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Abstract—Vehicle control is one of the most critical challenges
in autonomous vehicles (AVs) and connected and automated vehi-
cles (CAVs), and it is paramount in vehicle safety, passenger
comfort, transportation efficiency, and energy saving. This sur-
vey attempts to provide a comprehensive and thorough overview
of the current state of vehicle control technology, focusing on the
evolution from vehicle state estimation and trajectory tracking
control in AVs at the microscopic level to collaborative control
in CAVs at the macroscopic level. First, this review starts with
vehicle key state estimation, specifically vehicle sideslip angle,
which is the most pivotal state for vehicle trajectory control,
to discuss representative approaches. Then, we present symbolic
vehicle trajectory tracking control approaches for AVs. On top
of that, we further review the collaborative control frameworks
for CAVs and corresponding applications. Finally, this survey
concludes with a discussion of future research directions and the
challenges. This survey aims to provide a contextualized and in-
depth look at the state-of-the-art in vehicle control for AVs and
CAVs, identifying critical areas of focus and pointing out the
potential areas for further exploration.

Index Terms—Autonomous vehicles (AVs), collaborative con-
trol, connected and automated vehicles (CAVs), state estimation,
trajectory tracking control, vehicle sideslip angle.

I. INTRODUCTION

AUTOMATED driving and collaborative driving automa-
tion technologies are revolutionizing future transporta-

tion systems regarding reducing traffic congestion, enhancing
safety, and improving energy efficiency [1], [2], [3], [4],
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[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21]. Autonomous vehicles (AVs) and
connected and automated vehicles (CAVs) as the key instantia-
tion of automated driving and collaborative driving automation
become more and more widely deployed, and they benefit both
individuals and society [22], [23], [24], [25], [26], [27]. In the
past few decades, manufacturers and researchers have been
thriving in automotive industrialization to maximize benefits
from automated driving and collaborative driving automa-
tion [28], [29], [30], [31], [32], [33], [34]. The hierarchical
framework, including perception, planning, and control mod-
ules, is the popular pipeline for both automated driving and
collaborative driving automation techniques [35]. One of the
most challenging tasks for automated driving and collabora-
tive driving automation is to develop safe and efficient vehicle
control modules for both AVs and CAVs [36], [37]. To clar-
ify, vehicle control is to make an AV or CAV follow a desired
route or trajectory [38]. More specially, for AVs, we will focus
on vehicle trajectory tracking control at the microscopic level,
while more efforts on collaborative control will be put for
CAVs at the microscopic level [39].

Before diving into vehicle control, it is worth mention-
ing that accurate and reliable vehicle state information is
the prerequisite and essential for vehicle control in AVs and
CAVs [40], [41]. However, key states, such as longitudinal
and lateral velocity, sideslip angle, orientation, and tire forces,
cannot be directly measured for commercial vehicles. These
vital states can only be estimated indirectly. Among these
states, the sideslip angle is one of the most important states of
interest as it comprises both longitudinal and lateral velocity
information, i.e., the sideslip angle accuracy is an indica-
tor of the accuracy of the longitudinal velocity and lateral
velocity estimation accuracy. Despite the importance of the
sideslip angle, it is also the most comprehensive but difficult
to be estimated among the states mentioned above because
errors from other states, such as longitudinal velocity, and
roll angle contribute to the error in sideslip angle [42]. In
addition, the sideslip angle is critical for vehicle stabiliza-
tion, motion planning, road condition estimation, handover
modules, and vehicle navigation [43]. Namely, without an
accurate sideslip angle, the performance of the applications
mentioned above will be compromised and even sustain fail-
ure inevitably. Thus, efficient and robust vehicle sideslip angle
estimation is of much importance and has been attracting
much attention during the past few years in the vehicle con-
trol community. Although other states, such as longitudinal
speed information, are also necessary for vehicle control
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applications, compared to sideslip angle, it is easier to obtain
and much literature has well-addressed its estimation [44].
Therefore, in this work, we focus on the sideslip angle esti-
mation and with the significance of sideslip angle to vehicle
control, it is necessary to tackle this sideslip angle estimation
problem by providing the readers with a review of this aspect
such that vehicle control can be discussed thoroughly. Based
on the literature, using the accessible information from cheap
onboard sensors, including the steering wheel angle sensor
(SWAS), wheel speed sensors (WSS), the inertial measurement
unit (IMU), and global navigation satellite systems (GNSSs),
sideslip angle estimation can be categorized into three
main approaches: 1) onboard-sensor-based (OSB) approach;
2) GNSS-augmented (GAU) approach; and 3) artificial-
intelligence-augmented (AIA) approach [45], [46]. Each of
the approaches will be elaborated on in the next section.

Founded on state estimation, in particular side slip angle
estimation, for an individual AV at the microscopic level, the
vehicle trajectory tracking control is designed to track the
desired paths under diverse driving scenarios. Numerous con-
trol strategies, including proportional-integral-derivative (PID)
control, linear quadratic regulator (LQR), feed-forward and
feedback control, robust control, sliding mode control (SMC),
model predictive control (MPC), and learning-based method,
have been developed to adapt to the challenge scenarios, such
as driving on low friction road with excessive steering. Despite
the substantial progress of model-based control algorithms
based on PID, LQR, SMC, MPC, etc., there still remain cor-
ner cases where it is difficult to control the vehicle. Two
potential issues from the vehicle dynamic models compromise
the vehicle control algorithms normally: 1) tire cornering char-
acteristics are subject to strong nonlinearities and uncertainties,
particularly in extreme driving conditions and 2) the model
accuracy and computation workload should be a tradeoff in
the real application. To fill this gap and make the control
algorithm more robust, recently, learning-based methods have
gained attention due to the numerous appealing results that
have been achieved in many fields, such as intelligent systems
control, decision making, and prediction with the character-
istics of the desirable self-optimization and adaptability [35],
[47], [48], [49], [50], [51], [52], [53]. Although learning-based
methods are well suitable to control problems in some complex
and dynamic environments, they lack model interpretability.
As a consequence, it is challenging for learning-based methods
to guarantee feasibility in the real world in the current stage.
There is a need for such a review work discussing both the
model-based and model-free vehicle trajectory tracking control
methods.

The limitations of individual AVs to continuously sense the
dynamic and uncertain environment and without planning the
behavior of AVs at a macroscopic level have led to growing
interest in CAVs development within the realm of collaborative
driving automation in intelligent transportation systems (ITSs).
Leveraging the shared relevant information and planned tra-
jectories with surrounding AVs’ intention beyond line-of-sight
and field-of-view will further boost the robustness, safety and
efficiency of CAVs, leading to safer and more efficient trans-
portation. Especially, collaborative control, one of the key

features of collaborative driving automation, is an important
component of CAV’s development and plans the behavior
of individual CAV. Previous studies on collaborative control
can be classified into three main control approaches: 1) cen-
tralized; 2) decentralized; and 3) mixed control approaches,
each with its advantages and limitations for achieving effi-
cient and safe operation of CAVs. These methods differ in
terms of the level of control authority, information sharing, and
decision-making processes among CAVs, ranging from a cen-
tral authority controlling all vehicles in the centralized mode
to each vehicle autonomously making its own decisions based
on local information in the decentralized mode, and a combi-
nation of both in the mixed control mode. To ensure practical
applicability, most existing research focuses on specific driving
scenarios and traffic facilities, such as platooning, lane change,
merging, and intersection management. Thus, existing reviews
or surveys mainly discuss control techniques of CAVs in
various scenarios. In [54], five use cases from CAVs: 1) vehi-
cle platooning; 2) lane change; 3) intersection management;
4) energy management; and 5) road friction estimation, have
been investigated to achieve potential benefits in the current
road transportation system. In [55], a comprehensive review on
five selected subjects has been conducted for CAVs: 1) inter-
CAV communications; 2) security of CAVs; 3) intersection
control for CAVs; 4) collision-free navigation of CAVs; and
5) pedestrian detection and protection. In [56], this survey
presents a control and planning architecture for CAVs and
analyses the state-of-the-art on each functional block. It mainly
focuses on energy efficiency strategies. Sarker et al. [57]
thoroughly investigated three fundamental and interconnected
areas of CAVs: 1) sensing and communication technologies;
2) human factors; and 3) information-aware controller design.
To this end, they suffer from the following two drawbacks.

1) The importance of state estimation for robust vehicle
control is overlooked.

2) The vehicle control of AVs and CAVs has been discussed
separately rather than in a cohesive manner.

Aiming to address these two issues, this survey covers several
aspects of vehicle control techniques and applications evolving
from AVs to CAVs.

The overall framework for this survey is shown in Fig. 1.
With the multimodal sensors, including on-board sensors,
IMU, GNSS, camera, radar, and LiDAR as inputs on AVs or
CAVs, state estimation techniques, especially sideslip angle
considering diverse sensors configuration and model features,
will be reviewed in Section II. Then, classical vehicle physi-
cal models and trajectory tracking control algorithms of AVs
will be discussed in Section III. In addition, for collaborative
control of CAVs, the enabling techniques, critical compo-
nents, methodologies, and potential applications are surveyed
in Section IV. Section V concludes with remarks on the state
and potential areas for future research.

II. VEHICLE SIDESLIP ANGLE ESTIMATION

Vehicle state information plays a critical role in the motion
planning, decision-making, and control techniques of AVs
and CAVs. The states comprise vehicle position, velocity
(longitudinal and lateral velocity in the vehicle coordinate),
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Fig. 1. Overall framework of vehicle control for AVs and CAVs. AV—autonomous vehicle; CAV—connected and automated vehicle; WSS—wheel speed
sensor; SWAS—steering wheel angle sensor; IMU—inertial measurement unit; GNSS—global navigation satellite system; VKB—vehicle-kinematics-based;
VDB—vehicle-dynamics-based; AI—artificial intelligence; SMC—sliding model control; LQR—linear quadratic regulation; MPC—model predictive control;
RSU—roadside unit; and LTE—long-term evolution.

Fig. 2. For coordinates, E, N, and U denote the east, north, and upward
directions, respectively. x, y, and z denote the vehicle body’s forward, left,
and upward directions. β is the sideslip angle of the vehicle which is the
angle between its velocity direction and the heading of the vehicle, ψ is the
course of the vehicle which is the vehicle velocity direction, and φ, θ , and
ϕ are the roll, pitch, and heading angle of the vehicle concerning the east
direction in the navigation coordinate [58], [59].

and attitudes (vehicle roll, pitch, and yaw). Fig. 2 illustrates
the definitions of the aforementioned states, where the super-
scripts n and b represent the navigation and body coordinates,
respectively. In the navigation frame, x, y, and z point east,
north, and upward, and in the body frame, they point forward,
left, and upward. As shown in (1), accurate knowledge of the
longitudinal and lateral velocities is required to calculate the
vehicle sideslip angle, which is crucial for vehicle control.

While expensive equipment, such as the RT3000 and Kistler
S-Motion, can measure some of these state variables, they
are not feasible for mass-produced vehicles. Therefore, many
researchers have been working on estimating the vehicle
sideslip angle for practical automobile applications. It should
be noted that although the localization/positioning estima-
tion of the AVs and CAVs belongs to the scope of state
estimation for AVs and CAVs, it is more related to the nav-
igation/surveying and mapping community and extensive and
comprehensive reviews have been conducted in [60] and [61].
To make this review work dedicatedly serve the interest of
the vehicle control community, we focus on the aspect of
vehicle state estimation, i.e., sideslip angle estimation. In
another aspect, the sideslip angle estimation is equivalent to
the heading angle estimation, which is one of the most critical
states in the navigation system. The relationship between the
sideslip angle and vehicle velocity has been revealed in [46] as
follows:

β = tan−1
(

vy

vx

)
. (1)

Currently, the design of vehicle state estimation is domi-
nated by Kalman filters (KFs) and nonlinear observers. KFs
are widely used due to their simplicity and robustness. They
consist of two phases: 1) the prediction phase and 2) the cor-
rection phase. The prediction phase produces estimates of the
current state variables and their uncertainties. When the mea-
surement signal arrives, the estimated variables are corrected
in the correction phase.
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Fig. 3. Summary vehicle sideslip angle estimation approaches. WSS—wheel speed sensor; SWAS—steering wheel angle sensor; IMU—inertial measurement
unit; GNSS—global navigation satellite system; VKB—vehicle-kinematics-based; VDB—vehicle-dynamics-based; DKFB—dynamic-kinematics-fusion-based;
SB—state-based; SEB—state error-based; and AIA—artificial-intelligence-augmented.

However, using the standard KF for state estimation under
high-dynamic conditions is suboptimal. To overcome this lim-
itation, some researchers have proposed variants of the KF to
improve its performance. Alternatively, others have developed
nonlinear observers to estimate vehicle states, taking into
account the strong nonlinearity of the vehicle dynamic model
during extreme driving conditions. Unlike KFs, there is no
fixed design paradigm for nonlinear observers. In particular,
feedback coefficients are calculated by constructing a subtle
Lyapunov function and restricting the function derivatives to
be less than zero.

Fig. 3 presents the detailed classification of the vehicle
sideslip angle estimation approaches. In general, it can be cate-
gorized into three main approaches: 1) OSB approach; 2) GAU
approach; and 3) AIA approach. The OSB approach can
be further classified into three kinds: 1) vehicle-kinematics-
based (VKB) approach; 2) vehicle-dynamic-based (VDB)
approach; and 3) dynamic-kinematics-fusion-based (DKFB)
approach. The GAU approach can be further classified into
the state-based (SB) approach and the state-error-based (SEB)
approach. The AIA approach can also be classified into the
pure AIA approach and the hybrid AIA approach.

A. OSB Approach

Onboard sensors, such as SWAS, WSS, and IMU, are essen-
tial for ensuring safe vehicle operation. Researchers have
developed various mathematical models that utilize the input
data from these sensors to estimate the vehicle’s sideslip
angle in real time. These comprehensive estimation approaches
can be categorized into three main types: 1) VDB approach;

2) VKB approach; and 3) DKFB approach. In the following
sections, we will provide a detailed overview of each of these
approaches.

1) VDB Approach: Considering that the vehicle dynamic
model has a relatively low dependence on sensors’ accuracy,
substantial research on vehicle sideslip angle estimation based
on vehicle dynamic models has been conducted in industry
and academia in the past two decades. The performance of the
VDB approach is coupled with the reliability of the vehicle
dynamic model to a great extent. Accordingly, the degree of
freedom (DOF), the road friction, the nonlinear characteristics
of the tire, and the uncertainty of the vehicle model parame-
ters will impact the accuracy of the estimation algorithms. To
facilitate an overview of the VDB approach, a classical vehicle
dynamic model is presented here as an example to describe the
vehicle motion state. A 2-DOF vehicle model can be written
as follows:

β̇ = Fyf · cos δ + Fyr

mvx
− ϕ̇

ϕ̈ = lf · Fyf · cos δ − lrFyr

Iz
(2)

where m is the vehicle mass; β̇ and ϕ̈ are the derivative of the
sideslip angle and yaw rate, respectively; Fyf and Fyr are the
lateral force of the front and rear tires; δ is the steering wheel
angle; m is the vehicle mass; Iz is the vehicle yaw moment
of inertia; lf and lr is the distance from the center of gravity
(COG) to the front axle and rear axle; and vx is the vehicle
longitudinal velocity.
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Based on the classical vehicle dynamic model and its
variants, enormous VDB approaches and a great variety of
estimators have been proposed. Among them, the extended
KF (EKF) method has received significant attention, as evi-
denced by a number of studies [62], [63], [64]. For instance,
Dakhlallah et al. [62] proposed a sideslip angle estimator based
on the Dugoff tire forces model, using the EKF approach.
Meanwhile, Li et al. [63] used the sideslip angle rate as the
feedback measurement and design an EKF based on steering
torque to achieve a speedy response in estimating the sideslip
angle. However, the assumption of Gaussian noise in EKF
may introduce extra estimation errors. Thus, Sun et al. [64]
introduced a noise update module to adaptively update the
noise. Nam et al. [65] introduced lateral tire force sensors
as the augmented measurement signal to estimate the vehicle
sideslip angle.

When vehicle tires reach the extreme nonlinear region, the
first-order linearization used in EKF may not be accurate
enough for state estimation. In contrast, unscented Kalman
filtering (UKF) can work directly with nonlinear models and
estimate states using a set of sigma points to avoid local lin-
earization, making it a suitable approach for vehicle sideslip
angle estimation. This is demonstrated in several studies,
including [66], [67], [68], [69], and [70]. For example, [66],
[67], [68] uniformly demonstrate that UKF outperforms EKF
in estimating vehicle sideslip angle estimation. Due to the
boundaries on state variables, Strano and Terzo [69] introduced
the constrained UKF to improve convergence and estima-
tion error performance. Bertipaglia et al. [70] addressed the
challenge of calibrating the process noise matrix of UKF
by introducing a two-stage Bayesian optimization method. In
addition to EKF and UKF, particle filter (PF) and cubature
KF (CKF) have also been employed for precise estimation of
the sideslip angle. PFs, like UKFs, do not rely on local lin-
earization techniques or rough approximations. Chu et al. [71]
estimated vehicle sideslip angle through an unscented PF.
Wang et al. [72] proposed robust CKF for precise esti-
mation of the sideslip angle. At the same time, research
on vehicle sideslip angle estimation also includes nonlinear
observers apart from KFs and their variants. Zhang et al. [73]
proposed a gain-scheduling observer for sideslip angle estima-
tion, accounting for the uncertainty of 2-DOF vehicle dynamic
models. Gao et al. [74] designed a high-gain observer with
input-output linearization for vehicle sideslip angle estimation.
In addition, You et al. [75] developed a nonlinear observer to
estimate vehicle sideslip angle and road bank angle simulta-
neously, taking into account that the measurement of lateral
acceleration is affected by vehicle roll angle and road bank
angle.

As illustrated above, VDB approaches require vehicle
parameters. However, certain parameters, such as COG and
tire cornering stiffness, are highly dependent on driving and
load conditions. Uncertainty in these parameters can intro-
duce estimation errors and even cause the estimator to fail
to converge.

2) VKB Approach: Given the drawbacks of inaccurate
vehicle models, especially during critical driving conditions,
some researchers have opted to forego VDB approaches and

instead utilize vehicle sensor information, such as IMU, WSS,
and SWAS, to develop VKB approaches. A dominated 2-DOF
vehicle kinematic model in the plane can be expressed as
follows:

v̇x(t) = ax(t)+ ϕ̇vy

v̇y(t) = ay(t)− ϕ̇vx. (3)

Through direct integration [76], the sideslip angle could be
derived as follows:

β = β0 +
∫ (ay

v
− ψ̇

)
dt. (4)

Unfortunately, this method may lead to integration errors,
and in severe situations, it could even cause the results to
diverge. To eliminate the above issue, Kim and Ryu [77]
designed an EKF to estimate the vehicle sideslip angle consid-
ering time-varying longitudinal and lateral velocity changes.
Nevertheless, the authors do not specify how to obtain the
measured longitudinal and lateral velocity for feedback correc-
tion. To suitably process the IMU measurements and eliminate
the undesired effect, Selmanaj et al. [78], [79] encompassed
vehicle longitudinal speed, the sensor offsets, the vehicle roll
angle, and the accelerations of COG.

Based on the literature reviewed above, it is evident that
VKB approaches rely on the IMU as the core sensor. Anyhow,
the IMU output signal is susceptible to temperature drift, bias
error, random noise, and the gravity component resulting from
the roll and pitch angle. To obtain velocity accurately by
integrating the sensor’s acceleration, it is essential to remove
bias, noise, and the gravity component. Otherwise, prolonged
integration can lead to error accumulation.

3) DKFB Approach: Since both VDB and VKB
approaches have limitations, the question of how to combine
them into a complementary DKFB approach remains open.
According to [80], VDB approaches exhibit a higher level
of confidence at low frequencies, while VKB approaches
perform better at high frequencies. Accordingly, a first-order
filter can be employed to integrate the VKB and VDB
approaches. The fusion result can be obtained as follows:

β̂ = 1

τ s + 1
β̂model + τ

τ s + 1
β̂kin (5)

where τ is a filter parameter; β̂model is the estimation result
with the VDB approach; and β̂kin is the estimation result with
the VKB approach.

Chen and Hsieh [81] utilized a planar kinematics model to
obtain the sideslip angle, where the lateral acceleration vari-
able is determined by the lateral dynamic equation. Notably,
the observability of the model is weak when the yaw rate is
small. In this case, only the prediction phase is performed.
Building on this work, Liao and Borrelli [82] employed a
kinematics observer to adapt the tire cornering stiffness and
improve the OSB approach’s performance in the nonlinear tire
region. Chen et al. [83] designed a VKB approach based on the
integral method, which provides relatively accurate results in a
short period. Wang et al. [84] integrated a UKF-based 3-DOF
dynamics model and an EKF kinematic model using a weight-
ing factor to estimate the vehicle sideslip angle. Additionally,
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Chen et al. fused VDB with CKF and VKB with integration to
assess the vehicle sideslip angle. The corresponding coefficient
weight is determined by the vehicle’s nonlinearity degree and
tire-road coefficient [85]. Additionally, Li et al. [86] developed
a weight allocation strategy to fuse the VKB and VDB models,
combining the front wheel steering angle, transient features of
lateral acceleration, and yaw rate. Thus, the acceleration gen-
erated by gravity components with changing attitudes can be
detached. Benefiting from this motivation, Xia et al. [87] fused
3-D estimators to obtain vehicle sideslip angle. In minor exci-
tation conditions, the VDB approach assists the VKB approach
in estimating the sideslip angle, while in large excitation,
the sideslip angle estimation would rely only on the VKB
approach. Furthermore, Xiong et al. [88] proposed a novel
DKFB approach considering the lever arm between the IMU
and COG based on the driving conditions. The proposed archi-
tecture consists of the following four estimators: 1) lateral
and longitudinal velocity estimators with the VDB approach
and 2) attitude/velocity estimators with the VKB approach.
The driving conditions determine the fusion mechanism. More
importantly, the VDB approach can be used as the feedback
signal for the VKB approach when the vehicle is under normal
driving conditions. However, in critical driving conditions, the
VDB approach is cut off, and only the VKB approach is used
to estimate the vehicle sideslip angle. The performance of the
proposed method is verified by double lane change and slalom
maneuvers.

B. GAU Approach

With the increasing development of AVs and CAVs, there
are now more sensors available to provide input information
for efficient state estimation, including GNSS, cameras, radar,
and LiDAR [89], [90], [91], [92], [93]. As GNSS is commonly
used in AVs and CAVs with low cost, there has been exten-
sive research on estimating the vehicle sideslip angle using
GAU approaches that incorporate GNSS position and veloc-
ity information in navigation coordinates. Depending on the
characteristics of the variables in the state equation, these
approaches can be further divided into the following two
categories: 1) the SB approach and 2) the SEB approach.

1) SB Approach: The SB approach directly relies on vari-
able states in the model. The advantage of this approach
lies in its simplicity of design and derivation, as well as
its relatively low-computational requirements. Therefore, it is
widely adopted in vehicle state estimation. Naets et al. [94]
proposed an EKF that estimates vehicle sideslip angle using
lateral velocity, yaw rate, longitudinal velocity, and tire cor-
nering stiffness as the states vector. They also analyze four
types of measurements for feedback correction, including yaw
rate, lateral acceleration, four-wheel speed, and GNSS veloc-
ity. Additionally, Katriniok and Abel [95] assessed the local
observability of the estimation framework with the help of
GNSS-based horizontal velocity. Park et al. [96] synthesized
VDB and VKB approach with EKF to attain vehicle sideslip
angle, and GNSS velocity measurement corrects the VKB
approach. Liu et al. [97] constructed the kinematic information
between GNSS and IMU to estimate vehicle sideslip angle

based on a nonlinear observer, in which the observability
and convergence rate of the observer is verified. Similarly,
Ding et al. [98] calculated the sideslip angle based on EKF
but ignore the time synchronization problem among different
sensors. To fill the performance gap due to time synchro-
nization, Yoon and Peng [99] proposed a kinematic-based
estimator to obtain the vehicle sideslip angle by merging
IMU with two GNSS receivers. Liu et al. [97] developed
an observer–predictor with multisensor fusion to handle the
issue of measurement delay for GNSS and camera, and they
adopt an adaptive fading KF to enhance the yaw and roll
angle estimation performance. Besides time synchronization,
the low-sampling frequency of GNSS is another critical issue.
The control period for vehicle stability is typically 10 or 20 ms,
corresponding to 100 or 50 Hz, respectively. Nonetheless, the
sampling frequency of GNSS is usually much less than 50 Hz,
causing the accumulation of integrated errors when GNSS sig-
nal is unavailable. To mitigate this issue, Liu et al. proposed
a novel inverse smoothing and gray prediction fusion algo-
rithm. Additionally, Liu et al. [45] employed a 3-D vehicle
model with higher fidelity to decouple the gravity component
of acceleration signals.

2) SEB Approach: Although the SB with GAU approaches
improve the accuracy of sideslip angle estimation, they still
could not accurately estimate the bias of the gyroscope and
accelerometer. To alleviate the aforementioned limit, some
researchers also adopt an alternative GNSS and IMU fusion
strategy, called the SEB approach, which is based on the
inertial navigation system (INS) framework. SEB approaches
offer improved accuracy in attitude estimation and greater
robustness compared to SB approaches [58]. SEB approaches
have an advantage in that they use state errors (e.g., atti-
tude, velocity, and position) instead of directly using the
state vector. This leads to errors close to the origin, avoid-
ing problems like gimbal locking and singular parameters.
The position error and velocity error derived from GNSS
and INS, along with their covariance matrices, are used
as the measurements for the KF. The state vector of the
KF typically contains position error, velocity error, attitude
error, gyro bias, and acceleration bias. Over the past ten
years, various works related to vehicle sideslip angle esti-
mation have been carried out based on the aforementioned
model variants. Xiong et al. [42] proposed a parallel inno-
vation adaptive estimator to address the low-sampling rate
issue of GNSS measurements for sideslip angle estimation.
Xia et al. [46] presented a hybrid strategy to address the INS
heading error for sideslip angle estimation. Considering that
the heading error of INS coupled by vehicle sideslip angle
is not well observable, Xia et al. [100], [101] introduced the
VDB approach to augment the heading error into the velocity
measurements. In addition, Xia et al. [102] applied the heading
angle measurement from the dual-antenna GNSS to compen-
sate for the course angle offset, hereby improving vehicle
sideslip angle estimation. To eliminate the error from yaw mis-
alignment, Xia et al. [40] constructed the novel linear attitude
and velocity error dynamic models and design a weighting
scheme to fuse the SEB and VDB approach based on the
vehicle lateral excitation level to enhance the sideslip angle
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estimation performance. Furthermore, Xia et al. [43] investi-
gated the stability of the proposed sideslip angle estimation
algorithm. Zhang et al. [103] presented an innovative VKB
method for sideslip angle estimation, which continuously esti-
mates the attitude and velocity of the vehicle to obtain the
sideslip angle. Within the INS-based framework, the sideslip
angle is the most difficult to estimate due to the observabil-
ity issue [46]. To some extent, the sideslip angle estimation is
equivalent to the heading angle estimation in the GNSS/INS
integration system which is dedicated to vehicle localiza-
tion [100]. In another manner, resolving the sideslip angle
estimation problem through multisensor fusion considering
vehicle dynamics can benefit the typical GNSS/INS integra-
tion system to provide the vehicle position in the navigation
coordinate. And the position information is of great impor-
tance for collaborative control of CAVs [104], [105]. Next,
we also briefly summarize the acquisition of vehicle posi-
tion information through the SEB approach. Gao et al. [106]
proposed a vehicle navigation algorithm aided by vehicle
sideslip angle estimation. Similarly, Lu et al. [107] lever-
aged the GNSS course angle to enhance vehicle heading
angle estimation, hereby improving vehicle position estima-
tion. Xu et al. [108] also introduced the sideslip angle as
the correction feedback to improve vehicle navigation during
GNSS outages. Several comprehensive surveys and significant
recent contributions on the subject of vehicle navigation itself
are discussed in [61], [109], and [110]. From this point of
view, the vehicle sideslip angle can improve the accuracy of
vehicle navigation, which in turn has a positive impact on the
collaborative control of CAVs.

C. AIA Approach

Over the past decade, AI technology has made significant
advances [111], [112], [113], [114], [115], [116], [117], [118],
[119], [120], [121], [122]. This progress has motivated some
researchers to apply AI for vehicle sideslip angle estimation,
utilizing a data-driven approach that incorporates input from
multimodal sensors. This approach can be classified into two
categories: 1) pure AIA approach and 2) hybrid AIA approach.

1) Pure AIA Approach: The pure AIA approach involves
achieving vehicle sideslip angle estimation entirely through an
end-to-end data-driven process, without relying on traditional
mathematical models. Liu et al. [123] developed a time-delay
neural network to evaluate vehicle sideslip angle using input
data, such as steering angle, lateral acceleration, yaw rate, and
wheel speed. Bonditto et al. [124] constructed three artificial
neural networks to regress the sideslip angle in three road
conditions—dry, wet, and icy. The estimated output is cor-
rected by a road condition classifier network. Liu et al. [125]
proposed a nonlinear auto-regressive neural network to esti-
mate vehicle sideslip angle. Through a comparative study, the
proposed method shows strong performance across all driving
conditions.

2) Hybrid AIA Approach: The hybrid AIA approach, which
combines kinematic or dynamical mathematical models with
artificial intelligence techniques, is becoming increasingly
popular for estimating vehicle sideslip angle. For instance,

Kim et al. estimated vehicle sideslip angle and its uncertainty
with long short-term memory (LSTM) aided by yaw rate,
velocity, steering wheel angle, and lateral acceleration. The
LSTM output is used as the input of the dynamic EKF/UKF
model to enhance the performance of sideslip angle estima-
tion [126]. Similarly, Novi et al. [127] integrated an artificial
neural network with UKF based on a kinematic model to esti-
mate sideslip angle. Compared with the pure AIA approach,
the hybrid approach can improve the interpretability of the
estimation method to a certain extent.

The survey mentioned above highlights that estimating
sideslip angle is not only critical for the trajectory tracking
control of AVs but also essential for vehicle navigation, which
is vital for communication among CAVs. Therefore, accurate
sideslip angle estimation is indispensable for both AVs and
CAVs. Although the cameras, GPS, and other sensors on AVs
and CAVs can provide multisource measurement information
for estimating the vehicle sideslip angle, effectively fusing
data with different confidences in various environments and
accounting for vehicle kinematics and dynamics remains a
significant and challenging research problem in the future.

III. TRAJECTORY TRACKING CONTROL OF AVS

Vehicle trajectory tracking control is a crucial and funda-
mental component of AVs, enabling the computation of direct
optimal commands like steering angles, throttle opening, and
braking pedal to replace and assist the driver [128], [129].
Within the control module, it can ensure that the vehicle
accurately follows a predefined path while avoiding obstacles
and maintaining safe driving conditions [130]. Accordingly,
the feedback or self-learning tracking control algorithms at
the microscopic level are designed to adjust the vehicle’s
speed, acceleration, and steering to follow the desired trajec-
tory. Typically, the algorithms take into account the vehicle’s
dynamics and kinematics to determine the optimal control
inputs. These inputs are adjusted in real-time to account for
any uncertainties or disturbances in the vehicle’s environment,
such as changes in road conditions, traffic flow, or the presence
of obstacles. Ultimately, simulation tests, hardware-in-the-loop
tests, track tests, and on-road tests are conducted to validate
the safety and reliability of these control approaches.

Nowadays, numerous institutions, automotive manufactur-
ers, and component suppliers in the AV field have devoted
significant attention to developing tracking control algo-
rithms [131], [132], [133], [134]. These algorithms are pri-
marily divided into the following three categories: 1) feedback
control without prediction (e.g., PID, LQR, and SMC [135],
[136], [137], [138]); 2) feedback control with the prediction
(e.g., MPC [30], [139], [140], [141]); and 3) learning-based
control, such as the deep reinforcement learning. The overall
framework is illustrated in Fig. 4.

A. Vehicle Mathematical Model

The trajectory tracking control of AVs involves the
use of various vehicle models, which are typically clas-
sified into three types: 1) VKB model [142]; 2) bicycle
VDB model [143], [144], [145]; and 3) four-wheel VDB
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Fig. 4. Summary of vehicle trajectory tracking control. VKB—vehicle-kinematics-based; and VDB—vehicle-dynamics-based.

model [100], [143], [146]. Different models have their own
applicable scenarios [147].

The VKB model is widely used as it could establish a
relationship between the lateral/heading error and the steer-
ing angle directly. In general, the pure pursuit (PP) method is
employed to calculate the lateral error from a fixed look-ahead
distance on the desired path ahead of the vehicle. Typically,
the reference point on the vehicle for this method is the center
of the rear axle. The corresponding model is as follows:

δf = arctan

(
2L sinα

Ld

)

κ = 2 sinα

Ld

sinα = e

Ld
(6)

where δf is the steering angle; L is the wheelbase; α is the
angle between the vehicle’s body heading and the look-ahead
direction; κ is the curvature; e is the lateral error; and Ld is
the look-ahead distance, which is a function of the vehicle
velocity.

The equation above considers only the lateral error while
disregarding the heading error, which is also crucial for
ensuring optimal trajectory tracking performance. To address
this issue, the Stanley method is developed, which takes
into account both lateral and heading errors simultaneously.
Specifically, the lateral error is defined as the distance between
the closest point on the path and the front axle of the vehicle.
The steering angle can be obtained using the following:

δf = arctan

(
ke

1 + v(t)

)
+ δψ (7)

where e is the lateral error between the closest point on the
path with the front axle of the vehicle; v(t) is the vehicle
velocity; k is the feedback gain; and δψ is the heading error.
Compared with the PP method, more parameters need to be
fine-tuned to ensure convinced performance.

Although the VKB model is widely used in vehicle tra-
jectory tracking control, it ignores errors like tire slip which
is pretty important for critical driving conditions. To reduce
the above errors, many researchers have also developed vehi-
cle trajectory tracking control algorithms using the VDB
model. One widely used example is the bicycle VDB model,
formulated as follows:

ẍ = ϕ̇ẏ + ax

ÿ = −ϕ̇ẋ + 2

m

(
Fcf cosδf + Fcr

)

ϕ̈ = 2

Iz

(
lf Fcf − lrFcr

)
. (8)

To further improve the accuracy of the vehicle model,
some researchers also adopt the four-wheel VDB model [148].
However, the improvement in accuracy will also lead to
an increase in model complexity and computation. For this
reason, the selection of the vehicle mathematical model ulti-
mately depends on several factors, including driving scenarios,
accuracy, and complexity.

B. Feedback Control Algorithms Without Prediction

Feedback control algorithms without prediction typically
employ explicit control theories, such as PID, LQR, and
SMC methods [149]. These techniques offer robust trajectory
tracking performance under most driving conditions.
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1) PID Control: PID trajectory tracking control is a widely
used approach in industrial applications due to its simplicity
and efficiency for AVs trajectory tracking control. Park et al.
improved the trajectory tracking control accuracy of AVs by
utilizing a proportional-integral (PI) control algorithm that
minimizes the lateral distance error. The algorithm’s propor-
tional gain remains constant, while the integral gain varies
based on the road curvature [150]. Similarly, Chen et al. [151]
employed a PI control algorithm along with a low-pass filter,
based on the PP model, to enhance the trajectory tracking
smoothness. In addition, Marino et al. [152] utilized a nested
PID steering control scheme and integrate the active steer-
ing function to perform trajectory tracking control for roads
with uncertain curvature. Al-Mayyahi et al. [153] employed a
PID trajectory tracking control with parameters optimized by a
particle swarm optimization (PSO) algorithm. Han et al. [154]
proposed an adaptive PID neural network trajectory tracking
control strategy, where the model parameters are identified
through the forgetting factor least squares algorithm, and the
PID parameters are adjusted using backpropagation neural
network. To improve vehicle stability, vehicle yaw rate is
also introduced into designing trajectory tracking control algo-
rithms, which can improve the control performance [155].
Besides VKB models, some researchers also adopt VDB
models for AV trajectory tracking control. Zhao et al. [156]
proposed an adaptive-PID trajectory tracking control with a
bicycle VDB model to ensure robust trajectory tracking con-
trol performance in the face of large-scale parameter variation
and disturbances.

In general, PID controller is a relatively simple con-
trol algorithm to implement in AVs, and it can be easily
programmed into microcontrollers or embedded systems to
achieve industrial applications. However, PID trajectory track-
ing control tends to suffer from the difficulty of feedback
gain tuning. When driving conditions change significantly in
the real environment, the control parameters may no longer
be optimal in some cases. Although adaptive PID control
methods and self-learning PID control have been explored
by many researchers, adaptive and automatic parameter tun-
ing is still complicated and time-consuming. Furthermore,
achieving satisfactory control performance using PID con-
trol under complex driving conditions remains a challenging
task.

2) LQR Control: To alleviate the above limitations, some
researchers also employ the LQR approach for vehicle track-
ing control. The objective of this approach is to minimize a
quadratic cost function J as in (9). The feedback gain is solved
by the corresponding Riccati equation

argminJ =
∫ ∞

0

(
XTQX + uTRu

)
dt (9)

where Q is a positive semi-definite diagonal weight matrix; R
is a constant matrix penalizing the control effort; X is the states
matrix; and u is the control signal. As LQR is a state feedback
control, K is the feedback gain obtained by the variational
method, as described by the following:

K = (
R + BTPB

)−1
BTPA (10)

where the matrix P represents the solution with the Riccati
equation in the continuous case and is given by

ATP + PA − PB−1BTP + Q = 0. (11)

However, in real-world applications, the solution of discrete
algebraic Riccati equations is commonly required through an
iterative approach, which can be expressed as follows:

P = ATPA − (
ATPB

)(
R + BTPB

)−1(
BTPA

) + Q. (12)

Typically, LQR approach is suitable for optimizing linear
systems, where the parameters of Q and R need to be tuned
to facilitate the system’s convergence and stability. For vehi-
cle trajectory tracking control, the LQR method is usually
designed based on VDB models. Piao et al. [157] presented
an LQR optimal trajectory tracking control with a bicycle
VDB model, and they optimized the weight matrices of Q
and R using a simultaneous perturbation random approxi-
mation algorithm. Choi et al. [158] designed the trajectory
tracking control scheme by winding road disturbance com-
pensator (WRDC) gain on a curved road from the dominant
state for the lateral error in the lane-keeping control, and then
the WRDC is applied to an LQR trajectory tracking control
to compensate for the inaccuracy of linear system. Eventually,
compared to the classical LQR methods, the proposed algo-
rithm is demonstrated to be more effective. Especially, vehicle
trajectory tracking control under a critical driving situation
is essential and should not be ignored in real applications.
Menhour et al. [159] employed an LQR method with the lin-
ear matrix inequality (LMI) framework to solve the problem
of switching steering control considering critical driving con-
ditions. In some cases, the kinematic model is also utilized in
the LQR method. Alcala et al. proposed a nonlinear kinematic
Lyapunov-based control to address the problem of vehicle tra-
jectory tracking control. The corresponding parameters are
obtained through the LQR approach with a LMI expression
form [160].

Based on the above survey, the LQR approach can provide
an optimal control solution that minimizes the cost function,
which can result in superior tracking performance through
online or offline optimization. In particular, many researchers
use the LQR method with LMI to achieve control conver-
gence via typical Lyapunov function designs. However, LQR
control is not suitable for systems with large control inputs
because it assumes that the control input is small and does
not cause significant deviations from the desired trajectory.
Therefore, in some critical driving conditions, such as con-
siderable road curvatures or low-road adhesion, the trajectory
tracking control performance may be compromised and result
in poor robustness. Moreover, although LQR tracking con-
trol can handle nonlinear systems by linearizing the dynamics
around the desired trajectory, linearizing the highly nonlinear
and rapidly time-varying vehicle model is likely to result in
model distortion. Therefore, more advanced techniques may
need to be explored for the vehicle system.

3) SMC Control: To address the issue of linearization
assumptions in LQR, SMC is introduced in AVs trajectory
tracking control. SMC is a robust control method for nonlinear
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systems with parametric uncertainties and external distur-
bances [161]. The challenge in implementing SMC is to design
a super-twisting plane to ensure robust stability and reduce
the chattering phenomenon. The system function of SMC is
as follows:

ẋ = f (t, x)+ g(t, x)u(t) (13)

where f and g are continuous functions; and x and u are the
state vector and the control input, respectively. Then a sliding
variable s with a derivative is expressed as follows:

ṡ(t, s) = φ(t, s)+�(t, s)u(t). (14)

The sliding mode trajectory tracking control aims for the
system to converge on the sliding surface, defined as s = 0.
To achieve this goal, s0, bmin, bmax, and C0 should satisfy the
following constraints⎧⎪⎪⎨

⎪⎪⎩

x ∈ Rn, | s(t, x) |< s0
| u(t) |≤ Umax

0 < bmin ≤| φ(t, s) |≤ bmax
| φ(t, s) |< C0.

(15)

Thus, the SMC control can be given as follows:

δ = u(t) = u1 + u2

{
u1 = −α|s|τ sign(s), τ ∈ [0, 0.5]
u̇2 = −βsign(s)

. (16)

Hence, the super-twisting algorithm based on a sliding surface
yields the control signal of the steering angle δ. Where α and
β are positive constants. And they should satisfy the following
conditions ⎧⎨

⎩
β ≥ C0

bmin

α ≥
√

4C0(bmaxβ+C0)

b2
min(bminβ−C0)

.
(17)

For the trajectory tracking control algorithm of AVs, the lateral
error is described by e = y − yref. And the desired lateral
acceleration ayref = (v2/R) can be expressed as a function of
R, which is the radius of the road curvature. According to the
VDB model, the error model is expressed as follows:

ë = ÿ + vϕ̇ − v2

R
. (18)

Due to its insensitivity to model uncertainties, SMC has
become a popular nonlinear method for the trajectory track-
ing control of AVs, and the VDB model is widely exploited to
describe vehicle motion. Akermi et al. [162] employed a fuzzy
system to automatically adjust the gain of SMC to compen-
sate for variations in system parameters. Dai et al. proposed
to integrate SMC with PSO to improve the trajectory tracking
control robustness of AVs. In detail, Dai and Katupitiya [163]
designed an SMC-based steering trajectory tracking control
algorithm to eliminate lateral and heading errors. However, an
inappropriate sliding surface may cause system oscillations.
To eliminate this drawback, Li et al. presented an adaptive
SMC control scheme to improve handling and stability by
reducing jittering. In this method, the weight of the slid-
ing surface is adaptively scheduled according to the stability
index [164]. Wang et al. [165] designed the high-order slid-
ing mode to effectively reduce system chattering and improve

control accuracy. As high-order sliding modes suffer from
computation workload, the second-order sliding mode remains
the mainstream to ensure the real-time performance of the
algorithm. Alternatively, some researchers integrate SMC with
other control methods to eliminate the jittering phenomenon.
Zhang and Zhu [166] presented an optimal preview LQR
(OPLQR) based on the SMC approach with a 2-DOF vehi-
cle VDB model to enhance the smoothness of the vehicle
motion after obtaining the desired steering angle. Nasr et al.
achieved improved trajectory tracking performance by com-
bining SMC and fuzzy logic control. From the experimental
results, SMC has shown high robustness against external dis-
turbances and sharp-edged paths, while fuzzy logic control
can intelligently control maneuvers [167]. Moreover, the four-
wheel VDB model is also applied to achieve vehicle trajectory
tracking control. Chen et al. [161] proposed the nonsingular
terminal SMC control algorithm to design a robust trajectory
tracking control algorithm.

Overall, SMC is a practical control approach well-suited
for nonlinear systems. This is because SMC is based on the
concept of sliding mode, which refers to a condition where
the process variable is forced to move along a predefined
trajectory. Meanwhile, SMC is less dependent on the model
parameters than other control techniques, making it more
robust in the presence of model uncertainty and disturbances.
Unfortunately, chattering near the sliding surface is still an
issue, particularly in real-time applications. Additionally, SMC
is more effective when the reference signal is smooth and
continuous. If the reference signal is not smooth, such as the
uneven road surface, it can result in high-frequency oscillations
in the control input. Accordingly, a more complicated dynam-
ics model should be designed by adding a DOF. To address
these limitations, researchers have also proposed hybrid con-
trol schemes that combine SMC with other control methods,
such as PID or LQR.

4) Other Control Methods: Besides PID, LQR, and SMC,
researchers have also applied some other control methods to
optimize the trajectory tracking performance of AVs from
both theoretical and practical perspectives. These methods
include quadratic programming (QP), H-infinity, adaptive, and
fuzzy control [168], [169], [170], [171], [172]. Lee et al.
presented a real-time optimization method for the trajecto-
ries in electric vehicles (EVs) with dual-clutch transmissions.
By utilizing QP, the method achieves optimal trajectories,
minimizing shock and enhancing performance [173]. In H-
infinity methods, the H-infinity norm of the system is min-
imized by solving an optimization problem involving the
Riccati equation. Hu et al. [174] presented a robust H-infinity
output-feedback control strategy using a hybrid genetic algo-
rithm/LMI approach that is robust to external disturbances and
uncertainties in environmental parameters. Zhou et al. [175]
proposed an H-infinity lateral tracking control that explicitly
accounts for the path-tracking kinematic nonlinearity and is
demonstrated to be sector-bounded. Zhou et al. also formulated
a novel path-tracking control using the generalized H-infinity
robust control method. Considering that tracking control prob-
lems typically involve noise, modeling uncertainties, and
disturbances, adaptive control is also an effective solution for
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Fig. 5. Block diagram of MPC.

addressing nonlinear issues. For example, Zhou et al. [176]
explicitly addressed the steering backlash issue with a novel
adaptive backlash inverse compensator. Departing from the
mainstream adaptive vehicle motion control design, Zhou
et al. [177] tackled the trajectory tracking control problem
by leveraging a novel nonquadratic Lyapunov design, which is
demonstrated to have the potential to deliver superior transient
performance. Zhou et al. [178] originated a driver-centered
lane-keeping assist trajectory tracking control by unifying a
noncertainty equivalent adaptive control scheme. Additionally,
fuzzy control is also regarded as a feasible method for trajec-
tory tracking control in AVs. Zhao et al. [179] used fuzzy
logic systems and neural networks to model human expertise
through linguistic variables.

Although feedback control without prediction and other
control algorithms have achieved remarkable progress in the
past several years, the highly nonlinear and cross-coupled vehi-
cle dynamics system, as well as the unpredictable and complex
traffic environment, are still challenging for robust trajectory
tracking control of AVs [180].

C. Feedback Control Algorithms With Prediction

MPC is a prominent approach for vehicle trajectory tracking
control because it can solve optimization problems by intro-
ducing various constraints and prediction horizons [181]. The
general block diagram is shown in Fig. 5. Unlike LQR, MPC
can predict future behavior using a prediction horizon and
solve a finite-horizon open-loop optimal control problem. The
optimal control sequence in a series of discrete time steps is
computed by minimizing a cost function. The entire process is
repeated iteratively, and only the first control input is applied to
the vehicle system. Moreover, the MPC considers disturbances
in the form of certain constraints to enhance the robustness and
stability [182], [183]. Thus, MPC always involves an intuitive
parameterization by adjusting a process model at a higher com-
putational effort cost than classical trajectory tracking control
approaches.

The state space model of the MPC is presented as follows:

x(k + 1) = f (x(k),u(k))

y(k) = h(x(k)). (19)

MPC minimizes a user-defined cost function J, e.g., the tra-
jectory tracking error between the desired path r and the model
output y. Several studies in the field also take into account
control objectives, such as traction force, braking force, fuel
rate, and desired time to the destination [184], [185], [186].
These criteria are considered significant factors in optimizing

the performance of the control system

min
u

J(x(k),u(·))

min
u

N2∑
i=N1

‖r(k + i | k)− y(k + i | k)‖

s.t. ulb ≤ u(k + j | k) ≤ uub

ylb ≤ y(k + i | k) ≤ yub

∀i ∈ {
N1, . . . ,Ny

}
and j ∈ {0, . . . ,Nu} (20)

where ‖ · ‖ is the arbitrary norm; N1, . . . ,Ny is the prediction
horizon and Nu represents the size of the control sequence in
a series of discrete time steps; x(k + i | k) is the predicted
state k + i at time point k; and x(·) is a sequence of states.
They can be described as follows:

x(k + i) ∀i ∈ (0, . . . ,N2) ⇒ x(·)
u(k + i) ∀i ∈ (0, . . . ,Nu) ⇒ u(·)
y(k + i) ∀i ∈ (N1, . . . ,N2) ⇒ y(·). (21)

In this way, the constraint formulation will be abbreviated by
xlb ≤ x(·) ≤ xub ⇒ x ∈ Xf , indicating that the sequence x(·)
is in the feasible set Xf .

Several recent studies have demonstrated the exceptional
performance of MPC for trajectory tracking control of AVs.
They mainly focused on enhancing its performance in the
following three key areas:

1) improving the feasibility of open-loop optimization
problems (e.g., by improving model accuracy);

2) increasing the stability of closed-loop trajectory track-
ing control (e.g., through more accurate prediction and
control processes);

3) enhancing robustness in the face of uncertainties (e.g.,
under extreme driving conditions).

Regarding feasibility, Chu et al. proposed a feedback MPC
control that leverages dynamic and trajectory tracking char-
acteristics to reduce the computing time and effort required
for tuning parameters. By combining MPC with PID, they
aim to minimize errors caused by the model’s simplifica-
tion. The experimental and simulation results demonstrate
the effectiveness of the proposed method [187]. Xu and
Peng [188] developed a two-stage nonlinear MPC (NMPC)
strategy for obstacle avoidance while following the center line
under highway cruising conditions to improve model accuracy.
Shen et al. [189] also utilized NMPC to enhance optimization
efficiency, primarily focusing on balancing computation cost
and model accuracy. Additionally, Shen et al. [189] utilized
the NMPC framework with augmented desired trajectories and
incorporate Ohtsuka’s continuation/generalized minimal resid-
ual (C/GMRES) algorithm for efficient computation. When
considering real-time implementation, Siampis et al. [190]
combined NMPC and primal-dual interior point (PDIP) strat-
egy to deploy on an automotive-grade dSPACE board, high-
lighting the tradeoff between complexity and performance.

Regarding stability, Cheng et al. [191] proposed a
lateral-stability-coordinated collision avoidance control system
(LSCACS) based on MPC with different modes: 1) a standard
driving mode; 2) a full auto brake mode; and 3) a brake and
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stability mode. Zhang et al. developed a Gaussian process-
based MPC with a classical two-layer structure to enhance
stability control. More importantly, the corresponding stabil-
ity proof is also conducted [192]. Zhu et al. presented a
novel trajectory tracking control approach based on MPC to
avoid high-frequency oscillations automatically by the switch-
ing algorithm. The uncertainty and external disturbances have
been addressed and validated in the test vehicle [193]. From
the uncertainty perspective, Chen et al. [194] designed a hierar-
chical dynamic drifting trajectory tracking control under both
drifting maneuvers and typical cornering maneuvers by blend-
ing MPC and LQR methods to achieve adaptably accurate
trajectory tracking control. Moreover, the VKB model is also
applied in MPC algorithms due to its simplicity. Zhang et al.
designed a trajectory tracking control based on the MPC using
the VKB model. The simulation results show that the test vehi-
cle is capable of accurately following the desired path, even
at sharp corners [195]. Elbanhawi et al. [196] proposed the
MPC based on a VKB model with PP to improve trajectory
tracking performance at high speed. AbdElmoniem et al. [197]
designed the MPC trajectory tracking control method to
address the restriction of sudden changes of heading angle
and enhance the accuracy of heading error based on Stanley.

MPC provides an optimal control solution that minimizes
a performance criterion over a finite horizon, which can
result in superior tracking performance compared to other
control techniques. For another, MPC can handle nonlinear
systems and constraints by using a nonlinear model of the
system to predict future states and calculate the optimal con-
trol input within safe limits. However, they still face several
issues, such as deficiencies in the control-oriented model,
prediction horizon limitations, tuning challenges (weights of
the cost function, regularization, solver selection, etc.), and
computational complexity, making it challenging to achieve
real-time application [198]. In addition, in real-world condi-
tions, it exists signal delays from the sensors and actuators.
However, MPC is sensitive to delays in the system, which
can affect the prediction accuracy and compromise the con-
trol performance. Another challenge arises from setting the
initial value in accelerating the optimization process. If the
initial value is unsuitable, optimization may fail or require a
prolonged period, with unpredictable calculation time for each
step.

D. Learning-Based Control Algorithms

To address the above-mentioned challenges, there are sev-
eral ways to optimize MPC control based on learning methods.
One way is through sampling-based MPC algorithms that
adopt simple policies to sample control sequences. Another
way is through self-learning MPC, which is closer to the
optimal control rate based on known parameters. Additionally,
there are learning-theoretic perspectives on MPC via compet-
itive control that can help optimize the process [199].

Furthermore, developing an accurate vehicle model is a
challenging task due to the strong nonlinearity and uncer-
tainties present in AVs [200], [201]. To overcome this chal-
lenge, learning-based control algorithms have been extensively

explored as they are independent of a specific model and
can address complicated nonlinear control systems. Deep rein-
forcement learning has emerged as a potential solution to the
limitations of modern control algorithms for trajectory tracking
control of AVs [202].

When implementing a deep reinforcement learning algo-
rithm, AVs learn an optimal control policy by interacting
with the environment and utilizing gathered data. To over-
come the challenges of existing trajectory tracking control
algorithms, Zhao et al. [203] proposed a learning-based
optimal control algorithm that approximates the critic and
actor networks through two multilayer neural networks.
Folkers et al. [204] trained a neural network agent using
proximal policy optimization in a simulated environment to
reach a specific target state while achieving trajectory track-
ing control. To reduce dependence on specific approximation
structures, which is a limitation of deep reinforcement learn-
ing algorithms, Zhu and Zhao [205] proposed a probably
approximately correct (PAC) algorithm that can efficiently
utilize online data. Wulfmeier et al. [206] presented maxi-
mum entropy deep inverse reinforcement learning (MEDIRL),
a framework that applies high-capacity neural network archi-
tectures and extends scalability concerning the complexity
of the environment, behavior, and size of training data sets.
Zhang et al. proposed a novel method for AVs trajectory
tracking control, optimizing the residual policy with reinforce-
ment learning algorithms on the basis of the guiding policy
from a designed modified artificial potential field controller.
Extensive experiments illustrate the method outperforms the
leading algorithms [207]. Moreover, to achieve optimality and
efficiency in various driving circumstances, Chen et al. com-
bined the proximal policy optimization (PPO) algorithm with
a PP mathematical model. The PP model generates a baseline
steering control command, while the PPO derives a correc-
tion command to improve trajectory tracking performance. The
combination of the two controllers results in a more robust and
adaptive operation [208].

Admittedly, deep reinforcement learning algorithms also
have limitations, including the need for extensive training data,
the potential for over-fitting, and the challenge of interpreting
the model’s inner workings [209], [210]. Despite the existing
challenges, the field of deep reinforcement learning is rapidly
expanding with new techniques and algorithms that aim to
enhance its capabilities.

In addition to the learning methods mentioned above,
Liu et al. introduced a novel model-free adaptive control
(MFAC) algorithm. This algorithm is based on the dual suc-
cessive projection (DuSP)-MFAC method, which utilizes the
newly introduced DuSP approach and the symmetrically sim-
ilar structures of the trajectory tracking control and parameter
estimator of MFAC. By utilizing the preview-deviation-yaw
angle, the trajectory tracking problem is transformed into a
stabilization problem [211]. Wang et al. [212] developed a
novel adaptive data-driven vehicle trajectory tracking con-
trol system by innovatively combining extremum seeking and
learning-based control. Sharma et al. trained two distinct neu-
ral networks to predict vehicle speed and steering based on the
road trajectory using end-to-end learning in the open racing car
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simulator. The results show that the trajectory tracking control
performed effectively on two tracks despite the limited training
data available [213].

Overall, vehicle trajectory tracking control algorithms in
AVs have been reviewed in depth at the microscopic level. The
selection of the appropriate algorithm depends on the specific
application and performance requirements (safety, efficiency,
comfort, and environmental impact) of the vehicle trajectory
tracking control.

IV. COLLABORATIVE CONTROL OF CAVS

AVs equipped with sensors, such as cameras, radar, and
LiDAR, are a critical component of ITS [214], [215], [216],
[217], [218], [219], [220]. However, despite their advanced
sensor technology, it is not possible for AVs to fully and
reliably perceive the dynamic and variable environment all
the time with only their onboard sensors for example due to
adverse weather conditions, sensor or vehicle model uncer-
tainties, and illumination variation [217].

Fortunately, the combination of the IoT and AI has resulted
in significant advancements in ITS [221], [222], [223]. These
technologies enable interconnectivity among various traf-
fic participants, including vehicles, traffic signals, humans,
and infrastructure, to enhance transportation efficiency,
reduce emissions, and prevent accidents. The collaboration
among these agents, in particular, CAVs, through Vehicle-to-
Everything (V2X) communication can enhance their decision-
making capabilities and make the transportation system more
efficient and sustainable. To this end, to address the limita-
tions of AVs, collaborative control for CAVs has emerged as
a promising technique in ITS. Collaborative control techniques
involve sharing information beyond the line-of-sight and field-
of-view to achieve coordinated decision making among CAVs,
thereby reducing the likelihood of accidents and improving
overall traffic efficiency, comfort, and economy in typical traf-
fic scenarios [224], [225], [226]. This technique has gained
considerable interest due to its ability to optimize vehicle
control ability on a relatively large scale with other CAVs.

In this section, we explored the enabling techniques, critical
components of collaborative control techniques, collaborative
control methodologies, and potential applications of the col-
laborative control technique for CAVs. The framework of this
section is illustrated in Fig. 6.

A. Enabling Techniques

Collaborative control of CAVs relies on V2X communica-
tion to enable multiple CAVs to coordinate their movements
and share basic safety messages (BSMs), which contain
information about their speed, position, and destination. Some
advanced systems also share visual information, including
detected bounding boxes [227] and intermediate neural fea-
tures [228]. This technology enables smoother traffic flow,
reduced congestion, and improved road safety, by facilitat-
ing the synchronization of acceleration, braking, and turning,
among other factors. One of the key benefits of collaborative
control is the potential to optimize traffic flow by reducing the
need for braking and accelerating, resulting in fuel savings,

reduced emissions, and improved energy efficiency. Another
benefit is the reduction of traffic jams and collisions, which
can lead to improved travel times, reduced vehicle wear and
tear, and lower operating costs. For instance, by leveraging the
shared visual information from multiple vehicles and infras-
tructure sensors, object detection accuracy can increase by
more than 20% [105]. Cai et al. [229] demonstrated that opti-
mizing the infrastructure’s positioning can further increase
this benefit through more realistic simulated LiDAR sen-
sors. Additionally, Xu et al. [228] found that cooperation
can still be highly beneficial even when the deployed vision
models between vehicles and smart infrastructure differ, with
the application of domain adaptation techniques. Furthermore,
CAVs could also provide enhanced mobility services to users,
such as adaptive routing and ride sharing. Notably, the combi-
nation of digital twins and federated learning has demonstrated
its potential in efficiently powering the development of CAVs
efficiently as demonstrated in [230] and [231].

B. Critical Components of Collaborative Control Techniques

1) Description of Collaborative Control Systems: This sec-
tion presents brief descriptions of the critical components of
collaborative control systems.

a) Longitudinal dynamics model: The longitudinal
dynamics model is crucial for the collaborative control of
CAVs. It predicts how CAV’s speed and acceleration change
based on various factors, such as dynamics, driving behavior,
road conditions, and traffic flow. This model improves driving
behavior, leading to more efficient driving, and is used for
platooning, merging, and lane-changing.

There are various types of longitudinal dynamics models
that differ in complexity and accuracy. The choice of dynam-
ics model depends on the required accuracy, computational
resources, and data availability. For example, linear models are
the simplest, assuming a linear relationship between acceler-
ation and inputs, such as throttle position, braking force, and
external disturbances. Nonlinear models [232] offer greater
accuracy and the ability to handle more complex situations.
They are mathematically derived from the dynamics of the
vehicle and driving behavior. Second-order models [233] con-
sider acceleration and velocity, while third-order models add
position to these variables. Higher order models provide a
more accurate representation of the vehicle’s behavior but
require more computational resources and data. In addition,
general linear models [234] are versatile, adaptable, and can
represent a range of driving scenarios. They use linear equa-
tions to describe the relationship between inputs and outputs,
such as speed and acceleration. Statistical methods and data-
driven approaches determine the coefficients, enabling the
model to learn from real-world driving data.

b) Information flow topology: The concept of
information flow topology in the context of collabora-
tive control of CAVs refers to the way information is
exchanged between multiple vehicles to achieve coordinated
and efficient movement. This is essential to ensure that
the vehicles move together in a safe and efficient manner,
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Fig. 6. Summary of collaborative control techniques for CAVs and their applications. CAV—connected automated vehicle; and DSRC—dedicated short-range
communications.

reducing the likelihood of accidents and improving the overall
flow of traffic.

There are several classification methods for information
flow topology, each with its unique approach to exchang-
ing information and achieving coordinated movement. These
methods include predecessor following (PF) [233], predeces-
sor leader following (PLF) [235], bidirectional (BD) [236],
bidirectional leader (BDL) [237], two-PF (TPF) [235], and
two-predecessor-leader following (TPLF) [238], among others.
Each method varies in its level of coordination and flexibil-
ity, with some allowing for more advanced coordination and
others allowing for more flexibility in movement. The choice
of method depends on the specific context and goals of the
group movement, such as minimizing delays, reducing fuel
consumption, or preventing accidents. Overall, the concept and
classification methods of information flow topology are criti-
cal to the successful implementation of collaborative control of
CAVs, as they enable safe and efficient movement of multiple
vehicles on the road.

c) Communication quality: In collaborative control of
CAVs, effective communication is essential for safe and effi-
cient operation. However, the communication quality issues
can arise when multiple vehicles communicate with each other,
leading to delays or loss of data. These can be caused by
factors, such as network congestion, signal interference, or
hardware failures.

For instance, one significant issue that can arise is com-
munication time delay [239]. This refers to the time taken
for data to be transmitted from one vehicle to another and
can be caused by various factors, such as limited bandwidth,
transmission errors, or network congestion. Delays in commu-
nication can result in a loss of coordination between vehicles,
leading to accidents or collisions. To mitigate this issue, tech-
niques, such as message prioritization [240], efficient routing
algorithms [241], and congestion control methods [242], can
be used.

Another critical issue is packet loss [243]. This occurs when
data packets are lost during transmission and can be caused
by factors, such as network congestion, signal interference, or
hardware failures. Packet loss can lead to incorrect or incom-
plete information being received by other vehicles, resulting in
unsafe or inefficient operation of the system. Therefore, tech-
niques, such as packet retransmission [244], error correction
codes [245], and network redundancy [246], can be used to
mitigate it.

2) Objectives of Collaborative Control Systems: The col-
laborative control of an autonomous platoon aims to ensure
all the vehicles in the same group move at a consensual speed
while maintaining the desired spaces between adjacent vehi-
cles, and thus increase traffic capacity, improve traffic safety,
and reduce fuel consumption. The stability properties of the
platoon system are the foundation of all the above-mentioned
control objectives. The control objectives for collaborative
control techniques can be broadly categorized into individual
stability and string stability.

a) Individual stability: Individual stability refers to the
stability of each CAV in the system [237]. The individual
stability objective is achieved by ensuring that each CAV
maintains its desired speed and distance from neighboring
vehicles [247]. The control algorithm should be designed
to prevent overshooting or undershooting the desired speed
and distance while accounting for noise and disturbances.
Achieving individual stability is essential because it provides
a basis for ensuring the overall stability of the system.

To maintain individual stability, each CAV must be equipped
with control systems that can accurately measure its speed
and position relative to the other vehicles in the platoon. The
control system must also be able to adjust the CAV’s speed and
acceleration to maintain the desired position and speed within
the platoon. This can be achieved through the use of advanced
sensing and control algorithms, such as adaptive cruise control
(ACC) and cooperative ACC (CACC).
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b) String stability: String stability, on the other hand,
refers to the stability of the entire platoon or string of CAVs in
the system [248]. String stability is achieved by ensuring that
the CAVs in the platoon maintain a constant and safe interve-
hicle distance while traveling at a constant speed [249]. The
control algorithm should ensure that any disturbances or fluc-
tuations in speed or distance are quickly compensated for, and
the platoon returns to its desired state.

Maintaining string stability is more challenging than indi-
vidual stability, as it requires the coordination of multiple
vehicles with different dynamics. To maintain string stability,
the control system must ensure that each CAV in the platoon
follows a predefined spacing policy that dictates the distance
between each vehicle in the platoon and how that distance
is maintained during operation. V2V communication can be
used to exchange information on the position and speed of
each CAV and adjust the spacing policy accordingly [250].
The control system must also be able to detect any distur-
bances or disruptions in the platoon and respond appropriately
to maintain the desired spacing policy.

Several approaches can be used to maintain string stability,
including consensus-based control [251], MPC [232], feed-
back control [252], and feedforward control [253]. Consensus-
based control involves designing a distributed control algo-
rithm that enables each CAV to adjust its speed and position
based on information from neighboring vehicles. MPC utilizes
a dynamic model of the system to predict its future behavior
and optimize its control inputs accordingly. Feedback control
adjusts the speed and position of each vehicle based on sensor
feedback and communication with other vehicles in the pla-
toon. Feedforward control predicts the control inputs required
to maintain string stability based on the current state of each
vehicle and the desired trajectory of the platoon.

C. Collaborative Control Methodologies

1) Coordination Scheme: The coordination scheme for
multiple vehicles is a critical component of collaborative con-
trol for CAVs, which enables them to work together efficiently
and safely [254], [255]. This scheme refers to the methods and
techniques used to coordinate the behavior of multiple CAVs to
achieve a common goal [256]. There are different coordination
schemes for multiple vehicles, and they can be classified based
on the control mode they use. The three main control modes
are centralized, decentralized, and mixed control modes.

Each coordination scheme has its advantages and disadvan-
tages, and the selection of the appropriate scheme depends
on the specific application requirements and the available
resources. Centralized control is more suitable for highly AVs
operating in a well-defined environment, such as a closed
campus or a dedicated lane on a highway. The decentralized
control is more suitable for low-level autonomy, such as pla-
tooning, where a group of CAVs follows a lead vehicle. Mixed
control is suitable for applications that require both global
coordination and local adaptation, such as urban traffic man-
agement. By classifying the coordination scheme based on the
control mode, the optimal approach can be chosen depending
on the specific application and the level of autonomy of the
CAVs.

Collaborative control techniques optimize the behavior of
multiple vehicles by coordinating their actions. Unlike tradi-
tional control methods for individual vehicles, collaborative
techniques rely on intervehicle communication to exchange
information about their states and objectives. They must con-
sider the complex interactions and dependencies between
multiple vehicles, and be able to adapt to changing conditions
in real-time. However, designing these methods is challeng-
ing due to the significant number of variables to consider
and the need for robust algorithms that can handle unexpected
situations.

2) Methodologies: Collaborative control techniques lever-
age advanced algorithms and computational methods to enable
CAVs to communicate and cooperate with each other in real-
time. Collaborative control methodologies can be categorized
based on the mathematical model used to design the control
algorithms, including game-theoretic, optimization-based, and
reinforcement learning-based methods. In the following sec-
tions, we will provide a detailed introduction to these three
methods and their applications in collaborative control for
CAVs.

a) Game-theoretic methods: Game-theoretic methods
model the interactions between multiple CAVs as a game,
where each vehicle is a player aiming to optimize its own
objective while considering the actions of other players.
The control algorithms are then formulated to identify Nash
equilibrium, where no player can increase their outcome by
unilaterally changing their actions. Game-theoretic methods
are beneficial in managing complex and dynamic interactions
between multiple vehicles.

For example, Liao et al. [257] proposed a cooperative
driving game for CAVs in which each vehicle decides its
optimal speed to minimize energy consumption while avoiding
collisions with other vehicles. The game-theoretic approach
ensures that each vehicle converges to a Nash equilibrium
where all players optimize their objective functions simul-
taneously. Additionally, Rahmati et al. [258] proposed a
game-theoretic framework for CAVs, in which vehicles coop-
erated to optimize their travel time by adjusting their speeds
and routes. The authors use a Stackelberg game model to cap-
ture the interactions between vehicles, where a leader vehicle
set the rules for other followers to follow. To further enhance
the effectiveness of game-theoretic methods, Gong et al. [259]
proposed a game-theoretic reinforcement learning approach for
CAVs, where vehicles learn to cooperate to maximize the over-
all system performance. However, it is still computationally
expensive and challenging to implement in practice.

b) Optimization-based methods: Optimization-based
methods formulate the collaborative control problem as an
optimization problem, where the objective is to find the
optimal actions for each vehicle that maximize the overall
performance of the group [260]. The algorithms can be
designed using linear [261] or nonlinear [262] optimization
techniques and are adaptable to handle a broad range of
scenarios.

Among this scheme, various programming models are
widely used by researchers to pursue the global-optimal
traffic operation scheme. For example, Yu et al. [263]
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proposed a mixed-integer linear programming (MILP) model
to collaboratively optimize the trajectories of CAVs in terms
of total vehicle delay, considering car-following and lane-
changing behaviors. In addition, Tajalli and Hajbabaie [262]
proposed a methodology that uses a mixed-integer nonlin-
ear program to optimize signal timing and trajectory con-
trol at intersections with a mix of CAVs and human-driven
vehicles.

In general, optimization-based methods may not be
equipped to handle the uncertainties and unpredictability of
real-world environments [264].

c) Reinforcement learning-based methods: Reinforcement
learning-based methods entail training the control algorithms
using a trial-and-error approach, where the algorithms learn
from their own experiences in the environment [265]. The
algorithms can be designed using deep learning techniques
and can adapt to changing environments.

In order to utilize the advantages of reinforcement learning,
various researchers have trained their driving agents which
have the ability to make decisions based on their own obser-
vations. For example, Chen et al. [266] proposed an intelligent
speed control approach using deep reinforcement learning for
CAVs with the purpose of improving safety, efficiency, and
ride comfort. Additionally, Valiente et al. proposed a decen-
tralized framework for training CAVs to operate with human-
driven vehicles by formulating the mixed-autonomy problem
as a multiagent reinforcement learning (MARL) problem.
They optimize for social utility while prioritizing safety and
adaptability [267]. Furthermore, Raja et al. [268] proposed
a block-chain integrated MARL (BlockMARL) architecture
to enhance the efficiency of CACC while collaboratively
detecting attacks and securely notifying the overall network.

However, reinforcement learning-based methods may
require large amounts of training data and can be difficult to
interpret and validate.

D. Applications

In order to develop algorithms capable of real-life appli-
cability, most of the existing research about collaborative
control techniques focuses on specific driving scenarios or
traffic facilities, such as platooning, lane-change, merging, and
intersection. This section will provide an overview of some of
the most promising applications of collaborative control tech-
niques for CAVs and their potential benefits and challenges.
This article categorizes these applications into three groups
according to the level of collaboration, namely, 1-D, 2-D,
and 3-D collaboration. Each level of collaboration presents
unique technical and operational challenges, but also offers
opportunities for improving safety, efficiency, and comfort in
transportation.

1) One-Dimensional Collaboration: 1-D collaboration
involves coordinating the longitudinal (i.e., forward/backward)
motion of vehicles, such as in platooning.

a) Platooning: In a platoon, collaborative control tech-
nology enables CAVs to travel in a short intervehicle distance
to each other, with the lead vehicle dictating the speed and
route for the other vehicles in the platoon. This approach can

significantly improve fuel efficiency and reduce emissions,
by minimizing the drag and air resistance between vehi-
cles [269]. Additionally, platooning can help reduce conges-
tion and improve traffic flow, especially in urban areas with
high levels of traffic density.

This technique has been studied extensively for both
trucks [270] and personal vehicles [271], with promising
results. For example, Sun et al. [272] demonstrated that truck
platooning can reduce fuel consumption by about 10% on
highways, depending on the distance between the vehicles
and the speed. In addition to energy savings, platooning can
also enhance safety on the road. The use of advanced sensors
and communication technologies enables the platoon to brake
and accelerate in unison [273], reducing the risk of accidents
caused by sudden changes in traffic flow.

In order to deal with the control problem in the platoon
formation phase, Saeednia and Menendez [274] designed con-
sensus protocols for vehicles such that their motion states
converge to a common desired value. However, such heuris-
tics cannot yield optimal solutions since their optimization
processes are based on predefined motion patterns. Therefore,
Deng et al. [275] presented an evolutionary algorithm to
optimize the longitudinal trajectories of multiple vehicles with
an energy-aware objective function, which does not assume
the underlying solution landscape compared with heuristics
and requires a relatively shorter runtime than programming
models.

2) Two-Dimensional Collaboration: 2-D collaboration
involves coordinating the lateral (i.e., left/right) motion of
vehicles, such as in lane changing.

a) Lane-changing: With the support of collaborative con-
trol techniques, the safety and efficiency of lane changes can
be improved even in situations with limited visibility or at
high speeds, by enabling vehicles to communicate with each
other and coordinate their movements [276]. In addition, this
technology can anticipate and prevent collisions by detecting
and avoiding potential hazards automatically.

To optimize lane changing decisions and improve traffic
flow, researchers have proposed various collaborative driving
strategies. For instance, Lin et al. [277] presented a col-
laborative lane changing strategy using transferable utility
games framework that improves individual and social ben-
efits without adverse effects on traffic conditions. Similarly,
Ali et al. [278] developed a game theory-based mandatory
lane-changing model for traditional and connected environ-
ments. Other researchers propose optimal control policies for
the ego CAV to implement a lane change maneuver in coop-
eration with neighboring CAVs. Chen et al. [279] presented
such policies, optimizing both maneuver time and energy con-
sumption while ensuring safety constraints. Tajalli et al. [280]
proposed a mixed-integer program methodology for optimal
control of CAVs in freeway segments with a lane drop, using a
collaborative distributed algorithm to coordinate lane-changing
decisions and improve traffic flow and capacity. Furthermore,
Xu et al. [281] presented a bi-level framework for collab-
orative driving of CAVs in conflict areas. They combine
Monte Carlo Tree Search with heuristic rules to provide near-
optimal solutions, resulting in improved traffic performance
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with consideration of both critical conflict zones and lane
change right-of-way.

3) Three-Dimensional Collaboration: 3-D collaboration
involves coordinating both longitudinal and lateral motion, as
well as the time dimension, particularly in scenarios where
multiple vehicles are approaching an intersection or merging
point from different directions. To avoid collisions, vehicles
must coordinate not only the longitudinal and lateral motion
but also their timing and entry sequence.

a) Merging on-ramps: When it comes to merging at
highway on-ramps, collaborative control techniques can help
reduce congestion and improve traffic flow by enabling vehi-
cles to safely and efficiently merge into traffic. By sharing
information about their position and speed, vehicles can coor-
dinate their movements to avoid collisions and smoothly merge
with other traffic on the highway [282]. This approach can also
reduce the need for sudden braking and acceleration, leading
to improved fuel efficiency and reduced emissions.

To achieve collaborative merging, Ding et al. [283]
presented a rule-based adjusting algorithm for coordinating the
merging of two strings of vehicles at highway on-ramps effi-
ciently and safely in the longitudinal direction and evaluate its
performance through simulation-based case studies under both
balanced and unbalanced scenarios. Moreover, Liao et al. [284]
proposed a collaborative ramp merging system for CAVs using
a digital twin approach based on vehicle-to-cloud communica-
tion that provides advisory information to improve safety and
environmental sustainability during merging with an accept-
able communication delay, as demonstrated in a real-world
field implementation in Riverside, California.

In order to reduce the complexity of problem-solving,
Jing et al. [285] presented a hierarchical and decentralized
collaborative coordination framework for the integrated longi-
tudinal and lateral control of CAVs approaching on-ramps,
which optimizes fuel consumption and passenger comfort,
reduces fuel consumption, and improves traffic efficiency com-
pared to baseline. In addition, game theory has been widely
used by researchers to model the collaborative control process.
For example, Chen and Yang [286] proposed a collaborative
merging strategy for CAVs based on collaborative game theory
and optimal control to improve traffic efficiency, reduce fuel
consumption and enhance driving comfort through the con-
struction of an economic payoff function that determines the
merging sequence and coordinated merging trajectory.

For the scenarios of mixed traffic, Sun et al. [287] studied
the collaborative control method for CAVs and conventional
human-driven vehicles by developing a bi-level optimization
program that guarantees system-efficient solutions and results
in smoother ramp merging with an increase in traffic through-
put of 10%–15%. Karimi et al. [288] outlined a hierarchical
control framework for merging areas in mixed traffic com-
posed of CAVs and human-driven vehicles, with a focus on
the lower level control algorithm that establishes a set of col-
laborative CAV trajectory optimization algorithms for different
merging scenarios through the use of MPC.

b) Signalized intersections: In signalized intersections,
collaborative control technology can be used to enable vehi-
cles to communicate with each other and the infrastructure

to optimize traffic flow and reduce the likelihood of acci-
dents [289]. By enabling vehicles to anticipate and respond
to traffic signals, collaborative control technology can help to
reduce wait times and congestion, improve the safety of turn-
ing movements, and enable more efficient use of intersection
capacity. For example, Wang et al. [290] proposed a collabora-
tive eco-driving system for signalized corridors that uses a role
transition protocol for CAVs, leading to a reduction in energy
consumption and pollutant emissions as CAV penetration rate
increases. Liu et al. [291] presented an approach that optimizes
traffic signals and vehicle platooning at intersections through
mixed integer linear programming, resulting in improved
performance in terms of travel delay, throughput, fuel con-
sumption, and emission compared to other approaches, which
is verified by simulation.

c) Unsignalized intersections: In unsignalized or uncon-
trolled intersections, collaborative control technology can
help to improve safety and efficiency by enabling vehi-
cles to communicate with each other and coordinate their
movements [292]. This can help to reduce the likelihood of
accidents caused by miscommunication or failure to yield,
and enable smoother and more efficient traffic flow through
the intersection [293]. For example, in order to coordi-
nate the motion of vehicles at unsignalized intersections,
Deng et al. [294] proposed a conflict duration graph-based
coordination framework to resolve collisions and improve
traffic capacity according to heuristic rules at signal-free
intersections. In addition, Wang et al. [295] presented a dig-
ital twin framework for a collaborative control system at
nonsignalized intersections, which incorporates an enhanced
FIFO slot reservation algorithm, a consensus motion control
algorithm, a model-based motion estimation algorithm, and an
augmented reality HMI.

Overall, this section discusses collaborative control tech-
niques for CAVs, which are crucial for realizing their
potential to improve transportation systems [296]. It covers
enabling technologies, critical components, collaborative con-
trol methodologies, and potential applications. The enabling
technologies provide the communication infrastructure for
CAVs to share information and cooperate. Critical compo-
nents, such as longitudinal dynamics models, information flow
topology, communication quality, and stability, are necessary
for collaborative control. Collaborative control methodologies
include centralized, decentralized, or mixed control mode, and
utilize game-theoretic, optimization-based, or reinforcement
learning-based methods. The potential applications of collab-
orative control include platooning, lane changing, intersection
crossing, and more, which can enhance traffic efficiency,
reduce emissions, and improve safety in one-, two-, or 3-D
collaboration scenarios.

V. CONCLUSION AND FUTURE WORKS

In this survey, we have provided a comprehensive review
of vehicle control for AVs and CAVs. We began with vehicle
state estimation, in particular, vehicle sideslip angle estima-
tion, from the perspective of diverse sensor configurations
and model features. We then discussed the trajectory tracking
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control for AVs with three types of autonomous driving
control algorithms: 1) feedback control without prediction;
2) MPC with prediction; and 3) learning-based control. We
also analyzed different trajectory tracking algorithms from four
main perspectives: 1) model complexity; 2) computation cost;
3) optimal performance; and 4) application scenarios. We also
explored the enabling techniques, critical components, collab-
orative control methodologies, and potential applications of
cooperative driving control methods, which have the potential
to significantly improve the efficiency, safety, and sustainabil-
ity of the future transportation system. In addition, we identify
that future research on vehicle control from automated driving
and cooperative driving automation will likely expand to the
following avenues.

1) Multimodality Robust State Estimation: In addition to
GNSS, LiDAR, and cameras can be utilized to assist in
vehicle state estimation to further improve the estima-
tion accuracy. However, these sensors are susceptible to
environmental factors, such as buildings, illumination,
and weather. Furthermore, their sampling latency and
frequency vary significantly. As a result, it is essential
to investigate the confidence level of sensor signals in
real-time and develop robust fusion algorithms.

2) Robust Trajectory Tracking Control With State
Uncertainty: Thanks to the availability of multimodal
information, it is possible to estimate real-time 3-D
vehicle attitude information. Consequently, the vehicle
control model can be expanded from a 2-D plane to a
3-D space. Since the state estimation results may have
a certain degree of uncertainty, it is crucial to account
for the impact of state estimation uncertainty on the
algorithm’s performance while designing trajectory
control algorithms.

3) Addressing the Control Challenge of Heterogeneous
Dynamics in Mixed-Autonomy Vehicle Platoons: The
interaction and coordination between human-driven and
AVs present a significant challenge to collaborative con-
trol when encountering mixed-autonomy traffic. One of
the biggest challenges in this area is the heterogeneous
dynamics introduced by human-driven behavior in the
vehicle platoon. To overcome this challenge, researchers
and engineers will need to develop innovative control
techniques that can adapt to the variability of human
drivers while still maintaining safety and efficiency
on the road. These techniques could include machine
learning algorithms to predict human driver behavior,
as well as hybrid control architectures that combine
centralized and decentralized control techniques. This
approach would allow AVs to adapt to the behavior of
human-driven vehicles while still maintaining a level of
coordination within the platoon.

4) Learning-Based Distributed Control Paradigm for
CAVs: Traditional control methods often reach their lim-
itations when addressing the dynamic, stochastic, and
uncertain aspects of road environments. As a potential
alternative, learning-based distributed control methods
provide an avenue for CAVs to optimize behaviors based
on raw sensor inputs and experience-based interaction

with the environment. Furthermore, distributed learn-
ing allows CAVs to share experiences and collectively
enhance system performance. Despite its promising
prospect, challenges, such as preserving data privacy,
dealing with nonstationary data distribution, and man-
aging communication bandwidth for knowledge sharing
persist.

5) Resilience Control Techniques for CAVs in the Presence
of Cyber Attacks and Communication Failures: In a
realistic and unpredictable driving environment, commu-
nication and sensing failures can occur, and adversarial
entities may disrupt the system’s operation. Therefore,
it is necessary to integrate resilience control techniques
into the collaborative control framework, enabling the
system to continue to function and adapt to chang-
ing conditions even in the presence of faults, errors,
or attacks. Leveraging techniques from the field of
cyber-physical systems will be an effective approach to
designing resilient collaborative control techniques for
CAVs. Additionally, considering security and privacy
requirements will be critical. Designing communication,
sensing, and control protocols with security and privacy
in mind, such as utilizing encryption, authentication,
and access control mechanisms, will be essential for
ensuring the safety and performance of CAVs in the
future.

6) Algorithm Deployment in Resource-Constrained Edge
Devices: The implementation of sophisticated algo-
rithms, including MPC and machine learning models,
on CAVs presents a significant challenge due to the
limited computational resources of edge devices. Such
devices grapple with restrictions in computational power,
memory, and energy, limiting the types and complex-
ity of deployable algorithms, which presents a pressing
challenge for real-time operations for critical safety
tasks. To meet computational requirements, algorithms
require simplifications or approximations, creating a del-
icate tradeoff between accuracy and computational effi-
ciency. Thus, an urgent demand exists for the design of
lightweight, energy-efficient, and real-time capable algo-
rithms for resource-constrained edge devices, without
compromising overall performance.

7) Developing a Unified Simulation Platform and
Intelligent Testing Environments for Safety Evaluation
of Collaborative Control Techniques: Currently avail-
able platforms, namely, CARLA and Unity, while
beneficial, struggle with a few substantial limitations
in terms of sensor simulations, modeling of HDV,
simulation-to-reality gap. Therefore, the development
of a unified simulation platform and intelligent testing
environments is a critical step toward ensuring the
safety of collaborative control techniques for CAVs. To
achieve this, the simulation platform should accurately
model the behavior of CAVs and their interactions with
other vehicles and infrastructure, while also employing
machine learning techniques to enable accelerated test-
ing and training with other safety-critical autonomous
systems.
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