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Abstract—Advancements in conversational artificial intelli-
gence (AI) have created unparalleled opportunities to promote
the independence and well-being of older adults, including peo-
ple living with dementia (PLWD). However, conversational agents
have yet to demonstrate a direct impact in supporting target
populations at home, particularly with long-term user bene-
fits and clinical utility. We introduce an infrastructure fusing
in-home activity data captured by Internet of Things (IoT) tech-
nologies with voice interactions using conversational technology
(Amazon Alexa). We collect 3103 person-days of voice and envi-
ronmental data across 14 households with PLWD to identify
behavioral patterns. Interactions include an automated well-being
questionnaire and ten topics of interest, identified using topic
modeling. Although a significant decrease in conversational tech-
nology usage was observed after the novelty phase across the
cohort, steady state data acquisition for modeling was sustained.
We analyze household activity sequences preceding or follow-
ing Alexa interactions through pairwise similarity and clustering
methods. Our analysis demonstrates the capability to identify
behavioral patterns, changes in those patterns and the corre-
sponding time periods. We further report that households with
PLWD continued using Alexa following clinical events (e.g., hos-
pitalizations), which offers a compelling opportunity for proactive
health and well-being data gathering related to medical changes.
Results demonstrate the promise of conversational AI in digital
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health monitoring for aging and dementia support and offer
a basis for tracking health and deterioration as indicated by
household activity, which can inform healthcare professionals and
relevant stakeholders for timely interventions. Future work will
use the bespoke behavioral patterns extracted to create more
personalized AI conversations.

Index Terms—Behavioral patterns, conversational artificial
intelligence (AI), dementia care, digital health monitoring, smart
home technology.

I. INTRODUCTION

TODAY, more than 55 million people live with dementia
worldwide [1]. The aging population is set to double

by 2050 [2], and the number of people affected by demen-
tia is predicted to reach 139 million by then [1]. Global care
costs of dementia are projected to surpass U.S.$ 2.8 trillion
by 2030 [1]. In the U.K. alone, 25% of hospital beds are
occupied due to a dementia-related condition [3]. This global
health crisis has been exacerbated by the COVID-19 pandemic,
with vulnerable populations facing unprecedented isolation,
experiencing worsened mental health conditions, and receiv-
ing limited care [4], [5]. With limited resources for home
care services and no immediate cure in sight, the global
socioeconomic burden on healthcare systems is only expected
to become more critical with time. This, in turn, places an
increased psychological burden and strain on family mem-
bers and caregivers [6]. Dementia is one of the world’s major
public health challenges [7]. Advancements in Internet of
Things (IoT) technologies enable frequent and contextually
rich interactions between people and the environment [8].
Several studies have been conducted on creating smart envi-
ronments, such as smart homes, and eventually smart cities
for urban living [9]. Furthermore, the integration of artifi-
cial intelligence (AI) and IoT for smart healthcare systems is
growing dramatically, particularly for behavioral, physical and
mental health monitoring, welfare interventions, or incident
detection [10], [11], [12], [13].

The development of home-based assistive technology, par-
ticularly IoT technologies and social robotics, has been at
the forefront of much research effort to date to promote
independence, well-being, and quality of life of older adults,
including people affected by dementia [14], [15], [16].
Monitoring an individual’s home environment and daily

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6032-3042
https://orcid.org/0000-0001-8559-5143
https://orcid.org/0000-0001-6402-0623
https://orcid.org/0000-0002-9546-2843
https://orcid.org/0000-0002-1897-0780
https://orcid.org/0000-0003-4809-4889
https://orcid.org/0000-0001-8591-9638
https://orcid.org/0000-0002-9625-4544


18538 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 21, 1 NOVEMBER 2023

routines—such as motion activity in the house, meal prepa-
ration, and physiological readings—combined with machine
learning (ML) models for detecting anomalous behavior (i.e.,
deviations from the baseline routine) can provide an effective
means to alert healthcare professionals or relevant stake-
holders to potential risks, such as a fall, illness, or social
isolation [14], [17], [18], [19]. In this context, detecting
changes in the daily routines of target populations can offer
important insights into their physical and mental health status
[20], [21], [22]. This way, caregivers can be better informed
on the expected changes in the patient’s behavior, health sta-
tus, and disease progression, which can help mitigate further
deterioration through early intervention.

Smart homes equipped with IoT technologies for activ-
ity monitoring and habit assessment gather information in a
passive way, in that they do not directly interact or engage
with end users. Conversational technology, however, may give
insights into subjective experiences and feelings by directly
querying users and engaging in conversations, which could
encourage behavioral changes. Research in conversational AI
technology, including smart speakers integrated into the liv-
ing environment, has experienced prolific growth in recent
years [23]. Commercially available instances include devices,
such as Amazon Echo and Google Home, with constantly
evolving AI capabilities to understand human intent and pro-
vide relevant responses. For example, these devices can be
used to set up medication reminders, self-management of
daily activities, provide entertainment (e.g., playing music or
games), or answer general questions as frequently as needed
(e.g., the current time, date, and weather). This way, conversa-
tional AI technology holds potential to promote the indepen-
dence of older adults, including people living with dementia
(PLWD) and help reduce the burden on carers. Despite increas-
ing interest in IoT monitoring systems deployed in smart
environments and conversational AI in their respective fields,
to the best of our knowledge, no research to date has com-
bined voice with in-home activity data to inspect behavioral
patterns. Furthermore, conversational agents have yet to pro-
duce research results addressing utility from user benefit and
health monitoring perspectives, particularly in dementia care
at home.

This study aims to investigate the integration of conversa-
tional agents in smart environments. We argue the potential
of conversational agents for utility in health and well-being
monitoring to support households with people affected by
dementia. We discuss the role of conversational AI in health
and well-being monitoring, particularly for aging and demen-
tia support, and highlight future directions to address current
challenges inhibiting long-term engagement and user bene-
fits. We believe the ability to map individual behavior in
smart environments and detect deviations or changes from
previously observed patterns forms a strong baseline to person-
alize interactions. Furthermore, user-initiated interactions with
conversational agents often indicate wants, needs or overall
interests which could be mapped over time. For instance, the
conversational agent could proactively engage with end users
at appropriate times to remind them of an activity of interest or
encourage behavior. We argue the potential of conversational

technology to trace household behavior, directly query users
for subjective perceptions of health and well-being in the
event of household activity changes, and inform relevant stake-
holders so that appropriate intervention can be activated if
necessary. We examine the daily contexts in which 14 house-
holds with PLWD interact with a smart speaker (Amazon
Alexa) by fusing home activity data captured by IoT tech-
nologies and remote health monitoring devices with regular
interactions with Alexa. Broadly, our analysis inspects: 1) the
use of Alexa in households with PLWD over time, particularly
to assess compliance with a daily well-being questionnaire
and prevalence of topics of interest beyond the novelty phase;
2) activity sequences in the 10-m period preceding or follow-
ing user-initiated interactions with Alexa to identify behavioral
patterns, changes in those patterns, and the corresponding time
periods; and 3) Alexa usage in the week after health events
occurred (information logged by a monitoring team, as elab-
orated in Section III-A). The contributions of this article are
as follows.

1) We introduce an infrastructure fusing environmental
and voice data using conversational technology to trace
behavior. While our target in this study is health and
well-being monitoring in the living environment, we
argue our approach could be implemented in other smart
environments to give insights into users’ behavior.

2) We demonstrate technical feasibility to identify behav-
ioral patterns and their corresponding time peri-
ods by analyzing sequences of household activities
which precede or follow user-initiated interactions with
conversational AI.

3) We offer the approach as a basis to adapt auto-
mated interactions aimed at providing personalized and
proactive support for PLWD. This includes automated
dialogues on health and well-being (e.g., sleep qual-
ity, mood, agitation, and anxiety) to obtain medically
relevant data and sustain user engagement.

The remainder of this article is organized as follows.
Section II reviews related works and identifies the main
gaps. Section III describes the research questions that moti-
vate this work, the experimental design and analysis methods.
Section IV presents results in the form of user case studies.
Section V discusses the utility, limitations and future directions
of the proposed data-driven approach. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

A. Conversational AI for Aging and Dementia Care

There has been emerging interest in applying conver-
sational AI technology in healthcare applications [24],
including for home support of older populations [23].
By understanding and responding to natural spoken lan-
guage, conversational agents present a versatile, intuitive,
and natural user interface with potential to promote and
monitor health [25]. In light of commercial viability,
increased worldwide adoption, and expanding AI capabilities,
conversational technology—including conversational agents
and ubiquitous smart speakers—holds significant promise to
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assist older people and those affected by dementia in home set-
tings. Commercially available smart speakers, such as Amazon
Alexa and Google Home, have recently been explored as
assistive tools to promote the independence of older popu-
lations for routine management [26], remote caring [27], or
self-management of diabetes [28]. Voice skills for Alexa have
been proposed to support older adults complete daily tasks,
including medication reminders [27], depression screening and
dressing assistance [29], as well as to send fall alerts to the
caregiver [30].

There has been a growing interest in exploring how con-
versational AI is used in home settings by target popula-
tions. Qualitative studies have revealed initial insights into
user experience with voice technology, patterns of daily use,
and why interest is oftentimes lost after the novelty effect
[31], [32], [33]. Current barriers inhibiting long-term adop-
tion by older adults have been reported in the literature. These
encompass the need for intelligent adaptation to user needs and
cognitive abilities over time, limitations in speech recognition
for effective verbal interaction, and privacy concerns related to
voice data gathering [23], [34]. Furthermore, voice technology
and analysis techniques from interactions, specifically looking
at linguistic and speech patterns, have been investigated as
a baseline for health monitoring and assessment of cognitive
decline, including dementia progression [35], [36], [37], [38].

In light of the increased access to individual information
from IoT technologies in smart homes, the use of conversa-
tional AI systems able to engage with end-users in natural
interactions holds very strong promise to support aging and
dementia care. However, the feasibility and utility of these
tools for health and well-being monitoring at home remain
largely untapped. Research to date lacks longitudinal data col-
lection from real-world contexts, e.g., people’s homes. Few
investigations have demonstrated a direct impact on support-
ing the care needs of target populations. Additionally, the
use of home-based conversational technology in combination
with ML analysis for tracking behavior and cognitive changes
over time remains underexplored. Further research with lon-
gitudinal depth of analysis is needed, particularly addressing:
1) adaptive interactions based on individual needs and chang-
ing health conditions; 2) end-user long-term engagement with
conversational technology beyond the novelty phase; and
3) clinical utility.

B. Activity Monitoring in Smart Homes

Opportunities in the use of smart home technology for
older populations and PLWD are well noted in the literature:
from diagnostic assessment to tailored care, health monitor-
ing, cognitive support, and completion of activities of daily
living (ADL) [14], [17], [39], [40]. Advances in IoT technolo-
gies have spurred significant progress in activity recognition,
habit assessment, and anomaly detection within smart home
environments [41], [42], [43], [44], [45], including moni-
toring systems, that aim to support independent living of
older adults and people affected by dementia [19], [21], [46],
[47], [48]. Despite the growing interest and potential for
enhancing dementia care using remote monitoring systems, if
not designed carefully and with end-user involvement, these

can be perceived as complex and intrusive and may raise eth-
ical concerns regarding privacy [23], [40], [49], [50], [51].
These factors have been investigated through user-centered
design approaches focusing on fulfilment from the stakeholder
perspective [52]. Models capable of recognizing behavioral
patterns are of particular relevance to our study. Specifically,
recognition of individual behavioral patterns can be achieved
by using ADL data to capture regular activity sequences with
temporal and spatial information (e.g., what a user does every
morning between 10:00 and 12:00) [53], [54]. Such analy-
sis can be used to detect behavioral changes over time that
could indicate changes in lifestyle, functional abilities, and
potentially cognitive decline [42], [55].

Recent work has proposed habit representation methods
using activity data collected from smart environments, focus-
ing on the sequence and duration of activities [53]. Along sim-
ilar lines, a real-time monitoring framework has been proposed
to recognize habits and detect anomalies with the aim of sup-
porting seniors living alone [54], yet no results were obtained
from data collection with target users. In [42], sequence com-
parison and clustering methods have been applied to activity
vectors to obtain regular daily routines. The authors argued
the future potential of a support system for individuals who
may require assistance with ADL, including older populations.
Further studies have analyzed abnormal behavior of PLWD,
identifying differences in routine patterns within daily living
contexts [47]. However, this analysis was conducted using a
limited data set of three households. A common gap identified
across these studies is the lack of longitudinal data collected
from target populations in real-world contexts. Furthermore,
researchers have investigated correlations between changes
in daily routine and alterations in cognitive and physical
health [56]. The authors evaluated the approach using continu-
ous smart home sensor data collected from 18 senior residents.
While there has been work in each of these areas individually,
to the best of our knowledge, no research to date has corre-
lated in-home activity captured by IoT technologies to voice
interactions with conversational technology to track behavior.

The investigation of ADL patterns to understand human
behavior comprises sequence comparison and clustering
approaches to identify typical or unusual patterns from the
recognized activity sequences captured by IoT technolo-
gies [42], [57]. Sequence mining algorithms have been suc-
cessfully applied in bioinformatics to investigate related gene
sequences [58], [59]. Different similarity measures have been
studied in the context of sequence analysis, which can be cate-
gorized as follows: distances between probability distributions,
counts of common attributes, and optimal matching between
sequences by considering the necessary operations to trans-
form one sequence into the other [60], [61]. The choice of a
suitable similarity measure for comparing activity sequences
to uncover patterns largely depends on the sequential features
being considered, e.g., temporal information, duration, and
order [18], [42]. Popular distance metrics are used to calculate
the similarity between pairs of categorical sequences, such
as the Hamming distance, which calculates the positionwise
comparison of pairs of sequences of equal length [62], and
the Levenshtein distance, given by the smallest number of
edit operations needed to turn one sequence into another [63].
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TABLE I
13 BEHAVIORAL EVENTS CONSIDERED IN THIS ANALYSIS, CAPTURED BY IOT TECHNOLOGIES, REMOTE HEALTH MONITORING DEVICES, AND THE

ALEXA SMART SPEAKER. EACH BEHAVIORAL EVENT INDICATES AN ACTIVITY. NOTE THAT WE GROUPED ALL PHYSIOLOGICAL

READINGS INTO THE SAME VITALS EVENT AND CONSIDERED THREE ALEXA BEHAVIORAL EVENTS

These, however, are not suitable when dealing with tempo-
ral event sequences where common and consecutive elements
ought to be considered. An alternative approach has been
proposed in [64] aimed at capturing the sequentiality of events.

C. Topic Modeling Techniques

Topic modeling, an unsupervised learning technique used to
identify hidden patterns from a text corpus [65], can be applied
to analyze text-based interactions with conversational agents
and further inspect user interests and preferences from conver-
sation topics over time. Conventional models, typically based
on latent Dirichlet allocation (LDA), employ a bag-of-words
model, wherein each unique word is modeled independently
from the others [66]. These models, however, involve sim-
plistic assumptions and preprocessing steps that often dismiss
semantic relationships between words, especially when ana-
lyzing short texts, resulting in the learned topics being less
coherent and interpretable [67], [68]. With recent develop-
ments in natural language processing, pretrained language
models have been proposed to capture semantic and contex-
tual information from text more effectively (e.g., BERT [69]
and GPT-3 [70]). Similarly, Top2Vec [71] and BERTopic [72]
have been proposed to infer topics while keeping the original
structure of text with high efficacy [73], [74].

III. METHODS

A. Preliminary

The U.K. Dementia Research Institute Care Research
and Technology Centre (U.K. DRI-CR&T) has created a
unique infrastructure for gathering environmental data from
households with PLWD to enhance independence and safety
at home. The U.K. DRI-CR&T brings together a multi-
disciplinary team of doctors, engineers, and scientists that
develop and study new technologies for effective use in smart
homes, deploy them in real-world evaluation studies following
iterative user-centered design approaches, and deliver them to
PLWD and their carers. A range of systems are studied to
track a person’s behavior and health at home, predict when
problems might arise, and provide intervention solutions while
allowing continuous interaction between PLWD, caregivers,
and medical professionals.

In the context of this study, we define a behavioral event
as a sensor trigger captured in a smart home with an asso-
ciated timestamp. Each behavioral event indicates an activity
(e.g., motion in the house, taking vitals, interacting with a
voice agent). Following a previous approach for activity data
collection in households with PLWD [75], we analyzed 13
behavioral events (outlined in Table I) captured by IoT tech-
nologies, remote health monitoring devices, and the Amazon
Alexa smart speaker from 14 households with PLWD. As part
of our recruitment and deployment protocol, a monitoring team
and a design team maintained communication with participants
to clarify the purpose of data collection and the capabilities
of the devices deployed in order to mitigate potential ethical
concerns regarding data privacy. The design team encouraged
PLWD to complete a daily well-being questionnaire.1 The
questionnaire comprised six questions assessing the subjective
perception of mood, agitation, anxiety, sleep quality, tired-
ness, and activity plans. PLWD were further encouraged to
interact with Alexa freely (e.g., ask for the weather, news,
or entertainment). Additionally, as part of our experimental
design, a monitoring team in regular contact with partici-
pants noted individual health events (e.g., falls, infections, and
hospitalizations).

We conducted a household analysis and did not identify
individuals to protect privacy. We were interested in investigat-
ing behavior in households with PLWD using conversational
technology. We consider an activity sequence as a sequence
of ordered behavioral events that occur in the 10-m period
(defined based on domain knowledge) preceding or following
Alexa use, with an associated start and end timestamp. We
refer to a behavioral pattern as a set of activity sequences
with a high degree of similarity (see details on the similarity
approach used to quantify the degree of similarity between
pairs of activity sequences in Section III-E) that occur in the
household for a period of at least three weeks, determined
by domain knowledge (e.g., a user takes vitals in the morn-
ing before interacting with Alexa for a month). When a new
set of activity sequences emerges by changing the previously
observed pattern (evidenced by a lower degree of similarity

1An Alexa Skill was developed for the purpose of the ongoing research
conducted by the U.K. DRI-CR&T.
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Fig. 1. Pipeline illustration with the main steps used in the study and the
mathematical formulations. This includes: 1) the longitudinal fusion of envi-
ronmental and voice data, comprising a set of 13 distinct behavioral events,
as outlined in Table I; 2) the topic modeling approach employing sentence
embeddings and clustering techniques; 3) the analysis of activity sequences
on a participant level using a pairwise similarity measure; and 4) clustering
to discern behavioral patterns. Additionally, notes from the monitoring team
are used to explain and validate the quantitative findings.

compared to adjacent activity sequences), we consider it a
behavioral change (e.g., a user stops taking vitals before
talking to Alexa, which had previously been identified as a
behavioral pattern). We are particularly interested in discover-
ing behavioral patterns beyond the novelty phase, i.e., after the
first three months, in line with other studies using home-based
robotic technology [76]. The proposed pipeline of analysis is
illustrated in Fig. 1.

B. Research Questions

This study is driven by the following research questions.
1) RQ1: Will end-users sustain engagement with conversa-

tional technology beyond the novelty phase (i.e., the first
three months)? We examine Alexa usage in households
with PLWD over time. Particularly, we assess compli-
ance regarding the sustained use of a daily well-being
questionnaire and apply topic modeling to inspect the
prevalence of topics over time.

2) RQ2: Can behavioral patterns in households with PLWD
be traced by mapping in-home activity and voice inter-
actions with conversational technology? We examine
pairwise similarity of activity sequences preceding or
following Alexa use. We identify behavioral patterns,
changes in these patterns, and their corresponding time
periods.

3) RQ3: Do participants continue using Alexa following
clinical outcomes (e.g., falls, infections, and hospital-
izations)? We inspect whether households with PLWD
continue interacting with Alexa in the week following a
health event.

C. Study Sample

In this research, we collected 3103 person-days of inter-
actions with Alexa and in-home activity data captured by

IoT technologies across 14 households with PLWD as part of
ongoing research in dementia care conducted by the U.K. DRI-
CR&T. Participants (75-94 years, 4 females, 10 males) lived
in the U.K., had a diagnosis of dementia or mild cognitive
impairment (MCI), and were living in their own homes with a
caregiver during the time of data collection. Table II lists full
participant and data collection information. The total time-
frame of data collection varied across participants due to two
different recruitment stages followed by Alexa device deploy-
ment. The study was ethically approved by the Surrey Borders
Research Ethics Committee.

D. Technology and Data Overview

This study fuses in-home activity data and voice interac-
tions with conversational technology to analyze behavior in
households with PLWD. Each household included a range
of IoT technologies and remote health monitoring devices,
namely, passive infrared sensors installed in the bedroom, the
lounge/living room, the kitchen, the bathroom, and the hall-
way; door sensors placed on the front door and the back
door to detect when a door was opened or closed; a sleep-
ing mat to collect information about a person getting in or
out of bed; physiological devices to take vital signs, includ-
ing a pulse oximeter, scale, thermometer, and blood pressure
cuff; and the smart speaker Amazon Echo Show. The activity
data related to motion, taking vitals, opening/closing doors,
getting in/out of bed (as presented in Table I) was extracted
offline from DCARTE [77], a framework that allows continu-
ous and anonymized data access by DRI-CR&T researchers.
The interaction data comprises text utterances of what users
said to Alexa and the corresponding timestamp. We consider
two types of data from Alexa interactions.

1) Questionnaire: Participants were encouraged to trigger
a well-being questionnaire on a daily basis. This data
type was used specifically to inspect the frequency and
time of questionnaire completeness over time. Therefore,
we extracted the timestamps of the start and end of the
questionnaire and excluded answers to each question.

2) Random Interactions: All the Alexa interactions exclud-
ing the start, end, and answers to the well-being ques-
tionnaire. This includes free use of the smart speaker
across different topics, e.g., asking for the news, weather,
time, setting reminders, and playing music, among oth-
ers. This type of Alexa interactions was used to examine
participants’ topics of interest over time.

The activity and interaction data sets were aggregated,
grouped for each participant, and sorted by timestamp, result-
ing in a total of over 1.5 million unique observations collected
over 3103 person-days (see details in Table II). Each obser-
vation represented one event with a timestamp. The analysis
encompassed a total of 13 different behavioral events (listed
in Table I) related to user-initiated interactions with Alexa,
location in the house, bed in/out information, opening or
closing of front/back door, and vitals.2 Furthermore, we used
the dates of individual health events logged by a monitoring
team (e.g., falls, infections, and hospitalizations) to examine

2Note all physiological measurements were grouped into one vitals event.
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TABLE II
PARTICIPANT COHORT AND DATA ACQUISITION DETAILS. TOTAL DAYS REFERS TO THE DURATION OF DATA COLLECTION, FROM THE FIRST TO THE

LAST DATE OF ALEXA INTERACTIONS, HOWEVER, PARTICIPANTS DID NOT USE THE DEVICE DAILY. THE TOTAL NUMBER OF ALEXA TRIGGERS

ENCOMPASSES BOTH THE QUESTIONNAIRE TRIGGER AND RANDOM INTERACTIONS. UNIQUE EVENTS COMPRISE THE AGGREGATE RAW DATA OF

BEHAVIORAL EVENTS FOR EACH PARTICIPANT INCLUDING ALEXA INTERACTIONS

whether users continued using Alexa in the week following a
health event.

E. Pairwise Similarity of Activity Sequences

This study investigates behavioral patterns by analyzing in-
home activity data and voice interactions using conversational
AI technology. The analysis focused on calculating the pair-
wise similarity of activity sequences near (i.e., in the 10-m
period preceding or following) Alexa triggers. We further iden-
tify behavioral patterns by grouping activity sequences with
higher or lower similarity scores. We considered an activity
sequence, �s, as a vector of temporally ordered sensor triggers
(i.e., behavioral events)

�s = [s1, . . . , sn], si ∈ E

where E is the finite set of 13 behavioral events considered in
this study (see Table I), and si is the event in position i of the
sequence.

Each activity sequence includes temporal window and dura-
tion parameters, in addition to a defined target event, i.e., the
Alexa type of interaction: Start stands for the trigger of the
well-being questionnaire; End denotes the end of the ques-
tionnaire; Random stands for other utterances from free use
of the smart speaker (note different topics were considered, as
elaborated in Section III-F). Through exploratory data analy-
sis, we chose an optimal window of five consecutive events
(n = 5) and filtered sequences by a maximum duration of
10 min near the target trigger. Note the duration of each event
varies. Therefore, activity sequences may comprise repetitive
events as long as the total vector size is five (i.e., n = 5)

and the maximum duration is 10 min. Below are examples of
equal-length sequences that preceded the trigger of the daily
questionnaire (i.e., sn = “Start”) for a given participant:

Lounge > Kitchen > Lounge > Lounge > Start

Vitals > Vitals > Kitchen > Lounge > Start.

To quantify the level of similarity between activity
sequences composed of chronologically ordered behavioral
events, �s, we calculated pairwise sequence similarity. We were
particularly interested in computing similarity by capturing the

temporal sequence of events. Therefore, we applied Ordering-
based Sequence Similarity [64], a categorical sequence mining
technique which considers the number of common elements
and their order in the sequence. Let �sA = [sA1, . . . , sAn] and
�sB = [sB1, . . . , sBn] be two equal-length activity sequences.
The similarity score between sA and sB (the vector symbol
was omitted for simplicity) was calculated as follows:

sim(sA, sB) = 1 − f (sA, sB) + g(sA, sB)

nA + nB
(1)

where f (sA, sB) quantifies the similarity in the position of ele-
ments in the sequence (i.e., the order), g(sA, sB) counts the
number of noncommon elements, and nA and nB denote the
vector size of sA and sB, respectively.

For a behavioral event e ∈ E and activity sequences sA and
sB, let Le

A be the number of times e appears in sA, and se
A(k)

the kth position of e in sA. CAB denotes the set of common
events in sA and sB. UAB denotes the set of events that appear
in sA but not in sB. Then, f (sA, sB) and g(sA, sB) are calculated
as follows:

f (sA, sB) =
∑

e∈CAB

(∑Ke
AB

k=1 |se
A(k) − se

B(k)|
)

max(nA, nB)
(2)

and

g(sA, sB) =
∑

e∈UAB

Le
A +

∑

e∈UBA

Le
B (3)

where Ke
AB = min(Le

A, Le
B).

Using the two activity sequences shown above as an exam-
ple with simplified notation sA = {L, K, L, L, S}, sB =
{V, V, K, L, S}: since L, K, and S appear in both sequences,
CAB = {L, K, S}. Looking at the position of common events in
each sequence, sL

A = {0, 2, 3}, sL
B = {3}, sK

A = {1}, sK
B = {2},

sS
A = sS

B = {4}, therefore f (sA, sB) = (|0 − 3| + |1 − 2| +
|4 − 4|)/5 = 0.8. Calculating the noncommon events, V
appears twice in sB, hence UBA = {V} and g(sA, sB) = 2.
Following (1), sim(sA, sB) = 1− (0.8 + 2)/10 = 0.72.

We predefined the target event, s5, to analyze activity
sequences in the 10-m temporal window preceding Alexa use
(e.g., for the activity sequences preceding the trigger of the
questionnaire, s5 = Start). We further analyzed similarity
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matrices, on a participant level, based on the pairwise sim-
ilarity scores computed. Higher values within these matrices
indicate a higher degree of similarity between pairs of activ-
ity sequences. Subsequently, similarity matrices were used to
cluster activity sequences by grouping those with higher or
lower similarity scores. Given that the data points to clus-
ter (i.e., the activity sequences) are not in a vector space, we
applied K-Medoids clustering, a method based on the parti-
tion around medoids algorithm [78]. The silhouette method
was used to determine the number of clusters. Altogether,
our approach involved computing pairwise similarity and per-
forming clustering of activity sequences to identify behavioral
patterns and examine changes in behavior using conversational
technology at home.

F. Topic Modeling

We applied topic modeling methods to analyze the Alexa
interactions of type random (i.e., Alexa usage that is not
related to the well-being questionnaire, as described in
Section III-D). Specifically, we used the pretrained language
model SentenceTransformer [79] to embed each user utterance
into a 768-D vector. We applied K-Means clustering3 in two
iterations on the obtained utterance vectors and used the sil-
houette method to choose the number of clusters.4 In the first
round, we applied the K-Means clustering model to cluster the
vectors into 16 clusters. Manually inspecting these clusters,
we identified a set of generic utterances (the undefined topic).
Additionally, we combined clusters with similar topics, result-
ing in a total of eight clusters, including the undefined topic
cluster. In the second round, we specifically focused on the
undefined cluster from the first round and further clustered it
into 15 topics using K-Means. We merged similar topics from
the second round of K-Means clustering with those identi-
fied in the first round, integrated two newly emerged clusters
and identified the new undefined topic cluster. Fig. 2 shows
the identified topics and the most prevalent words in each
topic. In total, we identified ten topics from Alexa interac-
tions across the cohort of participants as follows. 1) Answers:
Participants may be prompted to confirm Alexa actions or
speech recognition. 2) Control commands: Voice commands
used to control Alexa (e.g., change the volume and start or
stop actions). 3) Entertainment: Participants ask Alexa to play
music, radio, or games. 4) Timers: Participants ask Alexa to set
timers. 5) Weather: Participants ask for weather information.
6) Questionnaire attempt: Participants attempt to start the
daily questionnaire, but Alexa does not recognize participants’
speech correctly. 7) Reminders, time, and date: Participants
ask about the current time, date, or day of the week, to set
reminders or alarms. 8) News: Participants ask for general
news or headlines of the day (e.g., “tell me the latest news”),
news from specific channels (e.g., “what is on BBC One
tonight”), or news on specific themes (e.g., “news on prince

3We conducted preliminary research on topic modeling and found nonneg-
ative matrix factorization (NMF) and LDA produced unsatisfactory results

4We compared the performance of different clustering methods by com-
puting the silhouette score as a measure of coherence. K-Means marginally
outperformed Hierarchical Clustering, Gaussian Mixture Models, and Spectral
Clustering (see details in Supplementary Table I in the Appendix).

Fig. 2. Top five words in each topic. These words were selected based on
their proportion relative to all words within their respective topic. The x-axis
measures this proportion. Note the undefined topic contains many different
utterances, thus, all words among this topic have low-term frequency–inverse
document frequency (TF-IDF) scores.

harry”). 9) Greetings: Participants greet Alexa. 10) Undefined:
All remaining Alexa interactions of type random.

IV. RESULTS

We analyzed over 1.5 million events captured from IoT tech-
nologies, remote health monitoring devices, and the Amazon
Alexa smart speaker over 3103 person-days across a unique
cohort of 14 households with PLWD. We first investigated
trends in conversational technology usage over time across
the 14 households, particularly beyond the novelty phase. We
selected four participants (i.e., P2, P6, P12, and P14) that inter-
acted the most with Alexa (see the total number of Alexa
triggers in Table II) to report a series of case studies. We exam-
ined the similarity of activity sequences preceding or following
user-initiated interactions with Alexa to identify behavioral
patterns. We also inspected Alexa usage in the week following
the occurrence of health events across the cohort.

A. Prevalence of Interactions With Conversational AI
Beyond the Novelty Phase

We aimed to examine the use of Alexa in households with
PLWD over time. We inspected the novelty effect across the
cohort and which topics of interest prevailed after the first
three months of usage (see RQ1 in Section III-B). Specifically,
we analyzed the weekly average number of Alexa interactions
both during and beyond the novelty phase and examined the
prevalence of the ten identified topics (see Section III-F) in
participants’ interactions over time.
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Fig. 3. Alexa interaction data across the total usage timeframe for (a) P12 and (b) P14. The left plots show the daily counts of Alexa events per day. The
right plots show monthly usage of both types of interactions considered—questionnaire triggers and random interactions—over the duration of Alexa use.
N triggers quantifies the total number of interaction triggers.

Fig. 3 shows an overview of Alexa interaction data across
the total usage timeframe for P12 and P14. P12 interacted with
Alexa consistently over time, showing an increased interest
in its capabilities during the novelty phase, as evidenced by
a rise in random interactions. However, there was a gradual
decline in overall Alexa usage during the post-novelty phase
(i.e., after the first three months). P12’s daily interactions with
Alexa peaked in December 2021 (N triggers = 42) during
the novelty period. While P14 used Alexa consistently over
time, there were noticeable intervals of consecutive noninter-
action days. P14’s daily triggers peaked in November 2021
(N triggers = 27), recorded on the second day of using Alexa.
Furthermore, participants’ engagement with the well-being
questionnaire varied across the cohort. For instance, P14 con-
sistently completed the questionnaire on a monthly basis, with
a decrease in engagement only noticeable after seven months
of use, in May 2022. Conversely, P12 gradually reduced the
frequency of questionnaire triggers and stopped completing it
after March 2022.

We compared the weekly average number of Alexa inter-
actions (of both questionnaire and random types) in the three
months of the novelty phase to the weekly average number
of interactions in the post-novelty phase. Thus, we only con-
sidered participants with a total Alexa usage time of at least
four months and evaluated the novelty effect across a total of
11 participants. We observed a significant decrease in over-
all Alexa usage after the novelty period across participants
(Wilcoxon signed-rank, W = 5, pcorr = 0.02, CLES = 0.66).5

We further observed a significant decrease in compliance with
the daily well-being questionnaire in the post-novelty period
across participants (Wilcoxon signed-rank: W = 0, pcorr =
1.95e-03, CLES = 0.72). Notably, of the participants who
continued using Alexa beyond the novelty phase, two stopped
completing the well-being questionnaire after the first month
of usage. Focusing on the four participants who sustained the

5False discovery rate was applied, hence the corrected p-values are
compared against the significance level α = 0.025. We also report the
common-language effect size (CLES).

use of Alexa for at least five months beyond the novelty phase
(i.e., total technology usage exceeding eight months), Fig. 4
shows an overall decline in Alexa usage in the post-novelty
period for these households. Notably, the weekly number of
Alexa triggers peaked during the novelty phase. For example,
P2’s weekly interactions with Alexa reached a peak in the first
week of usage (13 May, 2021, N triggers = 302, as highlighted
in a gray box in Fig. 4). However, there was a noticeable
decrease in usage after the first month. Interestingly, interac-
tions ceased for a 4-week period in February 2022. Health
notes from the monitoring team indicate that P2 was hos-
pitalized between 3 February and 23 February 2022, which
explains the absence of Alexa usage at home during this
period. We further observed an increased number of weekly
interactions in April 2022. This surge coincided with P2’s
return home on 31 March 2022 after a period of hospital-
ization (information logged by the monitoring team). Overall,
these findings indicate a decline in the use of conversational
technology after the novelty effect across the cohort.

We next investigated the prevalence of topics within Alexa
interactions of type random (see the interaction data types
used in this study in Section III-D), particularly beyond the
novelty effect. Fig. 5 illustrates the proportion of topics trig-
gered for P2, P6, P12, and P14. After the novelty phase, P2
used Alexa more frequently to request weather information
in the morning (85.26% of weather triggers were observed in
the morning during this period; see details in Supplementary
Table II in the Appendix) and set timers during the morn-
ing (53.7%), particularly after January 2022 (refer to Fig. 5).
Topics related to news, entertainment, and reminders were also
frequently triggered over time. P6 showed increased interest
in using Alexa for entertainment in the morning, both during
(55.56%) and after (51.85%) the novelty period, and asking
about current date, time, and reminders in the morning during
the first three months of usage (66.67%), a trend that prevailed
in the post-novelty phase (52.63%). P12 and P14 showed con-
sistent interest in utilizing Alexa for entertainment. During the
post-novelty phase, P12 reduced the usage of reminders while
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Fig. 4. Weekly average number of Alexa interactions on a monthly basis
and total weekly interactions for P2, P6, P12, and P14. N triggers quantifies
the total number of triggers. The vertical dashed line separates the novelty
phase (first three months of usage) from the post-novelty period for each
participant. Grey boxes in each plot represent the peak with the highest number
of weekly interactions and total Alexa triggers. Note the start date and Alexa
usage periods varied across participants (as outlined in Table I), therefore, we
standardized usage based on the first Alexa interaction for each participant.

Fig. 5. Proportion of topics triggered among P2, P6, P12, and P14 for the
different months of Alexa usage.

increasing the frequency of weather-related queries, particu-
larly in the morning (62.5%). Furthermore, P14 frequently
prompted news-related topics in the morning, which prevailed
after the novelty phase (66.67%).

Fig. 6. Probability (%) of each behavioral event (13 in total) in the 10-m
period preceding or following Alexa use for P2, P6, P12, and P14. For each
participant, we looked at three target Alexa events represented as columns in
the table, A: comprises activity sequences that preceded the start of the well-
being questionnaire s5= Start; B: comprises activity sequences that followed
the completeness of the well-being questionnaire s1= End; C: comprises
activity sequences that preceded any Alexa interaction of type random s5 =
Random. For each participant and activity sequence type (A, B, and C) the
probability of an event si ∈ E (the finite set of 13 events) is calculated by sum-
ming occurrences of event si in all sequences and dividing by the total number
of possible occurrences. Note the total number of occurrences excludes the
first or last event of each sequence, s1 or s5, since it was predefined and equal
for all sequences in consideration.

Overall, despite the variations in usage across the cohort,
participants continued to find certain capabilities of Alexa
engaging, using them regularly. While the verified decrease
in Alexa usage—oftentimes due to unmet expectations or
perceived lack of utility [80]—aligns with previous research
involving older demographics [32], [33], results suggest future
improvements are needed in the design of home-based con-
versational agents. Specifically, addressing long-term user
engagement and facilitating more personalized interactions
could foster better integration in households with PLWD.
Based on these findings, we discuss challenges and design
opportunities for future conversational agents in Section V.

B. Behavior Discovery From Activity Sequences

We aimed to investigate the daily contexts in which Alexa
was triggered in households with PLWD to identify behav-
ioral patterns, changes in those patterns, and the corresponding
time periods (see RQ2 in Section III-B). We analyzed activity
sequences in the 10-m period preceding or following Alexa
triggers in households with PLWD. We first computed the
probability of behavioral events in the activity sequences con-
sidering the two types of Alexa triggers, i.e., the questionnaire
and random interactions. Fig. 6 shows, for four representa-
tive users (i.e., P2, P6, P12, and P14), the probability of
each behavioral event, captured by IoT technologies, in sets of
activity sequences in the 10-m temporal window considered
(see details in Section III-E).

Our design team reached out to participants to ask for the
device location(s) in the house. By inspecting the probability
of behavioral events in the activity sequences, we were able to
corroborate the primary locations of the Alexa smart speaker
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Fig. 7. Similarity matrices of activity sequences near the trigger of Alexa. (a) Similarity of activity sequences that preceded interactions of type random
(s5 = Random) from May 2021 until June 2022 for P2. (b) Similarity of activity sequences that preceded the activation of the well-being questionnaire
(s5 = Start) from May 2021 until January 2022 for P2. (c) Similarity of activity sequences that preceded the activation of the well-being questionnaire
(s5 = Start) from October 2021 until May 2022 for P14. The axis numbers denote activity sequences preceding Alexa use which are chronologically ordered.
The dates of selected periods are represented below each matrix as well as the dates of the first and last activity sequences analyzed. Lighter tones represent
a high degree of similarity and darker tones represent a low degree of similarity. The color bar applies to all matrices.

in participants’ households. P2 and P14 had Alexa placed in
the lounge, as indicated in Fig. 6 by higher probabilities of
lounge events before and after Alexa triggers (see darker areas
for P2 and P14). P6 and P12 had Alexa located in the kitchen,
which is supported by higher probabilities of kitchen events
(see darker areas for P6 and P12). The higher probability val-
ues found for the aforementioned behavioral events held true
for the three types of activity sequences considered, specifi-
cally: A) activities preceding the trigger of the questionnaire;
B) activities following the completion of the questionnaire; and
C) activities prior to random Alexa interactions, as depicted
in Fig. 6. In addition to primary Alexa locations, the frequent
occurrence of certain events, such as kitchen for P2 or Hallway
for P12, suggests that these activities often occurred near the
time of Alexa interactions (i.e., within the 10-m period before
or after triggering Alexa). For example, P2’s most common
sequence of activities preceding the activation of the well-
being questionnaire (s5 = Start, column A in Fig. 6) was as
follows: Kitchen > Lounge > Kitchen > Lounge > Start.
This indicates the questionnaire was typically completed in the
lounge after P2 had moved from the kitchen to the lounge.

We were further interested in identifying behavioral patterns
and the associated time periods (on a participant level) through
in-home use of conversational technology. We computed the
pairwise similarity for each pair of activity sequences, as
detailed in Section III-E. This allowed us to form a distinct
similarity matrix for each participant. Each data point in the
matrix corresponds to an activity sequence of five behavioral
events that occurred in the 10-m period preceding or follow-
ing Alexa use. Pairwise similarity scores were subsequently
used to cluster the activity sequences, using the K-Medoids
method, to identify groups of similar activity sequences and
inspect differences between clusters. Because data points in
each similarity matrix are chronologically ordered, we were
able to identify common household behavior during specific

time periods, i.e., groups of activity sequences with a high
degree of similarity within the same time period.

Fig. 7(a) shows the similarity matrix with activity sequences
that preceded P2’s random Alexa interactions from May 2021
until June 2022. The selected border A was further inspected.
We used the K-Medoids clustering method to identify clusters
in the similarity matrix. We identified four distinct clusters in
P2’s activity sequences. One of these clusters (denoted as cl1
for clarity) became more prominent during a 6-week period,
labeled as X1. During X1, 84.69% of activity sequences
belonged to the dominant cluster, cl1. Moreover, outside of
period X1, only 11.88% of activity sequences belonged to
cl1. Further details are presented in Supplementary Table III in
the Appendix. This indicates that during X1, there was a dis-
tinct pattern in P2’s activity sequences. Notably, the probability
of bedroom events in activity sequences within cl1 increased
to 25.75% compared to a maximum of 2.06% in other clus-
ters (Supplementary Table IV in the Appendix). Additionally,
the probability of lounge events declined from a maximum of
41.50% in other clusters to 1.02% in cl1. Furthermore, during
X1, 61.06% of household activity preceding Alexa interactions
of type random occurred in the morning.

These findings suggest a shift in device location from the
lounge to the bedroom in P2’s household and a trend toward
triggering Alexa for random interactions in the morning. This
observation aligns with the higher probability of bedroom
events for activity sequences preceding Alexa interactions of
type random, as observed in Fig. 6 (14.54%, column C).
Importantly, our design team verified with P2 that the Alexa
device had been moved to the bedroom during period X1 due
to health and caregiving circumstances.

We extend the aforementioned approach and interpretation
to other individual similarity matrices. Fig. 7(b) shows the
similarity matrix containing P2’s activity sequences that pre-
ceded the questionnaire trigger from May 2021 until January
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2022. The selected border, B, was further analyzed. Note that
even though P2 stopped completing the daily questionnaire
in late January 2022, the usage of Alexa for random interac-
tions remained consistent until the end of our data collection
period, as observed in the similarity matrix previously ana-
lyzed [Fig. 7(a)]. One of the three clusters identified using
K-Medoids (denoted as cl3) was found predominant during a
4-week period, labeled as X2. During X2, 77.78% of data
points belonged to cluster cl3. Outside of X2, the propor-
tion of activity sequences associated with cl3 was 21.29%
(Supplementary Table III in the Appendix). Furthermore, our
analysis revealed 94.74% of household activity preceding the
questionnaire trigger during X2 took place in the morning.
The increased probability of Vitals events in activity sequences
within cl3 (47.87% compared to a maximum of 5.45% in
other clusters, see details in Supplementary Table V in the
Appendix) suggests a behavioral pattern of taking vitals before
completing the daily questionnaire in the morning.

Similarly, Fig. 7(c) shows the similarity matrix representing
P14’s household behavior before starting the Alexa well-being
questionnaire. The selected borders, C and D, were further
inspected. We identified four clusters using K-Medoids, two
of which (denoted as cl1 and cl4) were prominent across two
different 11-week time periods, denoted as X3 and X4. During
X3, 64.81% of data points fell within cluster cl4, and the
proportion of activity sequences associated with cl4 outside
of X3 was 29.51%. During X4, 75% of data points were
associated with cluster cl1, while only 24.17% of data points
outside of X4 belonged to cl1 (Supplementary Table III in
the Appendix). Furthermore, all activity sequences within both
X3 and X4 were concentrated in the morning hours. Period
X3 suggests P14 was consistently in the lounge before com-
pleting the questionnaire (the probability of lounge events
within cl4 is 89.08%). On the other hand, period X4 indicates
the predominance of activity in both the lounge (50% within
cl1) and kitchen (38.73% within cl1) (Supplementary Table VI
in the Appendix). Overall, these two periods suggest a behav-
ioral pattern related to the use of conversational technology for
the purpose of completing a daily questionnaire. Specifically,
P14 routinely triggered the questionnaire in the morning, while
at the lounge, or following activity in the kitchen. Furthermore,
a noticeable darker area within period X3 on the matrix
suggests a change in behavior, spanning nine days in early
December 2021. During this period, we verified P14’s activ-
ity sequences consistently incorporated the Vitals event, e.g.,
Lounge > Lounge > Vitals > Vitals > Start. This suggests
that P14 routinely took vitals in the 10 min before completing
the Alexa questionnaire, a pattern that is captured as highly
dissimilar compared to the surrounding activity sequences.

By fusing in-home activity data with voice interactions
using conversational technology, our analysis demonstrated
technical capability in establishing behavioral patterns in
households with PLWD, changes in those patterns and the
corresponding time periods. We believe the ability to map
behavioral trends forms a basis to personalize future inter-
actions. By tracking the user’s daily contexts at home, the
conversational agent could proactively initiate conversations
about relevant domains at appropriate times. Moreover, by

detecting changes in behavior (compared to previously identi-
fied patterns), the conversational agent could inform healthcare
professionals and relevant stakeholders, ultimately enhancing
health and well-being monitoring of PLWD at home.

C. Use of Conversational AI in Smart Homes Following
Clinical Outcomes

We also investigated whether households with PLWD con-
tinued using Alexa during the week following the occurrence
of health events (see RQ3 in Section III-B). We used the dates
of individual health events (e.g., falls, infections, and hospi-
talizations) logged by a monitoring team in regular contact
with participants. We considered user-initiated triggers of both
the questionnaire and random Alexa interactions, specifically
in the seven days after the occurrence of a health event. A
total of 38 health events were evaluated across the cohort,
which comprised events that took place on a day at home
(e.g., falls), events of longer duration than a day during which
PLWD stayed at home (e.g., Covid-19 infections), and events
of longer duration than a day out of home (e.g., hospitaliza-
tions). Furthermore, the total events considered in this study
corresponded to ten participants (no health events were logged
by the monitoring team for the remaining participants).

We observed participants continued interacting with Alexa
even after exhibiting a clinical event (Wilcoxon signed rank:
W = 561, pcorr = 8.06e-07).6 The same observation was
verified when inspecting single dates and periods of health
events during which PLWD stayed at home (Wilcoxon signed
rank: W = 435, pcorr = 1.92e-06). Interestingly, participants
continued using Alexa in the 7-day period after returning
home from hospitalizations (Wilcoxon signed rank: W = 10,
pcorr = 3.39e-02). Despite the limited number of observations
analyzed across the cohort, results suggest the potential for
conversational agents to provide personalized assessments of
health and well-being after the occurrence of health events,
which we discuss in the next section.

V. DISCUSSION

In this study, we fused in-home activity data captured by
IoT technologies and remote health monitoring devices with
interactions with conversational technology. We analyzed 3103
person-days of environmental and voice data across a unique
cohort of 14 households with PLWD or MCI. In this section,
we summarize the main findings of the study, their implication
for future research and real-world translation of conversational
agents for utility in digital health monitoring. We also out-
line the limitations of our investigation and highlight future
directions.

A. Summary of Findings

We investigated the integration of conversational AI tech-
nology in smart environments. Our target in this study was
health and well-being monitoring within smart homes to

6To assess whether participants used Alexa after clinical outcomes, we
used a one-sample Wilcoxon test. False discovery rate was applied, hence the
corrected p-values are compared against the significance level α = 0.017.
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support households with PLWD. We present a method to iden-
tify behavioral patterns, changes in those patterns, and the
corresponding time periods using conversational technology.
Specifically, we analyzed 13 behavioral events (outlined in
Table I) related to in-home activity (e.g., motion and taking
vitals) and voice interactions with Alexa, both the trigger of
a daily well-being questionnaire and other topics of interest
(listed in Section III-F).

We first explored the use of Alexa in households with
PLWD over time by inspecting the prevalence of interactions
beyond the novelty phase (i.e., after the first three months of
usage). While a significant decrease in Alexa usage was veri-
fied after the novelty phase across the cohort, some topics of
interest prevailed in users’ daily routines in the post-novelty
period. Moreover, results showed a significant decrease in
compliance with the daily well-being questionnaire after the
novelty phase. We argue this decline in engagement is likely
due to a perceived lack of utility and personalization of
interactions. One potential explanation is the fact that the
questionnaire participants completed throughout the data col-
lection period included the same set of questions each day.
The development of an adaptive questionnaire able to proac-
tively check-in for health and well-being self-assessments
and follow up on previous user responses represents a very
promising area of future research, which our ongoing work is
addressing.

Next, we investigated the daily contexts in which Alexa was
triggered in the households by analyzing activity sequences
(i.e., sequences of ordered behavioral events) in the 10-
m period preceding or following Alexa use (see details in
Section III-E). By integrating longitudinal in-home activity
data captured by IoT technologies and Alexa voice inter-
actions, our research demonstrated the technical capability
of identifying behavioral patterns. The analysis of activity
sequences led us to confirm the most common location of
Alexa in participants’ households. We presented a series of
case studies for selected participants, which reported differ-
ent behavioral patterns before user-initiated interactions with
Alexa and the corresponding time periods. Reported examples
include: a change of the Alexa device location to the patient’s
bedroom for a duration of six weeks, which was further con-
firmed by our design team as a response to evolving health and
caregiving needs; a pattern of taking vitals before completing
the well-being questionnaire in the morning over a period of
four weeks; and a consistent sequence of morning activity in
the kitchen, followed by triggering the Alexa questionnaire
for a period of 11 weeks. We further reported an example of
a detected change in household behavior preceding the ques-
tionnaire trigger, represented in the similarity matrix as highly
dissimilar compared to the surrounding activity sequences (see
details in Section IV-B).

Moreover, we found end-users continued using Alexa in
the week following clinical outcomes, including after return-
ing home from hospitalizations. While the number of health
events analyzed across the cohort prevents broader con-
clusions with depth of clinical outcome, these preliminary
findings indicate an opportunity for proactive and personalized
health and well-being check-ins after the occurrence of health
events. Overall, although further investigation is needed with a

larger cohort over longer periods of time, these findings offer
a firm basis for the integration of conversational AI technol-
ogy in smart environments to monitor user behavior over time.
We address design, deployment, engagement, data acquisition,
and analysis over 6+ months on average. Results indicate
promise to incorporate adaptive conversational agents in smart
home contexts. Ultimately, these systems could act on user
information captured by IoT technologies, such as nonverbal
indicators of physical or mental state, by directly verifying
symptoms with end-users.

B. Promise of Conversational AI in Digital Health
Monitoring

We believe conversational agents should be inherently inte-
grated with the living environment for a direct impact in
supporting aging and dementia care at home. If well incorpo-
rated in the home context, including integration with IoT tech-
nologies, conversational agents could map and learn common
behavioral patterns and act on flagged changes in household
activities by initiating automated dialogues. Conversational
technology could, for instance, directly query users to ver-
ify symptoms or mental state, encourage behavioral changes
or provide personalized assistance, such as suggesting an
activity or a drink for hydration. This provides a strong foun-
dation for the verification of changes in health and behavior
captured by IoT technologies. Conversational agents could
ultimately offer verbal support in the event of perceived agi-
tation or confusion and promptly notify relevant stakeholders,
which may help mitigate further deterioration through early
intervention. Furthermore, more bespoke and engaging inter-
actions could be targeted based on end-users’ topics of interest,
such as suggesting entertainment activities, pointing out the
time of a favorite television program, or reporting news of
interest. We envision conversational agents playing an instru-
mental role in proactive and personalized dementia care.
Particularly, conversational agents hold promise to: 1) adminis-
ter adaptive questionnaires to verify symptoms of deterioration
captured by changes in household activity; 2) proactively
query users for self-assessments of health and well-being after
the occurrence of specific clinical events; and 3) trigger auto-
mated alerts to inform healthcare professionals and relevant
stakeholders, facilitating timely interventions.

C. Limitations

The current sample size limits broader conclusions with
depth of clinical outcome or related to the effect of different
demographics in the data collected. Nevertheless, the depth of
longitudinal data combined with the unique smart home data
collected from households with PLWD enables us to scope
our analysis and demonstrate the technical capability to iden-
tify behavioral patterns. While a larger sample size will be
required to apply these findings to a wider and more diverse
population, our study demonstrates the veracity of information
gathering and analysis by combining voice with in-home mon-
itoring data. To the best of our knowledge, no study to date
has combined interactions with conversational AI with contin-
uous in-home monitoring data, specifically targeting support
of older adults and PLWD.
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The use of in-home monitoring technologies in real-world
evaluation studies poses considerable challenges. For this
study, participants needed to have a range of monitoring tech-
nologies and an additional interactive device in their homes.
One major drawback identified relates to end-users’ ethical
concerns around personal voice data gathering, which limited
the number of participants willing to incorporate Alexa in their
homes. While monitoring systems and automated interventions
hold very strong promise to improve health and well-being,
if not designed with end-user involvement and engagement,
they can be perceived as overly complex or intrusive, aside
from the associated concerns around data privacy and pro-
tection. Furthermore, ensuring long-term acceptability and
sustained engagement with conversational technology remains
a significant challenge, particularly for older populations with
cognitive impairment. These challenges, as discussed in this
study, must be addressed in the earliest stages of the design,
recruitment, and technology deployment cycle with close end-
user feedback to ensure that the technology infrastructure
remains noninvasive and privacy aware.

The use of commercial smart speakers brings inherent lim-
itations, such as the 8-s window restriction for the user to
respond to Alexa. This limits the applicability of larger scale
models, such as large language models (LLMs), in identifying
potential indicators of behavioral changes or cognitive decline
through acoustic and linguistic features. Another limitation to
consider is the need for ground truth. Obtaining ground truth is a
complex challenge as it requires finding an appropriate balance
to have sufficient training data to validate prediction models
or identified behavioral patterns while avoiding intrusion into
people’s privacy. We are addressing this in our ongoing research
with people affected by dementia through user-centered design
methods, including user workshops, allowing us to understand
their needs, lived experiences, perceived benefits, and concerns
while iteratively refining our study design.

D. Future Work

For real-world translation and scalability in smart liv-
ing environments, we recommend future research on con-
versational agents aimed at supporting target populations
to address intelligent adaptation of interactions, including
automated questionnaires. This should account for historical
user responses concerning subjective perceptions of health
and well-being, individual cognitive abilities, and detected
changes from routine behavior at home. The behavioral analy-
sis findings presented in this study could be incorporated into
automated and personalized conversations (e.g., prompting
users about changes in behavior) to obtain medically relevant
data and sustain user engagement.

Future work could address end-user long-term engagement
with conversational AI technology. While in general partici-
pants used Alexa for long periods of time (note the total days
of data collection varied across participants, as outlined in
Table II), there was an overall decrease in usage over time,
particularly in the post-novelty phase. We believe this is likely
due to a perceived lack of utility and adaptation of interactions.
We argue that to effectively engage with and support the

well-being of target populations in smart environments, con-
versational technology should be: 1) easy to use; 2) adequately
integrated with the environment to proactively respond to con-
textual cues and provide personalized support; 3) adapt to
individual needs, preferences, and cognitive abilities over time;
4) promote the autonomy of the carer, so they can undertake
their caring tasks while still benefiting from forms of relief;
and 5) facilitate meaningful human connections (e.g., between
PLWD, carers, and clinicians).

Furthermore, collecting larger datasets across wider and
more diverse populations represents a very promising area of
future work, particularly to uncover what type of real-world
use cases can be effectively addressed in smart environments
from both user benefit and clinical perspectives. Key use cases
we identify for future investigation include: 1) tracking mental
health and cognitive decline from the use of language when
interacting with conversational AI and 2) assessing neuropsy-
chiatric symptoms, such as the risk of agitation and predicting
health outcomes from changes in the signature of home activ-
ity. In our study, we have analyzed in-home activity data at
the household level. This could be extended to a more indi-
vidualized and personalized approach. However, in instances
where multiple individuals (e.g., visitors at home) interact
with Alexa, the analysis of activity patterns may be biased.
Speaker recognition techniques could help address this issue.
Additionally, future work could investigate feature engineering
with various parameters of regular interactions with conversa-
tional AI, such as their frequency, time of day, changes in
vocabulary usage, or sentiment in user utterances, to train ML
models toward predicting clinical outcomes.

VI. CONCLUSION

With speech and language being natural interaction modal-
ities, conversational agents are promising tools for integration
into smart environments to provide insights into users’ behav-
ior over time. Yet, the integration of conversational technology
in smart homes to trace household behavior, identify pat-
terns or changes in routine, and trigger health-related alerts
remains largely untapped. We introduced an infrastructure
combining in-home activity data with voice interactions using
conversational technology to trace household behavior in smart
environments. Our longitudinal data collection spanned 3103
person-days across a unique cohort of 14 households with
PLWD. We investigated sustained engagement with Alexa and
found a significant decrease in usage after the novelty phase
across the cohort. We argue this is likely due to a perceived
lack of utility and personalization of interactions and further
propose future directions to address current barriers inhibiting
longer term user engagement and scalability in smart envi-
ronments. Our results demonstrated technical capability in
establishing behavioral patterns, changes in those patterns and
the corresponding time periods using conversational technol-
ogy. We offer the approach as a basis to personalize future
interactions. Moreover, results revealed that participants con-
tinued using Alexa following clinical events, which suggests
a future opportunity to proactively initiate conversations to
monitor health and well-being.
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In conclusion, we believe the adequate integration of conver-
sational technology in smart environments—including smart
homes with PLWD—holds very strong promise in digital
health monitoring. Key to realizing this potential is the
development of adaptive AI that can direct conversations to
automatically query changes in household behavior and user
health, as captured by IoT technologies and remote health
monitoring devices. Such systems could encourage behavior
through verbal prompts and suggestions tailored to the chang-
ing needs of end-users, as well as trigger alerts that inform
healthcare professionals and relevant stakeholders for timely
interventions. We are unaware of other works with a compa-
rable longitudinal depth of analysis and number of households
with PLWD. Plans for longer term evaluation studies across
a larger and more diverse cohort, addressing adaptive ques-
tionnaires and proactive interactions based on environmental
output, are underway.
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