
update and the measurement update in two parts like the EKF,
the detailed process in Appendix C.

E. Anchor Self-Positioning

The positions of all UWB anchors and the state of the UWB
tag are simultaneously estimated by EKF-TC during the posi-
tioning process. The multilateration method was used to get
the optimal initial position values for anchors.
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1) Optimal Initialization for Anchor Position: The UWB
tag is rigidly connected to the IMU with known relative posi-
tions and had a known static position measured in the field
before the platform starts to move in the environment. Since
the IMU provides an accurate position in a short time and is
then combined with the UWB PRs, the initial values of anchor
positions can be calculated by the multilateration method.

The initialization ρm,0 for anchor position can be obtained
by minimizing the cost function

ρm,0 = arg min
ρm ∈ R

3

M∑

m=1

∥
∥dm

k − h
(
ρn

m, ρn
k

)∥
∥

h
(
ρn

m, ρn
k

) = ∥
∥ρn

m − ρn
k

∥
∥ (27)

where M is the number of available anchors, dm
k represents the

PR calculated by (6), ρn
m are the 3-D coordinates of the mth

anchor in the frame n, and ρn
k is the 3-D coordinates of the

IMU in frame n at the k moment. A reliable initialization result
can be obtained when the number of the available anchors
M ≥ 3.

To get a reliable optimal initialization ρm,0, we take the
mean of the initial values of anchor positions calculated by
(27) within the first 30 epochs as the final ρm,0.

2) Anchor Self-Positioning Based on EKF-TC: The system
state estimate S has an error vector δS

δS = [δX δY]T (28)

where δX is the same as (8), δY is the estimation error of
the anchors. In this case, the measurement model is still (14).
The fusion algorithm is based on EKF-TC, which estimates
the system error vector δS in real time. In our research, the M
was four, so the state transition matrix Fk and the noise-driving
matrix Gk in (11) and (12) can be revised as follows:

Fk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I dtI 0 0 0 0 0 0 0

0 I dt
[
Cn

b,kfb
k

]×
dtCn

b,k 0 0 0 0 0

0 0 I 0 − dtCn
b,k 0 0 0 0

0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)

Gk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
dtCn

b,k 0 0 0
0 − dtCn

b,k 0 0
0 0 dtI 0
0 0 0 dtI
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (30)

The Jacobian matrix Hk in (17) was rewritten as follows:

Hk = ∂h

∂δS
|S = [

JF 0M×12 0M×3(m−1) Jm 0M×3(M−m)

]
(31)

where

Jm = ρn
m − Pn

imu

‖ρn
m − Pn

imu‖
, m = 1, 2, . . . , M. (32)

Finally, by adding the estimated error-state δS into the
predict phase of EKF, the state estimate S is updated in real
time.

F. Integrity Monitoring Algorithm

This section introduces a new IM algorithm for mitigating
the negative impact of NLOS. UWB PR outliers caused by
NLOS from radio propagation were first removed using the
received signal strength and PR differences between conse-
quent epochs. The second phase, the so-called IBIM, used the
Kalman filter innovation sequence to construct test statistics
monitoring the positioning quality. Note that the EKF-LC and
UKF-LC only performed the IBIM since the UWB cannot
accomplish positioning alone when the number of UWB PRs
was less than three.

1) UWB Pseudo Ranges Outlier Detection: An NLOS
between the anchor and tag happens when the UWB signal
is obstructed by an object, which increases the signal propa-
gation time. Since the PR was calculated based on TOF in this
study, a severe NLOS can cause a mutation in the PR, leading
to a large PR difference between two adjacent epochs. Thus,
an empirical power metric [45] was used as an indicator to
monitor the ranging-measurement quality, defined by the dif-
ference Pdiff between the total RSS PRX and the RSS PFP of
the First path (FP) component in the UWB transmission

Pdiff = PRX − PFP = 10 ∗
(

C ∗ 217/F2
1 + F2

2 + F2
3

)
(33)

where C, F1, F2, and F3 are the CIR power and the amplitude
of 3 points in FP, respectively.

A large Pdiff indicates possible NLOS. An empirical thresh-
old Tc was set as 0.300 m in this article to identify NLOS. In
addition, Pdiff and Tc were combined to identify NLOS. If the
channel was subject to an NLOS situation, the corresponding
PR will be eliminated, that is

{
H0: LOS, |dm(k)−dm(k − 1)| ≤ Tc ||Pdiff ≤ 6 dBm
H1:NLOS, |dm(k) − dm(k − 1)|>Tc||Pdiff>10 dBm

(34)

where | • | is the absolute value at k moment.
2) Innovation-Based Integrity Monitoring: The Kalman

innovation is the difference between measurement and
prediction. Both EKF and UKF follow the assumption that
the process and measurement noise is the zero-mean Gaussian
distribution. Based on this assumption, the Kalman innova-
tion sequence also obeys the zero-mean Gaussian distribution,
when there are no outliers in the measurement, i.e.,

rk ∼ N(0, Ck) (35)

where Ck is the covariance matrix of the innovation rk at k
moment.

Therefore, the test statistic λk based on the rk can be
constructed as follows:

λk = rT
k C−1

k rk (36)
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the λk obeys the center chi-square distribution If there are
no outliers in measurement, otherwise, the λk will obey
the noncenter chi-square distribution. Thus, according to the
hypothesis test, once the value of λk great than the threshold
Td calculated by the Neyman–Pearson criterion [19], [91] in
(37), the measurement noise matrix R will be rewritten as (38)
to reduce the adverse effect from the outliers

Pfa =
∫ +∞

Td

χ2(m)dx (37)

where Pfa is the false alarm rate of the system, m is the degree
of freedom, and m is the dimension of the current moment
measurement vector.

Multipath propagation and the NLOS interfere with posi-
tioning leading to outliers during the Kalman filter measure-
ment and updating process. A robust estimation performed not
only will improve the positioning accuracy but also can prevent
filter divergence. Some robust estimators are performed to
obtain reliable parameter estimation in [92], [93], and [94].
In this article, we use a robust estimation of the measurement
noise matrix Rk in the EKF and UKF, a revised covariance
matrix of Rk is defined as R̃k

R̃k = β−1
k Rk (38)

where β = diag[β1, β2, . . . , βm] is an equal-weight matrix
of the measurements. It can be obtained empirically using
the Huber weight function or IGG functions. The IGG III
weight function [51] was selected here. The equivalent weight
is calculated as follows [95], [96]:

βi =

⎧
⎪⎨

⎪⎩

1, |si| ≤ k0

k0|si| ×
{

k1−|si|
k1−k0

}2
, k0 < |si| ≤ k1

10−30, |si| > k1

(39)

where k0 and k1 are constants, where k0 = 2.5 and k1 = 3.5
in this test. si is the normalized residual of the ith observa-
tion [96].

The EKF and UKF are continuously executed to obtain
more robust position results after the R̃k is calculated using
(39) in the measurement update phase.

V. RESULTS, ANALYSES, AND DISCUSSIONS

The six proposed HPSs were tested in four indoor and
outdoor experimental scenes to benchmark the absolute and

relative positioning in both single and repeated trajectories.
The experiments also evaluated the performance of the fusion
methods with different sensor combinations, and the proposed
IM and anchors self-positioning algorithms.

Sections V-A and V-B present the experimental results and
the analyses of the results of multisensors fusion in indoor
and outdoor scenes; Section V-C elaborates on the experimen-
tal results and analyses of the proposed IM algorithm; the
results of the proposed anchors self-positioning algorithms are
presented and analyzed in details in Section V-D. All six HPSs
in this benchmark leveraged the proposed IM algorithm.

A. Results of the Indoor Scenarios

Extensive experiments were carried out to validate the six
HPSs in two indoor experimental scenarios. The positioning
methods of the UWB, the CAMERA+IMU, and the LIDAR
were the multilateration, the ORB-SLAM3, and the A-LOAM,
respectively. The mmWave RADAR was conducted only in
underground parking (Indoor-II) scenes because of the sensor
availability.

1) Indoor-I Experimental Results and Analyses: The tra-
jectories of the proposed HPSs in Indoor I case are
presented in Fig. 8. Fig. 8(a) and (c) presented the sin-
gle and repeated trajectories of the HPS-1 (UWB+IMU)
and HPS-6 (UWB+IMU+CAMERA+LIDAR), respectively.
Fig. 8(b) and (d) showed the single and repeated trajectories
of the trajectories of HPS-2 (UWB+CAMERA+IMU), HPS-3
(UWB+LIDAR), and HPS-5 (IMU+CAMERA+LIDAR),
respectively. For comparison, the high-quality millimeter-level
ground truth and UWB trajectories are also plotted in all
subfigures. The positioning trajectories from CAMERA+IMU
and LIDAR were also presented in Fig. 8(b) and (d).

As shown in Fig. 8, the UWB positioning displayed
mutations in local areas due to NLOS impacts. The
CAMERA+IMU positioning accumulated clear deviations
from the ground truth over time, though the stereo-inertial
mode was used which was supposed to be more robust than
the single-camera or stereo camera without IMU. LIDAR
trajectories showed similar deviations but were clearly less
significant.

These results indicated that the passive camera system
accumulated larger positioning errors than the active LIDAR
system in the experiment scenario. Meanwhile, it was worth
noting that the performance of the LIDAR hardware itself
was superior to the camera system used in the experiment.
The fused trajectories of the HPSs were all closer to the
ground truth and smoother than the absolute UWB trajectory
alone. The HPS-2 (UWB+CAMERA+IMU) trajectory was
still close to the ground truth, which showed that the fusion of
relative and absolute positioning improves trajectory accuracy.

The cumulative distribution function (CDFs) of error cor-
responding to the trajectories in Fig. 8 are shown in Fig. 9.
As the path length increased, the positioning accuracy of
CAMERA+IMU drifted significantly, where the positioning
accuracy was the lowest among all positioning methods and
the differences were sharp. LIDAR positioning also drifted
but was not significant in a short time span, e.g., in a single
trajectory.

According to Fig. 9, the positioning accuracies of HPSs
were all higher than that of the single positioning solution.
As far as HPS-1 was concerned, the positioning accuracy
of the four fusion methods was equivalent, and the posi-
tioning accuracy of the UKF-TC was slightly higher than
the other three. Since HPS-1’s state and observation model
were both nonlinear, the UKF has a higher positioning
accuracy than the EKF. The improvements were signifi-
cant by using HPS-2 (UWB+CAMERA+IMU) and HPS-3
(UWB+LIDAR) fusion, where the HPS-3 had the highest
positioning accuracy.
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Fig. 8. Trajectories in Indoor I (a) and (c) trajectories of the HPS-1 and HPS-6 of Indoors I-1 and I-3, respectively; (b) and (d) related trajectories of the
CAMERA, LiDAR, and UWB for Indoors I-1 and I-3, respectively.

HPS-5 (IMU+CAMERA+LIDAR) that fused three rela-
tive positioning techniques achieved more accurate positioning
results than the absolute positioning (UWB) alone in Indoor-I
environment. This result raised an interesting question on
whether a combined relative positioning can substitute abso-
lute positioning alone. A more general conclusion required
more experiments in different scenarios.

HPS-6 (UWB+IMU+CAMERA+LIDAR) combined all
active/passive solutions, but the results were not the best. This
result indicated that there is an accuracy limit for the hybrid
positioning. The improvement of the overall fusion accuracy
will reduce, especially when the accuracy of particular or
multiple sensors was low.

Three error statistical indicators, i.e., maximum, mean, and
root mean square (RMS) errors, were used to evaluate the
positioning accuracy. The error statistics corresponding to the
trajectories in Fig. 8 are shown in Fig. 10.

The proposed hybrid positioning solutions improved
the ARP alone, according to the maximum, mean, and
RMS errors in Fig. 10. In Indoor I-1, the maximum
errors of the UWB, CAMERA+IMU, and LIDAR were
0.574, 0.857, and 0.409 m, respectively; and the maximum
error of the HPS-1 (UWB+IMU, UKF-TC+IM), HPS-2
(UWB+CAMERA+IMU), and HPS-3 (UWB+LIDAR) were
0.354, 0.531, and 0.323 m, respectively, which reduced by
38.33%, 38.04%, and 21.03% errors after fusing the relative
positioning and absolute positioning in comparison with UWB,
CAMERA+IMU, and LIDAR. The RMS errors of four fusion
algorithms in the HPS-1 (UWB+IMU) were nearly the same
(around 0.210 m).

The HPS-3 (UWB+LIDAR) has the highest average posi-
tioning accuracy in Indoor I. The maximum, mean, and RMS
errors of the LIDAR were 0.470, 0.261, and 0.235 m in Indoor
I-3, respectively; and the corresponding errors of the HPS-
3 were 0.396, 0.164, and 0.178 m in this case, respectively,
where UWB-LIDAR fusion reduced LIDAR positioning errors
by 15.74%, 37.16%, and 24.26%, respectively.

The RMS error of the HPS-5 (IMU+CAMERA+LIDAR),
i.e., 0.206 m in Indoor I-1 and 0.222 m in Indoor I-3. The
higher accuracy of HPS-5 than the UWB, CAMERA+IMU,
and LIDAR, as shown in Fig. 10, was because the LIDAR
has reliable performance and the fusion of IMU and
LIDAR further improves the accuracy than the LIDAR
alone. The maximum, mean, and RMS errors of the HPS-
6 (UWB+IMU+CAMERA+LIDAR) were 0.523, 0.201, and
0.212 m in Indoor I-3, respectively, approximately the same as
that of the HPS-1 (UWB+IMU, EKF-TC+IM), which indi-
cated that in the indoor environment, CAMERA, and LIDAR
improve little in addition to the UWB+IMU.

2) Indoor-II Experimental Results and Analyses: The tra-
jectories of the six HPSs in Indoor-II case are illustrated
in Fig. 11. Fig. 11(a) and (c) presented the single and
repeated trajectories of the HPS-1 (UWB+IMU) and HPS-
6 (UWB+IMU+CAMERA+LIDAR), respectively, Fig. 11(b)
and (d) showed the single and repeated trajectories of
the trajectories of HPS-2 (UWB+CAMERA+IMU), HPS-3
(UWB+LIDAR), HPS-4 (UWB+RADAR), and HPS-5
(IMU+CAMERA+LIDAR), respectively.

For comparison, the ground truth and UWB trajectories are
also plotted in all subfigures. The positioning trajectories from
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Fig. 9. CDFs of different positioning methods in the (a) Indoor I-1 and
(b) Indoor I-3.

CAMERA+IMU, RADAR, and LIDAR were also presented
in Fig. 11(b) and (d) for comparison.

Indoor II has a rectangular area without signal obstructions,
such as tables and chairs. According to Fig. 11, the trajecto-
ries of the proposed six HPSs are closer to the ground truth
compared to the trajectories of the UWB, CAMERA, LIDAR,
and RADAR alone. Again, the trajectories of the CAMERA,
RADAR, and LIDAR drifted over time, but the positioning
accuracies after the UWB fusion were significantly improved.

The CDFs and error statistics corresponding to the trajec-
tories in Fig. 11 are shown in Figs. 12 and 13, respectively.

As shown in Fig. 12, the six HPSs have higher position-
ing accuracy than that of the absolute positioning subsystem
using UWB and the relative positioning subsystem using
CAMERA+IMU, LIDAR, and RADAR.

According to Fig. 12(a) and (c), the positioning accu-
racy of HPS-1 (UWB+IMU, EKF-TC+IM) and HPS-6
(UWB+IMU+CAMERA+LIDAR) were almost the same,
similar to the results in Indoor I. The maximum positioning
error of HPS-1 and HPS-6 was less than 0.250 m, much
smaller than HPS-2 (UWB+IMU+ CAMERA) and HPS-4
(UWB+RADAR), i.e., 1.100 and 1.650 m, respectively. The
mean error of the four fusion methods of the HPS-1 was less

Fig. 10. Statistics of different positioning methods in the (a) Indoor I-1 and
(b) Indoor I-3.

than 0.080 m. For the UWB-IMU fusion, the results show that
the positioning accuracy of TC was slightly higher than that
of LC, and the accuracy of UKF fusion was slightly higher
than that of EKF.

According to Fig. 12(b) and (d), the maximum posi-
tioning error of the CAMERA+IMU was around 1.100 m,
and the maximum positioning error of the HPS-2 (UWB+
CAMERA+IMU) was no more than 0.450 m, which indi-
cates that the absolute positioning can significantly improve
the positioning accuracy.

Among three relative positioning techniques, i.e., CAMERA,
RADAR, and LiDAR, LiDAR has the highest positioning
accuracy. The maximum LiDAR positioning error was less
than 0.200 m in Indoor II-1. The maximum positioning error
of the HPS-5 (IMU+CAMERA+LiDAR) was no more than
0.300 m in Indoor II-1, which clearly reduced the errors in
IMU+CAMERA, i.e., more than 1.000 m.

The maximum positioning errors of the RADAR were
1.228 and 1.683 m in Indoors II-1 and II-3, respectively.
Nevertheless, the HPS-4 (UWB+RADAR) effectively sup-
pressed the RADAR drift. As the path length increased,
the positioning accuracy of RADAR drifted seriously. The
RADAR positioning accuracy was the lowest among all
positioning methods and the differences were sharp.

According to Fig. 13(a) and (b), the RMS, mean, and max-
imum errors of the six HPSs were all smaller than that of a
single positioning system. In this test, the positioning error of
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Fig. 11. Positioning trajectories in Indoor II. (a) and (c) Trajectories of the HPS-1 and HPS-6 of Indoors II -1 and -3, respectively. (b) and (d) Trajectories
of HPS-2, -3, -4, -5 using the CAMERA, LiDAR, RADAR, and UWB in Indoors II-1 and -3, respectively.

Fig. 12. CDFs of different positioning methods in the (a) and (b) Indoor
II-1 and (c) and (d) Indoor II-3.

RADAR and CAMERA+IMU was relatively large, and the
positioning accuracy of LiDAR was almost the same as that
of UWB and the HPS-3 (UWB+LiDAR).

As far as HPS-1 (UWB+IMU) is concerned, the four fusion
methods can effectively fuse the UWB and IMU. The position-
ing accuracy of TC was slightly higher than that of LC. No
significant difference between EKF and UKF in this study.
The maximum, mean, and RMS errors of the UWB were
0.324, 0.102, and 0.116 m in Indoor II-3, respectively, the
maximum, mean, and RMS error of the HPS-1 (UWB+IMU,
EKF-TC+IM) was 0.226, 0.071, and 0.078 m in Indoor II-3.

The maximum, mean, and RMS errors of the
CAMERA+IMU were 1.089, 0.568, and 0.659 m in

Fig. 13. Statistics of different positioning methods in the (a) Indoor II-1 and
(b) Indoor II-3.

Indoor II-3, respectively, and the maximum, mean, and
RMS errors of the HPS-2 (UWB+ CAMERA+IMU) was
0.434, 0.108, and 0.129 m in Indoor II-3. Fusing UWB and
CAMERA+IMU reduced errors by 60.140%, 80.090%, and
80.420%, respectively.
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Fig. 14. Positioning trajectories in the Outdoor I. (a) and (c) Trajectories of the HPS-1 (UWB+IMU) and HPS-6 (UWB+IMU+CAMERA+LiDAR) of
Outdoors I-1 and -3, respectively. (b) and (d) Related trajectories of the CAMERA, LiDAR, and UWB for the Outdoors I-1, and -3, respectively.

The maximum error of the RADAR was 1.228 m in Indoor
II-1 and 1.683 m in Indoor II-3. The maximum error of the
HPS-4 (UWB+RADAR) was 0.531 m in Indoor II-1, and
0.605 m in Indoor II-3. fusing UWB and RADAR reduced
16.77% and 25.680% errors. The mean and RMS errors
of the RADAR in Indoor II-3 were 0.754 and 0.884 m,
respectively, and were 0.163 m, and 0.189 m in the HPS-4,
which were reduced by 78.380% and 78.620% after fusing
the UWB and RADAR in comparison with RADAR alone,
respectively.

The accuracy of the HPS-5 (IMU+CAMERA+LIDAR)
was slightly higher than that of the UWB alone. Similar to
the findings in Indoor-I, this result indicated that the HPS-5
may substitute the absolute UWB positioning and can be
used in environments where the deployment of UWB was not
practical.

The maximum, mean, and RMS errors of the HPS-6
(UWB+IMU+CAMERA+LIDAR) were 0.214, 0.070, and
0.080 m in Indoor II-3, respectively, smaller than the
HPS-6 in Indoor I-3. This result indicated that the
UWB had better performance in the open area, e.g., in
Indoor II.

B. Results of the Outdoor Scenarios

In this section, we presented the experimental results in
an empty outdoor square and an empty basketball court.
The outdoor-related experiments of the RADAR were only
presented in basketball court (Outdoor-III) scenes to compare
with experimental results of other positioning methods.

1) Outdoor-I Results and Analyses: The trajectories of
Outdoor I-1 and Outdoor I-3 are plotted in Fig. 14 in a similar

pattern to the Indoor cases. Fig. 14(a) and (c) presented the
single and repeated trajectories of the HPS-1 (UWB+IMU)
and HPS-6 (UWB+IMU+CAMERA+LIDAR), respectively.
Fig. 14(b) and (d) showed the single and repeated trajectories
of the trajectories of HPS-2 (UWB + CAMERA + IMU),
HPS-3 (CAMERA + LIDAR), and HPS-5 (IMU+ CAMERA
+ LIDAR), respectively.

For comparison, the ground truth and UWB trajectories are
also plotted in all subfigures. The positioning trajectories from
CAMERA+IMU and LIDAR are also presented in Fig. 14(b)
and (d) for comparison.

As shown in Fig. 14, there were no abnormal values in
the UWB positioning trajectory, and the positioning trajectory
was close to the ground truth. The CAMERA+IMU position-
ing trajectory gradually deviated from the ground truth as the
length of the test path increased.

The LIDAR positioning trajectory also deviated from the
ground truth over time, but the deviation was much smaller
than that of the CAMERA+IMU. The HPSs were all close to
the ground truth.

The CDFs of positioning error and error statistical val-
ues corresponding to the trajectories in Fig. 14 are shown in
Figs. 15 and 16.

As shown in Fig. 15, the HPS-1 (UWB+IMU, UKF-
TC+IM, EKF-TC+IM) outperformed all other positioning
methods. The mean positioning errors of HPS-1 (UWB+IMU)
using UKF-TC+IM and EKF-TC+IM were both around
0.090 m. The positioning means error of the HPS-2
(UWB+CAMERA+IMU) and the HPS-3 (UWB+LIDAR)
were both around 0.180 m. In this experiment, the positioning
error of the CAMERA+IMU was greater than that of Indoor I
scene due to the reason that Outdoor-I scene had fewer texture
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Fig. 15. CDFs of different positioning methods in the (a) Outdoor I-1 and
(b) Outdoor I-3.

features than Indoor-I scene. However, the HPS-2 (UWB+
CAMERA+IMU) significantly improved the positioning in
comparison with CAMERA+IMU, which showed that abso-
lute positioning can significantly improve the relative position,
especially when the relative positioning was unreliable. The
HPS-5 (IMU+CAMERA+LIDAR) had the lowest positioning
accuracy among different HPSs since the positioning accura-
cies of LIDAR and CAMERA was relatively low in Outdoor-I.
The HPS-6 (UWB+IMU+CAMERA+LIDAR) improved the
positioning accuracy in comparison with HPS-5 by adding the
UWB positioning.

As shown in Fig. 16, the mean positioning error of the UWB
was 0.110 m. In HPS-1 (UWB+IMU), the TC had a slightly
higher positioning accuracy than the LC, and the position-
ing accuracy of the LC was almost the same as the UWB
positioning alone. These results showed that, without NLOS,
UWB was accurate and the improvement of adding IMU to
UWB was minor. The maximum, mean, and RMS errors of
the HPS-1 (EKF-TC+IM, UKF-TC+IM) were around 0.400,
0.090, and 0.110 m, respectively. The HPS-1 had the smallest
maximum error among all HPSs in Outdoor I-1, which was
less than 0.370 m.

The maximum positioning error of CAMERA+IMU was
1.400 m, larger than that in Indoor scenes, i.e., 0.900 and
1.100 m in Indoors I and II, respectively. Similar to Indoor

Fig. 16. Statistics of different positioning methods in the (a) Outdoor I-1
and (b) Outdoor I-3.

scenes, vision positioning in HPS-2 (UWB+CAMERA+IMU)
had a significant improvement, i.e., the RMS errors were 0.904
and 0.918 m in the CAMERA+IMU and were 0.206 and
0.253 m in HPS-2 in Outdoors I-1 and I-3, respectively, which
reduced by 77.21% and 72.44% after fusing the UWB and
CAMERA+IMU, respectively.

The maximum error of LIDAR was 0.678 m in Outdoor
I-3, which was larger than that of the two Indoor cases
(0.470 and 0.260 m in Indoors I-3 in II-3). This was because
more objects existed in indoor than outdoor scenes, which
provided a more reliable matching in the indoor scenarios.
The maximum, mean, and RMS errors of the LIDAR were
around 0.678, 0.209, and 0.231 m for Outdoor I-3, respec-
tively. The maximum, mean, and RMS errors of the HPS-3
(UWB+LIDAR) were around 0.629, 0.200, and 0.231 m
for Outdoor I-3, respectively. The HPS-3 further improved
the positioning accuracy compared to LIDAR positioning
alone.

The positioning accuracy of HPS-5
(IMU+CAMERA+LIDAR) was lower than that of UWB
due to the rapid drift errors over time in this case. However,
by fusing relative IMU and LIDAR positioning, the HPS
significantly suppressed the error drift caused by the camera.

The mean error of the HPS-6 was very similar to that of
the UWB in Outdoor I-1, which indicated that UWB had
reliable performance in an open area and additional vision
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Fig. 17. Positioning trajectories in the Outdoor II. (a) and (c) Trajectories of the HPS-1 (UWB+IMU) and HPS-5 (UWB+IMU+CAMERA+LiDAR) of
Outdoors II-1 and -3, respectively. (b) and (d) Related trajectories of the CAMERA+IMU, LiDAR, and UWB for the Outdoors II-1, and -3, respectively.

and IMU did not improve the positioning accuracy anymore.
As the trajectory length increased, the positioning accuracy
of CAMERA+IMU and LIDAR decreased, resulting in the
mean error of the HPS-6 being slightly lower than that of
UWB alone in Outdoor I-3. The mean errors of the HPS-6
and UWB were 0.130 and 0.110 m, respectively.

2) Outdoor-II Results and Analyses: The trajectories of the
eight-shape test (i.e., Outdoor II-1 and Outdoor II-3) are shown
in Fig. 17 in a similar pattern as in Fig. 14.

According to Fig. 17, the trajectories of the proposed HPSs
were close to the ground truth. No mutations in the UWB
positioning trajectories were noticed, which indicated that the
UWB signal was in an LOS environment.

The trajectories of the HPS-1 and the HPS-6 almost coincide
as can be seen from Fig. 17(a) and (c), which indicated that
the camera and LIDAR positioning did not improve the results
of UWB+IMU. The trajectories of the CAMERA+IMU
still had the largest deviation from the ground truth.
The longer the trajectory length, the more significant the
deviations.

Compared with Outdoor I, the trajectory of the LIDAR
in Outdoor II was closer to the ground truth. One pos-
sible reason was that more laser beams were returned in
this experiment than in Outdoor-I. In Outdoor II, the initial
position was the middle of the square, at the intersection
of the eight shaped. The reflected laser beams from the
surrounding objects, e.g., trees, were more than that in
Outdoor I. Since the trajectory was close to the edge of the
scene in Outdoor II, most of the laser beams were reflected
come from the tree trunk. Therefore, the LIDAR ranging
and positioning accuracy in Outdoor II was higher than in
Outdoor I.

The CDFs of positioning error and error statistical val-
ues corresponding to the trajectories in Fig. 17 are shown in
Figs. 18 and 19, respectively.

According to Fig. 18, the positioning accuracies of the HPS-
1, -3, -5, and -6 were nearly equal in Outdoor II, e.g., the 90%
positioning error of the HPS-1, -3, -5, and -6 were within
0.020 m. The proposed HPSs all improved the positioning
accuracies of the relative positioning, and the improvement
in the CAMERA+IMU accuracy was particularly significant.
The UWB and LiDAR have almost the same positioning accu-
racy in this experiment. The positioning accuracies of the
HPS-3 (mean error was 0.080 m) were higher than that of the
HPS-3 in Outdoor I. The positioning accuracies of the HPS-5
(mean error was 0.090 m) in Outdoor II were higher than that
of HPS-5 in Outdoor I since the positioning accuracies of the
LiDAR in Outdoor II were higher.

According to Fig. 19(a) and (b), the maximum and
mean positioning errors of the HPS-1 (UWB+IMU) were
within 0.250 m and around 0.080 m in Outdoor II-1,
respectively. The positioning accuracy of the four fusion
algorithms of the HPS-1 was nearly equal in Outdoors II-1
and II-3.

The maximum error of the CAMERA+IMU was 0.720 and
1.028 m in Outdoors II-1 and II-3, respectively. The maximum
errors of the HPS-2 (UWB+CAMERA+IMU) were 0.290
and 0.553 m in Outdoors II-1 and II-3, respectively, which
was 59.73%, and 46.28% lower than the CAMERA+IMU by
adding the UWB, respectively.

The positioning accuracy of the HPS-3 (UWB+LIDAR)
was slightly higher than that of the LIDAR in Outdoor II-
3, i.e., maximum, mean, and RMS errors of the HPS-3 were
0.345, 0.083, and 0.127 m, respectively. The mean and RMS
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Fig. 18. CDFs of different positioning methods in the (a) Outdoor II-1 and
(b) Outdoor II-3.

errors of the HPS-5 (i.e., 0.094 and 0.110 m) were slightly
lower than that of the UWB (i.e., 0.104 and 0.119 m) in this
experiment. The HPS-6 (UWB + IMU + CAMERA+LIDAR)
effectively achieved absolute positioning using the UWB and
relative positioning based on IMU, CAMERA, and LIDAR.
The mean and RMS errors of the proposed HPSs were almost
the same in this experiment, which shows that in a simple
scenario (without NLOS, and abundant visual textures), the
positioning accuracies of all solutions were almost equally
good.

3) Outdoor-III Results and Analyses: The third outdoor
experimental scene was an empty basketball court. In this
experimental scene, CAMERA+IMU has failed due to insuf-
ficient visual texture features, thus, no CAMERA+IMU out-
comes are to be reported. RADAR trajectories were presented
and compared with other methods. The positioning trajecto-
ries in this scene are shown in Fig. 20 in a similar layout as
in Fig. 14.

It can be seen from Fig. 20(a) and (c) that the trajecto-
ries of HPS-1 and HPS-6 did not deviate significantly from
the trajectories of the ground truth. There was no abnormal
jumping point in the UWB positioning result, which indicated
that the UWB signal was in the LOS environment. According
to Fig. 20(b) and (d), the trajectories of RADAR gradually
deviated from the ground truth over time. As the length of the
driving path increased, the deviation became more and more
serious. The fusion of UWB and RADAR gave a trajectory

Fig. 19. Statistics of different positioning methods in the (a) Outdoor II-1
and (b) Outdoor II-3.

close to the ground truth. The positioning trajectories of the
LIDAR did not deviate from the ground truth in this case,
and the HPS-3 (UWB+LIDAR) trajectory was also close to
the ground truth in Outdoors III-1 and -3. Note that the HPS-
5 fused the IMU and LIDAR sensors in this test, and HPS-6
fused the UWB, IMU, and LIDAR sensors, without CAMERA
in comparison with previous ones.

The CDFs of positioning error and error statistical val-
ues corresponding to the trajectories in Fig. 20 are shown in
Figs. 21 and 22, respectively.

As shown in Fig. 21, as far as the HPS-1 was concerned,
the positioning accuracies of the four methods were nearly
equal, and the maximum error of the HPS-1 was no more than
0.400 m; the positioning accuracy of TC was slightly higher
than that of LC.

The positioning accuracy of HPS-6 was almost equal to that of
HPS-1 (HPS-1, EKF-TC+IM). Comparing Fig. 21(b) and (d).
The RADAR positioning accuracy drifted seriously, i.e., the
maximum error was around 1.683 and 4.661 m in Outdoors III-1
and III-3, respectively. Compared with Indoor II scenes, the
RADAR had a lower positioning accuracy in this scene. This
was because on one side of the basketball court in this test
scene, there were few visual targets, e.g., buildings or objects,
resulting in a decrease in positioning accuracy. Nevertheless, the
fusion of the positioning accuracy was significantly improved
after the fusion of UWB and RADAR.
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Fig. 20. Positioning trajectories in the Outdoor III. (a) and (c) Trajectories of the HPS-1 (UWB+IMU) and HPS-6 (UWB+IMU+LiDAR) of Outdoors III-1
and -3, respectively. (b) and (d) Related trajectories of the LiDAR, RADAR, and UWB for the Outdoors III-1, and -3, respectively.

Fig. 21. CDFs of different positioning methods in the (a) Outdoor III-1 and
(b) Outdoor III-3.

According to Fig. 22(a) and (b), the positioning accuracy
of the HPS-1, -3, -5, and -6 was almost equivalent. The maxi-
mum, mean, and RMS errors of the HPS-1, -3, -5, and -6 were
around 0.450, 0.130, and 0.150 m in Outdoor III-3, respec-
tively. Compared with other HPSs, the positioning accuracy of
HPS-4 (UWB+RADAR) was slightly lower than that of other
HPSs due to the effect stemming from the poor positioning
performance of the RADAR.

The maximum error of the LIDAR was 0.282 and 0.541 m
in Outdoors III-1 and III-3. The maximum, mean, and RMS
errors of the RADAR were 4.661, 1.215, and 1.701 m
in Outdoor III-3, respectively. The maximum, mean, and
RMS errors of the HPS-4 (UWB+RADAR) were 0.550,
0.150, and 0.180 m in Outdoor III-3, respectively, which
reduced 89.42%, 87.65%, and 88.19% after fusing the UWB
and RADAR in comparison with RADAR alone, respec-
tively. The HPS-5 (IMU+ LIDAR) formed by the fusion
of two relative positioning sensors can achieve almost the
same positioning accuracy as using UWB absolute posi-
tioning in this test scenario, similarly to in Indoor-I and
Indoor-II.

C. IM Algorithm Results and Analyses

The proposed IM algorithm monitored the data quality using
the UWB PR and RSS. In this section, the experimental
results of the IM in indoor and outdoor scenes are presented,
respectively.

1) Indoor Scene: In Indoor I scene, the occlusion of
UWB signals by tables and chairs caused NLOS propa-
gation. Therefore, Indoor I scene was selected to test the
outlier detection performance of the proposed IM algorithm.
To fully test the performance of the proposed algorithm,
we chose an experiment with a ground truth length of
84.800 m, i.e., Indoor I-3, to test and analyze the IM



4264 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Fig. 22. Statistics of different positioning methods in the (a) Outdoor III-1
and (b) Outdoor III-3.

algorithm. Figs. 23 and 24 showed the PR and RSS of four
anchors in Indoor I-3, respectively.

According to Fig. 24(c), the UWB signal was interfered
with by NLOS caused by obstructions, such as tables and
chairs, which led to large RSS differences between the total
RSS (RX) and FP, e.g., >10 dB. The PRs were deleted if the
mutation magnitude was more than an empirical threshold Tc.

To present the positioning results more clearly, the posi-
tioning trajectories were given in Indoor-I (i.e., the site
was covered by one trajectory). The trajectories with and
without IM of the HPSs in Indoor I-1 are shown in
Figs. 25 and 26. The UWB positioning results displayed
mutations in local areas, most probably because of the NLOS
impacts.

Overall, the fused UWB+IMU positioning had fewer errors
than the UWB itself in the HPS-1 but still deviated from
the ground truth in the UWB mutation area. When the same
fusion method, e.g., EKF-LC, was applied, the proposed
IM algorithm effectively reduced the mutations. The fused
trajectories in the UWB mutation area were closer to the
ground truth, as shown in the enlarged detailed subfigure. in
Figs. 25 and 26. Similar results were obtained in all sensor
configurations.

Fig. 27 showed the statistics of the HPS-1 positioning error
in Indoor I with and without the IM. The maximum error of the
UKF-TC and EKF-TC was 0.445 and 0.558 m, respectively,
and the corresponding maximum error with IM was 0.354
and 0.372 m, respectively, i.e., IM was reduced by 21.0%
and 33.2% maximum errors. The RMS error of the UKF-TC

Fig. 23. UWB PRs of four Anchors in Indoor I-3. (a) UWB PRs.
(b) Difference of the PR between adjacent epochs.

Fig. 24. UWB RSS of four Anchors in Indoor I-3. A0, A1, A2, and
A3 denoted UWB anchors. (a) FP component of RSS. (b) Total RSS (RX).
(c) RSS difference between the RX and the FP.

and EKF-TC was 0.220 and 0.225 m, respectively, and the
corresponding RMS error with IM was 0.207 and 0.204 m,
respectively, i.e., IM reduced 6.0% and 9.3% RMS errors. The
proposed IM algorithm removed outliers during the positioning
process. According to Fig. 27, the average positioning accura-
cies of the four fusions were almost the same. The positioning
accuracy of UKF was slightly higher than that of EKF, and the
IM algorithm significantly reduced the positioning maximum
error.

The statistics of the HPSs positioning error in Indoor I
are shown in Fig. 28. The proposed IM effectively reduced
the maximum, mean, and RMS errors in all HPSs. These
results indicated that the proposed IM algorithm effectively
improved positioning accuracy in proposed HPSs in the indoor
experimental scenario.

2) Outdoor Scene: The UWB PR and RSS of four
anchors in Outdoor I-3 are shown in Figs. 29 and 30,
respectively. The UWB PR curve was mostly smooth.
Comparing Figs. 29 and 23, the number of PR mutations in
Fig. 29 was almost zero as compared to that in Fig. 23. In
addition, according to Fig. 30(c), the RSS difference between
the RX and the FP had not exceeded 10 dB. This suggested
that all anchor channels were in an LOS environment.

The statistics of the HPS-1 positioning error in Outdoor I
with and without the IM are shown in Fig. 31.

According to Fig. 31, the positioning accuracy with and
without the IM algorithm was almost the same. Since the
UWB was in an LOS environment in this experiment, the IM
algorithm contributed little to the improvement of positioning
accuracy in this case. It can also be seen that the positioning
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Fig. 25. Trajectories with and without IM of the HPS-1 in Indoor I-1 using four different fusion algorithms. (a) EKF-LC. (b) EKF-TC. (c) UKF-LC.
(d) UKF-TC.

Fig. 26. Trajectories with and without IM of the HPSs in Indoor I-1 using different sensor combinations. (a) HPS-2 (EKF-TC). (b) HPS-3 (EKF-TC).
(c) HPS-5 (EKF- LC). (d) HPS-6 (EKF-STC, UWB+ALL represents UWB+IMU+CAMERA+LiDAR.

accuracy of TC is slighter higher than that of LC. In this case,
the positioning accuracy of UKF-TC and EKF-TC was almost
the same.

D. Anchor Self-Positioning Results
All experiments performed in the four experimental scenes

mentioned above have calculated the positions of anchors using
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Fig. 27. Statistics of the HPS-1 with and without the IM algorithm in Indoor
I, HPS-1 (UWB+IMU). (a) Indoor I-1. (b) Indoor I-3.

the proposed anchor self-positioning algorithm. Without loss
of generality, we only present the estimated results and errors
of anchor2 (A2) in Outdoor I, as shown in Figs. 32 and 33.

According to Fig. 32, the coordinates of the anchors
calculated in the first 30 epochs fluctuate to a certain extent,
which was caused by solving the positions of the anchors
through the Gauss–Newton iteration. Take the average of the
results calculated in the first 30 epochs as the optimal initial
value of the EKF-TC estimation, and then estimated the posi-
tion of the anchors in real-time online. It can be seen from
Fig. 33 that for the coordinate estimation of A2 in Outdoor
I, within the first 30 epochs, the z-coordinate error fluctuated
greatly, but the error did not exceed 6.00 cm, and the esti-
mated error of the x and y coordinates was relatively stable
within 3.00 cm.

Fig. 34 shows the RMSE of all anchor positions calcu-
lated in the different experimental scenarios mentioned above.
According to Fig. 34, the maximum RMSE values of the coor-
dinates obtained by the anchor self-positioning were within
7.00 cm, the estimation error of the z coordinate was relatively
large, and the error of the x coordinate estimate was the small-
est. The average values of the RMSE of all anchor coordinate
in the different experimental scenarios calculated by anchor
self-positioning proposed in X, Y , and Z directions were
1.06, 2.05, and 2.64 cm, respectively. When the initial posi-
tion of the anchor was given reasonably during initialization,
the proposed anchor self-positioning algorithm quickly
converged.

Fig. 28. Statistics of the HPSs with and without IM algorithm in
Indoor I, HPS-2 (UWB+CAMERA+IMU); HPS-3 (UWB+LiDAR); HPS-
5 (IMU+CAMERA+LiDAR); HPS-6 (UWB+ IMU+CAMERA+LiDAR).
(a) Indoor I-1. (b) Indoor I-3.

Fig. 29. UWB PRs of four Anchors in the Outdoor I-3. (a) UWB PRs.
(b) Difference of the PR between adjacent epochs.

E. Discussion

According to the experimental results, absolute position-
ing UWB was quite reliable in an LOS environment. The
UWB signals were susceptible to NLOS interference in
complex environments, such as indoor scenes, which led to
a reduced UWB positioning performance. The experimental
results showed that the fusion of ARP effectively corrected
the deviation in UWB positioning results caused by NLOS
interference.

Relative positioning, i.e., CAMERA+IMU, LIDAR, and
RADAR, accumulated errors as the length of the test path
increased. Another factor related to error accumulation is the
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Fig. 30. UWB RSS of four Anchors in the Outdoor I-3. A0, A1, A2, and
A3 denoted UWB anchors. (a) FP component of RSS. (b) Total RSS (RX).
(c) RSS difference between the RX and the FP.

Fig. 31. Statistics of the HPS-1 with and without IM algorithm in Outdoor
I, HPS-1 (UWB+IMU). (a) Outdoor I-1. (b) Outdoor I-3.

experimental scene, such as visual texture features, spatial
structure, scene size, etc., may have a significant impact on
the accuracy of relative positioning. The CAMERA+IMU had
a larger error in outdoor open scenes than in Indoor scenes
because fewer visual texture features existed in outdoor scenes
in the experiments. It did not work in Outdoor III scene
because insufficient visual textures existed. RADAR position-
ing presented the lowest positioning accuracy in all scenes.
Among relative positioning, LIDAR showed the most reliable
performance in the four in-/outdoor environments.

All six HPSs effectively improved positioning accuracy in
comparison with individual positioning technologies alone,
i.e., IMU, Camera, LIDAR, and Radar. The average
positioning accuracy of the six HPSs reached around 0.200 m

Fig. 32. Anchor self-positioning results of the A2 in the Outdoor-I within
80 epochs for the (a) X-axis, (b) Y-axis, and (c) Z-axis.

Fig. 33. Anchor self-positioning error of the A2 in Outdoor-I within 50
epochs.

Fig. 34. RMSE of the anchors self-positioning in different experiment scenes.

at least, and more than 0.100 m, respectively, in the indoor, and
outdoor scenes. The fusion of different positioning solutions
effectively reduced the error accumulation over time in rela-
tive positioning, especially when large errors existed, such as
in camera and RADAR cases.

1) Positioning Sensors: UWB can achieve centimeter-level
(around 0.100 m) planar positioning accuracy in an LOS envi-
ronment, given a certain number of anchors, e.g., four in
this study. The geometry of UWB anchor networks has a
great influence on positioning accuracy. The HDOP simula-
tion showed that the HDOP value was smaller in the middle
area of test scenes than in other areas in test scenes when
the geometry of four UWB anchors was square in comparison
with the rectangle shape. Besides, the smaller the HDOP value,
the higher the plane positioning accuracy. This was confirmed
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in the field experiments, where Outdoor II has better accu-
racy than Outdoor I. The maximum, mean, and RMS errors
of the UWB were 0.411, 0.113, and 0.157 m in Outdoor I-3,
and 0.324, 0.104, and 0.119 m in Outdoor II-3, respectively.
In complex environments with obstacles, such as indoors, the
NLOS propagation of UWB signals significantly reduces the
positioning accuracy.

Relative positioning sensors, i.e., camera, LIDAR, and
RADAR, all accumulate positioning errors over time in both
indoor and outdoor scenes. The accumulation was much more
significant for RADAR, followed by the camera. LIDAR was
the most stable and reliable solution of all. The RMSE of
the camera, LIDAR, and RADAR positioning ranged from
0.600 to 0.900 m, from 0.100 to 0.250 m, and from 0.900
to 1.700 m, respectively, according to the indoor and outdoor
experimental results.

The indoor positioning accuracies of the vision system were
higher than that of the outdoor in the experiment. The main
reason was that the outdoor environments lack targets or
objects. In outdoor scenes with fewer objects/features, e.g., the
empty basketball court in Outdoor III, the camera-based visual
positioning totally failed, and the RADAR-based positioning
was clearly degraded.

RADAR was often used to avoid obstacles or track targets in
autonomous driving. This study evaluated the RADAR posi-
tioning performances and demonstrated that RADAR-UWB
fusion was capable to achieve decimeter-level positioning
accuracy.

2) Fusion Performance: As of LOS, HPS-1 (UWB+IMU)
delivered the highest positioning accuracy in most cases. The
RMSE ranged from 0.100 to 0.160 m.

In complex indoor environments where a lot of objects
existed as in Indoor I, HPS-3 (UWB+LIDAR) presented the
highest positioning accuracy because LIDAR had superior
performance to that of UWB. The positioning accuracies of
HPS-1, -2, -5, and -6 were almost the same in Indoor I.

In a relatively large-scale open indoor environment, i.e., the
underground parking in Indoor II, the positioning accuracy of
the six HPSs decreased as follows, i.e., HPS-6 (UWB + IMU
+ CAMERA + LIDAR) > HPS-1 (UWB + IMU) > HPS-3
(UWB + LIDAR) > HPS-5 (IMU + CAMERA + LIDAR)
> HPS-2 (UWB + CAMERA + IMU) > HPS-4 (UWB +
RADAR). The number of visual texture features in Indoor
II was significantly less than that of Indoor I, resulting in a
decrease in the positioning accuracy of the visual position-
ing. Again, LIDAR was the most reliable solution among all
relative positioning solutions.

In an open outdoor case, the positioning performance of
HPS-2 (UWB+CAMERA+IMU) was generally lower than
that of indoor cases because outdoor scenes possessed fewer
texture features. The camera even failed to work in some open
outdoor scenes, resulting in no positioning results. Similarly,
the indoor positioning accuracy of HPS-4 (UWB+RADAR)
and HPS-5 (IMU+CAMERA+LIDAR) was overall higher
than that of the outdoors, because of the availability of more
features in indoor scenes.

Fusing relative positioning solutions, i.e., HPS-5
(IMU+CAMERA+LIDAR), gave better-positioning results

than using UWB alone in both Indoors-I, -II, and Outdoors-II,
-III. These results indicated that using the combination
of relative positioning sensors can replace the UWB
in scenarios where only a local coordinate system was
required.

Fusion of absolute positioning using UWB and relative
positioning solutions using IMU, CAMERA, and LIDAR,
i.e., HPS-6, provided higher positioning accuracy than any
ARP alone in most cases, but it did not always deliver the
best positioning accuracy in the experimental setups. This
suggested that there was a limitation in improving position-
ing accuracy, such limitation may come from the degraded
positioning from a particular component that was typically
from the CAMERA and also may come from the used fusion
method. This indicates a possible way to improve position-
ing accuracy for hybrid positioning methods, e.g., the camera
information can be abandoned when the system can relay other
components for positioning. In this study, the EKF-STC was
used to fuse the ARP. The EKF-STC performance required
further clarifications in the future.

3) Fusion Algorithms: In HPS-1, the overall positioning
accuracy of the UKF was slighter higher than that of the
EKF in Indoor-I experiments, and the positioning accuracies of
UKF and EKF were nearly equal in open outdoor experiments,
i.e., the mean error of around 0.080 m. UKF-TC effectively
suppressed NLOS and multipath effects in Indoor-I. TC had an
overall higher positioning accuracy than that of the LC in the
experiments, where TC used the original data of each subsys-
tem to obtain positioning results and could effectively reduce
the NLOS effects.

The EKF-TC effectively fused ARP in four HPSs,
i.e., HPS-1 (UWB+IMU), HPS-2 (UWB+CAMERA+IMU),
HPS-3 (UWB+LIDAR), and HPS-4 (UWB+RADAR). The
four HPSs clearly improved the positioning accuracy even
though the relative positioning error was relatively large,
e.g., CAMERA and RADAR. The results showed that the posi-
tioning accuracy of EKF-TC was higher than that of relative
and absolute positioning alone.

In HPS-5 (IMU+CAMERA+LIDAR), the positioning
accuracy of HPS-5 using EKF-LC was higher than that of
UWB alone in most cases and higher than that of LIDAR and
CAMERA alone.

The proposed IM algorithm provided two different mech-
anisms for improving the accuracy and robustness of the
UWB-involved HPSs. According to the experimental results,
the IM algorithm effectively detected NLOS and removed the
positioning outliers during the positioning in indoor scenes,
thereby improving the overall positioning accuracy. In out-
door open areas, because of the lack of NLOS conditions in
the test site, the IM algorithm did not present clear impacts
on positioning accuracy.

The anchor self-positioning algorithm introduced in this
study was proven to be effective as shown in experiments.
The average 3-D RMSE of the anchor positioning results
in the experiments was less than 0.030 m. A reasonable
anchor initial value was required that would be more con-
ducive to anchor initialization convergence for the algorithm.
The algorithm provided a feasible solution for deployments
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of UWB anchors, which has important practical significance
in emergency networking applications, such as emergency
rescue and crowd evacuation, firefighting, and earthquake
relief.

4) Practical Suggestions for Sensor Selection and
Integration in Various Positioning Applications: HPS-1
integrates UWB and IMU, the positioning accuracy of HPS-1
is at the centimeter level, and it can be used in needed
high-accuracy positioning and navigation IoT applications,
such as unmanned vehicles and drones.

HPS-2 integrates UWB, CAMERA, and IMU to fully
exploit the advantages of each sensor. Camera positioning
can provide rich texture information, but positioning accu-
racy drifts over time, and although the combination of IMU
and camera can improve positioning accuracy to some extent,
there is still the inherent problem of relative positioning,
i.e., positioning errors drifting over time. The UWB can pro-
vide centimeter-level positioning, but it does not have texture
information, and the positioning accuracy is easily affected by
NLOS errors. Thus, HPS-2 can provide a high accuracy and
robust positioning system with rich texture information. HPS-2
can be applied to robot navigation in rich texture environments.

HPS-3 integrates UWB and LIDAR. The LIDAR has a more
intuitive 3-D representation, robust performance in low-light
or texture-less scenes, and can capture details of an environ-
ment at a relatively long range. However, the performance
of LIDAR positioning significantly deteriorates in large-scale
open areas due to limited features. The fusion of the UWB and
LIDAR can achieve a high accuracy and robust positioning
system. Therefore, the HPS-3 is well suited for applications
that require high positioning accuracy but in low-light or
texture-less scenes.

HPS-4 integrates UWB and RADAR. The mmWave
RADAR is robust for the interference of fog, smoke, dust, and
other small particles owing to the longer wavelength. Thus,
it is more suitable for hostile environments than the optical
camera and LIDAR. The HPS-4 is expected to be able to
provide an accurate and robust positioning system in hostile
environments (such as fog, smoke, and dust) like firefighting
and earthquake.

HPS-5 was realized by integrating the three relative posi-
tioning sensors, i.e., IMU, CAMERA, and LiDAR. In some
applications where UWB anchors cannot be deployed, it is
attempted to combine IMU, CAMERA, and LIDAR to achieve
precise and robust positioning solutions.

HPS-6 integrated UWB, IMU, CAMERA, and LIDAR based
on the STC, using the complementary advantages of multiple
sensors. HPS-6 would be expected to provide an accurate and
robust positioning system in cases some positioning sensors
may fail in certain environments, e.g., the camera information
or positioning results can be a backup solution when other
sensors work well and be used as a main positioning solution
when other solutions do not function for some reason.

VI. CONCLUSION

This study benchmarked six hybrid position systems (HPSs)
that were based on different integration solutions of five

commonly uses ARP technologies, i.e., UWB, IMU, camera,
LIDAR, and mmWave RADAR. The six HPSs, i.e., 1) UWB
+ IMU; 2) UWB + IMU+ camera; 3) UWB + LIDAR;
4) UWB + RADAR; 5) IMU + camera + LIDAR; and
6) UWB+ IMU+ camera + LIDAR, were tested with
experiments carried out at four different indoor and out-
door application scenes. A UWB anchor self-positioning
algorithm with centimeter-level precision can quickly realize
the self-positioning of UWB anchors. This algorithm solved
the shortcomings of traditional manual calibration of anchor
coordinates, which is time-consuming and labor-consuming.
Furthermore, the proposed IM algorithm can detect and elimi-
nate the outliers in the positioning process in time, thereby
improving the accuracy and robustness of the positioning
system. The performances of the HPSs were rigorously eval-
uated using millimeter-level ground truth reference that was
collected using Leica TS60 total stations.

According to the results of the benchmarking, the RMSEs of
the positioning of all proposed HPSs were less than 0.250 m,
this verified the effectiveness of the proposed positioning
system architecture. In addition, the field experiments also
showed that all four algorithms for sensor fusion, i.e., EKF-
LC, EKF-TC, UKF-LC, and UKF-TC, can effectively fuse
UWB and IMU. The average positioning error was around
0.080 m in the LOS environment. The performance of the TC
was slightly superior to that of the LC, and the UKF-TC has
a higher positioning accuracy in most cases.

The indoor and outdoor field experiments showed that
the accuracy of the IMU, CAMERA, and LIDAR fusion
was higher than that of UWB alone in most cases, which
indicated the fusion of these relative positioning may replace
the use of UWB. For instance, the RMSE of the UWB and
IMU+CAMERA+LIDAR was 0.252 and 0.206 m, respec-
tively, in Indoor I-3 experiment. Thus, this fusion solution
can be used in applications where it would be inconvenient
to deploy UWB infrastructures. Further studies are required
to explore more about such applications.

All relative positioning sensors, i.e., camera, LIDAR, and
RADAR, accumulated positioning errors over time both in
indoor and outdoor scenes. The error accumulation was the
most significant for RADAR, followed by the camera. LIDAR,
on the contrary, was stable and reliable for relative position-
ing. In the empty basketball court of Outdoor III scene with
few visual objects/features, camera-based visual positioning
totally failed; the maximum positioning error of RADAR was
4.661 m in Outdoor III-3, while the maximum error of LIDAR
was only 0.541 m.

The positioning accuracy of the fusion of the absolute
positioning system UWB and the relative positioning IMU,
CAMERA, and LIDAR provided higher positioning accuracy
than ARP alone in most cases. However, typically when the
camera was involved as a component, the overall performance
of the positioning accuracy may be degraded, thus, will
lose the competition with other fusion solutions where other
sensors were deployed for relative positioning.

The field experimental results also demonstrated that the
proposed IM algorithm could effectively detect the NLOS in
complex scenes, such as indoor scenes, as well as mitigate
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Algorithm 1 UKF Algorithm
1. Predict update

Calculate a one-step prediction state vector ξ−
k of the Sigma

sample points:
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)
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i

)
(i = 0, 1, . . . , 2n)

Estimate predicted mean x̂−
k and predicted covariance matrix
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k of the state vector:
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Predict measurement vector:

(Z−
k )i = h((ξ−

k )i).

Calculate predicted measurement, innovation covariance, and
cross-correlation matrix

ẑ−k =
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i (Z−
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]T + Rk,
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T
.

2. Measurement update
Calculate gain matrix Kk.

Kk = PxzP−1
zz ,

Update posterior state x̂k and state posterior covariance
matrix Pk.

x̂k = x̂−
k + Kk(Zk

∗ − ẑ−k )

Pk = P−
k − KkPzzKT

k

* Zk is the measurement vector. If the fusion method uses TC, the Zk shown
as in (14), otherwise, Zk shown as in (20).

the adverse effect that came from the NLOS conditions, hence
improving the overall positioning accuracy of the six HPSs.
The proposed anchor self-positioning algorithm effectively
solved the problem for the UWB positioning, which generally
required measurement of the position of anchors in advance.
The anchor self- positioning accuracy was at a centimeter
level, which provided a reliable solution to overcome the draw-
backs of manually time-consuming measured anchor positions
in advance.

In future work, we plan to integrate GNSS positioning into
the current benchmark hybrid positioning systems, and further
analyze and evaluate the performance using the FGO and filter-
based fusion methods, respectively.

APPENDIX A
HDOP SIMULATIONS IN FOUR EXPERIMENTAL SCENES

The HDOP simulations and field test ground truth trajec-
tories (Cyan dotted lines) of the experimental scenes were
shown in Fig. 35. The smaller the HDOP value, the higher
the plane positioning accuracy. As illustrated in Fig. 35, The
HDOP value of the four corner positions is greater than that

Fig. 35. Simulated result of the HDOP in four experimental scenes. The red
triangles represent the UWB-anchor plane positions in field tests. Blue and
Yellow represent small and large HDOP values, respectively. Cyan dotted
lines represent field test ground truth trajectories. (a) Indoor I. (b) Indoor II.
(c) Outdoor I and Outdoor II. (d) Outdoor III.

of the middle area when the positioning area is a square, such
as in Fig. 35(a), (c), and (d). The HDOP value of the middle
area is the largest when the positioning area is a rectangle,
such as in Fig. 35(b). For Indoor II (underground parking)
scene, i.e., Fig. 35(b), positioning accuracy in the middle is
the worst under the rectangular UWB sensor networks, when
other factors that affect the positioning accuracy are the same.

APPENDIX B
UWB TAG POSITION ESTIMATION

The UWB tag position (x, y, z) is calculated by multilater-
ation combined with the Gauss–Newton iteration:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = d1

2

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 = d2

2

...

(x − xm)2 + (y − ym)2 + (z − zm)2 = dm
2.

(40)

where (x1, y1, z1), (x2, y2, z2), . . . , (xm, ym, zm) are the anchor
coordinates, d1, d2 . . . dm denote the PRs between the tag and
anchors. Linearizing (40) based on the Taylor formula at the
initial value (x0, y0, z0), one can get:

l = B�x + ϑ (41)
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l = d − d0 (44)
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where X̂ is the coordinate estimate of the UWB tag, B denotes
the design matrix. Thus, the correction �x can be calculated
based on the least-squares residual squared sum minimum
criterion as follows:

�x = (
BTB

)−1
BT l (45)

The UWB tag estimate X̂ can be obtained need by
iteratively adding the correction �x to the initial esti-
mate, until the correction �x is less than a certain
threshold.

APPENDIX C
UKF PREDICTION AND MEASUREMENT UPDATE

The prediction and measurement update process of the UKF
algorithm is shown in Algorithm 1 after the UT for the system
model in Section IV-D2.
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