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Abstract—Smart spaces, physical spaces that are integrated
with sensor-enabled Internet of Things devices, are a powerful
paradigm for optimizing the operations of the space and improv-
ing its quality for the occupants. Managing the applications and
services running in the space is a complex task as the opera-
tions of the devices and services are dependent on the physical
characteristics of the space, the occupants of the space, and the
technologies that are being integrated. Digital twinning, the com-
bination of physical representations with a virtual counterpart, is
a potential technology for facilitating the management of smart
space devices and services. While digital twins are increasingly
adopted in industry, their use in everyday environments remains
low due to difficulties in creating and linking the virtual represen-
tation with the physical environment. In this article, we propose
our vision for the adoption of digital twinning as a pathway to
improve the functions of smart spaces. We derive a generic refer-
ence architecture that comprises four layers, covering the physical
space, the sensing infrastructure, the network interfaces, and the
underlying computational infrastructure. Next, we identify and
address key requirements for the uptake of digital twins in smart
spaces and assess their benefits using the ascendancy model of
business analytics. Finally, to demonstrate the practicality of dig-
ital twinning, we present a proof-of-concept digital twin for the
TellUs smart space at the University of Oulu in Finland and
use it to highlight the potential benefits of different ascendancy
levels.

Index Terms—Digital twin, Internet of Things (IoT), long range
(LoRa) networks, sensor networks, smart spaces.

Manuscript received 8 May 2023; accepted 8 June 2023. Date of pub-
lication 16 June 2023; date of current version 25 December 2023. This
work was supported in part by the Nokia Center for Advanced Research
(NCAR); in part by the Business Finland Project under Grant 8782/31/2022
and Grant 8754/31/2022; in part by the Academy of Finland under Grant
335934, Grant 345008, Grant 339614, Grant 355330, and Grant 346208;
in part by the Helsinki Institute for Information Technology (HIIT) under
Grant 75233229; in part by the European Union’s Horizon 2020 Research
and Innovation Programme the EMME-CARE Project under Grant 856612;
in part by the ECSEL JU FRACTAL Project under Grant 877056; and in
part by the Finland Centennial Foundation to Urban Air Quality 2.0 Project.
(Corresponding author: Naser Hossein Motlagh.)

Naser Hossein Motlagh, Martha Arbayani Zaidan, Pak Lun Fung,
Roberto Morabito, Petteri Nurmi, and Sasu Tarkoma are with the
Department of Computer Science, University of Helsinki, 00014 Helsinki,
Finland (e-mail: naser.motlagh@helsinki.fi; martha.zaidan@helsinki.fi;
pak.fung @helsinki.fi; roberto.morabito @helsinki.fi; petteri.nurmi@helsinki.fi;
sasu.tarkoma @helsinki.fi).

Lauri Lovén is with the Center for Ubiquitous Computing, University of
Oulu, 90570 Oulu, Finland (e-mail: lauri.loven@oulu.fi).

Tuomo Hénninen is with the Centre for Wireless Communications,
University of Oulu, 90570 Oulu, Finland (e-mail: tuomo.hanninen@oulu.fi).

Digital Object Identifier 10.1109/JI0T.2023.3287032

, Member, IEEE, Petteri Nurmi*,

I. INTRODUCTION

IGITAL twins refer to systems that couple physical
D entities with virtual counterparts, leveraging the strengths
of both the virtual and the physical environments for the
advantage of the entire system [1]. The virtual representation
of the environment is referred to as the digital twin. A digital
twin relies on sensor-enabled Internet of Things (IoT) devices
that synchronize the state of the virtual object with that of the
physical object. This requires monitoring the physical twin
and its interactions and potentially integrating actuators that
directly influence it [2]. A digital twin thus provides an end-
point for data acquisition from the physical counterpart and
supports the efficiency of the physical part by optimizing its
operations throughout its life cycle [3]. Digital twins are par-
ticularly relevant for industry and society [1] with examples
of domains adopting digital twins including manufacturing,
healthcare, and construction industry. Indeed, digital twins and
the underlying IoT and other technologies are a key step in
the next-generation transformation of industry [4], [5], [6].

Smart spaces—physical spaces that integrate sensor-enabled
IoT devices—are emerging as a powerful solution to optimize
operations and improve the quality of experience for occu-
pants. Smart spaces build on the increasing availability of
sensors in physical spaces, e.g., for monitoring energy use,
thermal comfort of occupants, social distancing, air quality,
and general well-being [7], [8], [9]. These sensor-enabled
devices enable various applications, which help, among other
things, to reduce electricity usage, optimize heating, ventila-
tion, and air conditioning (HVAC) use, improve the safety of
the space, and offer services that support the occupants [10],
[11]. Indeed, smart spaces aim to enhance the functions
of these environments and overall elevate the user expe-
rience [12], [13]. Currently, most smart spaces implement
this functionality by relying on analytic platforms and hub-
type IoT architectures. These offer a single point to collect
information and to interact with the space [14] but lack a
mechanism to evaluate and interact with services and devices
from the outside. Digital twins can help overcome this bot-
tleneck, offering a unified architecture for integrating and
managing devices and services while at the same time offer-
ing a platform that supports the development and evaluation of
new services. The potential and promise of digital twin tech-
nology in smart spaces are supported by existing research.
However, this research has been mostly limited to building
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Fig. 1. From IoT analytics to digital twin of smart spaces. (a) Digital twin
architecture for smart spaces. (b) Overview of the digital twinning of smart
spaces.

management systems. It has not often focused on smaller,
dedicated areas of space [15]. Improving the situation calls
for a reinvestigation of the concept of digital twins for smart
spaces together with architectures and technical solutions that
can build and link virtual representations of the space with its
physical counterpart.

This article contributes a vision for the adoption of dig-
ital twins in smart spaces. The overall vision is illustrated
in Fig. I and provides a unified view of how to integrate
sensors, actuators, network interfaces, and computing capa-
bilities with the physical space and the occupants residing
in it. Currently, these capabilities are mostly used for stan-
dalone applications that attempt to improve specific aspects
of the space, but they can also be harnessed for digital twin-
ning to offer a unified view that supports different applications
and services and that facilitates management of the capabili-
ties available for the space. Building on this vision, we first
derive a generic reference architecture that comprises four lay-
ers: the physical space, the sensing infrastructure responsible
for establishing the digital representation used by the digital
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twin, the network infrastructure for linking the digital data
with a virtual representation, and the computing infrastruc-
ture that controls the actuators in the space and offers an
interface for applications and services; see Fig. 1(b). We then
proceed to identify and address requirements for creating dig-
ital twins of smart spaces and highlight their potential benefits
using the ascendancy business analytics model [16]. Finally,
to demonstrate the practicality and the benefits of digital twin-
ning, we present a proof-of-concept digital twin for the TellUs
smart space at the University of Oulu in Finland [17]. Our
proof-of-concept builds on a rich set of sensors from different
modalities, as shown in Fig. 2. We also use our example to
highlight the potential benefits of different ascendancy levels.

II. DIGITAL TWINS OF SMART SPACES

Digital twinning of a smart space starts from the sensor
infrastructure that operates in the physical space and processes
sensor data following a general model of IoT applications
that integrates networking and computing on top of the sen-
sor layer serving as input; see Fig. 1(b). First, sensors must
be installed into the space, and actuators need to be fitted
to allow control over the environment. Second, the connec-
tivity of sensors and actuators must be ensured by deploying
appropriate networking infrastructure. Finally, computational
resources (either cloud, local, or edge/fog-based) must be pro-
vided to process sensor data. Fig. 1(a) details our envisioned
digital twin architecture for smart spaces. The architecture
includes four layers, corresponding to those on Fig. 1(b), and
each is responsible for a specific task. In the sections below,
we take a detailed look at each of the layers, survey the most
relevant technologies, and highlight the functionality provided
by different types of digital twins.

A. Sensing Infrastructure

The sensing infrastructure includes physical devices, such as
sensors that observe the environment and generate data, actu-
ators that trigger and actuate the operations of the sensors, as
well as software-based (i.e., virtual) sensors and actuators. A
variety of low-cost sensing solutions are available for building
digital twins for smart spaces. However, while many of these
sensors can be considered as viable solutions for smart space
deployments, they may still have technological and method-
ological limitations. Hence, it is often recommended to deploy
more than one type of sensor so that they can complement
each other and offset these limitations. Such heterogeneous
deployments also allow for a better understanding of the events
occurring in the environment. In the following, we review and
address some of the most popular sensor solutions, covering
their limitations and suitability for creating a digital twin of a
smart space.

1) Passive Infrared Sensors: These sensors focus on the
infrared radiation changes caused by movements in the spaces.
While the main advantage of these sensors includes their low-
cost and low-energy requirements, the limitations of passive
infrared (PIR) sensors is their low accuracy and their inability
to directly detect people. PIRs are widely used in real imple-
mentations, and they are considered as an important candidate
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in physical infrastructure. Indeed, digital twin-based analytics
of PIR sensors allow occupancy counting and identifying
mobility patterns such as the direction of movements.

2) Environmental  Sensors: These  sensors  provide
information, e.g., on temperature, humidity, pressure,
CO,, PM3 5, and the presence of volatile organic compounds
(VOCs). Thus, these sensors provide an overall view of the
conditions in the space and can be used to provide indications
of the air quality and potential problems inside the data.
While environmental sensors are becoming cheaper and
easier to deploy, the less expensive variants often have lower
accuracy and require either periodic manual recalibration or
software-based recalibration, which can be achieved using
machine learning methods. Environmental sensors can also
provide indications of the presence, movements, and even
activities of occupants even if these can only be detected with
a delay [11].

3) Cameras: Cameras, including those focusing on spe-
cific wavelengths, such as thermal cameras monitoring infrared
radiation, can be used to visually monitor the events in the
spaces. The main drawback with the use of cameras is their
invasiveness in terms of privacy. Deploying infrared cameras in
large quantities in smart spaces can also be expensive. Lower
resolution sensors, such as thermal array sensors, can be used
as an alternative to capture data that is useful for analyzing
the presence of people without violating privacy [10].

4) Light and Noise Sensors: Ambient light and sound lev-
els are essential for ensuring visual and hearing comfort. These
sensors are often affordably priced, allowing deploying them in
high numbers. However, their sensing accuracy may decrease
over time. Both types of sensors can also be used as prox-
ies for occupancy counting. Additionally, noise sensors can
be used to identify the types of activities occurring in indoor
environments.

5) Wireless Sensing: Wireless sensing takes advantage of
the wireless channel to detect activities taking place in space.
In its simplest form, wireless sensing can simply estimate
occupancy by counting the number of active connections,
whereas in the more complex case, the wireless channel
can be used to monitor vital signals by looking at fluc-
tuations in the wireless channel between a transmitter and
receiver [18]. As most devices have wireless interfaces, the
devices can technically be of any type, including laptops,
mobile phones, and tablets, and the wireless technology can
be IEEE 802.11 (WiFi), Bluetooth, or another short-range
technology. However, advanced wireless sensing can only be
run on devices that provide detailed information about the
wireless channel (so-called channel state information) and typ-
ically require dedicated devices that can capture the relevant
information.

6) Other Sensing Technologies: These include, for exam-
ple, electricity smart meters, geophone sensors, and micro-
switches. Electricity smart meters can be utilized to monitor
energy consumption levels. Moreover, by training energy con-
sumption models specific to the smart space, they can also be
used to estimate the number of users there. Moreover, geo-
phone sensors can be used to detect vibration on the floors
caused by stepping, and micro-switches can be attached to
seats to identify which seat is in use.

B. Networking Infrastructure

Networking infrastructure includes all the necessary com-
ponents to interface physical infrastructure and computing
infrastructure and transfer data between them. These include
those directly embedded in and used by the physical infrastruc-
ture components (e.g., devices’ radio access technologies and
communication protocols), as well as those that form the back-
bone of our architecture (e.g., access points, switches, routers,
etc.). Sensor data as well as actuator instructions are trans-
mitted through the networking infrastructure with appropriate
wireless technologies and IoT communication protocols.

1) Wireless Communication Technologies: Various wireless
communication technologies may be utilized by sensors and
actuators within the smart space, facilitating their interaction
with the computing infrastructure via the network infrastruc-
ture. A range of technologies can provide reliable commu-
nication. In addition to reliability, several factors must be
considered when determining the most appropriate connec-
tivity method: 1) application requirements; 2) communication
range; 3) bandwidth; 4) power consumption; and 5) security.
Given these requirements, three wireless technologies stand
out for meeting these needs and for their broad compatibility
with diverse sensors: Bluetooth low energy (BLE), long range
(LoRa), and cellular IoT (LTE-M and NB-IoT). We emphasize
that these are not the sole solutions; individual sensors may
employ other methods. For instance, wireless M-bus is often
utilized by smart meters for measurement transmission. As
wireless M-Bus, and other related technologies, are focused
on specific devices or sensors we omit them since they cannot
offer a generic interface for integrating all computing aspects
of the space into a digital twin. We also note that most of
these technologies operate within the ISM frequency band
which means that using multiple different technologies can
cause significant cross-technology interference and degrade
network performance. The choice of network technology is
also significant because it affects where the computations are
expected to reside. Specifically, BLE usually assumes con-
necting to a separate device that resides in the same space,
whereas cellular IoT and LoRa connect to a hub or base sta-
tion that allows edge-type of computing without having the
computing support reside inside the space. While most smart
spaces come equipped with WiFi networks, sensor-enabled
IoT devices rarely use WiFi due to their high-power usage,
and thus other technologies are usually used to connect to a
device which can then take advantage of the WiFi or other
communications infrastructure available in the space.

BLE is a widely used short-range wireless communication
technology particularly suited for being used in the IoT land-
scape because of its low-power requirements, low-installation
costs, and high pervasiveness. It enables data exchange using a
2.4-GHz license-free (ISM) frequency band, ensuring a nom-
inal max range of above 100 m in open space. The bit rate is
1 Mbit/s (with an option of 2 Mbit/s in Bluetooth 5), and the
maximum transmit power is 10 mW (100 mW in Bluetooth 5).
The BLE’s design decision results in low-energy consumption,
cost, and dimensions of the chipset, making this technol-
ogy especially popular for sensors that interact with a higher
end device, e.g., wearables interacting with a smartphone or
computer.
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Cellular IoT (NB-1oT, LTE-M) technologies have been
defined in the context of 3rd Generation Partnership Project
(3GPP) and designed to enable more streamlined machine-
type communication (MTC). The main advantages of this
type of technology is its seamless coexistence with 5G access
technology and the support of IP-based end-to-end traffic.
The suitability of cellular IoT deployments stems from var-
ious aspects, including the high interoperability with mobile
telecommunications standards and the lower power usage com-
pared to broadband cellular technologies (e.g., conventional
LTE or 5G) when related to the performance in terms of data
rate (0.2—1 Mb/s) and range (up to several kilometers).

LoRa is a wireless communication technology specifically
designed for IoT. The data rates of LoRa are lower compared
to the other technologies we have introduced (0.3 Kbit/s to
27 Kbit/s) but it enables a greater coverage (due to oper-
ation in sub-GHz bands) allowing transmission range of up
to dozens of kilometers in line of sight and very low-power
usage and installation costs. Due to its design, the technol-
ogy is well-fitted for the IoT applications that mostly report
measurements, i.e., transfer data predominately in uplink, and
which can tolerate packet losses.

2) Communication Protocols: Communication protocols
for IoT usually build on either a publish—subscribe model
where clients publish data that applications or devices can
subscribe to or a request-response model where a server or
a proxy queries devices for information. Popular examples of
these types of protocols are the message queuing telemetry
transport protocol (MQTT) for the former and the constrained
application protocol (CoAP) for the latter.

MQTT is an IoT protocol originally designed to work on top
of TCP, which follows the publish/subscribe model. MQTT
client publishes messages to an MQTT broker, which are
subscribed by other clients or may be retained for future sub-
scriptions. Every message is published to an address, known as
a topic. Clients can subscribe to multiple topics and receive
every message published on each topic. The TCP nature of
MQTT, which also uses TLS for securing the data transfer,
makes this protocol connection oriented. Still related to its reli-
ability capabilities, MQTT allows using three different levels
of QoS. With the lowest level of QoS, MQTT operates in a
best-effort message delivery fashion. A QoS of one guarantee
that a message is delivered at least one time to the receiver,
while the highest QoS guarantees that each message is received
only once by the intended recipients.

COAP is a lightweight IoT protocol that has originally
been defined in the context of the constrained restful envi-
ronments (CoREs) working group of Internet Engineering
Task Force (IETF). CoAP is developed to interoperate with
RESTful systems and protocols (e.g., HTTP), through an
architecture that can alternatively follow both request/response
and resource/observe paradigms. Different from MQTT and
although inspired by HTTP, the original CoAP standard uses
UDP as a transport protocol and DTLS for security. Despite
being connectionless datagrams protocol, reliability and QoS
definition are ensured through the use of “confirmable” mes-
sages (which must be acknowledged by the receiver with an
ACK packet) and “nonconfirmable” messages (which do not
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require to be acknowledged by the receiver). Unlike MQTT,
CoAP uses universal resource identifier (URI) instead of top-
ics. The publisher publishes data to the URI and the subscriber
subscribes to a particular resource indicated by the URI. When
a publisher publishes new data to the URI, all subscribers are
notified about the new value as indicated by the URL

We highlight these two application layer protocols in favor
of alternatives (e.g., Hyper Text Transport Protocol-HTTP
and Advanced Message Queuing Protocol-AMQP) due to the
favorable tradeoffs that CoOAP and MQTT can offer in terms of
power consumption versus resource requirements, bandwidth
versus latency, and message size versus message overhead.

On top of these application layer protocols, we use
lightweight M2M (LwM2M). LwM2M is a REST-based pro-
tocol from the open mobile alliance (OMA) for M2M and IoT
device management that defines the application layer commu-
nication protocol between an LwM2M server and an LwM2M
client running on an IoT-embedded device. Although LwM2M
was originally built to work on top of CoAP, its latest ver-
sions (from 1.2 on) started to support additional application
layer protocols, including MQTT and HTTP. The main advan-
tage of using this kind of device management protocol on
top of different application layer protocols is the possibility
of ensuring interoperability and addressing all the challenges
raised by the heterogeneous nature of IoT devices and of the
applications that are executed on top of them. The possibil-
ity of managing a plethora of devices in a unified fashion
brings several advantages, further emphasized by the fact that
LwM2M’s device management capabilities include, inter alia,
remote provisioning of security credentials, firmware updates,
connectivity management (e.g., for cellular and WiFi), remote
device diagnostics and troubleshooting.

C. Computing Infrastructure

Computing infrastructure, placed in the cloud, locally, or
at the edge of the network, performs analytics of the data
received from the network infrastructure, provides real-time
virtual representation from the events in the smart space, and
generates virtual data as input for analytics. As described
previously, the location of the computing infrastructure can
also depend on the underlying network technology as BLE
effectively assumes a hub that resides inside the space, whereas
cellular IoT and LoRa communicate with base stations that can
be outside of the space. The hub can either integrate process-
ing directly on itself or rely on data centers accessed through
cloud interfaces. While the cloud provides access to significant
computational capacity, concerns about latency, privacy, and
bandwidth may require using computational capacity in closer
proximity to the physical twin. Indeed, the architecture should
consider the computational resources as a continuum, rang-
ing from the lightweight sensor and actuator devices, through
edge and fog nodes placed in nearby computing hotspots or
network hubs, all the way to cloud-based data centers [19].
Deployed upon this computing infrastructure are the compo-
nents, often encapsulated into microservices, of the application
providing the digital twin. These microservices, as well as
the tasks running upon them further require orchestration and
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life-cycle management. These services are often provided by
middleware, such as Kubernetes or Docker Swarm [19].

The devices, services, and connectivity (DSC) manage-
ment module gathers data from the sensing infrastructure
using LwM2M. The aim is to gain insights into the sens-
ing and actuation operations on the devices, as well as other
telemetry tasks. The DSC management module also con-
trols the accuracy of the sensed data, and the amount of
data to be sent in uplink, aiming to reduce data redundancy
and unnecessary data transmission. It additionally collects
telemetry information from each sensing infrastructure device
(e.g., device ID, device model, running service, percentage of
remaining battery, memory, and CPU/MCU utilization) and
of the connectivity technology used for the data upload (e.g.,
Signal to Noise Ratio—RSSNR, Reference Signal Received
Power—RSRP, Received Signal Strength Indicator—RSSI,
and Cell Identity—NCI).

The set of information collected is used for performing Al-
powered analytics to infer, for example: 1) how devices and
running applications are using energy and under what circum-
stances; 2) how to improve the sensing capabilities through
Al-powered sensors’ recalibrations; and 3) how to optimize the
end-to-end data transfer in an energy-efficient fashion. Some of
the analytics results performed by the computing infrastructure
are then sent back to the sensing infrastructure devices, which
execute the analytics actionable insights. Analytics results can
enable the devices to improve their battery life and sensing
capabilities and ensure more optimized and energy-efficient
end-to-end communication.

D. Applications

The applications block presents the applications developed
using analytics data. These applications can be for instance
used for occupancy detection, space utilization, energy con-
sumption, and air quality monitoring in order to improve the
environment or optimize resource utilization.

The analytics required by the application can be catego-
rized according to Gartner’s analytics ascendancy model [16].
The model identifies four different analytics levels, ordered
by the value of their results as well as the complexity of the
methods. Descriptive analytics offers a view into the current
status of the observed system, as well as its recent history,
answering the question “what happened.” Diagnostic analyt-
ics looks for the causes and effects behind the system status,
answering the question “why did it happen.” Predictive analyt-
ics projects system status into the future, finding out “what will
happen next.” Finally, prescriptive analytics looks for means
of affecting future outcomes: “how can we make it happen?”

The ascendancy levels describe also digital twins, providing
a measure of capability and utility. In particular, in the context
of smart spaces, a digital twin can help facility managers to
know (descriptive) and understand (diagnostic) the past and
current status of the space, assess potential future trajectories
(predictive), or even find ways of changing those trajectories
or selecting the most beneficial (prescriptive).

Different types of smart space digital twins, categorized
with Gartner’s analytics ascendancy model [16], along with
sample use cases, are listed below.

1) Descriptive Twins: Present the current status and situa-
tion in the smart space, relying on data from physical sensors
and software systems, such as meeting room reservation tools,
linked to the space. Presented data can include, for example,
the occupancy or reservation status of spaces, the tempera-
ture or CO, level at sensor locations, or the number, location,
and possibly even identity of the people in the smart space.
Techniques used at this level may include data aggregation,
visualization, and summary statistics, such as calculating the
average temperature, humidity, or CO, levels for each zone.

2) Diagnostic Twins: Further analyze the descriptive data.
Results from the analysis can, for example, find the corre-
lation between the CO; level and the occupancy of a room,
or the temperature and the number and location of people,
or possible discrepancies between meeting room reservations
and their actual occupancy. Methods employed at this stage
may include correlation analysis, root cause analysis, and data
mining, such as assessing the relationship between CO; levels
and occupancy (using PIR sensors) and investigating reasons
behind unusually high humidity levels in a particular zone.

3) Predictive Twins: Provide insights into the future status
of the smart space. Potential use cases include, for example,
the expected occupancy of meeting rooms, or projected energy
costs of the smart space, based on expected occupancy, energy
price projections, and external weather forecasts. Approaches
utilized at this tier may include machine learning algorithms,
such as random forests or support vector machines, time-series
analysis techniques, such as ARIMA or exponential smooth-
ing, and forecasting models to predict future conditions in the
smart space.

4) Prescriptive Twins: Build upon the insights offered by
analytics on lower ascendancy levels, prescriptive twins pro-
vide means for the operator on how to control the space, or
even control the smart space autonomously. Examples of use
cases include, for example, controlling the heating or ventila-
tion of the space, based on predictive analysis of occupancy,
temperature, and CO, levels, and projected energy costs.
Procedures used at this stage may include optimization algo-
rithms to determine optimal settings for lighting and HVAC
systems, decision trees, and simulation models to test the
impact of different control strategies on overall energy con-
sumption and air quality, recommending the most efficient
strategy for managing the smart space.

Our proposed digital twin architecture (shown in Fig. 1)
offers automated decision making and enables actuating sen-
sors and adjusting systems in the smart space to meet the
users’ needs. Indeed, at the application layer, the automated
decision making can for example use the data analytics results
of the occupancy detection to adjust the operations of the ven-
tilation and lighting systems to optimize energy consumption
as well as to provide visual and thermal comfort for the space
users.

III. EXPERIMENT

We use measurements of the wireless sensor network
deployed in the TellUs smart space at the University of Oulu,
Finland, to explain the benefits of the digital twin of smart
spaces.
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Fig. 2. Sensor deployment at the TellUs smart space at the University of
Oulu, Finland. For simplicity, the space names are labeled with numbering 1—
11 (i.e., different zones). The CO, and microphone icons show the locations
where, respectively, the multisensor devices and the noise sensors are installed.

Physical Twin: The floor plan of the TellUs space is shown
in Fig. 2. The TellUs space is located on the first floor of
the University campus and has an area size equal to approx
66.856 m x 36.446 m. TellUs includes different spaces
planned for various purposes. These spaces include the closed
spaces used as meeting rooms shown by numbers 1, 7, 8, and
11, large meeting rooms (shown by 5) are designed for stu-
dents’ collaborative works, and open study areas are depicted
by numbers 2, 6, and 10. The Nest space (shown by 3) is a
relaxation and thinking space, Cafe TellUs shown by 4 pro-
vides cafeteria facilities, and the small closed spaces (at 9, and
partly at 10) that host up to four people are used for individual
use or small group meetings [17].

Sensing and Networking Infrastructure: In order to design
our sensor deployment, we conducted a test phase experiment
prior to the current sensor deployments. During this phase,
we deployed 352 LoRa wide area network (LoRaWAN) sensor
nodes at the TellUs smart space [8]. To deploy sensors perma-
nently and in order to identify the optimal number of sensors
and find proper locations for installing sensors, in our experi-
ment, we implement a test phase by deploying a total of 352
LoRaWAN of the same sensor nodes (Elsys ERS sensors [20])
in Tellus space. We collected a total of 9917 848 lines of data
for 410 continuous days of measurements from June 2017
to November 2018. We further use the data that includes
temperature, humidity, CO2, motion, and light to test the reli-
ability of measurements and sensor operations. We carried out
a comprehensive data analysis using different visualizations,
such as sensor measurements during weekdays and weekends,
time-series measurements, and correlation studies between PIR
and CO2 concentrations. Indeed, the test phase allowed us to
identify the hotspots and areas necessitating continuous mon-
itoring. Through the insights gained from this experiment and
expert advice, we managed to optimize the sensor count to
68 devices, a number deemed appropriate for the TellUs space,
even in terms of calibration and maintenance. Therefore, in the
current operation phase, we deployed 68 sensor nodes in the
TellUs space. While 23 units of these sensors are noise sensors
(shown with microphone icons in Fig. 2) that can only measure
sound, the other 45 sensor units shown by CO; can measure
temperature, humidity, CO,, motion, and light. These sensors
have been calibrated in the factory by the manufacturer prior
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to their deployment [21]. Before we embarked on the sensor
deployment, we calibrated each sensor in a laboratory setting
using a reference sensor. This was done to ensure the highest
possible accuracy in our measurements. Each sensor is pow-
ered by two 3.6 V-AA lithium batteries. Based on experts’
suggestions, the sensors are attached to the ceiling frames of
the TellUs space with a specific minimum distance between
each other. Using the LoRaWAN technology, every 15 min,
the sensor units transmit data on the 868 MHz ISM band
to a LORAWAN gateway manufactured by Multitech. While
the performance of the LoORaWAN deployment is documented
in [22], in our case, none of the sensors had more than 25% of
their packets lost, while for some of the nodes less than 0.5%
of packets were lost. The gateway is connected to an external
biconical D100-1000 antenna with a gain of 2dBi, and trans-
fers the data to the ThingWorx commercial cloud platform
using the MQTT protocol.

Computing Infrastructure and Platform: Data is stored
on a local campus server via Python scripts querying the
ThingWorx commercial cloud platform.! The local campus
server is equipped with an RDBMS PostgreSQL server for
data storage, R, Shiny Server, and Django REST Framework.
In-depth technical details regarding deployment setup and
analysis are provided elsewhere [23]. Moreover, the com-
puting infrastructure allows implementing management tools
and functions and deploying virtual counterparts. These tools,
available online,” include the following: a “Device manage-
ment” function, which allows managing the installations and
adding new devices; “Bootcamp,” which allows us to check
the status of the installed sensors; a “map view,” that pro-
vides location information about the installed sensor devices;
“API key,” that provides real-time data stream from sensors
on request for API and obtaining a key. “Open data” is
also another virtual element offered by our system, provid-
ing open data freely under the CC BY 4.0 license in the form
of staticcsv-files. Furthermore, the system provides real-time
“data visualization” using Grafana which is an open-source
software platform for visualizing time-series data.

Data Sets and Preanalysis: The sensor network’s measure-
ments were collected from July 1, 2020 to May 31, 2021,
which yielded a total of 8040 data points, recorded hourly.
The data is collected on a cloud-based service and is openly
available for further study.’> We also use our previous data set
collected from June 2017 to November 2018. Then, first, we
process both data sets for the test phase (7) and implementa-
tion phase (Z) by removing outliers and anomaly data points,
and then we perform a preanalysis. We carry out this step to
ensure that the data collected by sensors are reliable and can
be further utilized for further analytics. Table I summarizes the
key statistics, which are mean and standard deviation (STDV),
of the data sets for the test phase (7) and the implementation
phase (Z).

Our observations indicate that the area is frequently occu-
pied, as suggested by the mean values of the variables (CO;

LAlvar)” 2018. [Online]. Available: http://alvar.erve.vtt.fi.
2https://smartcampus.oulu.ﬁ/manage/
3 https://etsin.fairdata.fi/dataset/98{f83ec-96fb-45d2-at82-c041200a3fb2
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TABLE I
KEY STATISTICS OF THE DATA SETS FOR THE TEST PHASE (7))
AND THE IMPLEMENTATION PHASE (Z)

Measurement Mean STDV
T |z T |z
CO, 459.05 | 444.59 | 161.17 | 100.28
Humidity 30.60 41.93 16.25 4.63
Light 215.41 | 361.90 | 302.41 | 342.36
Temperature 20.65 23.57 8.71 15.56
PIR 44.76 39.95 37.79 41.30
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Fig. 3. Violin graphs—the comparison of CO; concentrations at 11 zones
during the test phase (7, red) and the implementation phase (Z, blue).

mean exceeds 400, and PIR mean is above zero). The mean
temperature, humidity, and light values conform to the stan-
dard thermal and comfort levels for indoor environments. For
example, the typical indoor temperature in Finland is defined
to be 20 °C [24]. As demonstrated in Table I, key statistics,
namely, mean and STDV, exhibit similarity between 7 and Z.
This consistency validates the reliability of the collected data
sets.

Furthermore, a crucial benefit of our current sensor imple-
mentation phase (Z) is the use of an optimized quantity of
sensors, which, compared to the test phase (7°), does not com-
promise the quality of spatial coverage. Fig. 3 presents the
comparison of CO; concentrations in the form of violin graphs
at eleven zones between 7 (red on the left) and Z (blue on
the right). A violin graph depicts distributions of CO, concen-
tration data for eleven zones using density curves. The white
dots represent the median while the tails represent dispersion
(i.e., the confidence intervals) in CO; concentration data in
different zones. The width of each curve corresponds with the
approximate frequency of data points in each zone. Note that,
in the test phase (7) our data set does not have the CO, data
for Z11, as we had not deployed CO, sensor during the test
measurement for that zone. The consistency of measurements
between both phases, Z and 7, substantiates the viability and
rationality of our implementation (Z). There is a greater dis-
persion in 7 than in Z due to the larger volume of sensory data
in the 7 phase. Nevertheless, the medians of each violin plot
(the white dots) are in close proximity between 7 and Z. The
medians for both phases are within the acceptable ranges of
indoor CO; concentration [25]. This observation demonstrates
that the installation of an optimized number of sensors at
hotspot locations can effectively provide coverage for each
zone within the TellUs Smart Space. In conclusion, the
illustrated results suggest that the sensor deployment in 7 is an

TABLE II
DIAGNOSTIC TWIN, PROVIDING READINGS IN THE 11 ZONES IN TELLUS

Metric | Temp (°C) [ RH (%) | CO2 (ppm) | PIR Lux | Noise
z med. 21 25 422.5 84 115 34
1 std. 1.31 15.73 73.33 40.68 | 130.47 | 3.34
Z. med. 19.6 28 429.5 85 150 34
2 std. 1.71 12.98 58.52 40.07 | 189.33 1.53
7. med. 20 27 420 86.5 190 34
3 std. 1.58 13.26 36.84 40.78 | 275.18 | 0.92
Z med. 19.85 28 411.5 49.5 166 37
4 std. 1.77 13.79 38.43 32.65 | 173.31 335
z med. 19.85 28 418 76.5 115.5 34
5 std. 1.55 14.38 40.24 36.59 | 64.16 2.39
Z med. 20 28 416 78 139 34
6 std. 1.89 12.49 57.17 37.94 | 131.07 1.78
V7 med. 21 26 367.5 81 143 41
7 std. 1.47 15.13 143.25 40.45 | 99.09 5.38
7 med. 20.1 29 399 84.5 163.5 34
8 std. 1.74 15.61 52.49 39.46 60.9 3.03
Z med. 20.15 30 426 4 80.5 NaN
9 std. 1.58 13.50 622.05 4.39 35.74 NaN
z med. 20.5 28 415.5 75.5 162 34
10 M. 1.40 13.06 488.71 31.06 | 71.35 1.60
z med. 20.95 25 404 82 162 35
T 1.54 16.14 51.97 40.94 | 42.72 3.30

improvement over 7. Despite the optimized number of sensors
installed in the space, the quality of spatial coverage remains
consistent.

IV. RESULTS

In this section, we present the outcomes of our experiment in
the TellUs smart space, concentrating on the construction of a
digital twin. Our study illustrates three distinct types of digital
twins: 1) descriptive; 2) diagnostic; and 3) predictive. We also
use Table IT and Fig. 4 to present the results of our experiment.
Finally, we discuss possible avenues for a prescriptive twin.

A. Descriptive Twin

A descriptive digital twin provides information on the cur-
rent and past state of the physical twin. An implementation
of a descriptive twin, Table II describes the current status in
the TellUs smart space in terms of temperature, humidity, air
quality, occupancy, light, and noise. Table II also shows the
median (med) and standard deviation (std) of the measure-
ments from the sensors in 11 zones in the TellUs smart space.
The measurements include temperature (Temp in °C), rela-
tive humidity (RH in %), carbon dioxide (CO; in ppm), PIR
sensor, Lux, and Noise (in dbA). The findings displayed in
Table IT affirm that the environmental conditions within the
TellUs smart space align with typical indoor environments.
Furthermore, these results actualize a descriptive twin, eluci-
dating the events within the smart space and offering insight
into its dynamics. For example, the median temperature varies
between 19 °C and 21 °C (with std. hovering around 1.5 °C),
and the median of RH varies between 25% and 29% (with the
average of std of 15%). These are typical indoor conditions
for buildings in Finland.

The median values for the three highest concentrations of
CO; align with the maximum PIR measurements, observed in
zones Z; to Z3. However, the median CO, concentration for
Zo is also high, while the Zg is small—this is a cubic closed
space where the CO; is trapped and the effect of the ventilation
system is almost none. Consequently, the measurements from
the PIR sensor, which detects movement, are notably small.
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Fig. 4. Diagnostic and Predictive twins: analyzing and estimating different

sensor modalities. (a) Heatmap of Spearmann correlation coefficients between
CO; and other parameters in different zones. (b) Median (line) and standard
deviation (shaded area) of the diurnal cycle of CO, and pir in Zg and Zjg.
(c) Predictive twin, interpolating CO, sensor observations to locations where
sensor data is not available.

As such, the descriptive results imply a correlation between
CO; and PIR. The max and min of the medians of light sensor
readings are 190 and 163.5 lux, respectively. These values are
considered acceptable for the TellUs smart space, given that
the lights are switched off during the night and during peri-
ods of inactivity. Based on the American Society of Heating,
Refrigeration and Air Conditioning Engineers (ASHRAE),
for open plan office spaces, the acceptable noise level range
between 49-58 dBA. In TellUs, in most of the zones, the noise
level is equal to 34 dbA. Z4 and Z7, corresponding to the
cafeteria and the meeting room 7, show the highest median
noise (at 37 and 41 dbA). The cafeteria accommodates numer-
ous visitors daily, and the meeting room records the highest
occupancy rate. Despite this, the maximum median noise level
stands at 41 dbA, which remains below the threshold defined
by ASHRAE.

B. Diagnostic Twin

Diagnostic analytics examine the correlations, causative
factors, and effects underlying the phenomena observed
at TellUs. Fig. 4(a) shows the heatmap of the Spearman
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correlation coefficients between CO; and all variables in all
zones. The heatmap plot aids in comprehending the rela-
tionships between high-CO, concentration levels and other
variables. For example, PIR and noise levels are positively
correlated to the CO; concentration, especially in Zg, Zg, and
Z1p. This correlation is particularly evident in Zg, which show-
cases a high correlation between CO; and PIR, given its small,
enclosed spaces devoid of external influences like ventilation
systems. Moreover, Fig. 4(b) shows the diurnal cycles of CO;
concentration (blue) and the values of the PIR sensors (red) for
Zo and Zo. The blue and red shaded areas indicate the stan-
dard deviation of CO; and PIR diurnal cycles, respectively. In
the figure, the overlap in patterns of blue and red lines and the
shaded area confirms that the two variables are indeed corre-
lated in Zg and Zjo. These results suggest that the presence
of humans (indicated by high values of PIR and noise) influ-
ences the amount of CO; concentration in TellUs. Therefore,
by controlling the number of human movements in different
zones in the office, the level of CO, may also be controlled.

C. Predictive Twin

Predictive analytics offer insights into the potential future
state of the smart space, or the anticipated value of spe-
cific variables in areas where no corresponding sensors are
deployed. For example, Fig. 4(c) interpolates the CO, sen-
sor readings to cover the whole TellUs smart space, including
areas with no CO; sensors. The small enclosed spaces at
Zy and Z;( are clearly visible as areas with high-CO, con-
centration. Elsewhere, CO, levels across the TellUs space
remain relatively low, suggesting effective ventilation or sparse
occupancy.

Moreover, another predictive model can estimate the amount
of CO; concentration in places where CO; sensors are not
available, but PIR sensors are. In fact, as indicated by descrip-
tive and diagnostic analytics, a correlation exists between CO»
concentration and PIR values, the latter serving as a proxy for
the number of individuals present in the observed area [26].
A predictive model of CO; concentration can thus take inputs
of PIR sensors and estimate CO; by, for example, a linear
model, with [CO;| = a +PIR B + €.

In this formulation, |CO,]| is the concentration of CO, (in
ppm) and PIR is the number of movements recorded. B is the
model coefficient, « is the bias, and € is the model error.

D. Prescriptive Twin

Prescriptive analytics offer mechanisms for regulating the
TellUs smart space to sustain a healthy and productive envi-
ronment. For example, according to diagnostic and predictive
analytics, CO; may be caused by the number of people
present. Thus, a prescriptive digital twin can calculate the
maximum occupancy for a meeting room at a given time,
based on the highest estimated CO2 values in that room, and
accordingly adjust room reservations.

V. LESSONS LEARNED

We now turn to discuss the lessons, limitations, challenges,
and crucial considerations we have encountered in deploying
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sensors in smart spaces for digital twin creation, drawing on
our own experiences.

Traditional Set-Up Versus Digital Twin: When transition-
ing from our previous TellUs setup, which lacked digital
twin capabilities, to the newly established digital twin-enabled
model, we evaluated our system from several key perspectives.
These aspects include resource utilization, energy efficiency,
latency, and scalability. We hypothesize that integrating dig-
ital twin technology can lead to improvements in resource
utilization, as it enables real-time monitoring and control over
various resources, ensuring their efficient use. In contrast, tra-
ditional smart spaces without digital twins may rely on manual
adjustments or predefined schedules, which often do not align
with actual usage patterns and requirements. Additionally, we
believe that the digital twin model has the potential to signif-
icantly enhance energy efficiency by intelligently controlling
systems based on occupancy levels, ambient conditions, and
other factors, while traditional smart spaces may lack the nec-
essary data and control mechanisms to achieve the same level
of optimization. Transitioning to a digital twin can also poten-
tially reduce latency, as real-time data processing and decision
making are facilitated. Traditional smart spaces may experi-
ence delays in processing and respond to events due to the lack
of a unified data and control platform. We also suggest that
the digital twin simplifies the integration of new devices and
services, making it easier to scale the smart space as needed.
In comparison, traditional smart spaces may face challenges
in adapting to changing requirements and integrating new
technologies.

User Satisfaction in the Loop: In the future, we plan to
focus on empirically validating the hypotheses mentioned in
the previous point and further enhancing user satisfaction by
leveraging methodologies that extend the digital twin capa-
bilities with the possibility of relying on fast-feedback user
satisfaction. This approach will allow us to create an even
more personalized and comfortable environment for users,
addressing individual preferences and needs more effectively.
Moreover, we advocate for the need to introduce well-defined
and standardized metrics that enable researchers and prac-
titioners to fairly evaluate and compare their digital twin
based systems with traditional smart spaces across all key
aspects. The development, for example, of a digital twin
benchmarking suite would facilitate more accurate assessments
and encourage further advancements in the field.

Sensing Accuracy: Any sensor that is used for measuring
environmental variables should be calibrated at the factory.
For our experiment, we performed an additional calibration of
the sensors prior to deployment to ensure the capture of reli-
able data. However, in real-life sensor deployments, one-time
calibration of sensors before deploying them does not guar-
antee data accuracy as these low-cost sensors drift over time
and generate anomalous data. Thus, an alternative solution to
ensure data accuracy is the periodic calibration of individual
sensors or the sensor network in an automated fashion using
reference sensors or implementing an automated method that
calibrates the sensors opportunistically.

Sensor Deployment: To generate sufficient and appropri-
ate data from smart spaces for digital twin creation, we must

strategically deploy the right number of sensors, ensuring they
are properly spaced at designated locations. In our experiment,
we have deployed 68 LoRaWAN sensor nodes in our TellUs
smart space. To achieve this number, we carried out an earlier
test by deploying 352 of these sensors in TellUs space and
carried out one year of measurements (2017-2018) [8]. Thus,
based on our earlier data analysis and the engineers’ new sen-
sor deployment design, the number of sensor deployments was
optimized and the unnecessary sensors were removed.

Data Management: A digital twin necessitates a real-time
data stream. Therefore, data needs to be consumed in real-time
and also stored for further analytics. Typically, the data gen-
erated by the sensors in smart spaces do not require storage
capacity compared to other applications, e.g., hyperspectral
imaging. For example, in our experiment, the sensors mea-
sure every 15 min and produce 8040 lines of data for each
sensor. We collected data from 1 July 2020 to 31 May 2021
(11 months of data), and our data set has a .csv file size of
780 MB. Using MQTT protocol, we transmitted the data to the
ThingWorx commercial cloud platform and also queried the
data by Python scripts and stored it on local servers. Hence,
deploying a large number of sensors of even different vari-
eties may not challenge data storage, thus any form of a data
storage system, including on the edge or cloud may be an
appropriate solution. Integrating new sensors into the digital
system presents another challenge due to potential differences
in data formats. However, to establish interoperability, thus,
the use of unique standards, such as ONEDM or IPSO smart
objects, is necessary to obtain a similar data format.

Network Management: Within our TellUs smart space, we
set up a wireless sensor network consisting of 68 sensor
devices, each transmitting data packets on the 868 MHz ISM
band to a remote server via LoRaWAN radio access network
technology. To collect data from the sensor nodes, we used
a LoRA gateway that is connected to an external biconical
D100-1000 antenna which has a gain of 2dBi. Then, using the
MQTT protocol the data was relayed from the LoORA gateway
to the ThingWorx cloud platform and also stored the data on
our local servers. Thanks to the advances in communication
technologies that offer a wide variety of networking solutions
that are appropriate for IoT deployment in smart spaces as
sufficiently addressed in earlier sections.

Security and Privacy: Typically, the sensors which are used
in smart spaces, such as motion detectors, environmental and
thermal array sensors, and wireless sensing systems due to
their application purposes do not capture information that
includes people’s identities. In our deployment, we used envi-
ronmental and PIR sensors which did not involve any sort of
security and privacy concerns. However, in case cameras are
used for occupancy detection, recent studies introduce meth-
ods (e.g., by reducing the video frame resolution) that mitigate
possible security and privacy concerns that might threaten
people’s privacy.

Lifecycle Management: Sensors may decay, break, or be
dislodged from their locations due to indoor human activities.
This mandates continuous monitoring of the operation of the
sensors. In our deployment, each sensor device is powered by
two 3.6 V-AA lithium batteries. With a sampling frequency
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of 15 min and two batteries for each sensor, the devices
are expected to have power for about 24 months. In theory,
the batteries are depleted after prolonged use powering the
sensors. Thus, it is necessary to ensure a continuous power
supply for sensors. Indeed, one important advantage of Digital
Twin is its automated management which enables the detec-
tion of silent sensors that do not transmit data, enabling fixing
the problem. Moreover, life-cycle management also concerns
the Software-over-the-air (SOTA) and firmware-over-the-air
(FOTA) capabilities of IoT deployment. Our deployment did
not encompass any SOTA/FOTA capability. This is a big lim-
itation because, when SOTA/FOTA are needed, we are forced
to perform such operations device by device or by a group
of devices (usually from the same manufacturer). We aim
to overcome such limitations by relying on the FOTA/SOTA
capabilities of LwM2M, which is already used in our system
for performing device bootstrapping and device management.

VI. CONCLUSION

Smart spaces are progressively becoming commonplace,
as new sensor-enabled devices grow more affordable, easier
to deploy, maintain, and operate. The growing pervasiveness
of IoT-enabled devices is amplifying the potential to build
services and applications that benefit occupants, optimize the
space’s functionality, and manage various aspects of the space.
Currently, these applications and services are primarily imple-
mented using dedicated IoT analytics platforms, to which
sensor-enabled devices connect, providing a single interface
for applications and services. Regrettably, this approach is not
scalable and tends to result in a siloed solution where capabili-
ties are optimized for individual use cases, rather than offering
a unified view that could better manage, maintain, and leverage
capabilities across a broad range of applications and services.

In this article, we argue that smart spaces have matured
to a point where dedicated IoT analytics platforms alone are
no longer sufficient. Instead, digital twinning, the process of
linking the physical space with a virtual representation, serves
as a more fitting paradigm for managing and supporting the
space. Indeed, we propose that the sensor, communication, and
computing infrastructure have reached sufficient maturity to
integrate the operations of the space through digital twinning.
We presented a generic reference architecture for implement-
ing digital twins for smart spaces using a layered architecture
that integrates four different levels (physical space, sensing
infrastructure, communications, and computations). We also
provided an overview of the key technologies that are cur-
rently available and used the analytic ascendancy model to
highlight benefits for different stages of implementation. We
also presented a proof-of-concept implementation using the
TellUs smart space at the University of Oulu in Finland to
highlight the benefits digital twins can bring to smart spaces,
as well as how different levels of technological maturity affect
these benefits. In sum, our work paves the way for tran-
sitioning beyond IoT analytics platforms, harnessing digital
twin technology to improve smart space quality and offer a
unified approach to accessing computing capabilities, thereby
enhancing the benefits these spaces offer to the occupants.
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