
1698 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

Damping-Assisted Evolutionary Swarm Intelligence
for Industrial IoT Task Scheduling

in Cloud Computing
Ahmed G. Gad , Member, IEEE, Essam H. Houssein , Member, IEEE, MengChu Zhou , Fellow, IEEE,

Ponnuthurai Nagaratnam Suganthan , Fellow, IEEE, and Yaser M. Wazery

Abstract—Advancements in the Industrial Internet of Things
(IIoT) have yielded massive volumes of data, taxing the capa-
bilities of cloud computing infrastructure. Allocating limited
computing resources to numerous incoming requests is crucial
for cloud computing and referred to as a task-scheduling-in-
cloud-computing (TSCC) problem. In order to ameliorate the
performance of a particle swarm optimizer (PSO) and broaden
its application to TSCC, this article introduces an opposition-
based simulated annealing particle swarm optimizer (OSAPSO)
to address PSO’s premature convergence issue, particularly
when tackling high-dimensional complex problems like TSCC.
OSAPSO is a novel combination of opposition-based learning
(OBL), evolution strategy, simulated annealing (SA), and swarm
intelligence. At its initial stage, a swarm is formed at random
by using OBL to guarantee its diversity with a light computa-
tional burden. A multiway tournament selection approach is then
utilized to pick parents to produce a new offspring swarm by
using two novel evolutionary operators, namely, damping-based
mutation and inversion–scrambling-based crossover. OSAPSO is
given a powerful exploration capacity by adopting the survivor
probabilistic selection of SA, which accepts subpar solutions with
a certain probability. Finally, PSO itself kicks in, making a good
tradeoff between solution diversity and convergence speed of
OSAPSO. Due to the nonconvex discontinuous nature of TSCC,
OSAPSO is modified to clone it into a discrete optimization
problem. Within a heterogeneous cloud computing environment,
OSAPSO and eight well-regarded competitors are examined on
a set of multiscale IIoT heterogeneous task groups. In terms
of power consumption, monetary cost, service makespan, and
system throughput, experimental results reveal that OSAPSO
beats its peers in IIoT task scheduling of cloud systems.

Manuscript received 19 May 2023; accepted 25 June 2023. Date of pub-
lication 3 July 2023; date of current version 25 December 2023. This work
was supported in part by the Fundo para o Desenvolvimento das Ciencias e
da Tecnologia (FDCT) under Grant 0047/2021/A1. (Corresponding authors:
Ahmed G. Gad; MengChu Zhou; Ponnuthurai Nagaratnam Suganthan.)

Ahmed G. Gad is with the Faculty of Computers and Information,
Kafrelsheikh University, Kafrelsheikh 33516, Egypt (e-mail:
ahmed.gad@fci.kfs.edu.eg).

Essam H. Houssein and Yaser M. Wazery are with the Faculty of
Computers and Information, Minia University, Minia 61519, Egypt (e-mail:
essam.halim@mu.edu.eg; yaser.wazery@minia.edu.eg).

MengChu Zhou is with the Macao Institute of Systems Engineering
and Collaborative Laboratory for Intelligent Science and Systems, Macau
University of Science and Technology, Macau, China, and also with the
Department of Electrical and Computer Engineering, New Jersey Institute
of Technology, Newark, NJ 07102 USA (e-mail: zhou@njit.edu).

Ponnuthurai Nagaratnam Suganthan is with the KINDI Center for
Computing Research, College of Engineering, Qatar University, Doha, Qatar
(e-mail: p.n.suganthan@qu.edu.qa).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JIOT.2023.3291367, provided by the authors.

Digital Object Identifier 10.1109/JIOT.2023.3291367

Index Terms—Cloud task scheduling, evolutionary compu-
tation, Industrial Internet of Things (IIoT), particle swarm
optimizer (PSO), power consumption, simulated annealing (SA),
swarm intelligence (SI), system throughput.

I. INTRODUCTION

THE CLOUD computing paradigm (CCP) has radically
altered the computing sector by relieving users/consumers

of the burden of operating their own, sometimes costly,
information technology infrastructure [1], [2]. CCP’s infras-
tructure has elastic, reliable, and cost-effective computing
resources to accommodate millions of physical machines, stor-
age devices, network equipment, and cooling facilities [3].
These resources are shared across global Industrial-Internet
of Things (IIoT) users to execute a range of heterogeneous
deadline-constrained applications, such as scientific comput-
ing, high-performance simulation, big data analysis, and e-
commerce [4]. Due to the massive amount of data generated
by the sensing surrounding environment of these applications,
CCP’s electric energy usage has increased significantly. In
the U.S. alone, CCP’s data centers used energy during 2020
that was about equal to that of 50 large power plants [5].
Researchers, especially environmentalists, are increasingly
concerned about such massive energy use. Due to the rising
pressure from the governments, society, and media, energy-
efficient CCP is fast being deployed globally and is equipped
with energy facilities and lowered running costs. For instance,
Apple Inc. has finished a 100-acre solar farm close to the CCP
of iCloud in North Carolina, U.S., which is energy efficient.
Every year, it delivers about 84 million kWh of energy [6].

When IIoT and cloud computing are integrated, new diffi-
culties emerge. According to a recent report by information
handling services (IHSs) Markit, the number of connected
Internet of Things (IoT) devices globally is expected to
increase by 12% on average every year, from almost 27 bil-
lion in 2017 to 125 billion in 2030 [7]. With this exponential
growth in the number of IoT linked devices, CCP with its
typical centralized processing features (in which computa-
tional resources are aggregated and stored in numerous data
centers) would not be capable of fulfilling the requirements
of IIoT heterogeneous applications. The prime factor is the
enormous physical separation between IoT devices and the
cloud. The congestion, especially at bottlenecks, is expected

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2671-041X
https://orcid.org/0000-0002-8127-7233
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0003-0901-5105
https://orcid.org/0000-0002-0293-5585

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1699

as a result of the enormous amount of data that IoT devices
are sending to the cloud through the Internet; and network
speed and bandwidth are also to be impacted. Since latency
sensitivity is one of the aspects of IIoT applications, trans-
mission delays yield reduced Quality of Service (QoS), thus
leaving negative impact on an end user’s experience. Due to
IIoT’s widespread acceptance and deployment, tasks for IIoT
heterogeneous applications in CCP surge, as do the energy
consumption and expenses required by cloud service providers
(CSPs). According to [8], energy-related expenditures account
for 41.6% of CCP’s overall operational expenses.

Consequently, CCP must perform the energy-efficient and
cost-effective scheduling of numerous IIoT heterogeneous
applications while meeting customer demands for a depend-
able and prompt cloud service. Still, it has certain attributes
that make such scheduling particularly difficult. First, CCP is
often dispersed among several sites with a wide geographical
range of energy availability and power grid prices. Second,
every single data center often links to several CSPs in order
to transmit data from consumers throughout the world. Indeed,
CCP interchanges vast amounts of data while incurring sig-
nificant monetary expenditures, execution time, and energy
consumption from data storage, computational processing,
and data transmission over a network. Third, while tightly
enforcing deadline constraints, a typical CCP must execute
energy-efficient and cost-time-effective scheduling of many
IIoT heterogeneous tasks [9]. Numerous research from the aca-
demic and industrial communities [10], [11] strive to reduce
the amount of energy used in CCP by scheduling tasks judi-
ciously while taking expenses, makespan, and throughput into
consideration. In [10], energy consumption is minimized by
accounting for the variety of power grid prices. However, the
data from IIoT applications and the available infrastructure
resources from various CSPs are not examined for heterogene-
ity. Shabestari et al. [11] presented an optimization method for
big data scheduling problem to minimize power consumption
while executing the applications in a timely fashion. Their
method offers a generic scheduling model, but it ignores the
type and size of applications. Furthermore, the heterogene-
ity of cloud infrastructure resources and variations of their
capabilities are not considered. Therefore, it is challenging to
minimize energy consumption, monetary cost, and execution
time in CCP while taking into account disparities in data stor-
age, computational processing capacity, network bandwidth,
and task completing deadline. A task schedule, which satis-
fies these conditions, fulfils the service level agreement (SLA)
signed with users. Task scheduling in CCP is designed to assist
both CSPs and end users. Energy efficiency, resource utiliza-
tion, system throughput, and load balancing are all substantial
for CSPs. As to the end users, their concerns span security,
deadline, budget, and makespan.

Metaheuristic algorithms (MHAs) are useful approaches
for locating approximations of solutions due to their sim-
plicity, flexibility, and potentiality to avoid local optima
traps [12]. Popular MHAs include particle swarm optimizer
(PSO) [13], simulated annealing (SA) [14], differential evo-
lution (DE) [15], and genetic algorithm (GA) [16]. Whale
optimization algorithm (WOA) [17] and gray wolf optimizer

(GWO) [18] are two examples of newly proposed algorithms,
which, compared against the well-known algorithms above,
show competitive performances. Many studies have generally
dealt with task-scheduling-in-cloud-computing (TSCC) prob-
lems in CCP by using different methods. Tran et al. [19]
employed machine learning and fuzzy techniques to predict
system workloads for making scaling resource decisions prop-
erly. Meanwhile, game and queuing theories are applied to
the scheduling problems [20]. Furthermore, Agarwal and
Srivastava [21], Singh et al. [22], and Mangalampalli et al.
[23] presented the approaches to distribute incoming requests
within a typical CCP by using PSO, SA, and GWO meth-
ods. Overall, whereas these studies can achieve satisfactory
results, their main flaw is that they only satisfy the needs of
CSPs or end users at once, rather than both. A good scheduling
solution should have the potency to get both sides satisfied.
Since multiobjective optimization is often much more difficult
than single-objective one, most of researchers have preferred
to formulate those criteria into a single-objective. Due to
high demand from real-world applications, multiobjective
optimization remains to be an active area of research [24].

Among many MHAs, PSO is a formidable nature-inspired
MHA under the swarm intelligence (SI) umbrella and can
be effectively used for solving challenging multiobjective
optimization problems [13]. Due to its global optimization
ability and calibratable parameter setting, it has been success-
fully applied in different industrial applications and multidis-
ciplinary scientific and engineering research areas, including
feature selection [25], image segmentation [26], static and
dynamic clustering [27], deep neural network research [28],
multiobjective control [29], and many others. In view of this,
high-performance solutions to TSCC problems may be derived
very effectively by using PSO [30], [31], [32], [33].

Although advancements reported in the literature improve
the optimization efficiency of PSO, they run the risk of
slipping into local optima traps owing to premature conver-
gence [13]. A TSCC problem is nonlinear and complex and
tends to have many locally optimal solutions. Additionally,
the “No Free Lunch” theorem [34] for optimization states
that there is no universal algorithm that guarantees constant
effective performance with all problems [35]. Furthermore, the
existence of a challenging NP-complete problem like TSCC,
which has no definite solution, is another drive for devel-
oping a robust scheduling approach to tackle this type of
problem [36]. Namely, we develop a novel MHA with a
robust global optimization capability, called opposition-based
SA PSO (OSAPSO), in order to effectively relieve the fore-
going difficulties and broaden PSO utilization for TSCC to
pursue the most effective, instantaneous, near-optimal solu-
tions. From the existing literature, we observe that hybrid
optimization algorithms, especially PSO-integrated ones, are
immensely popular in this domain that have been steadily
performing well [13], [33], [37], [38], [39]. In the original
PSO, the swarm candidates mainly guide the position updat-
ing process, which does not allow full utilization of the swarm
information and whole search space. Meanwhile, PSO’s ini-
tial swarm is formed at random, which makes it impossible to
assure the initial swarm’s quality. Therefore, the mechanisms

1700 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

of swarm initialization and position updating in OSAPSO
are updated as follows. First, by utilizing the whole swarm’s
information and opposite solutions, a partial opposition-based
learning (POBL) strategy is embedded into OSAPSO’s swarm
initialization procedure to partially expand search space of
the initial swarm in the opposite direction, thereby increas-
ing its probability of finding the global optimum and ability
to avoid becoming trapped into local optima, with less com-
putational complexity. By searching the neighborhood space’s
position information, an evolution strategy (ES) is utilized
in OSAPSO’s position updating mechanism for swarm repro-
duction, which greatly preserves both local search capability
and swarm diversity by learning from elite particles. The sur-
vivor probabilistic selection procedure of SA, named herein
an objective evaluation strategy (OES), is rendered to equip
OSAPSO with a greedy search capability by chasing superior
solutions while, with a certain probability, accepting inferior
solutions, within the global solution’s regions discovered by
OSAPSO. Finally, advantageous information sharing capabil-
ity of PSO is utilized to boost global search ability for robust
global optimization.

As per distinct environmental circumstances in terms of
the number of nodes and the size of task sets, OSAPSO’s
optimization performance is investigated on two different sce-
narios of heterogeneous cloud systems with four multiscale
cloud datasets of 20 different TSCC instances. As far as we
know, there is no work in this research area that compre-
hensively covers the four datasets. When compared to some
state-of-the-art optimization algorithms, including the stan-
dard PSO and SA, comprehensive learning particle swarm
optimization (CLPSO) [40], chaos particle swarm optimization
(CPSO) [41], adaptive DE (JADE) [42], linear population
size reduction success-history adaptive DE (LSHADE) [43],
WOA, and GWO, OSAPSO is found to be effective at solv-
ing TSCC problems with superior final objective values and
decent convergence speed in the early stage of optimization.

The novel contributions of this article are fourfold.
1) Proposing OSAPSO to elevate PSO’s performance by

introducing: a) a POBL strategy to reinforce the global
search ability and heighten the initial swarm’s quality;
b) an ES strategy injected by SA’s damping characteristic
and a novel, equiprobable-switching crossover mecha-
nism, in order to maintain swarm diversity and local
search ability; and c) a greedy OES strategy to enable
OSAPSO to chase superior solutions while, with a cer-
tain probability, accepting inferior solutions to provide
a good exploration–exploitation balance.

2) Formulating TSCC as a constrained multiobjective com-
binatorial optimization problem, which considers power
consumption, monetary cost, service makespan, and
system throughput while fulfilling task deadlines.

3) Evaluating OSAPSO for effectiveness and practicality to
solve TSCC problems by comparing it to several well-
regarded methods on two distinct scenarios of cloud
systems with four multiscale cloud datasets (synthetic
and realistic) of 20 different TSCC instances.

4) Modeling and simulating a heterogeneous cloud comput-
ing platform to test task scheduling strategies for IIoT
heterogeneous applications.

Section II introduces OSAPSO and TSCC problems. The
details of OSAPSO are explained in Section III. Its compari-
son results with its peers are shown in Section IV. Section V
concludes this article.

II. PROBLEM FORMULATION AND SYNOPSES

A. System Architecture

In CCP, processing occurs within cloud nodes (e.g., work-
station server, virtual machines, and high-performance com-
puting servers) to satisfy IIoT user’s needs. Despite substantial
latency issues, the cloud remains indispensable due to its
incredibly powerful computing. Our system model is assumed
to consist of a set of cloud nodes, as well as a cloud broker.
All IIoT user’s requests sent via various IoT devices, includ-
ing smart sensors and wearables, and responses replied from
cloud nodes, are forwarded to the broker, where all tasks sub-
mitted to the cloud system are analyzed, estimated, and then
scheduled. Since the broker and cloud nodes are to be close
to each other by assuming their inclusion both in the cloud
system with multiple brokers highly deployed, the delay for
data communication between broker and nodes can be accept-
ably neglected. In order to maintain CCP’s high performance,
our OSAPSO is installed on the broker so as to find the most
favorable task executing schedule that achieves high energy
efficiency, cost–time effectiveness, and throughput. To main-
tain system stability and reliability, OSAPSO is regularly run
at the broker to bulk and schedule a set of incoming tasks,
which have already been submitted at different times during
the previous run of the algorithm. Our future work intends
to consider immediate (dynamic) scheduling and precedence
executing of tasks generated from critical applications, e.g.,
medical diagnosis and self-driving vehicles, which cannot wait
until the next run of the algorithm.

A potential single-point-of-failure problem may disturb the
system. First, we assume that IIoT users can connect to a
cloud broker via multiple links, and so there are multiple links
among system nodes. Thus, the cloud broker has more than
one route to deliver a task to its respective node. At the worst,
when there is an inevitable failure to deliver a specific task
to its allocated node via any of the available routes, or the
allocated node itself is down, OSAPSO continues to search
other solutions until finding a more decent node for that task.
Although this issue is not explicitly considered in our sim-
ulation as CSPs already take care of it by providing backup
links, it is worthy considering as future work. The operational
sequence of the proposed system is shown in Fig. 1.

B. Task Scheduling Problem Statement

The cloud system handles data processing requests from
IIoT heterogeneous applications to be executed across the
cloud computing infrastructure, posterior to decomposing them
into small, independent tasks, each with attributes, including
the number of instructions, I/O file size, memory required,
and completion deadline. Suppose that Tk refers to an IIoT
task k. A set of n independent tasks are received each time
in the system and expressed as T = {T1, T2, T3, . . . , Tn}.
Assume that there exist m heterogeneous processors (cloud
nodes) composing the cloud computing infrastructure. They

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1701

Fig. 1. Task scheduling flow within the cloud system architecture.

have typical properties like processing capacity, data transmis-
sion delay, and monetary cost and power consumption from
computation, storage, and bandwidth usage. If the cloud pro-
cessing node numbered i is represented by Ni, then a set of
m processors can be denoted as N = {N1, N2, N3, . . . , Nm}.
Thus, for all IIoT tasks T and cloud nodes N, each task Tk

is to be scheduled (assigned) to a node Ni, which is repre-
sented by S i = {Ti

x, Ti
y, . . . , Ti

z}, in which a set of one or more
tasks can be scheduled to the same processor for execution.
In sum, TSCC can be described as looking for a schedul-
ing scheme S = {Ta

1 , Tb
2 , Tc

3, . . . , Tp
n }. To effectively finish all

tasks within cloud nodes, our task scheduling target takes into
account the following influence factors: power consumption,
monetary cost, service makespan, and system throughput.

1) Power Consumption: P denotes the total power con-
sumed for completing all tasks. We need to consider power
consumption from each cloud node Ni for data transmission
from IIoT users to Ni and vice versa (P1i), storage data on Ni

(P2i), execution at Ni (P3i), as well as the power consumption
from Ni in the idle mode (P0

ji) for each corresponding activity
j ∈ {1, 2, 3}. We have

P =
m∑

i=1

P1i + P2i + P3i (1)

where

P1i = P0
1i +

∑
Tk∈S i SI(Tk) + SO(Tk)

P1i

P2i = P0
2i +

∑
Tk∈S i SI(Tk) + SO(Tk)

P2i

P3i = P0
3i +

∑
Tk∈S i L(Tk)

P3i

with SI(Tk) and SO(Tk) being the sizes of, respectively, input
and output files of an IIoT task Tk; P1i and P2i being the
powers required to, respectively, transfer and store one data
unit from an IIoT user to/on Ni; and P3i being the power
required to execute one instruction unit at Ni.

2) Monetary Cost: When a cloud system processes a task,
a constant fee must be paid for ingress and egress data trans-
mission (C1i), data storage (C2i), data processing (C3i), and
memory usage (C4i) for an allocated node Ni. The total cost

C when all nodes processes all tasks assigned to them is

C =
m∑

i=1

C1i + C2i + C3i + C4i (2)

where

C1i = C0
1i +

∑
Tk∈S i SI(Tk) + SO(Tk)

C1i

C2i = C0
2i +

∑
Tk∈S i SI(Tk) + SO(Tk)

C2i

C3i = C0
3i +

∑
Tk∈S i L(Tk)

D2iC3i

C4i = C0
4i +

∑
Tk∈S i SM(Tk)

C4i

with C0
ji being the cost required for each corresponding activity

j ∈ {1, 2, 3, 4} for the entire time when Ni is in idle mode;
L(Tk) being the length (the number of instructions) of task
Tk; and D2i being the delay of computation of Ni, which is
estimated via instruction level parallelism, number of cores,
clock rate, etc. SM is the memory size needed for Tk. C1i and
C2i are the average costs to, respectively, transfer and store
one data unit to/on Ni. C3i and C4i are the average costs of,
respectively, processing one instruction unit at Ni and utilizing
memory required by Tk.

3) Service Makespan: Given the maximum time period of
transmission (τ1i) and execution time (τ2i) among all nodes,
we have the total time needed for all tasks to be completed,
defined from the moment of submitting the first task’s request
to that of completing the last task and returning its results, or
the last machine (node) is unloaded

M = m
max
i=1

τ1i + τ2i (3)

where τ1i is the transmission time required to transfer the
ingress and egress data of all tasks assigned to Ni, i.e.,

τ1i =
∑

Tk∈S i SI(Tk) + SO(Tk)

D1i
(4)

with D1i being the average delay to transmit one data unit
from an IIoT user to Ni. The execution time required by Ni to
complete all tasks assigned to it is

τ2i =
∑

Tk∈S i L(Tk)

D2i
. (5)

4) System Throughput: The throughput of instructions exe-
cuted on all nodes of the cloud system per time unit is

η =
∑n

k=1 L(Tk)∑m
i=1 τ2i

. (6)

5) Overall Objective Function and Constraint:

F = w1P + w2C + w3M + w4

η
(7)

s.t. ε(Tk) ≤ �(Tk) ∀Tk ∈ S i, i ∈ {1, 2, 3, . . . , m} (8)

with w1–w4 being the balance coefficients among P , C, M,
and η, where

∑4
i=1 wi = 1, wi ∈ [0, 1], i ∈ {1, 2, 3, 4}.

1702 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

Equation (8) is a constraint function that each task Tk’s com-
pletion time ε(Tk) meets its completion deadline �(Tk). Two
more constraints are as follows.

1) A node can perform one task only at a time.
2) Each task is assigned to only one node.
A TSCC problem can be mathematically modeled as a

constrained multiobjective minimization problem as follows.
Input:

T = {T1, T2, T3, . . . , Tn}: a set of IIoT tasks.
N = {N1, N2, N3, . . . , Nm}: a set of cloud nodes.

Output:
S = {Ta

1 , Tb
2 , Tc

3, . . . , Tp
n }: an assignment of all tasks to

nodes.
Objective:

Minimize the objective function in (7), subject to all
constraints.

C. Conventional Particle Swarm Optimization

The biological behavior of fish schooling and bird flock-
ing has been analogized to propose the SI-based particle
optimization algorithm for particularly solving continuous
nonlinear problems [13]. In the PSO process, a swarm of par-
ticles initially forms as a set of random solutions scattered
across search space. Then, each particle is updated in each
iteration for its velocity and position, according to

vt+1
i,j = ωvt

i,j + c1rt+1
1i,j

(
pt

besti,j − xt
i,j

)
+ c2rt+1

2i,j

(
gt

best,j − xt
i,j

)

(9)

xt+1
i,j = xt

i,j + vt+1
i,j (10)

where vt
i,j and xt

i,j stand for the jth dimension of, respectively,
velocity and position vectors of particle i at current iteration
t. c1 and c2 are positive acceleration coefficients to control
the influence of pbest and gbest on the search process. ω is
the inertia weight. r1i,j and r2i,j are two independent random
numbers selected from samples uniformly distributed over the
interval [0, 1]. pt

besti,j
denotes the personal best position his-

torically found by particle i to t, whereas gt
best,j represents the

entire swarm’s global best position ever to t. On each iteration,
pt

besti,j
and gt

best,j are updated according to exact function eval-
uations for all the particles. PSO typically terminates when a
stop criterion is met, and the global best position gbest is finally
exported.

D. Conventional Simulated Annealing

SA is a metaheuristic trying to find the globally optimal
solution for an optimization problem, often used in conjunc-
tion with other MHAs to overcome its slow convergence
problem [44]. The annealing process of metals is basically imi-
tated in SA, where the heat or temperature T steadily reduces
based on a cooling rate

�T = (
Tf /T0

) 1
t+1 (11)

with T0 and Tf being, respectively, the initial and final
temperatures.

SA is usually initialized with a random single solution and
repeatedly searches through the neighborhood of current solu-
tion, pursuing a new, better solution. Far from that a neighbor

solution is always accepted if it is fitter, if that solution inci-
dentally has a fitness worse than the current solution, it is
accepted by SA with a certain probability

p = e
−θ
�T (12)

where θ is the absolute difference between fitness values of the
current solution and the previous neighbor solution. Accepting
a worse solution could boost an algorithm’s capability to avoid
entrapment into local optima. This procedure is performed
continually until a specified termination criterion for T is hit.

E. Opposition-Based Learning

In the group SI optimization algorithms, both convergence
acceleration and search efficiency are directly affected by
swarm diversity. Some scholars prefer chaotic mapping to
initialize the swarm to promote diversity [45], given that ini-
tializing the swarm with the chaotic algorithm helps it jump
out of the local optima traps. However, this way has a disad-
vantage due to the close contact with the proximity and the
high randomness and uncertainty faced, which impedes equi-
librium if the iteration encounters an unstable point. Reverse
(Opposition-based) learning in the early initialization of solu-
tion space makes it even random, ergodic, and regular [46].
Furthermore, in the actual search process, if the initial swarm
generates opposite solutions for the whole individuals, then
the iterative search will only take an extended period of
time. Thus, this article proposes using biased (l-best) reverse
knowledge for swarm initialization by applying the classical
opposition-based learning (OBL) theory to only a proportion
l of the initial swarm, where 0 < l < 1. On swarm initializa-
tion, the forward (original) solution xi,j and reverse (opposite)
solution x̄i,j are mathematically formulated as

xi,j ∼ U
(

ǰ, ĵ
)
, (13)

x̄i,j = ǰ + ĵ − gbest,j + rj
(
gbest,j − xi,j

)
(14)

where ǰ and ĵ are, respectively, the demarcated lower and
upper bounds of the values permitted in each dimension j.
rj ∼ U(0, 1) is a random value in the jth dimension.

III. EVOLUTIONARY SWARM INTELLIGENCE FOR TSCC

Our proposed algorithm is primarily concerned with map-
ping a huge number of incoming tasks into available limited-
resource nodes in accordance with adaptable time. PSO gen-
erates a set of individuals (target vectors), which comply with
different evolutionary operators to reaching a suitable (near-
optimal) schedule, which enables that all tasks are intelligently
scheduled to be executed within a minimized time interval.
The final output to tackling a TSCC problem is often an array
of solutions with assignment of tasks into proper nodes.

First, in PSO, the swarm is often initialized at random. This
way is clearly disadvantageous to swarm diversity, particu-
larly in the early stage of search, i.e., this blindness to search
at the beginning does not ensure the quality of initial swarm
and eventually diminishes the algorithm capacity to scrutinize
whole search space. Furthermore, PSO does not fully utilize
the search space and swarm information, and particle posi-
tion is updated only around particles pbest and gbest. If these

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1703

Fig. 2. Framework of OSAPSO.

two particles are trapped into local space extremes, it is highly
likely that the remaining particles behave the same, causing the
algorithm to experience “stop searching” behavior, hence pre-
mature convergence, due to the excessive loss of exploration
and swarm diversity.

This work strives to tackle aforementioned PSO’s issues by
suggesting the following improvement strategies:

1) The swarm is initialized by applying partial reverse
learning (i.e., POBL) to the top l-best particles, in
order to reinforce the uniformity of swarm distribution,
enhance swarm diversity, and alleviate search blindness
at the beginning, thus boosting the overall performance
of OSAPSO.

2) The evolutionary operators guide particles to move
toward the feasible regions by capturing the optimal
solution when individuals behave aggressively near the
extremes, or jumping out of the local optima to explore
solution space for more viable areas.

3) Particles exchange information about their own best
positions found so far with the global optimal individual
in each iteration, thus guiding the swarm to the optimum.

4) The survivor selection strategy of SA is incorporated
to pursue an optimum within the global search regions
identified by POBL and ES, providing OSAPSO with
avaricious exploratory behavior.

The latter three strategies (i.e., evolution and survival) are
repeated until a preset stopping criterion is met. Algorithm 1
in the Supplementary File realizes OSAPSO shown in Fig. 2.

A. Particle: Position Encoding and Velocity

The representation step is crucial to a PSO’s successful
design, which aims at finding a proper mapping between
PSO particles (in its ordinary continuous form) and problem
solutions. In OSAPSO, discrete representation is used for par-
ticle encoding, i.e., each particle is denoted an n-dimensional
discontinuous vector, called a position vector, corresponding
to n tasks. With m being the number of cloud nodes, the
discrete position vector x̆i of the ith particle is represented

Fig. 3. Example of a position vector in a succession of forms.

as x̆i,j ∈ {1, 2, . . . , m}, ∀i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , n},
where N is swarm size and each element j in the position
vector contains an integer value g ranging from 1 to m, indi-
cating that the corresponding task is allocated to node g. If
xi,j = 3, then task Tj is to be executed at node 3. A normal-
ization and scaling technique is applied. First, each element j
is normalized to a real number in the range [0, 1] as

x̃i,j = xi,j − minn
j=1 xi,j

maxn
j=1 xi,j − minn

j=1 xi,j
. (15)

Then, the normalized vector x̃i is scaled and rounded (dis-
cretized), for each element j, to one of {1, 2, . . . , m} as

x̆i,j = round
(
1 + x̃i,j(m − 1)

)
. (16)

For instance, if a set of ten tasks must be executed within
a three-node cloud system, a potential schedule can be:

S =
{

T2
1 , T2

2 , T1
3 , T3

4 , T1
5 , T1

6 , T3
7 , T2

8 , T3
9 , T3

10

}
.

Node 1 is responsible for executing the task subsequence
{3, 5, 6}, the task subsequence {1, 2, 8} is assigned to node 2,
whereas node 3 executes {4, 7, 9, 10}. Since performing tasks
in a different sequence at a node has no effect on the objectives
to be optimized, the order of tasks to be processed is ignored.
Fig. 3 shows an example of a particle’s position vector (or a
potential schedule) expressing the above solution in different
representations.

Each particle utilizes its own velocity to move to a new
location. The velocity vector’s dimensions are identical to
the continuous position vector (i.e., an n-dimensional vec-
tor), and its elements have real numbers clamped in [ǰ, ĵ].
Overall, we must consistently ensures that xi,j, vi,j ∈
[ǰ, ĵ] ∀i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , n}.

B. Fitness Evaluation

An objective function is used to evaluate the quality of
a schedule scheme that a particle expresses and its attained
value is referred herein to as an exact objective value (EOV).
In our objective function considers power consumption, mon-
etary cost, service makespan, and system throughput. Its
exact definition is given in (7). The lower the F’s value, the
more superior the solution obtained. In the following proce-
dures, the swarm individuals’ sorting via EOV is adopted in
OSAPSO particularly to maintain its greedy behavior in order
to consistently ensure obtaining the extremes.

1704 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

1) Personal Best and Global Best: Various locations are
explored by particles through many movements. pt

besti
deter-

mines the personal best position that the ith particle has
experienced to current iteration t, whereas gt

best represents
the global best location discovered by any of the swarm’s
individuals to t. Thus, both are n-dimensional.

pbest and gbest are two crucial solutions in the PSO process,
which assist all particles, at every time step t, to effectively
update their current position by searching around both their
own best position and the global best one, respectively. Every
particle i in the swarm regularly moves to a new location
xt+1

i . If it achieves a less EOV, its personal best position pt+1
besti

is substituted by xt+1
i . If pt+1

best has an EOV less than gt
best,

gt+1
best is substituted by pt+1

best. This process is realized and solely
imposed in Algorithm 5 in the Supplementary File.

2) Probabilistic Selection: In OSAPSO, the process of
objective evaluation occasionally takes place based on the
SA-based OES. The most striking feature in OES is that SA
can, with a certain probability, accept poor solutions, provided
that they learn later from superior ones in the mutation pro-
cess. From (12), these poor solutions are highly acceptable at
the early stage of the search, but their acceptance probability
eventually diminishes by the end of the search, which could
maintain the search direction out of the local optima’s regions
while making a good exploration–exploitation tradeoff. In ES
strategy, OES is to select individuals from among initial and
offspring swarms to form the elite swarm. Similarly, OES is
used with POBL in the swarm initialization stage. Algorithm
2 in the Supplementary File realizes OES.

C. Swarm Initialization

Assuming an initial swarm of N particles, each particle has a
position randomly generated to ensure extensive distribution of
the swarm through the whole search space. To dynamic explo-
ration, the particles’ velocity vectors are also stochastically
initialized. Furthermore, to further raise the initial swarm’s
quality, a POBL strategy is embedded into the swarm ini-
tialization of PSO. POBL is recommended as it helps PSO:
1) partially expand the space of feasible regions discovered by
the initial swarm around gbest in the opposite direction, as seen
in (14); 2) enhance the swarm diversity within these regions;
and 3) avoid the high complexity in computational time that we
would encounter if POBL is applied to the whole swarm. Thus,
applying OBL partially to only a proportion l of the swarm
(�lN� search particles with the best EOVs ever) from the indi-
viduals obtained in the swarm initialization process, the chance
that the quality of the initialized swarm approaches the optimal
solution can increase [13]. Then, PSO’s search performance
can be improved with the help of swarm initialization via
POBL, as realized in Algorithm 3 in the Supplementary File.

D. Particle Updating

Our proposed particle updating mechanism comprises evo-
lutionary computing with the MWTS-based parent selection,
SI and OES, as given in Algorithm 4 in the Supplementary
File.

Fig. 4. All-point mutation operator and two-point inversion–scrambling-
based crossover operator.

1) Multiway Tournament-Based Parent Selection: First,
MWTS [16] is applied as follows. Excluding the underlying
particle, a proportion (or rate of ways q ≥ 3/N ∈]0, 1[) are
randomly selected from the current swarm. Their top three par-
ticles are selected as parents, say xt

a, xt
b, and xt

c, to participate
in the mutation process. In such a manner, the swarm evolu-
tion is well guided since high-quality individuals with better
EOVs have a larger chance of being picked as parents, guar-
anteeing that beneficial elements of particles are more likely
to be retained in the swarm of the next generation.

2) Damping-Based Mutation: With the help of MWTS, a
new mutant vector is presented by following one of the com-
mon mutation schemes of DE [15] and stemming from the
idea of damping in SA (i.e., temperature eventually decreases
over iterations in SA, as does the mutation step size) as

ẍt+1
i = xt

a + σ
(
xt

b − xt
c

)
, (17)

with (a, b, c) ∈ {1, 2, . . . , �qN�}, a
= b
= c
= i, and σ being
a mutation step size is initially set to σ0 ∈]0, 1[and linearly
decreased (or dampened) by a given mutation damp rate λ ∈
[0, 1], thus enabling the algorithm to closely search feasible
regions to eventually possess accelerated decent convergent
behavior. The mutation process is utilized to generate a new
individual by inheriting good elements from parents (i.e., xa,
xb, and xc) picked via MWTS.

3) Inversion–Scrambling-Based Crossover: This operation
is adopted by switching alternately, based on a probability
strategy, between executing two crossover mechanisms (i.e.,
inversion and scrambling), thus making the algorithm able to
jump out of local optimization. Crossover is employed to cre-
ate a new individual by blending mutant individual ẍt+1

i with
current individual xt

i. Fig. 4 shows this operation with particle
encoded as an integer array. The two crossover’s boundary ele-
ments are selected at random. The current individual shares an
inverted or scrambled segment of applicable elements (selected
via a crossover rate Cr ∈ [0, 1]) with the mutant individual,
while the remaining elements are preserved, so as to produce a
new offspring individual. That way, the tasks (elements) cho-
sen in mutation and crossover are assigned to be processed at
other nodes. Once the crossover operation completes, a prob-
abilistic selection process is rendered to select survivors to the
next elite swarm by comparing the current swarm’s individuals
to new offspring based on their EOVs.

4) Swarm Intelligence: Swarm information is updated by
using the gbest PSO [13] model so as to maintain fine balance

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1705

between diversity and convergence, as a guide for exploring
high-quality solutions. According to the minimization mecha-
nism adopted, the better personal solution pbest of an individual
is selected via the less EOV, whereas the global best one gbest
is determined via the least EOV among all individuals. We rec-
ommend this greedy selection with PSO to maintain the swarm
diversity and feasibility over iterations, especially when there
is sluggishness in substituting for the elements of inferior indi-
viduals, which could still contribute to exploring new regions,
while there is no frequency of good segments of elements in
individuals in one swarm. gbest PSO is given in Algorithm 5
in the Supplementary File.

E. Computational Complexity Analysis

The computational complexity of MHAs generally depends
on problem definition, population/swarm size (N), the maxi-
mum number of iterations (T̂), the number of the problem’s
dimensions (D̂), and the cost of fitness/objective evaluation
(Ĉ). Based on the detailed analysis shown in Table A in the
Supplementary File, we conclude that OSAPSO’s complexity
can be actually reduced to O(OSAPSO) = O(1) + O(ND̂ +
NĈ) + O(T̂ND̂) + O(T̂ND̂ + T̂NĈ) + O(T̂ND̂ + T̂NĈ) =
O(N(D̂ + Ĉ)+ T̂N(D̂ + Ĉ)) = O(T̂N(D̂ + Ĉ)), which is equal
to the original PSO’s.

IV. PERFORMANCE EVALUATION

The simulation setup is presented in this section.
Specifically, two typical, contradictory scenarios of TSCC
problems are exemplified by using four multiscale cloud
datasets of 20 different TSCC instances.

A. Experimental Setup

In our experiments, cloud nodes are constructed with the
characteristics listed in Table B in the Supplementary File.
Due to resource heterogeneity and diversity in cloud systems,
the cloud nodes have diverse configurations and parameters.
The node characteristics include: 1) processing capacity mea-
sured by average delay to process million instructions (s/MI);
2) data transmission delay (measured by time consumed to
transmit one mega byte (s/MB)); and 3) monetary cost and
power consumption from computation, storage, and bandwidth
usage. Cost and power are, respectively, calculated accord-
ing to Grid Dollars (G$) and Grid WattHour (GWh), that is,
currency and power units used in experiments, respectively.
To obey how a cloud system practically operates, two state
types (i.e., idle and running) are considered for the cloud
nodes. If a node does not transfer, store, or process data, it is
deemed idle, and vice versa. The parameter values in Table B
in the Supplementary File are generated uniformly in ranges
following prior work [47], [48].

The cloud system is generally designed to execute all IIoT
users’ requests. Each request (or job) is broken down into a
series of tasks, which are then examined and given an estimate
of the resources they require. Each task is supposed to carry a
few proprieties, such as the number of instructions, size of the
input and output files, amount of memory required, and com-
pletion deadline. Depending on the workload of each request,

there may be a wide variation in the size of task sets. Thus,
in order to duly test the validity and authenticity of OSAPSO
on the cloud systems developed, five synthetic groups (sets
of tasks) with 200–1000 tasks are created. Tasks are assumed
to be independent and nonprimitive, and each task is gener-
ated by using a uniform distribution with attributes in Table C
in the Supplementary File. With such uniform randomness,
various scenarios could be covered in the experiment due to
the creation of many task types, some of them requiring a
huge amount of bandwidth or memory whereas others requir-
ing more processing capacity, and so on. In addition, we put
forward three more realistic case studies, each with five task
instances evenly covering from 500 to 2500 tasks. These case
studies are altered from three commonly used realistic datasets,
including GoCJ [49], as well as cleaned versions of the parallel
workload logs of HPC2N and NASA Ames iPCS/860 (avail-
able from the “Parallel Workloads Archive” [50]). Attributes of
the three realistic datasets are also reported in Table B and C
in the Supplementary File. It is noteworthy that the bench-
marks (i.e., Tables B in the Supplementary File) are proposed
due to the lack of approved benchmarks in this research area.

OSAPSO is compared to some state-of-the-art standard
(e.g., PSO and SA), well-known (e.g., CLPSO, CPSO, JADE,
and LSHADE), and widely used recent (e.g., WOA and GWO)
optimization algorithms. For the sake of fairness, all of the
competing methods’ parameter settings match those recom-
mended in the respective publications, without any parameter
tuning [51]. On the other hand, it is unquestionably true that
OSAPSO’s best parameters rely on the situation at hand and
definitely have an impact on its overall effectiveness. However,
many real-world trials are needed to fully understand the
impact of parameter adjustment. So, its proper parameter val-
ues that could produce the greatest outcomes are determined
according to our pilot runs. Standard values are set for some
OSAPSO’s parameters. Specifically, SA’s initial temperature
T0 and final one Tf are fixed to 1000 and 1, respectively, [52].
PSO’s inertia weight ω is linearly reduced from 0.9 to 0.4 for
balancing global and local searches. Its acceleration constants,
c1 and c2, are both fixed to 1.2 [53]. The initial mutation step
size σ0, mutation damp rate λ, and crossover rate Cr are set
to 0.9, 0.3, and 0.2, respectively. The rate of ways q and the
swarm proportion l are set to 0.5 (i.e., roughly one-half of the
swarm size) and 0.3 (i.e., roughly one-third of the swarm size),
respectively. In order to determine the proper values of σ0, λ,
Cr, q, and l, we employ grid search [54] in the experiments.
For all algorithms, swarm size N is set to 50, the maximum
number of generations (or iterations) T̂ is adopted as the ter-
mination criterion and is set to 500, and lower (ǰ) and upper
(ĵ) bounds are, respectively, −1 and 1 in each dimension j
of the position and velocity vectors. To reduce randomness
impact on the final results, 30 trials of optimizations are oper-
ated independently on each set of tasks and the mean results
and standard deviations are recorded.

In (7), w1–w4 indicate the priority of optimization among
power, cost, time, and throughput, respectively. Since our
primary goal is to diminish the energy consumption and
cost–time bond, we simulate a typical scenario, in which
power, cost, time, and throughout have disparate levels of

1706 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

(a) (b) (c) (d)

Fig. 5. Stability, ranking, and significance given 50 cloud nodes on the four cloud datasets. (a) GoCJ. (b) HPC2N. (c) NASA Ames iPCS/860. (d) Synthetic.

(a) (b) (c) (d)

Fig. 6. MOV given 50 cloud nodes on the GoCJ dataset for the four desired objectives. (a) Power consumption. (b) Monetary cost. (c) Service makespan.
(d) System throughput.

interest (i.e., w1 = 0.5, w2 = 0.2, w3 = 0.2, and
w4 = 0.1).

All experiments are conducted on a server machine
equipped with two Intel Xeon Silver-4214 2.20-GHz proces-
sors, 64-GB RAM, and 64-bit Windows Server 2022 Operating
System. The simulation is conducted in Python version 3.11.0.

B. Performance Metrics

Of the 30 trials’ independent experimental results, the mean
objective value (MOV) and overall objective value (OOV)
are reported to analyze the accuracy and stability of the
optimization capabilities of all algorithms. To verify whether
the results obtained by OSAPSO have a statistically signif-
icant difference from the competing methods,’ we conduct
a nonparametric test, called Wilcoxon’s signed-rank test, at
a confidence level 95%, where the symbols “+,” “−,” and
“≈,” respectively, indicate that OSAPSO’s results are signifi-
cantly better than, worse than, and similar to those achieved
by the corresponding algorithm in comparison. Furthermore,
to analyze the algorithms’ comprehensive optimization per-
formances, Friedman’s test is adopted, in which the mean
rank value (MRV) represents each algorithm’s optimization
capacity rank on average. The best results are shown in bold.

C. Results and Analysis

To investigate the effect of OSAPSO and its peers, two com-
putational experiments are designed by using four multiscale
datasets with five task sets for each, producing 20 different
TSCC instances.

Task Scheduling With a Fixed Number of Nodes and
Variable-Size Task Sets: Fig. 5 shows distribution of OOV and
MRV of the competing algorithms on the four cloud datasets.

In this simulation, the number of cloud nodes is fixed at 50,
and the results are recorded over multiple runs of each algo-
rithm. As demonstrated from Fig. 5, OSAPSO surpasses its
rivals with significant effectiveness in most cases. In order
to further estimate its impact on each single objective, MOV
results on the four datasets are individually visualized for the
four desired objectives in Fig. 6 and Figs. A–C. As seen,
OSAPSO outperforms its peers on all datasets for the four
objectives.

Task Scheduling With a Variable Number of Nodes and a
Fixed-Size Task Set: Since it is practically difficult to deter-
mine the optimal number of cloud nodes. Thus, we further
study the influence of the number of cloud nodes on the
performance of OSAPSO by using a variable number of nodes
from 10 to 100 stepped by 10 for each dataset. Results are
shown in Fig. 7. As seen, the number of cloud nodes has high
impact on the merit of final results, and MOV improves when
a larger number of nodes are deployed. This indicates that
the strategies adopted can elastically contribute to the final
performance.

Summing up both scenarios, further findings can be con-
cluded.

1) From Fig. 6 and Figs. A–C in the Supplementary
File, when there exist numerous tasks submitted, our
proposed OSAPSO performs better in terms of schedul-
ing than the compared methods, especially on task sets
at scale. For instance, taking the HPC2N dataset as an
example, Fig. A in the Supplementary File shows that
OSAPSO obviously achieves up to 4%, 21%, and 7%
improvements over the second-best performers JADE,
LSHADE, and CPSO in power consumption, service
makespan, and system throughput objectives, respec-
tively. This signifies our method’s effectiveness, which

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1707

(a) (b) (c) (d)

Fig. 7. MOV with a different number of cloud nodes on the four cloud datasets. (a) GoCJ. (b) HPC2N. (c) NASA Ames iPCS/860. (d) Synthetic.

may be primarily attributed to the damped mutation
and inversion–scrambling crossover operators and the
capability of the feasible solutions’ sharing of PSO.

2) When the number of available cloud nodes is small,
OSAPSO can, however, manage to achieve superior
performance by using the crossover and mutation oper-
ators to substitute for inferior nodes, whereas most
contemporary counterparts do not perform satisfacto-
rily by preserving the base nodes. To put it another
way, these algorithms frequently result in the ongoing
requirement for more nodes in order to better the final
results. For example, in Fig. 7, when the number of
nodes is 10, OSAPSO statically preforms much better
on the four datasets with their various TSCC instances.
In terms of the other number of nodes, OSAPSO still
outperforms its peers. When one hundred cloud nodes
are deployed, OSAPSO improves on the four datasets
by around 3%–13% over the second-best performer
LSHADE. Another conclusion is that the increased num-
ber of nodes can reduce MOVs. In a word, it has been
evident that OSAPSO is a promisingly scalable algo-
rithm for task scheduling in the cloud thanks to its
global exploration and local exploitation characteristics
for searching high-quality schedules.

3) OSAPSO clearly outperforms other methods, such as
CLPSO, CPSO, JADE, and LSHADE, based only on
the mutation mechanism. As in MOV curves, OSAPSO
continues to outperform its peers as the number of tasks
grows. When a higher number of tasks are submitted,
its peers do not pay enough attention to the muta-
tion procedure, resulting in unsatisfactory performances.
On the contrary, OSAPSO can handle any given num-
ber of tasks and produce desired results by exploiting
viable regions that arise as a result of damping-based
mutation and the probabilistic selection technique. In
terms of stability and ranking, OSAPSO keeps ahead
of its peers. For example, as seen in Fig. 5, OSAPSO
ranks first on all four datasets with the selected TSCC
instances. Additionally, it is evident that OSAPSO and
its competitors vary significantly in almost all selected
TSCC instances in favor of OSAPSO. This may be
due to OSAPSO distinctively seeking for new decent
solutions in multiple informative local areas by using
POBL, thereby ensuring a more focused search around
the better localities thanks to ES and OES, which reveals
that OSAPSO has strong exploration and exploitation

capabilities. As such, the advantages of OSAPSO have
been validated.

D. Parameter and Convergence Study

In (7), the objective function adopted has four weighting
coefficients, and we assume that all its indices are normal-
ized [55]. When weighting coefficients are equal, this states
that the priority for optimizing power consumption, monetary
cost, service makespan, and system throughput is the same.
When w1 > w2 > w3 > w4, our mechanism prioritizes
reducing power consumption above monetary cost, service
makespan, and system throughput, implying that decision
maker(s) (DMs) prefer to spend more money and consume
longer time while tolerating a low system throughput, in
exchange for environmental and energy conservation. On the
contrary, with a throughput’s weight coefficient held constant,
when w1 < w2 < w3, makespan and cost are more priori-
tized than power, i.e., consumers still need their requests to
be executed fastest with a tight budget. Such an approach can
assist DMs in giving the multiobjectives a priority order. This
results in a broader concept of a utility function, also known as
a preference function, which represents the DM’s preferences.

Next, we experimentally verify OSAPSO’s speedy conver-
gent behavior. Fig. 8 demonstrates that all competing algo-
rithms exhibit convergent behavior on all datasets. However,
most of its peers converge more quickly initially, but as itera-
tions progress, the diversity of their solutions decreases. Due
to the synergy of damped evolution and probabilistic selection
strategies, the inferior individuals in OSAPSO can leverage
the discrete information of decision variables in a homoge-
neous search space and effectively learn from the whole swarm
to achieve a potential tradeoff between swarm diversity and
convergence rapidity, thus avoiding getting stuck into local
optima, hence premature convergence. In summary, OSAPSO
effectively converges more quickly than other rivals, and the
strategies involved can help find a promising solution space in
the early stage of optimization while becoming progressively
more helpful in the later iterations so as for OSAPSO to jump
out of a local minimum and search better schedules.

E. Analysis of Components of OSAPSO

OSAPSO has five essential hyperparameters that affect the
final results noticeably, including the initial mutation step size
σ0, mutation damp rate λ, crossover rate Cr, rate of ways
q in MWTS, and swarm proportion l in POBL. In order to

1708 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

(a) (b) (c) (d)

Fig. 8. Convergence traces given 50 cloud nodes on the four cloud datasets. (a) GoCJ. (b) HPC2N. (c) NASA Ames iPCS/860. (d) Synthetic.

fine-tune them, we adopt a grid searching strategy. As appar-
ently shown in Fig. D in the Supplementary File, a small σ0
accompanied with a bit high λ gives decent results in the muta-
tion process for all the four datasets. The reason is that such
combination may promote the algorithm to exhibit acceler-
ated convergent behavior while maintaining swarm diversity
by POBL and OES over first few iterations. Furthermore, Cr

and q are correlated as they are both incorporated into the
evolution process and properly setting their values is highly
expected to elevate OSAPSO’s evolutionary capability. From
Fig. E in the Supplementary File, Cr and q have strong impact
on OSAPSO’s performance for the selected TSCC instances
on all datasets, and OOV improves when small Cr and high q
values are assigned. This implies that inverting/scrambling a
lower number of dimensions can boost exploitation, especially
when a higher number of individuals are opted to partici-
pate in MWTS, thus escaping from local optima by promoting
swarm diversity. As aforementioned, when smaller swarm pro-
portions are conducted in POBL, greater enhancements can be
delivered while mitigating computational burden. However, the
optimal l is difficult to be determined, thus it is set experimen-
tal. From Fig. F in the Supplementary File, the final results
are not so sensitive to l. Considering the time complexity
and model stability, l = 0.3 is recommended in OSAPSO.
Thus, our OSAPSO can be adapted to generate high-quality
schedules in the cloud.

Next, the influence demonstrated by each single major com-
ponent of OSAPSO is studied. Specifically, its four variants are
investigated: OSAPSO\POBL, OSAPSO\ES, OSAPSO\OES,
and OSAPSO\PSO. The symbol “\” indicates that a given
component is ablated from OSAPSO. MOVs and MRVs of
OSAPSO and the four variants are presented in Table D
in the Supplementary File for saving space. As demon-
strated, whereas OSAPSO and OSAPSO\ES both rank sec-
ond by delivering best MOVs on only 5 of 25 TSCC
instances, OSAPSO\POBL (i.e., ES included), which ranks
first, greatly holds comparable advantages on 23 instances
when compared to OSAPSO. In other words, OSAPSO
behaves similarly to OSAPSO\POBL, OSAPSO\OES, and
OSAPSO\PSO on 23, 22, and 23 instances, respectively.
For example, whereas OSAPSO\OES has an outstanding
performance with the NASA Ames iPCS/860 dataset on
only 1500-task and 2000-task instances, it performs the
worst with the GoCJ dataset on a 1000-task instance and
comparably on the remaining instances, i.e., OES con-
tributes to solving many TSCC instances. OSAPSO\POBL

significantly outperforms OSAPSO on a 2500-task instance
of the GoCJ dataset and a 1500-task instance of the NASA
Ames iPCS/860 dataset; however, its performance is com-
parable when solving the remaining instances, i.e., POBL
is crucial to solving many TSCC instances. Noteworthily,
OSAPSO performs significantly better than OSAPSO\ES on
all instances, implying that ES alone has considerable impact.
Furthermore, Fig. G in the Supplementary File depicts that
omitting any of OSAPSO’s main components slows down its
convergence, particularly in the late stages of optimization
when these components, especially ES, can help shield
OSAPSO against premature convergence. Thus, OSAPSO
behaves quite different from its ablated variants over all
instances, which leads to its ultimate benefit in terms of
flexibility and trustworthiness for multiscale TSCC prob-
lems, provided that all variants statistically perform either
worse than or comparable to OSAPSO over the majority
of instances. As observed, the results obtained by OSAPSO
without its major components can be further optimized. It
oppositely confirms that the missing components can pro-
mote OSAPSO’s performance. In summary, each injected
component shows its unique favorable impact to every single
TSCC instance and is advantageous to the overall functioning
of OSAPSO.

V. CONCLUSION AND FUTURE WORK

In this article, a novel task scheduling method is proposed,
namely, OSAPSO. It is intended to elevate the optimization
capacity of PSO and applied to TSCC problems. Thanks to
the proposed POBL, ES, and OES strategies, OSAPSO sur-
passes the comparative methods, including various PSO-based
algorithms, and comes out on top in performance evaluation.
It strengthens the search capability of PSO by effectively uti-
lizing the opposite elite space, neighborhood space, as well as
swarm information. Furthermore, by optimizing the mapping
of IIoT heterogeneous tasks into cloud nodes, an energy-
efficient, cost–time-effective, deadline-constrained method is
proposed for addressing TSCC problems in a heterogeneous
CCP.

OSAPSO may have the potential to tackle more compli-
cated TSCC problems in combination with real-world factors,
such as cyberthreat, uncertainty, and cloud–fog architecture.
Furthermore, it is worth investigating how to approach discrete
and multiobjective high-dimensional optimization problems

GAD et al.: DAMPING-ASSISTED EVOLUTIONARY SWARM INTELLIGENCE FOR IIoT TASK SCHEDULING IN CLOUD COMPUTING 1709

by extending OSAPSO with some recently proposed con-
cepts [56], [57]. One of its limitations lies in its many super-
parameters. Finding some effective hyperparameter tuning
methods (e.g., Bayesian optimization) is worth studying.

ACKNOWLEDGMENT

Open Access funding provided by the Qatar National
Library.

REFERENCES

[1] P. Zhang and M. Zhou, “Dynamic cloud task scheduling based on
a two-stage strategy,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2,
pp. 772–783, Apr. 2018.

[2] M. H. Ghahramani, M. Zhou, and C. T. Hon, “Toward cloud comput-
ing QoS architecture: Analysis of cloud systems and cloud services,”
IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017.

[3] E. Cao et al., “Energy and reliability-aware task scheduling for cost
optimization of DVFS-enabled cloud workflows,” IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 2127–2143, Apr.–Jun. 2023.

[4] Q. Wu, M. Zhou, Q. Zhu, Y. Xia, and J. Wen, “MOELS: Multiobjective
evolutionary list scheduling for cloud workflows,” IEEE Trans. Autom.
Sci. Eng., vol. 17, no. 1, pp. 166–176, Jan. 2020.

[5] “U.S. energy information administration.” U.S. Natural Gas Exports by
Country. Accessed: Feb. 20, 2023. [Online]. Available: https://www.eia.
gov

[6] J. Yarow. “Apples 100-acre solar farm is the biggest in the world, and
its a thing of wonder to look.” 2013. [Online]. Available: https://www.
businessinsider.com/photos-apples-massive-solar-array-2013-4

[7] IHS Markit. “Number of connected IoT devices will surge to 125
billion by 2030, IHS markit says.” 2017. [Online]. Available: https://
news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-
devices-will-surge-125-billion-2030-ihs-markit-says

[8] X. Deng, D. Wu, J. Shen, and J. He, “Eco-aware online power manage-
ment and load scheduling for green cloud datacenters,” IEEE Syst. J.,
vol. 10, no. 1, pp. 78–87, Mar. 2016.

[9] H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, “Biobjective task
scheduling for distributed green data centers,” IEEE Trans. Autom. Sci.
Eng., vol. 18, no. 2, pp. 731–742, Apr. 2021.

[10] A. Bouakkaz, A. J. G. Mena, S. Haddad, and M. L. Ferrari, “Efficient
energy scheduling considering cost reduction and energy saving in
hybrid energy system with energy storage,” J. Energy Storage, vol. 33,
Jan. 2021, Art. no. 101887.

[11] F. Shabestari, A. M. Rahmani, N. J. Navimipour, and S. Jabbehdari,
“A YARN-based energy-aware scheduling method for big data appli-
cations under deadline constraints,” J. Grid Comput., vol. 20, no. 4,
pp. 1–24, 2022.

[12] Z. Ma, G. Wu, P. N. Suganthan, A. Song, and Q. Luo, “Performance
assessment and exhaustive listing of 500+ nature-inspired metaheuristic
algorithms,” Swarm Evol. Comput., vol. 77, Mar. 2023, Art. no. 101248.

[13] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan, “Major
advances in particle swarm optimization: Theory, analysis, and applica-
tion,” Swarm Evol. Comput., vol. 63, Jun. 2021, Art. no. 100868.

[14] M. A. Strobl and D. Barker, “On simulated annealing phase transitions in
phylogeny reconstruction,” Mol. Phylogenet. Evol., vol. 101, pp. 46–55,
Aug. 2016.

[15] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differ-
ential evolution—An updated survey,” Swarm Evol. Comput., vol. 27,
pp. 1–30, Apr. 2016.

[16] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algo-
rithm: Past, present, and future,” Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091–8126, Feb. 2021.

[17] F. S. Gharehchopogh and H. Gholizadeh, “A comprehensive sur-
vey: Whale optimization algorithm and its applications,” Swarm Evol.
Comput., vol. 48, pp. 1–24, Aug. 2019.

[18] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf opti-
mizer: A review of recent variants and applications,” Neural Comput.
Appl., vol. 30, no. 2, pp. 413–435, Jul. 2018.

[19] N. Tran, T. Nguyen, B. M. Nguyen, and G. Nguyen, “A multivariate
fuzzy time series resource forecast model for clouds using LSTM and
data correlation analysis,” Procedia Comput. Sci., vol. 126, pp. 636–645,
Aug. 2018.

[20] R. Majumder and D. Ghose, “A strategic decision support system using
multiplayer non-cooperative games for resource allocation after natural
disasters,” IEEE Trans. Autom. Sci. Eng., early access, Oct. 17, 2022,
doi: 10.1109/TASE.2022.3213820.

[21] M. Agarwal and G. M. S. Srivastava, “Opposition-based learning
inspired particle swarm optimization (OPSO) scheme for task scheduling
problem in cloud computing,” J. Ambient Intell. Humanized Comput.,
vol. 12, no. 10, pp. 9855–9875, Oct. 2021.

[22] G. Singh, S. Kumar, and S. Prakash, “A performance improvement
model for cloud computing using simulated annealing algorithm,” Int.
J. Softw. Innov., vol. 10, no. 1, pp. 1–17, 2022.

[23] S. Mangalampalli, G. R. Karri, and M. Kumar, “Multi objective task
scheduling algorithm in cloud computing using grey wolf optimization,”
Clust. Comput., to be published, doi: 10.1007/s10586-022-03786-x.

[24] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm Evol. Comput., vol. 1, no. 1, pp. 32–49, Mar. 2011.

[25] Y. Xue, X. Cai, and W. Jia, “Particle swarm optimization based on
filter-based population initialization method for feature selection in
classification,” J. Ambient Intell. Humanized Comput., vol. 14, no. 6,
pp. 7355–7366, Oct. 2022.

[26] Y. Miao and B. Yang, “Multilevel reweighted sparse hyperspec-
tral unmixing using superpixel segmentation and particle swarm
optimization,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5,
Sep. 2022.

[27] X. Xu, J. Li, M. Zhou, J. Xu, and J. Cao, “Accelerated two-stage particle
swarm optimization for clustering not-well-separated data,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 50, no. 11, pp. 4212–4223, Nov. 2020.

[28] F. E. Fernandes Jr. and G. G. Yen, “Particle swarm optimization of deep
neural networks architectures for image classification,” Swarm Evol.
Comput., vol. 49, pp. 62–74, Sep. 2019.

[29] D. Yu, Q. Lv, G. Srivastava, C.-H. Chen, and J. C.-W. Lin, “Multi-
objective evolutionary model of the construction industry based on
network planning,” IEEE Trans. Ind. Informat., vol. 19, no. 2,
pp. 2173–2182, Feb. 2023.

[30] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, “Task
scheduling in cloud computing based on meta-heuristics: Review, taxon-
omy, open challenges, and future trends,” Swarm Evol. Comput., vol. 62,
Apr. 2021, Art. no. 100841.

[31] Y. Wang and X. Zuo, “An effective cloud workflow scheduling approach
combining PSO and idle time slot-aware rules,” IEEE/CAA J. Automatica
Sinica, vol. 8, no. 5, pp. 1079–1094, May 2021.

[32] H. Yuan, J. Bi, and M. Zhou, “Temporal task scheduling of multiple
delay-constrained applications in green hybrid cloud,” IEEE Trans.
Services Comput., vol. 14, no. 5, pp. 1558–1570, Sep./Oct. 2021.

[33] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An
effective scheduling approach for delay bounded tasks in hybrid clouds,”
IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[34] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[35] Y.-C. Ho and D. L. Pepyne, “Simple explanation of the no-free-lunch
theorem and its implications,” J. Optim. Theory Appl., vol. 115, no. 3,
pp. 549–570, Dec. 2002.

[36] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Trans. Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

[37] A. G. Gad, “Particle swarm optimization algorithm and its applications:
A systematic review,” Arch. Comput. Methods Eng., vol. 29, no. 5,
pp. 2531–2561, Aug. 2022.

[38] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE
Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[39] J. Bi et al., “Application-aware dynamic fine-grained resource provision-
ing in a virtualized cloud data center,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[40] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[41] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved parti-
cle swarm optimization combined with chaos,” Chaos Solitons Fractals,
vol. 25, no. 5, pp. 1261–1271, Sep. 2005.

[42] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

http://dx.doi.org/10.1109/TASE.2022.3213820
http://dx.doi.org/10.1007/s10586-022-03786-x

1710 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

[43] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput. (CEC), 2014, pp. 1658–1665.

[44] M. Tanha, M. H. Shirvani, and A. M. Rahmani, “A hybrid meta-heuristic
task scheduling algorithm based on genetic and thermodynamic simu-
lated annealing algorithms in cloud computing environments,” Neural
Comput. Appl., vol. 33, no. 24, pp. 16951–16984, Dec. 2021.

[45] X. Xiang, X. Yan, C. Gao, S. Zhu, M. Xi, and H. Gao, “A circle chaos
random search strategy particle swarm optimization with its application,”
Comput. Elect. Eng., vol. 102, Sep. 2022, Art. no. 108219.

[46] J. Wang, D. Lin, Y. Zhang, and S. Huang, “An adaptively bal-
anced grey wolf optimization algorithm for feature selection on high-
dimensional classification,” Eng. Appl. Artif. Intell., vol. 114, Sep. 2022,
Art. no. 105088.

[47] B. M. Nguyen, H. T. T. Binh, T. T. Anh, and D. B. Son, “Evolutionary
algorithms to optimize task scheduling problem for the IoT based bag-
of-tasks application in cloud–fog computing environment,” Appl. Sci.,
vol. 9, no. 9, p. 1730, May 2019.

[48] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of Internet of Things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan.–Mar. 2018.

[49] A. Hussain and M. Aleem, “GoCJ: Google cloud jobs dataset for
distributed and cloud computing infrastructures,” Data, vol. 3, no. 4,
Dec. 2018, Art. no. 38.

[50] D. G. Feitelson. “Parallel Workloads Archive.” 2007. [Online].
Available: https://www.cs.huji.ac.il/labs/parallel/workload

[51] I. Fister, J. Brest, A. Iglesias, A. Galvez, and S. Deb, “On selection of
a benchmark by determining the algorithms’ qualities,” IEEE Access,
vol. 9, pp. 51166–51178, Feb. 2021.

[52] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[53] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” in Proc. Congr. Evol. Comput., vol. 1, 2001,
pp. 81–86.

[54] P. Zhang, S. Shu, and M. Zhou, “An online fault detection model
and strategies based on SVM-grid in clouds,” IEEE/CAA J. Automatica
Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018.

[55] H. Mausser, “Normalization and other topics in multi-objective
optimization,” in Proc. Fields-MITACS Ind. Problems Workshop, 2006,
pp. 89–101.

[56] Q. Deng, Q. Kang, L. Zhang, M. Zhou, and J. An, “Objective space-
based population generation to accelerate evolutionary algorithms for
large-scale many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 27, no. 2, pp. 326–340, Apr. 2023.

[57] M. Cui, L. Li, M. Zhou, J. Li, and A. Abusorrah, “A bi-population
cooperative optimization algorithm assisted by an autoencoder for
medium-scale expensive problems,” IEEE/CAA J. Automatica Sinica,
vol. 9, no. 11, pp. 1952–1966, Nov. 2022.

Ahmed G. Gad (Member, IEEE) received the
B.Sc. degree (Hons.) from the Faculty of Computers
and Information, Mansoura University, Mansoura,
Egypt, in 2013. He is currently pursuing the M.Sc.
degree in information technology with the Faculty
of Computers and Information, Minia University,
Minia, Egypt.

Since 2017, he has been a Teaching Assistant
with the Faculty of Computers and Information,
Kafrelsheikh University, Kafrelsheikh, Egypt. His
interests are computational intelligence, metaheuris-

tic optimization, machine learning, data mining, cloud computing, scheduling,
Blockchain, and Internet of Things. For more information, see https://
ahmedgad.com.

Essam H. Houssein (Member, IEEE) received
the Ph.D. degree in computer science from Minia
University, Minia, Egypt, in 2012.

He is currently a Professor of Artificial
Intelligence with the Faculty of Computers and
Information, Minia University, Minia. He is the
Founder and the Chair of Artificial Intelligence
Research Group, Minia. He has more than 200 sci-
entific research articles published in prestigious
international journals. His research interests include
metaheuristic optimization algorithms, WSN,

bioinformatics, Internet of Things, artificial intelligence, image processing,
and data mining.

MengChu Zhou (Fellow, IEEE) received the
B.S. degree in control engineering from Nanjing
University of Science and Technology, Nanjing,
China, in 1983, the M.S. degree in automatic control
from Beijing Institute of Technology, Beijing, China,
in 1986, and the Ph.D. degree from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1990.

He joined New Jersey Institute of Technology
(NJIT), Newark, NJ, USA, where he is currently
a Distinguished Professor. He has more than 1100
publications, including 14 books, more than 750

journal papers (more than 600 in IEEE Transactions), 31 patents, and 32
book-chapters. His interests are Petri nets, automation, robotics, big data,
Internet of Things, cloud/edge computing, and AI.

Dr. Zhou is a recipient of Excellence in Research Prize and Medal
from NJIT, the Humboldt Research Award for U.S. Senior Scientists from
Alexander von Humboldt Foundation, and the Franklin V. Taylor Memorial
Award and the Norbert Wiener Award from IEEE Systems, Man, and
Cybernetics Society, and the Edison Patent Award from the Research &
Development Council of New Jersey. He is a Life Member of Chinese
Association for Science and Technology-USA and served as its President
in 1999. He is a Fellow of International Federation of Automatic Control,
American Association for the Advancement of Science, Chinese Association
of Automation, and National Academy of Inventors.

Ponnuthurai Nagaratnam Suganthan (Fellow,
IEEE) received the B.A. and M.A. degrees from
the University of Cambridge, Cambridge, U.K.,
in 1990 and 1994, respectively, and the honorary
doctorate (Doctor Honoris Causa) degree from the
University of Maribor, Maribor, Slovenia, in 2020.

He served as a Research Assistant for the
University of Sydney, Camperdown, NSW,
Australia, from 1995 to 1996, and a Lecturer with
the University of Queensland, Brisbane, QLD,
Australia, from 1996 to 1999. He is currently a

Research Professor with the KINDI Center for Computing Research, Qatar
University, Doha, Qatar.

Yaser M. Wazery received the Ph.D. degree in
information technology from Port Said University,
Port Said, Egypt, in 2014.

He is currently an Associate Professor with
the Information Technology Department, Faculty
of Computers and Information, Minia University,
Minia, Egypt. His research interests include network
security, cryptography, biological inspired clustering,
multimedia communication and processing, big data,
cloud computing, and data mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

