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Abstract—Service function chaining (SFC) dynamically links
multiple virtual network functions (VNFs) to provide flexible
and scalable network services for network entities and users.
Implementing SFCs at the network edge provides instant VNF
service yet is confined by the limited edge resources. Existing
strategies suggest either to deploy new VNFs for diverse service
provision or to deploy more installed VNFs for reliable service
provision. However, these one-sided optimizations fail to realize
comprehensive improvements in the network service quality. To
this end, the motivation of this article is to consider a more
comprehensive SFC deployment plan to provide more efficient
network services. In this article, we propose DeepSFC, an online
SFC deployment scheme at network edge. Our DeepSFC consid-
ers the impact of resource allocations and deployment locations
on the average latency of overall service requests. It realizes an
elegant tradeoff between the diversity and the availability of SFCs
by adopting the deep reinforcement learning (DRL) method. To
be specific, we first determine the type and number of VNFs that
need to be deployed. Thereafter, we optimize the deployment loca-
tions of these chosen VNFs in the service chain, considering the
impact of dynamic bandwidth in the real network. For more gen-
eral scenarios wherein users’ service requirements change or the
deployed server crashes, we further relocate the VNF deploy-
ment with the joint consideration of performance degradation
and migration cost. Evaluation results show that DeepSFC out-
performs its competitors in various experimental settings and
responds the requests with lower average latency.

Index Terms—Deep reinforcement learning (DRL), edge com-
puting, online service function chaining (SFC) deployment.

I. INTRODUCTION

W ITH the rapid development of 5G technol-
ogy [1], [2], [3], its characteristics of low latency and
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high bandwidth have enabled the proliferation of applications,
such as Smart City, Smart Factory, and the Internet of
Vehicles [4], [5], [6]. These typical Internet of Things (IoT)
applications have distinct or even contradictory network
requirements. To adapt to these heterogeneous demands in
various scenarios [7], network function virtualization (NFV)
has been introduced [8], [9]. NFC may make IoT resource
allocation more flexible, providing great scalability and auton-
omy for IoT service development and deployment [10], [11].
One potential application of NFV is service function chaining
(SFC) [12], which dynamically links multiple virtual network
functions (VNFs), e.g., name service, firewall, deep packet
inspection, etc. Then, SFC could provide secure, fast, and
stable network services for IoT applications.

Besides, multiaccess edge computing (MEC) technology has
been widely employed [13], [14] for SFC. In MEC, VNF-
related service requests could be responded at edge with
lower latency than the cloud computing model [16], [17],
which greatly improves the Quality of Service (QoS) of IoT
applications [15].

There are two mainstream trends for implementing SFCs at
network edge. The first category considers the dynamic fea-
ture of user needs and the limitation of edge resources. Drastic
changes in user requirements may make the SFC deployment
solution useless, affecting the service quality significantly.
Then, there is a broad emphasis on functional diversity. This
part of relevant designs fully uses limited resources to deploy
new SFCs [23], trying to allow more service requests to be
completed at the edge from the perspective of SFC diver-
sity. Basically, these works improve resource utilization by
optimizing the deployment location of VNFs [24], [25]. The
second category considers the software vulnerability, hardware
failure, or management module damage, which may make
VNFs unavailable [18]. Unavailability can cause the entire
functional chain to fall into a nonfunctional state. To this
end, function availability is enhanced by deploying more VNF
backups [19], [20], [21]. Service requests will be directed to
backup VNFs for continuous service if VNF fails. Considering
the limitation of resource capacity, existing works try to
adaptively maintain a feasible number of VNF replicas.

However, these one-sided optimizations fail to realize the
comprehensive improvements of the overall performance,
which is jointly decided by both the diversity and availability
of deployed SFCs. Therefore, with given resource capacity,
there is an inherent contradiction between diversity (deploy-
ing new) and availability (deploying more). On the one hand,
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Fig. 1. Illustrative example of deploying SFCs on edge.

maintaining sufficient VNF backups can improve the availabil-
ity, but may crowd out the space for new functions. On the
other hand, if we pursuit of the function diversity, then some
VNF backups could not be stored at edge. This may lead to the
deployed functions unreliable, then, the service requests can-
not be corresponded at the nearby edge. In addition, due to
the dynamic bandwidth heterogeneity of different servers, the
deployment location of the VNF on the chain has a nonneg-
ligible impact on the delay (i.e., transmission delay, queuing
delay, startup delay, etc.).

To meet the above needs of VNF-related service requests,
in this article, we propose DeepSFC, an online SFC adaptive
deployment scheme in edge computing networks. DeepSFC
balances the resource allocation between SFC diversity and
availability in an edge environment with limited resources,
realizing an elegant tradeoff between these two rationales.
DeepSFC adopts a deep reinforcement learning (DRL) scheme
to improve overall user service quality. Specifically, DeepSFC
monitors the current network link utilization rate and server
resource consumption rate in real time, and rewards lower ser-
vice average completion latency. Finally, DeepSFC chooses
the SFC deployment scheme with the most considerable
reward on the edge server.

For the more general case of users’ service require-
ments changing or deployed servers crashing, the updated
requirements could cause performance degradation for the
original static SFC deployment scheme. In this case, we con-
sider redeploying SFC with less resource consumption. Then
define a satisfaction threshold for redeployment scenarios,
which consists of the completion rate and average comple-
tion time of user requests. If the current satisfaction degree
is below this threshold, DeepSFC will regenerate a deploy-
ment scheme according to the new user requirements and
network parameters. In view of the enormous redeployment
overhead, migration or retention of the same VNF in the
previous SFC deployment solution is more prone in DeepSFC,
which can reduce the transmission and deployment costs when
implementing the new SFC deployment scheme.

The major contributions of this article can be summarized
as follows.

1) We model the problem of SFC online deployment in
edge computing as a nonlinear optimization problem. By
recognizing the limitations of edge server resources and
the dynamic characteristics of the edge network envi-
ronment, we reveal that the existing solutions to the
above problems are not fully optimized. Then, we pro-
pose DeepSFC, which adopts DRL to realize the tradeoff
between SFC diversity and availability under the influ-
ence of different VNF deployment locations. Thus, more
service requests can be responded to at the edge, with
lower average latency.

2) For the more general scenarios of users’ service require-
ments changing or deployed servers crashing, we further
propose to relocate the VNF deployment with the joint
consideration of performance degradation and redeploy-
ment cost.

3) Evaluation results show that DeepSFC outperforms
its competitors in various experimental settings and
responds the requests with lower average latency. In
addition, DeepSFC can well balance the resource allo-
cation of VNF backup under different failure rates, so
as to avoid serious SFC unavailability.

The remainder of this article is organized as follows.
Section II introduces the background of SFC deployment at
the edge and then discusses the motivation of our DeepSFC.
Section III presents the system model and the problem
assumptions. Section IV proposes the DeepSFC deployment
algorithm. Section V details cost-aware redeployment scheme.
Thereafter, we conduct experimental evaluations of our algo-
rithm in Section VI. The related work of this article is
reported in Section VII. Finally, Section VIII concludes this
article.

II. MOTIVATION

In this section, we first introduce several typical SFC
deployment scenarios at edge in Section II-A. Thereafter,
the impact of different deployment locations is further ana-
lyzed in Section II-B. These discussions stimulate our model
building.
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A. Impact of Different Deployment Scenarios

As shown in Fig. 1, the set of SFCs required by all users
can be expressed as: 1) SFC1 (VNF2 → VNF7 → VNF8);
2) SFC2 (VNF6 → VNF9 → VNF4 → VNF2); 3) SFC3
(VNF2 → VNF1 → VNF5 → VNF3); and 4) SFC4 (VNF10
→ VNF11 → VNF1). SFC is composed of multiple VNFs
sequenced into chains. For instance, SFC1 consists of VNF2,
VNF7, and VNF8. The process of deploying SFCs is equiva-
lent to bulk deployment of the VNFs that make up the SFC.
Multiple VNF2s in the diagram indicate the presence of back-
ups, and the backups are consistent with VNF2 functionality.
Users connect to edge servers, which are capable of deploying
VNFs. Due to resource constraints, these edge servers may not
be able to deploy all SFCs and their backups. Thus, services
not available on the edge server can be sought from the con-
nected cloud or neighboring edge environments. To show the
impact of different deployment scenarios, in this section, we
discuss two different user requirements in three deployment
scenarios.

In the first case, the user requirement for SFC is [SFC1,
SFC2, SFC3], SFC1, SFC2, and SFC3 are also deployed in the
edge environment, yet no backups. In this case, user require-
ments for SFC can be satisfied at edge. However, a software
vulnerability, hardware failure, or a damaged management
module may render the VNF unavailable. Then, some ser-
vice requests that cannot pass through the entire chain will be
severely affected. For instance, when VNF1 fails, the SFC3-
related service requests cannot complete the VNF1 task. In
this case, it is generally unacceptable for users to wait on the
server, as self-recovery usually takes a long time and tends to
lead to buffer overflows. Therefore, all users’ service requests
ready to go to the server where VNF1 is located to complete
the task or queued on that server will resort to the cloud or
adjacent edge environment to complete the task requirements
with higher completion latency.

Next, we discussed the second SFC deployment scheme.
Different from the first SFC deployment scheme, we add
backups of VNF2 and VNF1 on servers where resources are
sufficient. In this deployment scheme, when the original VNF2
fails, service requests can go from the server where the orig-
inal VNF2 is located to the server where the backup VNF2
is located, so that service requests can pass through the entire
SFC at edge. Therefore, compared to the first case of direct
access to the cloud or neighboring edge environments, the
average latency to complete service requests can be signif-
icantly reduced. In brief, ensuring the availability of SFCs
facilitates the stable and reliable completion of service requests
in the edge environment.

Then, we consider the third case, where user requirements
change from SFC1, SFC2, and SFC3 to SFC1, SFC2, SFC3,
and SFC4. Since SFC4 is not deployed at edge, the SFC
deployment scheme only meets the service requirements of
only a subset of users. However, if we use part of the resources
used to instantiate the VNF backup to deploy the SFC4 that
users need, then, requests for both the original SFC and those
that require SFC4 can be done at the edge with lower latency,
rather than going to a remote cloud or neighboring edge
environment with higher latency. Thus, ensuring the diversity

of SFCs facilitates the completion of more service requests in
a low-latency edge environment.

Through the above analysis, we know that deploying new
SFCs required by users on edge servers or backing up already
instantiated SFCs can bring significant benefits. However, due
to limited resources, we may not be able to achieve both ben-
efits in different application scenarios, so we need to balance
the two and find the SFC deployment scheme with the least
latency to users’ service requests.

B. Impact of Different Deployment Locations

Despite the SFC deployment scheme, the allocation schemes
of the VNFs on the edge server also affects the completion
latency of service requests. As shown in Fig. 2(a), the user is
connected to node 1 (server 1) and has an SFC-related ser-
vice request. The value between any two nodes represents the
data transmission delay between any pair of servers. When two
functions are executed in sequence at the same node, the queu-
ing and startup delays are set as 1 in default. In Fig. 2(a), red
b and arrows indicate the sequence of SFC-related tasks pass-
ing through the server in Fig. 2(b), blue c and arrows indicate
Fig. 2(c). For simplicity, we ignore the value changes caused
by the dynamic bandwidth.

Then, we analyze several SFC deployment schemes in
the edge environment. Fig. 2(b) and (c) shows two different
deployment schemes, respectively, and s1 in the line n1 means
the s1 function is deployed at server 1. In Fig. 2(b), the service
request arrives at node 1 and completes the first function of
the SFC (delay 3). Then, the service request is transferred to
node 2 (delay 1) and completes function 2 (delay 3). Finally,
the request goes to nodes 3 and 4 in sequence to complete
the last two functions, and the total service delay is 18. In the
deployment scheme shown in Fig. 2(c), the service request
passes through nodes 1, 4, 2, and 3 in sequence along the
SFC, and the delay of this process is 21. It is clear that the
scheme shown in Fig. 2(b) outperforms shown in Fig. 2(c) in
terms of service completion latency. It declares that different
deployment locations have different effects on the latency of
service requests to complete functions.

In addition, we further consider the case of deploying redun-
dant VNF backups. As shown in Fig. 2(d), when the function
of node 2 fails, service requests that have not yet completed
node2’s function need to spend a delay of 5 to go to node
3, where the redundant backup is deployed. After complet-
ing the corresponding function on node 4, the total delay for
SFC-related request completion is 19. However, in the sce-
nario where the VNF backup is deployed at node 4 shown in
Fig. 2(e), the latency of service requests completing all func-
tions after the failure of node 2 is 18, which further illustrates
the importance of VNF deployment location.

Through the above analysis, we find different VNF schemes
and application scenarios can significantly affect the comple-
tion delay of service requests. Unilateral optimization may not
effectively meet users’ SFC diversity and availability needs.
In addition, considering that the SFC deployment scheme has
different effects on each service request, it is difficult to eval-
uate the deployment scheme by the completion time of one
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Fig. 2. Impact of different deployment scenarios on service request completion delay. (a) Network topology. (b) SFC deployment scheme 1. (c) SFC
deployment scheme 2. (d) SFC deployment scheme 3 with a VNF failure. (f) SFC deployment scheme 4 with a VNF failure.

service request. Therefore, we propose an online SFC deploy-
ment scheme considering different deployment schemes and
locations, which can comprehensively optimize the average
completion delay of service requests. We hope this scheme
will play a pioneering role in improving the QoS of service
requests.

III. PROBLEM FORMULATION

In this section, we first state the problem with fundamental
assumptions in Section III-A. Thereafter, we analyze the ser-
vice delay caused by both the SFC deployment schemes and
their allocations. Finally, we describe the optimization objec-
tive in Section III-D. For clarity, the major notations used in
this article are explained in Table I.

A. Problem Statement

We envision the edge network within the appropriate geo-
graphical scope as a whole, then assume that there are K edge
servers in this edge network, denoted by ξ = {E1, E2, . . . , EK},
Ej(1 ≤ j ≤ K) represents the jth edge server. These edge
servers can be placed on the base station to receive service
requests from mobile users, or can be placed in server rooms
for wired interconnection with users. Compared to the cloud,
these servers can provide services with lower latency, since
they are placed closer to users. However, the computing and
storage capacity of each edge server is limited. Understanding
the resource capacity of each edge server is necessary to for-
mulate an SFC deployment scheme in the edge computing
environment. We define the computing and storage resource
capacity on each edge server Ej as Cj and Sj. We hope to rea-
sonably deploy VNFs on edge servers with limited resources
to maximize their utilization efficiency, while considering the
integrity of SFC during the deployment process. Note that, if

TABLE I
SUMMARY OF NOTATIONS

we only deploy a part of the VNFs on a certain SFC, then
that SFC will not work properly.

We assume there are M users in the edge network, denoted
as ν = {U1, U2, . . . , UM}. Usually, users can communicate
with edge servers and the cloud through the network, and edge
servers can communicate with neighbor edge environment
and cloud, with service requests typically traveling through
multiple links to the edge server. To ease the calculation,
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we envisage the minimum bandwidth of the links can sat-
isfy the transmission of the single largest user data. The set
of SFCs that can be deployed in a local edge environment is
defined as FC = {F1, F2, . . . , Fx}. Please note that deploy-
ing only a portion of the VNF on the chain will make the
SFC unavailable. Then, we define the user service request
as φ = {Qi

1, Qi
2, . . . , Qi

M}, Qi
M indicates that user UM has

a demand for Fi.
Typically, if a user’s demand for SFC cannot be met at

edge, the user’s service request will have to access the cloud
or neighboring edge computing environment. Therefore, the
higher the functional diversity, the more users’ service requests
can be completed on the edge servers, and the shorter the
completion delay of service requests. In addition, the impact
of function availability on the completion delay of service
requests also cannot be ignored. When the SFC fails and there
is no backup, service requests need to go to a cloud or neigh-
boring edge environment with higher latency. Therefore, in
order to minimize the average completion delay of all users’
service requests, we divide the service request completion
delay into two parts: 1) resource delay (the delay caused by
the type and number of SFCs deployed in the edge comput-
ing environment) and 2) placement delay (the delay caused
by the different locations where SFC is deployed on the edge
servers). We model these two delay parts, respectively, and
minimize their total delay as the optimization objective in the
following sections.

B. Resource Delay

The resource delay is usually caused by the type and number
of SFCs deployed on edge servers. We divide the resource
delay into two cases: 1) SFCs working normally and 2) SFCs
working in failure. When SFCs are working normally, service
requests from users reach to the connected edge servers first.
To surface the relationship between edge servers and service
requests of user Un, 1 ≤ n ≤ M, we define

hφ =
[
h1

i,n, h2
i,n, . . . , hK

i,n

]
(1)

where hK
i,n is a binary value, with hK

i,n = 1 denoting that the
service request Qi

n will be transmitted to the server EK . And
it will be determined on the server EK whether the service
request is completed on the edge side, or to the cloud or the
neighbor edge computing environment to complete. hk

i,n = 0
otherwise. Therefore, we define

Jφ = [
Ji,1, Ji,2, . . . , Ji,M

]
(2)

where Ji,M is a binary number. When Ji,M = 1, it means that
the service request Qi

M will go to the cloud or the neighbor
edge computing environment with the corresponding function,
and Ji,M = 0 means that the service request will be done in
the local edge computing environment.

Considering that the bandwidth of the service request Qi
n

transmitted to the server EK changes in real time, we define
the bandwidth at time t as

bf (t) =
[
bf

1(t), bf
2(t), . . . , bf

K(t)
]T

(3)

where bf
K(t) represents the bandwidth (in unit of bit/s) pro-

vided by EK . We define the propagation delay of service
requests to the first edge server EK as Pk, since the users
connected to server EK are usually very close to it. Then, the
delay for a service request from the user to the first edge server
can be expressed as

Di,n
f = Pk + |Qi

n|
hφ ◦ bf (t)

(4)

where the symbol ◦ represents the operation of the inner prod-
uct, |Qi

n| indicates the size of the service request Qi
n. Since

the order of service request arrivals is unpredictable, queuing
delays, startup delays, and calculating delays are not part of
our optimization.

Then, we discuss the delay caused by different destination
decisions on the first server. If Jφ = 1, service requests need
to go to the cloud or the neighboring edge computing envi-
ronments to complete tasks. We assume that each edge server
is connected to the cloud and can indirectly connect to the
neighboring edge computing environments through the edge
network. Considering that neighboring edge computing envi-
ronments usually have a large delay to arrival, we treat this
part of the delay as the same as going to the cloud. We define

bc(t) = [
bc

1(t), bc
2(t), . . . , bc

k(t)
]T (5)

where bc
K(t) represents the network bandwidth (in a unit of

bit) from the server EK to the cloud at time t, we define the
propagation delay as Pc

k. Then, the delay of service request
Qi

n from edge servers to cloud or neighboring edge computing
environments can be expressed as

Di,n
c =

(
Pc

k + |Qi
n|

Jφ ◦ bc(t)

)
. (6)

When Jφ = 0, users’ service requests can be completed in
the local edge computing environment. If SFCs on the edge
servers work normally, users’ service requests can be fulfilled
at the edge without a trip to the cloud, so Dc = 0.

When SFCs fail to work, we discuss two cases for the failure
of a VNF or a part of VNFs in one of the SFCs.

1) There is no backup of failed VNFs in the local edge
computing environment. Since there is no backup of
failed VNFs, waiting for the repair of failed VNFs in
place is often unacceptable for service requests. At this
time, service requests need to go to the cloud or neigh-
boring edge computing environments to complete. This
part of the delay can be expressed as (6) express.

2) There are backups of failed VNFs. In this case, service
requests will go from the server where the failed VNF is
located to the server where the backup VNF is located.
This part of the delay will be discussed in detail in the
next section.

Further, if the backup VNF does not fail, the user request can
go to the server where the next VNF on the SFC is located,
or complete all tasks and return to the user side. When the
backup VNF also fails (usually rarely happens), the service
request will repeat the above process if there are still avail-
able VNF backups. If both the VNF and its backup fail, the
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service request will access to the cloud or a neighboring edge
computing environment to complete the remaining tasks.

Then, we consider the failure probability of VNFs. Since
VNF failure is usually unpredictable, we use the maintenance
log of VNFs as a heuristic item, and define the failure rate of
each VNF as: FRVNF. When we initially deployed SFC in the
edge computing environment, there was no historical main-
tenance log as a reference, so we empirically referenced the
historical maintenance logs of other edge servers to define the
initial failure rate of the VNF. Finally, the model for resource
delay can be expressed as

Di,n
R = Di,n

f + JφDi,n
c + (

!Jφ

)
FRVNFDi,n

c . (7)

Due to the resources of each edge server being limited,
for VNFs deployed on edge servers, the following constraint
should hold:

∀
M∑

n=1

|CFi
j | < Cj (8)

with |CFi
j | denoting the amount of computing resources that

Fi deploys on server Ej. When Qn
i is not deployed on server

Ej, |CFi
j |=0

∀
M∑

n=1

|SFi
j | < Sj (9)

with |SFi
j | denoting the number of storage resources that Fi

deploys on server Ej. Due to guarantee the functional integrity
of VNF, each VNF can only be mapped to one server

VNFi
j =

{
1, if no VNF backup exists
Integer value > 1, if VNF backups exist

(10)

with VNFi
j denoting a VNF on the Fi chain deployed on server

Ej. Due to ensure the integrity of SFC, all VNFs on SFC must
be mapped to edge servers

∀
K∑

j=1

VNFi
j = Fi. (11)

C. Placement Delay

After determining the type and quantity of SFCs deployed
at the edge, we also need to consider the delay caused by the
placement location schemes of SFCs, since the delay caused
by different placement location schemes is different. We use
the placement delay to judge the quality of a placement loca-
tion scheme. Note that in the modeling of placement delay, we
do not discuss cases where service requests cannot be fulfilled
at edge. We divide the placement delay into two parts.

1) The service requests start from the server where the first
VNF on the SFC is located, and pass through the delay
of the server where the entire SFC is located in order,
under normal working conditions.

2) When a failure occurs, the delay caused by service
requests going to the server where the backup VNF is
located in the edge computing environment. Based on

the identified deployment scheme, we then explore the
delay generated by the deployment location, we define

Hi,n =

⎡
⎢⎢⎣

h11
i,n h12

i,n · · · h1K
i,n

h21
i,n h22

i,n · · · h2K
i,n

· · · · · · · · · · · ·
hK1

i,n hK2
i,n · · · hKK

i,n

⎤
⎥⎥⎦. (12)

h1K
i,n is a binary value. With h1K

i,n = 1 denoting that the service
request Qi

n will go from server E1 to server EK . We define
this part of the bandwidth at time t as

B(t) =

⎡
⎢⎢⎣

b11(t) b12(t) · · · b1K(t)
b21(t) b22(t) · · · b2K(t)
· · · · · · · · · · · ·

bK1(t) bK2(t) · · · bKK(t)

⎤
⎥⎥⎦. (13)

We define the propagation delay as

P(t) =

⎡
⎢⎢⎣

P11(t) P12(t) · · · P1K(t)
P21(t) P22(t) · · · P2K(t)
· · · · · · · · · · · ·

PK1(t) PK2(t) · · · PKK(t)

⎤
⎥⎥⎦. (14)

Therefore, the delay of this part can be expressed as

Di,n
S0−S1

= Hi,n ◦ P(t) + |Qi
n|

Hi,n ◦ B(t)
. (15)

In particular, with DS0−S1 = 0 denoting that the server where
the first VNF is located in the judgment server, so there is no
need to transmit across servers.

When the SFC is working normally, after service requests
complete the task of the first VNF on the SFC, they will go
to the edge servers where the remaining VNFs are located on
the SFC according to the routing rules until the entire SFC is
completed. Therefore, we define the ith part delay as

Di,n
SFC = Di,n

S0−S1
+ Di,n

S1−S2
+ · · · + Di,n

SN−1−SN
. (16)

Similarly, when the previous VNF on the SFC is located on
the same edge server as the next VNF, we envision this delay
equal to 0. Next, we discuss a special case in which the SFC
fails due to a VNF failure (which is difficult to recover from in
a short time) in the working situation described above. When
there is a backup of the failed VNF, according to the routing
rules formulated in advance, service requests need to go to the
edge server where the backup VNF is located to complete the
task. We define this part of the delay as

Di,n
F = HF

i,n ◦ PF + |Qi
n|

HF
i,n ◦ BF(t)

. (17)

In particular, if the failed VNF is not the last one on the SFC,
user requests also need to go from the server where the failed
backup VNF is located to the server where the next VNF of
the failed VNF on the original SFC is located to complete
the corresponding task. Consider that the backup VNF and
the failed original VNF are not guaranteed to be on the same
server, we define the delay for transmission from the failed
backup server to the next server as

Di,n
L = HL

i,n ◦ PL + |Qi
n|

HL
i,n ◦ BL(t)

(18)
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with DL = 0 denoting the server where the backup VNF is
located is the same server where the next VNF is located.
If multiple backup VNFs on the SFC fail at the same time,
we believe that a major failure has occurred and should be
repaired at this time. Therefore, the delay in the simultaneous
failure of multiple backup VNFs will not be discussed. The
placement delay can finally be expressed as

Di,n
P = Di,n

SFC + Di,n
F + Di,n

L . (19)

D. Optimization Objective: Minimize the Total Delay

In our scenario, through the above description, the whole
process of service request completion can be expressed as: the
user sends the service request to the most suitable edge server
after a delay Di,n

f . Then, the service request is determined on
the edge server whether it is done in the local edge computing
environment, or to go to the cloud and neighboring edge com-
puting environments after a delay Di,n

c . If the service request is
completed in the local edge computing environment, the ser-
vice request will be transmitted from the decision server to the
server where the first VNF of the SFC is located after the delay
Di,n

S0−S1
, in the case that the SFC is working normally. Then,

the service request will pass through all the servers mapped
by the SFC. If the SFC fails, the service request will go from
the server where the failed VNF or the previous VNF of the
failed VNF is located to the server where the backup VNF is
located after the delay Di,n

F , and then go to the server where the
next VNF is located after the delay Di,n

L , until the entire SFC
is completed. Finally, after the service request completes the
SFC task in the cloud, neighbor edge computing environment,
or local edge environment, it may go to the next destination
(i.e., back to the client). Yet this part is not discussed in this
article.

In the case of limited resources, there is resource com-
petition between service requests. There will be a lot of
contradictions if we aim to optimize the delay of each ser-
vice request. Therefore, we minimize the average completion
delay of all service requests with the following optimization
objective:

min
x∑

n=1

K∑
i=1

(
Di,n

P + Di,n
R

)

s.t. (8) ∼ (11). (20)

In the above optimization problem, the objective function is
to minimize the delay of all service requests, composed by the
placement and resource delays (Di,n

P and Di,n
R ). Constraints set

limits on the resources provided by the edge server and the
integrity of SFC deployment. In addition, Jφ , Hi,n, HF

i,n, and
HL

i,n are unknown variables to be solved. After solving this
problem, we can obtain an elegant balance between diversity
and availability, so as to minimize the completion delay of
service requests. When tackling the above optimization prob-
lems, however, we are faced with some challenges. First, the
number of users and edge servers increases from hundreds
to thousands in real-world scenarios. Traditional optimization
algorithms need to spend a long time in scheduling to formu-
late the optimal strategy for deploying SFC on edge servers.

Fig. 3. Framework of DRL-based deployer at edge.

This challenge leads to a huge search space in solving the
optimization problem, so any search method based on violence
is prohibited. In addition, in our modeling process, network
conditions and server load are assumed to be known. However,
due to the dynamic nature of user needs and the network, this
assumption is not shown in practice. Therefore, the solution
of offline optimization may be far from the actual situation.
The online SFC deployment scheme for real-time estimation
of network conditions and server load should be considered.

To tackle the above challenges, we propose an online
SFC deployment scheme DeepSFC, which is based on DQN
techniques in the following section.

IV. DEEPSFC DEPLOYMENT SCHEME

In this section, we introduce the DRL-based SFC online
deployment scheme, which uses the DQN algorithm to min-
imize the average delay of all service requests described in
Section II. The working process of DeepSFC is shown in
Fig. 3. We first introduce the components and concepts of the
reinforcement learning model in Section IV-A. Thereafter, we
introduce the design of the DeepSFC working components in
Section IV-B.

A. Components and Concepts

The deployment scheme of SFCs is generated by DQN.
DQN usually consists of five parts: 1) state; 2) agent; 3) action;
4) reward; and 5) policy, which will be described in detail
below.

State: The state is an important part of DQN and is the
data used to represent the environment. In the interaction
process between the agent and the environment, different
states will be generated. In brief, after performing an action,
the environment will be converted into a new state. In the
process of deploying SFC, the state can be represented by
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s(t) = {Cj(t), Sj(t), B(t), UR(t), FRVNF(t), SK(t)}, in which
Cj(t) and Sj(t) represent the remaining computing and stor-
age resources on the edge server Ej at time t, respectively.
B(t) indicates the bandwidth of each communication link in
the edge network at time t. UR(t) and FRVNF(t) denote users’
requirements and fault VNF information at time t, respectively.

Agent: The agent is composed of an internal comput-
ing parameter system and a learning mechanism, which can
interact with the environment to obtain information and feed-
back on the current state. It can evaluate the impact of the
previous action on the environment according to the feedback
information, and can also select the action with the current
maximum reward value to act on the environment according
to the current state. During training, the agent will iteratively
loop the above process to improve its decision-making ability.
The agent’s goal in this article is to find an SFC deployment
scheme that minimizes the latency of all service requests.

Action: Action is the agent’s response to the current state
of interacting with the environment, based on parameter
information and learning strategies. In this article, the action is
to deploy the VNF on the SFC to the edge server. To improve
the convergence speed of the algorithm, we deploy multiple
VNFs instead of one VNF each time. In this article, action
can be represented by a vector a(t). Choosing which actions
to deploy is closely related to the current state’s resource and
SFC constraints. Usually, we choose actions that can bring
higher long-term rewards.

B. Design of Working Components of DQN

Reward: For different states, the agent will choose differ-
ent actions, and the actions acting on the environment will
generate new states. The choice of each action will directly
or indirectly affect the result of the final scheme. Here, our
final scheme is the solution of deploying SFC. To minimize
the average delay time of all service requests, the agent will
evaluate the action selected by each state, and the result of the
evaluation is the reward. When an action is beneficial to our
final goal, the agent will give a certain reward to the action,
and if it is harmful, it will give some punishment. The agent
can update the deployment scheme according to the reward,
so it can find a better action in the same state next time. Here,
we set the reward as

r(t) = E
(−(

Dall + μDs(t),a(t)
))

(21)

where 0 < μ < 1 are weights, E is the value func-
tion, Dall indicates the overall average completion delay and
calculated by

Dall = average
x∑

n=1

K∑
i=1

(
Di,n

P (t) + Di,n
R (t)

)
(22)

where average is average value function, Di,n
P (t)+Di,n

R (t) indi-
cates the service request completion delay under the influence
of deployment policy in each time slot t. Dall indicates a long-
term overall return. If the deployer makes a good decision, it
can generate a suitable amount so that the average completion
delay of all service requests will be low. Ds(t),a(t) indicates

the impact of the current action, which also means short-term
rewards.

Policy: Different policies represent different deployment
SFC schemes, which consist of a series of actions made by
agents in different states. In DQN, the policy will be continu-
ously updated during the learning process, and the quality of
the policy will directly affect the average latency of all service
requests.

In traditional Q-learning, after designing the above com-
ponents, we will initialize a Q table to record the value
corresponding to the state-action. If there are m states and
n actions, the size of this Q-value table is m ∗ n. When query-
ing the Q table, first we determine the current state s, then
find the row where the state s is located, and finally output
the action with the largest Q value in this row, which is a
complete decision-making process. However, if Q-learning is
used to determine the deployment plan of SFCs in a scenario
with many states and actions, it needs to build a huge Q-value
table, which will bring a lot of space overhead. After the scale
becomes larger, it takes a lot of time to calculate each value in
this table accurately. Moreover, in many practical tasks, some
states and actions will never appear, making it difficult to cal-
culate the value function accurately and causes problems of
computational cost and accuracy problems.

When training a neural network, the assumption is that the
training data is independently distributed. There is always a
correlation between the data collected through reinforcement
learning, which may cause great fluctuations in the learned
value function model. In addition, when the gradient descent
method is used to update the model, the model training often
needs to go through multiple rounds of iterations to con-
verge. Each iteration needs to use a certain number of samples
to calculate the gradient. If each calculated sample is dis-
carded after calculating the gradient once, then, we need to
spend more time interacting with the environment and col-
lecting samples. Therefore, we use experience replay to train
the learning process of reinforcement learning, and we set a
replay buffer for learning previous experiences. So every epoch
model updates the parameters, we can randomly sample some
previous experiences for learning. Randomly extracting data
can disrupt the correlation between the data and make the
neural network update more efficient. Our replay buffer will
store transitions that occurred in the past, and transitions con-
sist of s(t), a(t), r(t), and s(t+1). We set the size of the replay
buffer to RB = 2000. When the stored data exceeds RB, the
stored transition will overwrite the earliest stored transition in
the memory. At each iteration, we randomly extract experience
from memory using mini-batches.

In addition, in the iterative process of Q-Learning, the
parameters are updated by the reward at the current moment
and the estimated reward at the next moment. Due to the
instability of the data, each iteration may generate some fluctu-
ations, and these fluctuations will be immediately reflected in
the calculation of the next iteration, making it difficult for us to
obtain a stable model. To alleviate the impact of related prob-
lems, we decouple these two parts and introduce target and
eval network. Our goal is to delay the parameter update of the
target network, thereby disrupting the correlation. Therefore,
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Algorithm 1 Deployment Algorithm of SFC With DRL

Require: Service requests φ = {Qi
1, Qi

2, ..., Qi
M}.

Ensure: Quantum a(t) 1 ≤ t ≤ T .
1: Initialize replay buffer to capacity RB
2: Initialize eval network Q with random weights θ

3: Initialize target network Q̂ with random weights θ̄ = θ
4: for episode=1:MaxE do
5: for t=1:T do
6: Get state s(t)
7:

a(t) =
{

argmaxQ(s(t), a(t), θ), prob.ε

randomaction, prob.1 − ε
8: Execute action a(t) and obtain reward r(t) and s(t + 1)
9: Store transition (s(t), a(t), r(t), s(t + 1)) in replay buffer

10: Sample random mini-batch of transitions
(s(i), a(i), r(i), s(i + 1)) from replay buffer

11: continue
12: Update parameter θ

13: Every steps set Q̂ = Q
14: end for
15: end for

the structure of the target network is exactly the same as that
of the eval network.

The Deployment Algorithm for SFCs is summarized in
Algorithm 1. The deployer first initializes the replay buffer
and internal parameters θ and θ̄ (lines 1–3 in Algorithm 1).
After obtaining the current state s(t) of the environment, the
Agent uses the method of ε − greedy to select action a(t),
that is, the probability of ε selects the action with the max-
imum value of Q, and the probability of 1 − ε randomly
selects the action that satisfies the constraints (lines 6 and
7 in Algorithm 1). After executing action a(t), the agent can
obtain reward r(t) according to the reward scheme, and can
also obtain the next environment state s(t). Then store them
in the replay buffer in the form of [s(t), a(t), r(t), s(t + 1)].
After o steps, the Agent randomly selects a small part of the
experience in mini-batch from the replay buffer (lines 8–10 in
Algorithm 1). After interacting with the environment, the agent
uses stochastic gradient descent to update network parameters.
At the same time, after t steps, the target network will copy
the parameters of the eval network to update the parameters
(lines 11–13 in Algorithm 1).

V. COST-AWARE REDEPLOYMENT SCHEME

For the more general scenarios of user’s service require-
ments changing or deployed servers crashing, the updated
requirements may cause performance degradation for the orig-
inal static SFC deployment scheme. Therefore, it is necessary
to regenerate a deployment scheme for the updated require-
ments. Note that, the regeneration for any slight changes
is costly, due to the redeployment requiring a significant
amount of VNFs migrations. In this case, we introduce a cost-
aware redeployment scheme in this section. Our redeployment
takes the migration or redeployment cost of the SFC as the
redeployment index, and tries to minimize these cost.

We use A(t) to represent the satisfaction of users and
operators with the current SFC deployment scheme as follows:

A(t) = σ(τDall + ιDrate) (23)

Fig. 4. Framework for cost-aware SFC redeployment. (a) Original SFC
deployment scheme. (b) Newly generated SFC deployment scheme.

where 0 < σ < 1 represents the operator weight, Dall rep-
resents the average completion delay of service requests, and
Drate represents the percentage of service requests completed
at the edge. After being normalized and weighted by τ and
ι, respectively, A(t) can be the capability metric to indi-
cate the users’ satisfaction degree of the SFC deployment
scheme.

To avoid frequent redeployment, we propose a tolerance
threshold γ . Only when the current satisfaction A(t) below this
threshold γ , the SFC redeployment can be triggered, then, the
agent formulates a new SFC deployment scheme according to
the server’s status and new user’s requirements.

After the agent interacts with the new environment to gen-
erate a new deployment scheme, the new SFCs need to be
remapped to the edge server. However, converting the two
SFC deployment schemes in the edge environment may be
costly. As shown in Fig. 4, Fig. 4(a) represents the original
SFC deployment scheme, and Fig. 4(b) illustrates the new SFC
deployment scheme. The blue VNFs in Fig. 4(a) represents the
duplicated part of the original SFC deployment scheme and the
newly generated SFC deployment scheme. The blue-crossed
VNF in Fig. 4(b) represents the portion retained from the old
deployment scenario, and the gray crossed VNF in Fig. 4(b)
indicates the portion mapped from the cloud. Typically, dur-
ing the conversion between the two SFC deployment solutions,
the agent needs to remap VNFs from the cloud to the edge
server. To be more intelligible, we assume that the cost of
remapping a VNF is 1, and the remapping cost of the new
deployment scheme shown in Fig. 4(b) is 6. However, we can
notice the blue VNF1 and VNF2 are deployed on the same
server in these two SFC deployment scenarios in Fig. 4(a)
and (b), separately. Therefore, if we retain this part of VNFs
and remap the rest during the remapping process, the cost of
the new deployment scheme can be reduced to 4. Furthermore,
except retaining VNFs during the conversion process, the VNF
migration between neighbor servers could also decrease the
redeployment cost, because it avoids the VNF remapping from
the cloud to the edge servers. For instance, the red VNF2 in
Fig. 4(a) is migrated from servers 1 to 3. Therefore, we retain
or migrate VNFs in the old deployment scheme to the new
one. This can result in lower cost and deployment delay for
the operator than backup from the cloud.
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Algorithm 2 Redeployment Algorithm Considering Cost
Require: Old deployment scheme ODS.
Ensure: The new redeployment policy P′.

1: if A(t) < γ then
2: Execute algorithm. 1 to get a(t)
3: Convert a(t) into the new set

NVNF =
{

VNFj
1, VNFj

2, . . . , VNFj
n

}

of VNFs to be deployed
4: for v = 1:n do
5: if VNFv in ODS then
6: if VNFj

v in ODS then
7: Set the value of P′

v with Ej, i.e., P′
1 = Ej

8: else if VNFj
v not in ODS then

9: Find the server S where the VNFv and its backup are
located

10: Find the closest server Es to j in A
11: Set the value of P′

v with Ess, i.e., P′
1 = Es

12: end if
13: else
14: Set the value of P′

v with cloud, i.e., P′
1 =cloud

15: end if
16: end for
17: end if

The pseudocode in Algorithm 2 describes the cost-aware
redeployment algorithm. First, the algorithm will determine
whether to trigger the redeployment. When the trigger con-
dition is satisfied, the agent will formulate a new SFC
deployment scheme (lines 1–3 in Algorithm 2). For the VNFs
in the new deployment scheme, the agent will determine which
ones need to be remapped from the cloud, which ones need to
be remigrated from edge servers, and which ones are already
on the servers that need to be deployed and do not need to be
remapped (lines 5–13 in Algorithm 2).

VI. PERFORMANCE EVALUATION

In this section, we first introduce the experiment setting
in Section VI-A. Thereafter, we evaluate the performance
of DeepSFC in numerical and emulation experiments in
Section VI-B.

A. Simulation Setup

We refer to the basic setup of a VNF platform on a com-
mercial server. Combined with the actual situation, we believe
each edge server has only one six-core CPU. Since there may
be other tasks besides VNFs on the edge server, we assume
that each edge server randomly has 1–6 cores. We assume that
there are ten edge servers in the edge environment, each server
is connected to the cloud and can connect to the servers in the
neighbor edge environment through the edge network. In this
experiment, we use several laptops as edge servers (OS: 64-bit
Ubuntu 16.04.7; RAM: 16 GB DDR4 2666 MHz; CPU: Intel
i7-9750H 2.6 GHz). We choose the basic settings of SFC in
the real environment to formulate the number and connection
order of VNFs. Due to the mobility of users, it is difficult to
predict the arrival of service requests accurately. Therefore,
we assume that users connect to edge servers uniformly and
randomly, and each user can only generate at most one SFC
service request per unit time.

In order to better evaluate the performance of DeepSFC, we
conducted the comparison experiments with the following two
types of baseline algorithms.

1) Deployment Scheme Baseline: To show the performance
of our DeepSFC scheme, we compare it with four baselines.

1) Random: According to the set of VNFs that can be
deployed, randomly deploy VNFs on edge servers, with
the respect of resource constraints.

2) Greedy: In a resource-constrained edge environment,
deploy as many VNFs as possible at edge servers accord-
ing to user needs. It tends to find a deployment scheme
that minimizes the waste of server resources, while
satisfying resource constraints.

3) Greedy-Backup: Unlike Greedy, it takes into account
of the VNF availability. Therefore, during the deploy-
ment process, some redundant backups will be deployed
according to the failure of the VNFs [44].

4) Central-Deploy: In the deployment process, Central-
Deploy tends to deploy SFC on edge servers closer to
users centrally, so as to reduces the delay of the user
request as much as possible. The drawback is that the
VNF backups are not considered [26].

2) Relocate Baseline: To show the performance of our
relocate scheme, we compare it with Cloud baseline relo-
cate schemes. After determining the new deployment scheme,
the Cloud method downloads all the required VNFs from the
cloud, maps them to the server, and then serializes them into
SFCs.

B. Numerical Results

In this section, we demonstrate the performance of our
model and the baseline in terms of task efficiency, and
proportion of completion on the edge, through evaluation
results.

Considering the diversity of actual deployment scenarios,
as shown in Fig. 5, we selected four representative scenar-
ios for experiments. Lack means that the resources on the
edge server are very scarce, and deployer cannot deploy
all SFCs that the current users need. We quantify Lack as
80% of SFC deployment resources required by users. Middle
implies that the resources on the edge server can deploy the
SFCs required by users, but may not be able to deploy the
VNF backups. We quantify Middle as 100% of SFC deploy-
ment resources required by users and 60% of SFC backup
deployment resources. Boundary represents resources on edge
servers can deploy all original SFCs and some VNF backups
required by current users. We quantify Boundary as 100%
of SFC deployment resources required by users and 90% of
SFC backup deployment resources. Enough means that the
resources on the edge server are sufficient to deploy all SFCs
and VNF backups required by the users. We quantify Enough
as 150% of SFC deployment resources required by users and
100% of SFC backup deployment resources.

1) Total Service Request Average Completion Time:
Fig. 5(a) shows the evaluation results of the total average com-
pletion time of service requests when the VNF failure rate
is 0%. We find that DeepSFC always outperforms Greedy,



2346 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

Fig. 5. Impact of different deployment scenarios and VNF failure rate on service request completion delay. (a) Total average completion time with 0% VNF
failure. (b) Total average completion time with 5% VNF failure. (c) Total average completion time with 20% VNF failure. (d) Edge average completion time
with 0% VNF failure. (e) Edge average completion time with 5% VNF failure. (f) Edge average completion time with 20% VNF failure.

Greedy-Backup, and Random, which can be attributed to
DeepSFC considers optimizing placement delays. From sce-
nario Lack to Enough, Central-Deploy and DeepSFC perform
similarly. The reason for this phenomenon is that the advan-
tages of DeepSFC in VNF backup deployment are not reflected
when the VNF failure rate is 0%.

Fig. 5(b) shows the case where the VNF failure rate is 5%.
Compared with Fig. 5(a), we can find that in different deploy-
ment scenarios, since some VNFs may fail, service requests
need to go to the edge server where the backup VNFs are
located, or even to the cloud or neighboring edge comput-
ing environments. Therefore, each algorithm’s service request
completion time has different degrees of increase. We can find
the rate of change of DeepSFC is always lower than other algo-
rithms, and the performance is better than other algorithms.
In addition, as resources become more abundant in edge envi-
ronment, the performance of Greedy and Central-Deploy does
not change significantly, since they do not consider backing up
VNFs to deal with VNF failures. The performance of Greedy-
Backup and Random improves with abundant resources, but
their performance is worse than DeepSFC, since they do not
consider placement delay.

Fig. 5(c) shows the VNF failure rate rising to 20%.
Compared with Fig. 5(a) and (b), we find that as the failure
rate increases, the performance of DeepSFC is relatively better.
When resources are lacking, DeepSFC will discard some SFCs
with lower benefits (SFCs with low user requirements and
high resource consumption), then deploy SFCs and VNF back-
ups with higher benefits (VNFs with high user requirements
or low resource consumption). With the gradual abundance
of resources, although Greedy-Backup and Random do not

consider the impact of deployment location on completion
delays, while DeepSFC prefers to choose a server with a
lower deployment delay to deploy VNF backup and SFC,
the performance of DeepSFC is better than Greedy-Backup
and Random. In addition, DeepSFC still outperforms other
algorithms in terms of rate of change.

2) Service Request Average Completion Time on Edge:
Fig. 5(d)–(f) shows the average completion time of ser-
vice requests on different edge deployment scenarios. Since
DeepSFC considers the impact of different VNF deployment
locations, DeepSFC tends to deploy VNFs and their back-
ups on a chain in locations with less latency. Hence, the
performance of DeepSFC is better than other algorithms.

3) Proportion of Bakeup VNFs: In addition, considering
that VNF backups greatly impact the long-term availability of
SFCs, we evaluated the VNF backup ratios generated by dif-
ferent algorithms in different deployment scenarios. As shown
in Fig. 6, Greedy and Central-Deploy do not consider backup
VNFs, so their ratios are 0. Compared with other algorithms,
when the VNF failure rate increases, DeepSFC generates more
VNF backups to ensure the availability of SFC. In addition,
when the VNF is not failed, or the failure rate is lower,
DeepSFC is more inclined to use resources to deploy new
instead of deploy more. After deploying the SFC required by
users, DeepSFC tends to deploy more SFC backups when the
failure rate is low, so as to improve resource utilization. When
the VNF failure rate increases, DeepSFC tends to deploy failed
VNF backups, which reflects the elegant tradeoff between
VNF failure rate and resource utilization rate.

4) Different SFC Diverse Requirements: In this section,
we compare DeepSFC with the existing methods in terms
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Fig. 6. Impact of different deployment scenarios and VNF failure rate on the VNF backup ratio. (a) Ratio of VNF backups without VNF failure rate.
(b) Ratio of VNF backups when the failure rate of VNF is 5%. (c) Ratio of VNF backups when the failure rate of VNF is 20%.

Fig. 7. Impact of different proportions of users requesting the same SFC. (a) Total average completion time with 90% users request same SFC. (b) Total
average completion time with 20% users request same SFC.

of the proportion of users requiring the same SFC. Fig. 7(a)
and (b) show two cases where 90% and 20% of the users
requested the same SFC. The potential advantage of increased
resources is that there are more options for SFC deployment
locations. In Fig. 7(a) and (b), DeepSFC and Central-Deploy
both show better performance, due to the fact that they both
take into account the optimization of SFC deployment loca-
tions. Compared to Fig. 7(a), with a larger proportion of users
requiring the same SFC, the overall completion delay of the
service requests in Fig. 7(b) is greatly reduced. Since more
users demand the same SFCs, in Fig. 7(b), the diversity of
SFCs deployed by the algorithms is less considered, and there-
fore, the increase in the amount of resources is not as effective
in improving the completion time as in Fig. 7(a).

5) Resource Utilization and Rate at Edge: Fig. 8 shows
the resource utilization of different algorithms in different
deployment scenarios, and we can find that although the
resource utilization of DeepSFC is not the highest, it is 2%–3%
lower than the optimal algorithm. But DeepSFC is superior
in other indicators. Fig. 9 shows the proportion of service
requests completed in the edge environment, which directly
reflects the algorithm’s performance when the overall VNF
failure rate increases. We can find that DeepSFC performs
well in different deployment scenarios, which demonstrates
the flexibility and generalizability of DeepSFC.

6) Redeployment Cost: In the experiments, we explore the
impact of the proportion of old VNFs in the new deploy-
ment scheme on the cost of relocation. As shown in Fig. 10,

Fig. 8. Impact of different deployment scenarios on resource utilization when
the failure rate of VNF is 20%.

we can find some fluctuations in the performance of cloud
algorithms. This can be attributed to changes in the num-
ber of VNFs in deployment scenarios. As the proportion of
old VNFs increases, cloud algorithms do not show signif-
icant performance improvements. However, since DeepSFC
considers migrating or retaining VNFs from edge environ-
ments, DeepSFC is increasingly outperforming the cloud,
which brings lower costs.

7) Learning Process of DQN-Based Deployer: As shown
in Fig. 11, we present the learning process of a DQN-based
deployer, which interacts with the environment according to a
reward function. DQN-based deployer can learn in an iterative
process. As seen from the figure, when the deployer starts
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Fig. 9. Impact of different deployment scenarios on the completion ratio of
service requests at the edge when the failure rate of VNF is 20%.

Fig. 10. Impact of different old VNF rates on the relocation scheme cost.

learning, the reward value gradually increases as the number of
learning increases. Finally, it tends to be stable at 250, which
indicates that the deployer has gradually formed a long-term
reward-optimal deployment scheme.

VII. RELATED WORK

Research related to deploying SFC at the edge has recently
gained momentum [38], [39], [40], [42]. Current SFC-related
designs mainly focus on deploying new VNFs to serve more
requests, ignoring the possibility of functional failure, or back-
ing up the existed VNFs to enhance the function availability
at the expense of feature diversification. Another part of fine-
grained design deploys VNFs on the same chain as close as
possible to reduce on-chain latency. However, they neglected
to deploy redundant VNF backups in fine-grained locations,
which may cause some important VNFs to fail to work.

When deploying SFC at the edge, Jin et al. [23] hope to
find the optimal deployment scheme of SFC by minimizing
the resource consumption in the edge computing environ-
ment. Cziva et al. [26] presented a way to dynamically
reschedule the optimal placement of VNFs based on temporal
network-wide latency fluctuations using optimal stopping the-
ory, which can minimize end-to-end latency from all users
to their associated VNFs. Li et al. [27] developed a near-
optimal approximation algorithm for the placement of his SFC
by employing the Markov approximation technique, under the
assumption of uncertainty in computing resources and data
rates demanded by request executions. Xu et al. [28] balanced

Fig. 11. Leaning process of DRL-based deployer.

the QoS and the consumption of computing and communica-
tion resources, design a multiobjective SFC deployment model
to represent the diverse business requirements and specific
network environments, and propose a learning-based online
SFC deployment algorithm. Liu et al. [29] considered the
constant dynamics of IoT networks through actor–critic and
deterministic policy gradient scheme, and provide a DRL-
based SFC-DOP algorithm to determine the location of the
SFC. In the context of multiple source update systems,
Chen et al. [33] proposed a VNF deployment scheme to min-
imize the long-term average AoI of all updates received at
the destination, quantifying the freshness of the data from the
perspective of the destination. Sun et al. [34] payed atten-
tion to the joint optimization problem of VNF Placement,
CPU Allocation, and flow Routing (VNFPAR) in the scenar-
ios consisting of VNFs that can dynamically change traffic.
Basu et al. [35] considered a multilayer SFC formation for
adaptive VNF allocation on dynamic slices, with VNF selec-
tion mechanisms to optimize resource utilization. In MEC,
Masoumi et al. [36] considered the tradeoff between resource
deployment costs and effective service delivery. To address
dynamic workloads and orchestrate complex distributed envi-
ronments, Harris et al. [37] investigated methods to dynami-
cally place network functions at edge nodes in the network to
maximize customer satisfaction. Considering the importance
of services, Nguyen et al. [41] designed three algorithms to
solve the VNF placement problem for weighted services.

At the same time, considering the unavoidable failure of
VNFs in the working process, ensuring the high availabil-
ity of VNFs has become an important issue to continuously
meet the service requirements of end users [18], [19]. Among
them, using redundancy to create backups for VNFs has
become a representative method to solve the availability
problem [20], [21]. Shang et al. [30] combined a static backup
plan with a dynamic backup scheme to prevent VNF fail-
ures without a fixed network failure rate. When the original
VNF or its static backup fails, the algorithm will immedi-
ately deploy a dynamic backup, enabling adaptive adjustment.
Qiu et al. [32] discretized the long-term supply problem into
a series of single-slot optimization problems to deal with
real-time-varying failure probabilities, and proposed an online
approximation scheme with a constant approximation ratio.
Dinh and Kim [31] formulated a VNF redundancy allocation
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scheme with cost-effectiveness in mind, which selects a suit-
able set of VNFs for backup by comparing the availability
improvement potential of VNFs to minimize the redundancy
allocation cost in the network. Yala et al. [43] proposed a
VNF placement scheme between edge and cloud to optimize
the tradeoff between availability and latency. Wang et al. [44]
determined the backup of VNFs from the user’s perspective
to meet their service needs on SFC as much as possible.
They resort to the combinatorial multiarmed bandit (CMAB)
problem to propose online learning based on approximate VNF
backup selection and deployment algorithm.

Current SFC-related designs mainly focus on deploying new
VNFs to serve more requests, ignoring the possibility of func-
tional failure, or backing up the existed VNFs to enhance
the function availability at the expense of feature diversifi-
cation. Another part of fine-grained design deploys VNFs on
the same chain as close as possible to reduce on-chain latency.
However, they neglected to deploy redundant VNF backups in
fine-grained locations, which may cause some important VNFs
to fail to work.

VIII. CONCLUSION

In this article, we propose the DeepSFC design at the
network edge, with the target of reducing the average com-
pletion delay of SFC-related tasks in IoT. DeepSFC considers
the impact of resource allocations and deployment locations
on the average latency of overall service requests, which
realizes an elegant tradeoff between SFC diversity and avail-
ability. When making an SFC deployment scheme, DeepSFC
first determines the type and number of VNFs that need
to be deployed. Thereafter, DeepSFC optimizes the deploy-
ment locations of these chosen VNFs in the service chain.
For more general scenarios wherein user’s service require-
ments change or the deployed server crashes, DeepSFC further
relocates the VNF deployment with the joint consideration
of performance degradation and migration cost. Theoretical
analysis and experiments show that DeepSFC outperforms its
competitors and realizes our design rationales.
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