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Abstract—The study presents a self-learning controller for
managing the energy in an Internet of Things (IoT) device pow-
ered by energy harvested from a thermoelectric generator (TEG).
The device’s controller is based on a double Q-learning (DQL)
method; the hardware incorporates a TEG energy harvesting
subsystem with a dc/dc converter, a load module with a microcon-
troller, and a LoRaWAN communications interface. The model
is controlled according to adaptive measurements and transmis-
sion periods. The controller’s reward policy evaluates the level
of charge available to the device. The controller applies and
evaluates various learning parameters and reduces the learning
rate over time. Using four years of historical soil temperature
data in an experimental simulation of several controller config-
urations, the DQL controller demonstrated correct operation,
a low learning rate, and high cumulative rewards. The best
energy management controller operated with a completed cycle
and missed cycle ratio of 98.5%. The novelty of the presented
approach is discussed in relation to state-of-the-art methods in
adaptive ability, learning processes, and practical applications of
the device.

Index Terms—Energy harvesting, energy management,
Internet of Things (IoT), reinforcement learning, thermoelectric
generator (TEG).

I. INTRODUCTION

THE APPLICATION of machine learning (ML) methods
in combination with embedded Internet of Things (IoT)

devices remains a challenging task due to the limited com-
putational resources, low-power demands, and self-operating
requirements of these devices. This study is an extended
version of a pilot study [1] presented in the 2022 IEEE
Symposium Series on Computational Intelligence and deliv-
ers a more detailed and complex analysis of Q-learning (QL)
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Fig. 1. Energy management principle applied by the ML controller in the
energy harvesting TEG-powered IoT device.

performance, an improved reward policy, and a double QL
(DQL) policy tested over four years.

The study investigated methods of powering IoT plat-
forms with thermometric generators [thermoelectric generator
(TEG)] [2] according to the scheme depicted in Fig. 1. The
amount of energy harvested by a TEG is a dynamic parameter
which depends on temperature in the surrounding environ-
ment [3]. An energy management system which specifies how
an IoT device should behave at certain times should, there-
fore, be applied according to the energy which is available to
the device [4]. The controller described in the study applied
a DQL-based strategy to manage the duty cycle in a TEG-
powered IoT device. The device itself was designed to monitor
environmental parameters and transmit collected data via a
wireless communications interface for storage in a cloud and
subsequent advanced data processing.

The algorithm used by the controller applied real-time
self-learning principles. The energy harvesting IoT sensor,
therefore, did not require any energy system or hardware cus-
tomization or modification (capacitor size, energy harvester
type, replacement of aging hardware, etc.) to suit the device’s
application or deployment location. Self-learning also solved
the many disadvantages of state-of-the-art methods, for exam-
ple, the need for historical data to train a neural network,
time consuming, and computationally extensive processes to
optimize a fuzzy-based controller, or the need to predict ambi-
ent energy in a prediction-based controller. The proposed DQL
implementation in a low-cost embedded IoT platform is very
effective and has low computational and memory requirements
in combination with the reinforcement learning algorithm.
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This feature is designed for very demanding, low-cost, and
low-power designs.

The study’s contribution is summarized in the following.
1) A novel, self-learning DQL-based approach designed for

low-power, low-cost TEG-powered IoT nodes managed
with a wake-up scenario.

2) Comparison of the proposed solution’s performance with
a static energy management configuration and a state-of-
the-art fuzzy-based controller tested with a simulation
and soil environmental data.

3) Discussion of the features of the proposed approach in
relation to the results obtained from the device’s self-
learning ability, model-free design, and computational
cost requirements.

The article is organized as follows. Section I presents the
aim, novelty, and benefits of the study; Section II summarizes
related studies and the state-of-the-art; Section III describes
the device’s DQL principles, learning policy, and adapted
DQL energy management algorithm; Section IV describes the
study’s experiment and input data and provides an evalua-
tion of the device’s performance; Section V discusses the
experimental results in relation to the device’s learning param-
eters, a time domain analysis, and comparison with a reference
solution; Section VI discusses the results and the article’s con-
tribution; and Section VII concludes this article and outlines
potential future work.

II. RELATED WORKS

Energy management policies in energy harvesting IoT sen-
sors are designed to provide a continuous and uninterrupted
supply of energy [5]. Due to the unpredictable and dynamic
nature of the harvesting environments, successful operation
of adaptive energy management algorithms in IoT sensors
remains a challenge [6]. For adaptive energy management,
ML methods can be applied. Table I summarizes the current
research and state-of-the-art ML methods. These methods are
categorized into offline and online learning approaches. Offline
methods exploit a neural network or fuzzy logic to predict
energy management system parameters. Online methods are
based on self-learning algorithms, such as deep reinforcement
learning or QL.

Neural networks are mainly used for predictive analysis. In
neural network applications, the quantity of available energy
can be predicted from energy harvesting nodes [7] or multiple
energy harvesting sources [8]. Output power can be predicted
from hybrid energy harvesting sources [9]. The high compu-
tational demands of neural networks mean it is not always
feasible to deploy this approach with energy-constrained
devices [23].

Fuzzy logic is a suitable method for building adaptive algo-
rithms that are used to achieve a continuous energy source
for sensor nodes and, thus, prolong sensor node lifetime [10].
Genetic algorithms are applied to optimize fuzzy rule-based
controllers [11], forecast next-day solar energy availability
using evolutionary fuzzy rules [12], or predict the quantity
of available energy in IoT devices [13]. Algorithms based
on fuzzy logic can also be applied to manage the operation

TABLE I
OVERVIEW OF ML METHODS SUITABLE FOR ADAPTIVE ENERGY

HARVESTING MANAGEMENT IN IOT DEVICES

of wireless sensor nodes equipped with energy harvesting
devices [15]. Systems based on fuzzy logic can provide
optimal operational strategies that assess the node’s current
resource requirements, current battery status, or expected
energy charge [14]. However, because neural networks and
fuzzy rule-based systems do not possess self-learning abili-
ties, they are not suitable for adaptive energy management
algorithms in dynamic environments.

Self-learning algorithms suitable for IoT-embedded plat-
forms are commonly based on semi-supervised reinforcement
learning approaches. One of these approaches is deep rein-
forcement learning, which combines neural network and rein-
forcement learning principles. Deep reinforcement learning
algorithms can be used to manage energy in battery-less
event detection sensors [16], manage resources in hybrid
energy wireless networks [17], or jointly optimize data offload-
ing and resource allocation in renewable-energy-aware IoT
devices [18]. Although, this approach is self-learning and suit-
able for multidimensional environments, the algorithm is not
fully optimized due to the computational complexity involved
in real-time neural network training. Another online and self-
learning approach is QL, which is suitable for coordinating
the energy consumption in wireless sensor networks [19],
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allocating resources for energy harvesting device communi-
cations in IoT networks [20], and managing energy in solar-
powered environmental wireless sensor network nodes [21].
This approach is suitable for managing energy in dynamic
environments because it applies a self-learning algorithm that
is not computationally intensive due to its semi-supervisory
nature and a Q-table updated with single values according to
the current reward. This can be demonstrated in the energy
and transmission management of a node which has been pro-
grammed using QL and exhibits appropriate data and energy
flushing in queues to achieve better throughput and fewer lost
packets [22].

Hybrid ML approaches, such as the combination of fuzzy
logic and reinforcement learning techniques, can also be
applied. These fuzzy-based reinforcement learning mecha-
nisms first prioritize tasks using fuzzy logic. A reinforcement
learning mechanism is then used to solve the problem of
tasks with high dimensionality in a dynamic environment [24].
Besides conventional computational models, task schedulers
can also be used. This type of approach is able to intelligently
schedule application tasks to avoid power failures and maintain
forward progress in IoT devices [25].

III. PROPOSED MODEL

This section describes the DQL method, its learning policy
and implementation for wake-up scheduling in an IoT device.
The section includes a reference solution based on a fuzzy
logic controller.

A. Double Q-Learning

The DQL method belongs to the reinforcement learning
algorithm family. Hasselt [26] proposed this method as a mod-
ification to avoid overestimation of the action values produced
by the QL algorithm. This approach differs by using two
Q-tables instead of one. The Q-tables are denoted QA and
QB and applied to each state/action pair. The DQL finds the
action a∗, which is the maximal valued action in the next state
s′, according to the value function QA

a∗ = arg max
a

QA
(
s′, a

)
. (1)

A similar process is applied to b∗, according to QB

b∗ = arg max
a

QB
(
s′, a

)
. (2)

Each Q function is updated with a value from the other Q
function for the next state. QB is used to update QA, according
to the equation

QA(s, a)← QA(s, a)

+ α
[
R+ γ QB

(
s′, a∗

)− QA(s, a)
]
. (3)

This is performed conversely for QB, according to the
equation

QB(s, a)← QB(s, a)

+ α
[
R+ γ QA

(
s′, b∗

)− QB(s, a)
]
. (4)

Fig. 2. DQL algorithm learning process: updating the Q-tables for QA and
QB over two iterations.

The expected value (E) of QB for action a∗ is mathemati-
cally proven to be less than or equal to the maximum value
of QA(s′, a) [26]

E
{
QB

(
s′, a∗

)} ≤ max
a

E
{
QA

(
s′, a

)}
. (5)

If a large number of iterations are executed, the expected
value of QB(s′, a∗) will be less than the maximum value of
QA(s′, a). It means that QA(s′, a) is never updated with a max-
imum value and, thus, never overestimated. This also applies
conversely to QB(s′, a). To select the action for the next run,
the appropriate Q-table (QA or QB) is used.

Fig. 2 shows the learning phase of the DQL algorithm.
Generally, DQL algorithms use two estimators instead of one
to eliminate any overestimation of rewards [26]. The advan-
tage of two estimators is that the first is used to select an
action and the second is used for evaluation. The estimators
are switched after each iteration. When the Q-table for QA

updates, the future reward value is taken from the Q-table for
QB, and vice versa. Fig. 2 shows an example of two learning
phases over two consecutive iterations. The Q-table for QA is
updated during the first iteration, the Q-table for QB during
the second.

B. Learning Policy

An integral part of DQL is the learning policy. Generally,
the learning policy defines the actions, states, and the reward
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policy. The DQL controller’s aim is to optimize the use of
energy. Actions are defined for the next sleep time, i.e., the
next period duration. The action set is defined as follows:

A = {720, 480, 240, 120, 60, 10} (min). (6)

States are defined according to the energy stored in the
supercapacitor. The maximum energy which can be stored is
calculated from the equation

Emax = 1

2
· CstoreV2

max (7)

where Emax is the maximum stored energy in joules, Cstore
is the electrical capacitance in farads, and Vmax is the maxi-
mum supercapacitor voltage generated by the dc/dc converter.
For the experiment in the current study, an LTC3109 dc/dc
converter supplied electrical output until the supercapacitor
voltage dropped below a desired output voltage. The superca-
pacitor was consequently charged using a minimum of energy,
calculated according to the equation

Emin = 1

2
· CstoreV2

out (8)

where Emin is the required stored energy in joules in the super-
capacitor corresponding to the desired output voltage Vout. The
state of energy storage (SoES) is computed according to

SoES =
{

Estore < Emin: 0
else: Estore−Emin

Emax−Emin
.

(9)

SoES is normalized to the interval < 0, 1> and divided into
six states

Si =
〈

i− 1

6
,

i

6

〉
; i = 1 to 6. (10)

If SoES is less than 1/6, then the state is S1.
The reward policy is based on the current SoES value

and the SoES value from the previous cycle; the reward is
calculated from the equation

R = SoEScycle − SoEScycle-1 (11)

where SoEScycle is the supercapacitor’s range normalized
remaining energy, SoEScycle-1 is the supercapacitor’s range-
normalized remaining energy from the previous cycle, and R
is the reward. The policy is defined according to two condi-
tions: 1) when SoES rises, the controller obtains a positive
reward and 2) the action with a longer period increases the
probability that the SoES is higher after the performed action.

The relationship between reward and incoming energy is
straightforward. If a sudden temperature difference occurs on
the TEG, caused by, for example, blowing wind, the reward
will also be high. A high reward may cause overestimation,
but using DQL instead of QL will decrease the probability of
overestimation.

C. DQL Energy Management Algorithm

This section presents a DQL algorithm dedicated to con-
trolling the behavior of an IoT node. The principle behind
adapting DQL to this purpose is that the algorithm uses the
current and previous step states instead of the current and
future states.

Algorithm 1: DQL Algorithm Adapted to the Controller
of an IoT Node

Initialize Q(s, a), QA(s, a) and QB(s, a), for each s ∈ S,
a ∈ A
while true do

Wake up
Observe R, s′
if UpdateA then

Define a∗ = arg maxa QA(s′, a)

QA(s, a)← QA(s, a)+
+α

[
R+ γ QB

(
s′, a∗

)− QA(s, a)
]

Set UpdateB
else if UpdateB then

Define b∗ = arg maxa QB(s′, a)

QB(s, a)← QB(s, a)+
+α

[
R+ γ QA

(
s′, b∗

)− QB(s, a)
]

Set UpdateA
end
Choose a, based on QA or QB, and s′
(ε-greedy policy)
Start action a
s← s′
Sleep time according to executed action

end

Algorithm 1 defines the DQL process for controlling an IoT
node’s behavior. After initializing variables and the Q-tables,
the IoT node is woken up. The reward R and current state s′ are
checked. The next step is a learning phase which updates one
of the Q-tables (QA or QB). In the first iteration, the previous
state s is unknown, therefore, the learning phase is omitted.

Action a is then selected from the appropriate Q-table
(QA or QB). Finally, the selected action is performed, the cur-
rent state is stored (as the previous state for the next learning
phase), and the IoT node enters sleep mode. After a certain
period has elapsed, the IoT node is again woken up, and the
algorithm repeats.

D. Fuzzy Logic Controller Reference Solution

This section describes a state-of-the-art energy manage-
ment solution based on a fuzzy controller, adapted from
previously published research articles [10], [11], [14]. The ref-
erence solution uses a fuzzy logic controller instead of a DQL
controller to schedule the next wake-up time.

The reference fuzzy logic controller has two inputs and
a single output. The inputs have been designed to respond
to the information available from the IoT node accord-
ing to the DQL reward policy, where the first input con-
tains the fuzzy sets of SoEScycle and the second contains
SoEScycle-1. The output is the next period duration discretized
into {10, 20, 30, . . . , 720} min.

The shape of the input and output fuzzy sets depicted in
Fig. 3 is triangular, and both inputs contain low, middle, and
high sets. The output contains three fuzzy sets, representing
slow, middle and fast operation.
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Fig. 3. Shape of the input and output fuzzy sets representing the current and
previous SoES, with next period duration output.

TABLE II
RULES FOR THE FUZZY CONTROLLER REFERENCE SOLUTION

Table II lists the rules for the fuzzy logic controller. The
knowledge base contains five rules according to the condition
that if the SoEScycle is X and the SoEScycle-1 is Y , then the
next period duration is Z. To achieve the maximum comparable
behavior to the proposed DQL approach, these rules follow the
same DQL policy. When the current SoES is low, the fuzzy
controller selects slow operation, when it is high, it selects
fast operation. When the current SoES is in the middle, then
the fuzzy logic controller’s behavior depends on the previous
SoES, where an increase in the SoES resulted in fast operation
and a decrease in slow operation. When the SoES is balanced
and both input sets are in the middle, then operation is also
in the middle.

IV. EXPERIMENTAL PROCEDURE

This section describes the experimental hardware param-
eters applied in the simulation, the input data, and the
performance evaluation parameters for the input data.

A. Experimental Setup and Data

The experiment used a hardware model (Fig. 4) composed
of three main modules: 1) a TEG; 2) a dc/dc converter; and
3) a load. The parameters of this device were applied in a sim-
ulation for analysis. The TEG hardware is a TEC1-12706 [27]
module which generates electrical energy when it is exposed
to temperature differences. The study in [28] described the
properties of this TEG module through an experimental anal-
ysis of its current and voltage characteristics by exposing it to
a range of temperature differences. A standalone TEG mod-
ule is able to produce an open circuit voltage in the range of
tens to hundreds of millivolts. This voltage range, however,
is not sufficient to directly supply electrical devices, such as
microcontrollers (MCUs) or transmission modules.

Fig. 4. Hardware model for an IoT device composed of a TEG, dc/dc
converter, and load.

Dc/dc converters boost voltages. The hardware model’s
dc/dc module is based on an LTC3109 converter which con-
verts electrical energy from extremely low input voltage
sources such as TEGs [29]. The dc/dc converter module in
the experiment was a mathematical model designed accord-
ing to a physical LTC3109 module and respected its basic
functionality.

Harvested energy is consumed by the load module. The load
module is composed of an MCU, an environmental sensor,
nonvolatile memory, and a wireless communications interface.
An NXP KL25Z MCU [30] was selected for its low power
consumption and wide range of integrated peripherals. The
NXP KL25Z also fulfilled the requirements of the architecture
and provides a number of low power modes,a feature which
allows fine tuning of the energy profile.

Serving as a data collector, a Bosch BME688 4-in-1 [31]
environmental sensor, which measures ambient temperature,
air humidity and atmospheric pressure, is connected to the
MCU via the I2C bus. The experiment did not impose the
necessity of any specific sensor model; the only requirement
was an advanced sensor design. This device also integrates
a gas sensor which detects volatile organic and sulfur com-
pounds and various other gases.

The model performs two operations: 1) data measurement
and 2) data transmission. A memory buffer synchronizes these
two operations through a 24CW1280 EEPROM [32], although
the FRAM technology was also considered. Currently, no
FRAM device is capable of operation at low voltages (e.g., at
1.8 V). A LoRaWAN, currently one of the most popular
types of communication tools for IoT devices and offering
three communication classes (classes A, B, and C) to cover
various use cases, provided communications. The communi-
cations link is established with a Semtech SX1261 [33]
LoRa transceiver connected via a serial peripheral
interface (SPI).

The experimental data contained air temperature and near-
surface soil temperature measurements (measured at several
depths 0.05, 0.5, 0.1, and 0.2 m) collected over a period of
four years (2016–2019). These data were obtained from the
Czech Hydrometeorological Institute [34] of the Ministry of
the Environment of the Czech Republic and used as input for
the experimental model. The data were measured at 10-min
intervals at the Churanov Monitoring station, located in the
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Fig. 5. Results for learning parameters performance by varying the learning parameters (α, γ ); (a) represents the number of completed cycles; (b) represents
the number of incomplete cycles (failures); and (c) represents the ratio of completed/missed cycles.

Czech Republic at the coordinates 49.0683◦ latitude, 13.615◦
longitude, and 1117.8-m elevation.

B. Performance Evaluation

To evaluate the hardware’s performance in the simulation,
several criteria and performance characteristics were analyzed.
Performance was assessed according to successful/completed
cycles and unsuccessful/missed cycles. A missed cycle is a
period during which transmission is required but the available
energy is insufficient. The ratio of both indicators (completed
and missed cycles) is calculated according to the equation

Ratio = Completed

Completed + Missed
· 100 %. (12)

The hardware model’s energy consumption characteristics,
especially unused energy, was evaluated. The quantity of
unused energy EU is the sum of the energy when the super-
capacitor is fully charged and the load does not use all of the
produced energy. This sum of unused energy is then measured
as a ratio to the sum of produced energy.

The average SoES level (SoES), average period between
two successful transmissions (P), percentage of power good
pin is active (PGOOD), and average supercapacitor voltage
(VSTORE) were also monitored to allow an analysis of energy
consumption, the average data availability in the cloud and
status variables of the IoT node.

V. RESULTS

This section evaluates the performance and variations in
the learning parameters over time and discusses the best-
performing controller. The learning parameters, represented by
α and γ , determine the learning rate and cumulative reward
preferences of the DQL algorithm. The ablation study demon-
strates the performance of the solution without the ML control
algorithm, considering different static settings of the wake-up
period. The variations in the learning parameters over time
are reflected in the αR policy, which adjusts the algorithm’s
learning capability. The time domain analysis provides detailed
insights into the behavior within a 200-day interval and the
selected types of actions.

A. Learning Parameters Performance

Learning parameters performance was investigated by
applying different values (α and γ ) in the experimental model.
To evaluate learning speed, α was set to a value in the
range 0–1, with a step of 0.1. To test sensitivity to the cumu-
lative reward, γ was set in the range 0.1–0.9, also with a step
of 0.1. The ε-greedy policy was set to 0.98 to help reduce the
number of random actions since the experimental model was
a control system contained within a measurement device and
not having deterministic functionality was undesirable. Each
variant of the experiment was repeated 100 times to reduce
any stochasticity caused by DQL behavior.

Fig. 5 depicts the results for learning parameters
performance. Fig. 5(a) indicates a high number of com-
pleted cycles but also a high number of missed cycles. This
is, especially, evident at a high α (high learning rate) and low
γ (low cumulative reward). Fig. 5(b) indicates that a lower
α (slow learning process) produced fewer successful cycles
and also far fewer missed cycles. Fig. 5(c) shows the ratio of
completed/missed cycles calculated from (12).

Table III lists the ten best-performing controllers accord-
ing to the ratio of completed/missed cycles defined in
Section IV-B. Each candidate differs in its configured learning
parameters (α, γ ). These candidates were evaluated accord-
ing to the number and ratio of completed and missed cycles,
unused energy (EU), average SoES, and average period. It is
clear that the majority of the best controllers had α parameters
distributed in the interval 0.2–0.6, representing slower learn-
ing rates. In terms of γ , all the best controllers preferred a
cumulative reward in the range 0.7–0.9.

In terms of average SoES, a relationship between the total
number of cycles and average SoES is evident. The higher
the number of cycles, the lower the average SoES, indicating
better energy use. VSTORE parameter reflects the same prin-
ciple and corresponds with the average SoES. A relationship
is also evident between the number of cycles and the aver-
age transmission period. A higher number of cycles produces
a shorter average transmission period and, thus, higher data
availability in the cloud. However, the more aggressive strat-
egy with a maximum number of cycles also produced a higher
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TABLE III
CONTROLLER CANDIDATES WITH THE BEST PERFORMANCE BASED ON THE RATIO OF COMPLETED/MISSED CYCLES

TABLE IV
ABLATION STUDY AND REFERENCE SOLUTION BASED ON FUZZY LOGIC COMPARISON

number of missed cycles. PGOOD indicates the percentage of
the time, when IoT node works properly. The best-performing
controllers have PGOOD in range from 77.7% to 79.6%.

B. Ablation Study and Reference Algorithm

The purpose of the ablation study is to compare the DQL
approach with control methods that do not rely on ML. The
previous study [1] defined several reference controllers which
applied static duty cycle periods. In the current study, the
authors compared these solutions plus a reference solution
based on a fuzzy logic controller to a solution containing a
DQL controller. Table IV compares the performance results
of reference static controllers and a reference solution based
on fuzzy logic. The lowest average SoES and VSTORE cor-
responded to the expected static controller behavior. Short
duty cycle controllers decreased the SoES, resulting in short
average periods; the long-duty-cycle controllers did not use
incoming energy, resulting in long average periods. The aver-
age SoES of the fuzzy reference solution was similar to the
DQL controllers, however, the average period was approxi-
mately four times higher. In terms of PGOOD, configurations
with longer wake-up periods represent higher PGOOD, which
leads to more reliable operation. The fuzzy solution achieves
PGOOD of 77.5%, which corresponds to the range of 180 to
240 min in the static configurations.

Fig. 6 graphs the results for the reference solution in
relation to the DQL controller’s results. The reference solu-
tion is marked in blue and indicates static operating periods
(720, 480, 240, 120, 60, or 10 min); the fuzzy controller
is marked as yellow diamonds; the DQL controller and its
dynamic operating periods are marked in brown. The DQL
solution is not clearly visible in the upper graph in Fig. 6(a),
therefore, Fig. 6(b) provides a scaled detail of this graph and
indicates the best DQL cases with the points A–J. For complete
cycles and missed cycles, the blue curve splits the graph area
into two parts. Controllers (below the blue curve) achieved
higher performance than the static controllers. The reference
fuzzy controller’s results are also below the blue curve and
indicate that this method achieved higher performance than the
static controllers. The results for the best-case DQLs fall below
the blue curve to the right and indicate that the DQL algo-
rithm’s performance was greater than both the static controllers
and fuzzy controller.

C. Changes in the Learning Policy

In this section, the algorithm’s ability to learn in time by
reducing the learning factor in each learning cycle (αR princi-
ple) is discussed. This experiment used the controller (α = 0.3
and γ = 0.8) which provided the best performance in the
previous experiments. Reduction of the learning rate was based
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(a)

(b)

Fig. 6. (a) Performance comparison of the reference solutions [1] and DQL
solution, indicating completed and missed cycles. (b) Detail of the upper graph
indicating the best DQL controllers.

TABLE V
SEVEN αR CONFIGURATIONS FOR DETERMINING THE

ALGORITHM’S ABILITY TO LEARN IN TIME

on the hypothesis that in a repetitive and conservative environ-
ment, preserving obtained knowledge and reducing the ability
to learn is advantageous. By contrast, when a controller oper-
ates in a dynamic environment, it is better to maintain the
learning rate at the initial level.

The αR principle is defined according to the equation

αr(n) = αi ·
(

r
√

G
)n

(13)

where αi is the initial value of the learning factor, r is the
reduction coefficient, G is the gradient coefficient, and n is
the number of simulation steps.

Table V lists the numerical results for the αR configura-
tions which were applied to determine the algorithm’s ability
to learn over time. The policy was modified by the reduction
coefficient, which reduced the time required for the learn-
ing rate. Parameter G was set to 0.5, resulting in a gradual
decrease of the learning factor and eventual reduction to half
in r cycles. In this experiment, the r coefficient was set to
500, 1000, 2000, 4000, 8000, 16 000, and 32 000. The best
controller attained approximately 45 thousand learning cycles
over four years of operation; a factor of around 11 300, there-
fore, indicates that the learning rate was reduced by half in
approximately one year.

Fig. 7. Seven αR configurations for determining the algorithm’s ability to
learn.

TABLE VI
NUMBER OF INDIVIDUAL PERIODS SELECTED

DURING CONTROLLER OPERATION

Fig. 7 shows a graph of the seven αR configurations for
determining the algorithm’s ability to learn over time. The
results indicate that a high reduction in the learning rate by
the reduction coefficient produced poorer performance in terms
of missed cycles and the ratio of completed/missed cycles.
The best ratios were achieved with low reduction coefficients
(8000–32 000). This behavior demonstrates that a quick reduc-
tion (500–4000) in the learning rate is not suitable for energy
management controllers based on a TEG. It is possible that
the controller may benefit from a long-term reduction pol-
icy; for example, the best configuration, with 16 000 reduction
cycles, required 1.42 years to reduce the learning rate to half.
However, it should be noted that the ratio of completed/missed
cycles was very close to the best result without a reduction
policy, although the result clearly demonstrates that a continual
learning rate is a suitable solution.

D. Time Domain Analysis

This section discusses the behavior of the best-performing
controller, which used the settings α = 0.3 and γ = 0.8.

Table VI lists the number of individual periods selected dur-
ing controller operation. The controller operated according to
defined output actions in periods of 10, 60, 120, 240, 480, or
720 min. The second column indicates the number of times
this period was selected by the controller. The third column
specifies the percentage of times this period was selected by
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TABLE VII
COMPARISON OF FEATURES IN STATE-OF-THE-ART METHODS AND THE PROPOSED APPROACH

Fig. 8. Selected time window for IoT device operation with the best DQL
candidate (α = 0.3 and γ = 0.8). The upper part of the chart shows the time
parameters Vstore, Pgood, and active and missed cycles. The lower part of the
chart indicates the actions performed (period) over 1200–1400 days.

the controller and indicates that the controller selected the
fastest action in 91.60% of cases. When energy was unavail-
able, the controller selected slower actions to obtain a better
reward. In 3.26% of cases, the controller slowed down the
operating period to 720 min to prevent an outage in the IoT
device.

Fig. 8 graphs the results of the simulation for the best DQL
candidate over 1200–1400 days. The blue and red curves rep-
resent the voltage waveforms of Vstore and Pgood, respectively.
Vstore is the supercapacitor voltage which corresponds to the
SoES, and Pgood is the output signal which indicates whether
the output voltage is at a sufficient level. The yellow curve
indicates whether a cycle was active (completed) or missed.
The purple circles indicate executed actions (period).

At a high level of Vstore, a high density of action was exe-
cuted every 10 min; at a low level of Vstore, a high density of
action was executed every 720 min. These results correspond
with the expected behavior.

VI. DISCUSSION

This section compares the presented DQL approach with
state-of-the-art methods and discusses the performance, fea-
tures, and applications of DQL in TEG-powered IoT nodes.

A. Comparison With State-of-the-Art Approaches

The research from related studies and experiments open
several discussion points. From a review of the literature on
advanced methods, the current study is novel in three aspects.
Table VII provides a comparison of the related studies listed
in Section II with the proposed DQL approach. The individ-
ual ML methods are compared according the design needs
of the models (model-free design), computational complex-
ity, the ability to learn continuously (dynamic learning), the
ability to learn without cloud assistance (on site updates),
and compatibility with TEG-powered systems (TEG harvest-
ing compatibility). Besides QL-based strategies, none of the
methods are model-free and, therefore, require models for
development. Approaches based on neural networks are char-
acterized by high computational complexity and are, therefore,
not suitable for implementation with low cost, low power IoT
devices.

In general, approaches based on reinforcement learning are
suitable for embedded applications. For IoT devices powered
using energy harvesting methods, the embedded energy man-
agement algorithm must be able to adapt to the dynamic nature
of the environment where the device is located by being able
to learn at every step and adapt to the surrounding conditions.
Algorithms based on reinforcement learning (deep reinforce-
ment learning, QL, and DQL) satisfy this condition. Another
significant parameter in a low-power IoT device is its ability
to function with the cloud technology. ML approaches which
learn by themselves without the assistance of the cloud tech-
nology belong to the reinforcement learning family. Methods
based on neural networks and fuzzy logic lack this capability.

Energy harvesting based on the TEG technology is char-
acterized by sudden incoming peaks of energy caused by
changes in weather conditions. Energy management strate-
gies must, therefore, be robust and eliminate overestimation



18928 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 21, 1 NOVEMBER 2023

TABLE VIII
SUMMARY OF APPROACHES KEY PARAMETERS

of such events. Neural network and fuzzy logic strategies
are developed offline and, therefore, resistant to this type of
adaptation in principle. The knowledge base created through
reinforcement learning methods may also be compromised
by the overestimation of external events. The proposed DQL
approach using two Q-tables offers an effective solution to
suppress overestimation during sudden changes in incoming
energy.

Table VIII presents a summary of the key parameters
for static, fuzzy, and DQL approaches. To compare ML
approaches, two static controllers (20 and 180 min) are
selected based on the comparable average period P parameter.
The fuzzy controller has a comparable P with the 180-min
static configuration, but the overall reliability, as indicated
by the ratio parameter related to missed cycles, is signifi-
cantly higher. In terms of PGOOD and EU , the fuzzy controller
and the 180-min static configuration show negligible differ-
ences. These facts clearly demonstrate that a dynamic-oriented
approach is more suitable for controlling TEG-powered IoT
nodes. Similar observations can be made when comparing the
DQL approach to the corresponding static 20-min approach.
There is a significant difference between the ratio and missed
cycles, despite the comparable average period. This finding
further confirms that DQL is an appropriate solution for IoT
energy management. The comparison of the DQL and fuzzy
approaches reveals that DQL outperforms the fuzzy approach
in terms of all key parameters.

B. DQL Performance and Features

The study’s results demonstrate that the real-time self-
learning algorithm designed for IoT devices deployed in
environments with variable sources of energy is a suitable
solution. This conclusion is based on the study’s αR exper-
iment, which produced superior results without any reduced
learning ability in the algorithm. This feature permits applica-
tion to a wide range of IoT sensors and deployment scenarios.
The controller’s adaptability is an advantage with IoT sensors
where the hardware configuration differs in energy harvester
type, capacitor size, hardware age, and other factors as a con-
sequence of DQL principles and a semi-supervised approach
driven only by relative state variables from the reward policy.

Self-learning algorithms provide solutions for various ML
methods which may require additional data sets (e.g., train-
ing data sets for neural networks). The proposed solution
uses online self-learning principles and, therefore, performs
semi-supervised learning within the deployed device itself.
This feature not only eliminates the need for a training

data set, it produces different learning results in each IoT
device. This approach also eliminates the time-consuming
and computationally demanding process of optimizing the
design (e.g., fuzzy rule-based controllers) or providing ambient
energy predictions (e.g., prediction-based controllers).

In terms of required computational resources, the DQL con-
troller is suitable for IoT devices with hardware limitations.
Memory implementation includes two data arrays represent-
ing Q-tables with floating point variables. In the each learning
step, the Bellman equation updates only one variable selected
from the data arrays. Finally, actions are selected by averag-
ing and sorting the data arrays. This simple procedure is more
effective than state-of-the-art approaches, such as fuzzy rule-
based controllers or neural network evaluation. Overall, DQL
provides the means to implement computationally limited,
low-cost hardware with low-power specifications.

VII. CONCLUSION

The study presented a reinforcement learning principle
designed to optimize energy management in IoT devices and
experimentally tested a hardware model for such a device.
The model consisted of a TEG energy harvesting subsystem
with a dc/dc converter, a load module with an MCU, and a
LoRaWAN communications interface. The device followed a
reward strategy which compared its current charge status to
the charge status in the previous learning step.

The study also presented a DQL-based approach with con-
figurable learning parameters. The results showed that the
best-performing DQL controller operated with a 98.5% suc-
cess rate derived from the ratio of completed/missed operation
cycles. The novelty of the solution was discussed in relation
to state-of-the-art methods and their properties.

Future work includes two possible directions. In the first,
and because the proposed approach demonstrated its ability to
adapt to the surrounding environment and specific application,
DQL-based methods applied in other domains could be evalu-
ated with simulations that use other hardware or large data sets
from a range of deployment locations. The second research
opportunity involves long-term deployment and evaluation of
an IoT device to study the differences between simulated data
and real-life data which contains several observed parameters
(e.g., disturbances, malfunctions, temperature changes, etc.)
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