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i-WSN League: Clustered Distributed Learning in
Wireless Sensor Networks
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Abstract—In this work, i-WSN League, a comprehensive hard-
ware/software framework for the support of distributed training
and inference is introduced. For what concerns the hardware, in
i-WSN League two types of nodes are considered, namely, head
nodes and common nodes. Head nodes are resource-rich nodes
that have the capabilities for training artificial neural network.
Common nodes collect data and can execute inference only. In
i-WSN League, all nodes are grouped in Clusters, each with a
Cluster Head (selected among the head nodes), which is the only
node responsible for training. To this end, the data coming from
all nodes in the Cluster can be utilized. This, however, involves a
large exchange of data which might be unsustainable by common
nodes. Thus, only part of the data collected by common nodes is
sent to the Cluster Heads and a network of Cluster Heads will
implement distributed learning in a peer-to-peer fashion. As com-
pared to state-of-the-art literature, the key contributions of our
work are related to the combination of gossiping and clustering
to adapt the operations executed by each node to its capabilities,
with the aim of minimizing the energy consumption in resource-
limited nodes, while preserving accuracy. In this article, i-WSN
League is assessed in a simple scenario in which a wireless sensor
network monitors the air pollution in a large city. Performance
results obtained by considering auto-encoders prove the effec-
tiveness of the proposed scheme as well as its balanced energy
consumption and fairness in resource consumption distribution.

Index Terms—Clustering, distributed learning, wireless sensor
networks.

I. INTRODUCTION

THE EXECUTION of the machine learning (ML) algo-
rithms into small and low-power devices has attracted the

attention of researchers and has opened the path to new use
cases in the context of wireless sensor networks, WSNs. The
introduction and success of tools, like Tensorflow Lite,1 rep-
resent both the evidence of the interest of the ML community
toward such scenarios and a fundamental step toward their
realization. However, performing on-device training requires
energy, memory, and computing capabilities which are not
available in most hardware platforms employed for WSNs.

Therefore, in most current solutions models are trained
in some resource rich server outside or at the edge of the
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WSN. Such approach, however, requires the transmission of
the data available at the WSN nodes needed to train the
ML model to the above server, which involves two types of
problems.

1) Such type of transmissions might require the use of a
large amount of communication and energy resources.

2) There might be security and privacy issues as the data
transmitted by the nodes can be the target of attacks in
its way toward the server.

In this article, we address such issues and propose a
framework for the realization of intelligent wireless sen-
sor networks (i-WSNs) which minimize the exchange of
information between WSN nodes. We assume that the WSN
includes some nodes that have enough resources to execute
the ML model training [1]. All network nodes are divided into
clusters and in each cluster there is a resource-rich node which
is in charge for the training of the ML model that will be used
by all nodes in the cluster. Such node is, thus, a Cluster Head
and executes training by using only the data which is locally
available. The resulting model is sent to all nodes in the cluster
which will execute it to evaluate a fitness metric. Nodes that
obtain a low value of such fitness metric will transmit a part
of their data to the Cluster Head which will use it to retrain
the model.

Clusters, in parallel, will exchange their models in a peer-
to-peer manner and, thus, cooperate in forming a so-called
league. For this reason, we denote the proposed solution as
i-WSN League.

In this article, we present i-WSN League and assess it in a
simple application scenario in which a wireless sensor network
monitors the air pollution in a large city. The network nodes
will cooperate to train a neural network that can be used for
anomaly detection. Note that this is just one example of sev-
eral scenarios in which distributed learning in wireless sensor
networks can be exploited. Other relevant examples include,
but are not limited to, chemical attack identification, early
wildfire, and other natural disasters detection. In this article,
the assessment has been carried out by considering differ-
ent settings for what concerns the number of Cluster Heads,
the type of clustering, and other parameters characterizing the
distributed training algorithm

The remainder of this article is organized as follows.
In Section II, we provide an overview of the most rele-
vant literature on distributed learning. In Section III, we
introduce i-WSN League. Its performance is evaluated in
Section IV. Finally, in Section V, we draw our concluding
remarks.
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II. BACKGROUND AND MOTIVATIONS

ML can be applied in WSNs in several contexts and a rich
literature on the subject exists, as summarized in [2].

A large part of the research effort in this domain has focused
on the application of distributed learning [3] because it is more
secure and efficient for what concerns the use of communica-
tion resources. Distributed ML has been recently proposed for
anomaly detection. For example, in the scenario considered
in the following Section IV, cluster members (CMs) inherit
from the cluster heads a trained model and they only perform
inference based on their data. If the current collected values
differ from the one obtained by using the model inherited by
the cluster head for more than a given amount, an anomalous
condition is identified and, thus, an alert is generated.

In the context of distributed learning, a fundamental contri-
bution was given in [4], where the problem and the relevant
constraints for distributed learning in WSNs are clearly stated
and a general model is given. In [4], several crucial key issues
and concepts are explored. In particular, relevant examples are
discussed as well as possible architectures, including the use
of clustering and the possibilities opened to distributed learn-
ing by the multihop communication paradigm, which is typical
of most WSN scenarios.

The major issues in the execution of ML in WSNs are
related to the limits in available processing and communica-
tion capabilities typical of usual WSN scenarios. To cope with
such limitations, one possibility is to apply techniques for the
representation of information which trade accuracy for effi-
ciency. An overview of the literature in this context is given
in [3], while recent relevant efforts include the works presented
in [5] and [6].

In this article, we focus on the exploitation of the multihop
communication paradigm for the effective and efficient sup-
port of ML in WSNs. In the recent literature, some efforts
toward the definition of strategies for the diffusion and use
of information in networks of nodes, that, collectively aim
at achieving knowledge about the status of the environment,
emerged [7]. In the context of distributed learning, federated
learning (FL) represents today the state-of-the-art approach. In
FL there are several, say K, federated learners, each of which,
say the kth, maintains a part of the data set and uses it to train
a neural network, which we represent through its parameters
collected in the array wk. Federated learners send their model
parameters to a central node, referred to as aggregation point,
which creates an aggregated model w as

w =
K∑

k=1

pk · wk (1)

where the parameter pk may depend on the size of the portion
of the data set maintained by the kth federated learner and
must be such that p1 + p2 + · · · + pK = 1. The aggregated
model w is then distributed to the federated learners. They will
retrain it using the local data. The above steps, collectively
referred to as iteration, are repeated several times until the
model converges as desired.

Note that FL is efficient in terms of accuracy and con-
vergence of the model. However, it is obvious that at each

of the above-mentioned iterations, it is necessary to transmit
the model parameters to the aggregation point. Consequently,
many researchers have recently raised concerns regarding the
communication cost associated to the transmission of the
model parameters [8].

FL has been deployed in practice by major companies. Some
examples of the use of FL by OTP and vendors are listed in
the following [9].

1) Google is applying FL in the Gboard mobile key-
board as well as in Pixel phones [10] and in Android
Messages [11].

2) Apple is using cross-device FL in iOS 13 for applica-
tions like the vocal classifier for “Hey Siri” [12].

3) doc.ai is developing cross-device FL solutions for med-
ical research [13].

4) Snips has explored cross-device FL for hotword detec-
tion [14].

FEDAVG [15] is a well-known and the most studied FL
algorithm in the literature. It combines stochastic gradient
descent (SGD) on each client node with an aggregation point
that performs model averaging. Since the introduction of
FEDAVG, there have been many works on the parallel imple-
mentation of SGD. One of such works, presented in [16],
proposes several SGD algorithms to reach a tradeoff between
the training time and the transmission time. On applying this
approach with deep neural networks, the end-to-end train-
ing time was reduced significantly. Similarly, a theoretical
analysis was carrier out on SGD with k-sparsification [17].
The above scheme keeps track of the accumulated errors in
memory to reduce communication time. However, the conver-
gence rate was reported to be the same as the vanilla SGD
algorithm. A decentralized stochastic optimization approach
is proposed in [18], in which the nodes communicate the
model updates only to their neighbors. In order to reduce the
communication bottleneck, the model updates are compressed
(quantized or sparsified) by the nodes. A similar approach is
proposed in [19] for decentralized learning in which the com-
munication estimates among the users are quantized. Similar
compression and quantization solutions are studied in [20]
and [21] to solve the distributed optimization problems with
communication constraints.

FL has certain limitations and constraints. One of such criti-
cal limitations is Catastrophic Forgetting [22], [23], [24] which
can be a critical problem in all distributed ML techniques.
Catastrophic forgetting is the tendency of a neural network
model to abruptly forget previously learned information upon
learning new information. The local retraining in FL may
result in catastrophic forgetting of the knowledge learned from
other participants. However, several approaches have been
proposed in the literature to lock the learned knowledge to
overcome catastrophic forgetting in FL and other distributed
ML techniques. One of such knowledge lock approaches is
proposed in [25] in which knowledge distillation techniques
are utilized to preserve the previously learned knowledge. This
solution exhibits better performance in terms of accuracy when
compared to other FL approaches, such as FedAvg. In the
solution introduced in [26], the old and new neural network
models are fused to avoid the catastrophic forgetting issue of
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Fig. 1. Example of application of an FL mechanism in an exemplary network
topology.

the new model. Additionally, the most representative samples
from the old data are chosen to help the new model review
the old knowledge.

FL cannot be efficiently applied in WSN for a number of
reasons. Indeed, let us consider a WSN consisting of eight
nodes as sketched in Fig. 1, and let us assume that FL is
applied and that node A is the aggregation point, whereas
all other nodes denoted as L1, L2, . . . , L7 are the federated
learners.

Models generated by the federated learners will traverse
several hops before arriving at the aggregation point A. For
example, the model generated by learner L7 will pass through
L6 and L3 before reaching A. This will require a large number
of transmissions by wireless sensor nodes. More specifically,
if we consider the tree spanning all network nodes, whose root
is node A, we can calculate the number of model transmissions
needed at each learning round as

N =
H∑

l=1

NDl · l (2)

where H is the maximum depth of the aforementioned tree and
NDl is the number of nodes with depth l in the spanning tree.
In the example in Fig. 1, the number of model transmissions at
each round will be N = ∑3

l=1 NDl · l = 2 ·1+4 ·2+1 ·3 = 13.
Furthermore, it is clear that the nodes that are close to

the root, A, will be involved in several relaying operations.
For example in Fig. 1, node L3 is responsible for forward-
ing models w3, w5, w6, and w7 whereas nodes L2, L4, L5,
and L7 will be responsible for the transmissions of their mod-
els only. Therefore, the communication burden on node L3 is
four times the burden on nodes L2, L4, L5, and L7, which is
extremely unfair and may cause the rapid exhaustion of the
batteries of node L3. This is the well-known funneling effect
problem which is the reason for unfairness and may result in a
rapid exhaustion of batteries in nodes closer to the aggregation
point A and, thus, as a consequence, can lead to a significant
reduction in network lifetime.

One obvious way to overcome this problem is to exploit the
multihop communication paradigm by aggregating models at
intermediate nodes. In other terms, a node will wait for the
models coming from all its child nodes in the routing tree.
The node will aggregate them with its own model and will
send only the result of such operation to its parent node. For

example, L3 will wait for the models coming from L5 and
L6 and will send the aggregation of w3, w5, and w6 to the
aggregation point. Note that in this case, w6 is estimated as
the result of the aggregation of the model specific for L6 and
of model w7.

Such an approach would reduce the transmissions signifi-
cantly. Indeed, in the scenario reported in Fig. 1, aggregation
at intermediate nodes L1 and L3 allows to reduce the num-
ber of transmissions of model parameters executed at each
round to 7 which implies a reduction in the overhead of
approximately (6/13) = 46%. Also, it increases the fairness
significantly. However, it involves that the aggregated model
is built in the aggregation point and then flooded into the
network. Furthermore, it relies on knowledge of a route toward
the aggregation point in each node, which is not always the
case.

To address such issues, gossiping can be exploited as we
explain in the following.

Gossiping is a mechanism conceived to solve the—
so called—consensus problem by exploiting the computing
resources at each node to reduce the amount of data that needs
to be transmitted in the network. Therefore, gossiping can be
used to save energy and communication resources, so extend-
ing network lifetime, and reducing latency [27], [28], [29].

Gossiping, thus, captures the condition where a set of
network agents must achieve a shared opinion through
exchanges of local information with neighbors. In WSN, gos-
siping has applications in distributed inference and detection
[30], [31].

Recently, the use of gossiping has been investigated in the
context of FL as well, where consensus has to be achieved
regarding the ML model. Therefore, it is assumed that each
node has a value or set of values, which in our case are the
model weights. The objective of gossiping is to allow all nodes
to achieve shared estimation on the average of all models,
which is what FL tries to do at each iteration.

Early examples of such schemes are presented in [32], [33],
[34], and [35]. Nodes exploit the locally observed data and
collaborate with their one-hop neighbors to collectively learn
a model that best fits the data collected by the entire network.

One of such schemes is proposed in [36] which is supported
by theoretical results regarding its performance. More specifi-
cally, a scheme is proposed that adapts the transmission rates
of individual nodes to control network density while keep-
ing the communication time required to exchange the models
below appropriate thresholds. A significant step toward the
practical applicability of gossiping is achieved in [37] where
the network constraints are taken into account. The authors
apply gossiping to the Industrial Internet of Things (IIoT) sce-
nario. To this aim, they consider relevant network constraints
like setup, convergence speed, communication overhead, and
average execution time on embedded devices.

A novel class of FL algorithms are introduced to improve
convergence and a prototype implementation is presented.
Similarly, a graph federated architecture is presented in [38]
to overcome the computational and communication overloads
in the original FL approach. More specifically, a multiserver
architecture was designed in which each server has a set of
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clients and the servers run a consensus-type algorithm among
themselves similar to our approach. However, differently from
our work, in [38] both the servers and the clients are nodes
that have the capability to train an ML model.

Several clustered FL schemes have also been proposed in
the literature. In [39], a clustered FL approach for non-i.i.d
data is proposed in which nodes are partitioned into clusters
based on their objectives, i.e., the learning task. Therefore,
each cluster has nodes with the same learning task and the
goal is to train a model for each cluster. However, differently
from [39], in our approach all the nodes do have the same
objectives or learning tasks. Also, we consider a more general
case where nodes have different computing and communica-
tion capabilities which is not the case in [39] and, thus, based
on their capabilities, they can behave differently and execute
diverse functionalities (i.e., training and/or inference). In [40],
another clustered FL approach is proposed in which the clus-
tering is done by K-means in a centralized manner based on
the node’s data, and a common model is trained for each clus-
ter using data of all nodes that belong to the cluster. The nodes
that converge more slowly or have little correlation with other
nodes in each cluster are dropped to speed up the conver-
gence while maintaining the accuracy of all the nodes. The
performance of the proposed approach was evaluated using an
NVIDIA edge testbed. However, similar to the previous clus-
tered FL approach, the ML and communication capabilities of
the users are not considered. Another clustered FL approach
is proposed in [41] in which the geometric properties of the
FL loss surface is exploited to group the nodes population into
clusters with jointly trainable data distributions. However, in
this approach, the clustering is only carried out after a few
rounds of FL and the convergence has reached a stationary
point. In all the above-mentioned approaches, the ML and
communication capabilities of the nodes are not considered.
Also, in most of the clustered FL approaches, the nodes are
grouped based on their data distributions.

Differently from other state-of-the-art solutions, in our
approach, the clustering strategy will consider devices’ hard-
ware features, meaning that more powerful nodes will execute
resource-intensive operations and will act as Cluster Heads,
while common nodes will only execute simpler operations.

Unfortunately, none of the schemes discussed so far consid-
ers that in most cases while all nodes can perform inference,
only a subset of them can perform model training because of
the associated hardware constraints.

Conversely, i-WSN League takes such constraint into
account and aims at minimizing the energy consumption in
resource-limited nodes as detailed in the following Section III.

III. i-WSN LEAGUE

In this section, we introduce i-WSN League which is a
methodology for supporting ML in a WSN network consist-
ing of heterogeneous nodes. In fact, we assume that the two
types of nodes are available in i-WSN League: 1) common
nodes, that are resource constrained and, therefore, cannot exe-
cute model training and 2) head nodes, that are resource-rich
devices and have the capabilities to execute all ML functions.

In such a context, the objective of i-WSN League is to mini-
mize the consumption of resources, and more specifically, the
consumption of energy, at the common nodes. This is because
the exhaustion of their batteries will result in their definitive
failure which might involve the failure of the entire network.

This section is organized as follows. In Section III-A, we
give an overview of the i-WSN League operations. In this
context, we will also characterize the major features of the
hardware platforms that are used for head nodes and com-
mon nodes. Then, in Section III-B, we will present the i-WSN
League protocol in detail.

A. Overview of Operations and Characteristics of the
Hardware Platforms

As discussed above, we consider a WSN consisting of a
few head nodes and a majority of common nodes.

Head nodes are equipped with two wireless interfaces.
One of them allows connection to a wide-area network, e.g.,
LoRa [42] or IEEE 802.11, the other enables short-range com-
munications, e.g., BLE or IEEE 802.15.4. Common nodes
are equipped with the short-range wireless communication
interface only.

Nodes will be divided into Clusters, each of which has a
Cluster Head and several CMs.2 Head nodes can be Cluster
Heads, common nodes are always CMs. Cluster Heads can
communicate using both wireless interfaces, CMs can commu-
nicate using the short-range wireless communication interface,
only. Thus, head nodes that are CMs will maintain their
wide-area network interface turned off.

Cluster Heads use their long-range wireless communication
interface to create a mesh network, which we call CH-network.

Cluster Heads execute the model training using their own
data. The fitness of the model will be evaluated through an
appropriate loss function.3 Each Cluster Head broadcasts the
value of its loss function throughout the CH-network after
it calculates it at the end of every training execution. The
Cluster Head that attains the lowest loss will transmit its model
parameters to its one-hop neighbors in the CH-network using
the long-range wireless interface.

The generic kth Cluster Head upon receiving the model by
the jth Cluster Head will use the received parameters, wj, to
update its own model, wk, as follows:

wk = α · wj + (1 − α) · wk (3)

where α is a weight parameter that we set larger than 0.5 as
detailed later. After updating their models, the Cluster Heads
will train the model obtained by applying (3) using the data
they have available locally. Note that, choosing a value of α

different from 1, implies that we both avoid fluctuations in

2In the remainder of this article, we assume that a CM can belong to one
cluster only, i.e., it cannot be shared by multiple clusters. This is to avoid
the risk of overfitting certain data patterns since several models generated by
different Cluster Heads and propagated to other Cluster Heads will represent
the same set of data generated by the few shared CMs. As a consequence, the
general model will give too much importance to the data generated by such
shared CMs

3Several loss functions have been proposed for different application
scenarios. Interested readers can refer to the overview provided in [43].
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weights and we also “store” a memory of the data set in the
node receiving the model.

In some cases, CMs are characterized by very simple hard-
ware, and, thus, complex tasks cannot be executed on them.
Accordingly, note that, in case of particular limitations in the
device performing as CMs, the generic jth Cluster Head will
create a compressed version of its model, ŵj, in such a way
that it can be used for inference by common nodes as well.
How the compressed model, ŵj can be used for inference
by common nodes is outside the scope of this article as it
depends on the tool utilized for model compression. We refer
interested readers to the Tensorflow Lite documentation [44]
which specifies the workflow to be used.

The Cluster Head will broadcast the obtained model along
with the corresponding value of loss to all members of its
Cluster. CMs will not train the received model as they do not
have the computing resources required for training. Instead,
the CMs will evaluate the loss they achieve with the updated
model using their own data. If the difference between the loss
obtained by the CM and the broadcasting Cluster Head is
greater than a certain threshold, that particular CM will send
part of its data to its Cluster Head in order to train and transmit
the updated model back.

This may raise some privacy concerns. However, we observe
that as follows.

1) The data is shared by the CM with its Cluster Head only
which is responsible for storing and processing it, i.e.,
it is not disseminated further.

2) As shown in the following Section IV, the number of
times these events occur is indeed small and can be tuned
by appropriately setting the above threshold value. The
exact setting is a matter of tradeoff between minimizing
the model loss, i.e., increasing the fidelity of the model,
and minimizing the privacy concerns.

We denote the above sequence of actions as protocol
iteration or iteration, in short.

Given the energy limitations characterizing WSNs, i-WSN
League operations must be as effective as possible and, thus,
the model transmissions and consequent training iterations
should be executed when the resulting expected reduction in
the overall loss is significant. To this goal, at the end of each
protocol iteration, each involved Cluster Head will broadcast
its updated loss value throughout the CH-network. This value
will be used by each Cluster Head to compare the fitness of
its own model to the fitness of the other Cluster Heads.

Furthermore, the communication and computing load must
be distributed between all Clusters as fairly as possible. This
is necessary to avoid a few Cluster Heads are overloaded. In
fact, even if Cluster Heads are resource-rich platforms, they
are powered by batteries and processing and communication
overload of a few of them might result in the exhaustion of
their batteries, so reducing the lifetime of the entire network.
To achieve this goal, i-WSN League exploits a parameter called
boost factor which is updated in such a way that it is expected
to be high for Cluster Heads that did not transmit their model
parameters in the recent past, and low for the Cluster Heads
that, instead, did transmit their model parameters recently.
Further details will be provided in the following Section III-B.

Fig. 2. Clustering scenario.

B. Protocol Details

In this section, we present the details of the i-WSN League
protocol and, for the sake of clarity, describe its operations in
the simple scenario depicted in Fig. 2. This comprises eight
common nodes grouped into four Clusters. Nodes 1, 2, 3, and
4 are Cluster Heads4 equipped with two wireless interfaces.
Accordingly, the CH-network consists of four nodes connected
according to a linear topology. All the other nodes are CMs,
each of which belongs to one Cluster only. Observe, that com-
munication in each Cluster can happen in a multihop manner
when needed. Algorithm 1 represents the pseudocode for the
protocol run by the generic Cluster Head CH. The result-
ing actions executed by the Cluster Heads are represented in
Fig. 3.

At the startup sketched in lines 1–6 of Algorithm 1, Cluster
Head CH initializes the boost factor BCH to 1. Furthermore,
the model is trained using the local data XCH and starting
from random initial conditions, RND. The training operation
is executed for a given number of epochs. The scaled loss
parameter, denoted as, SLCH is calculated from the training
loss and the boost factor as in (4), i.e.,

SLCH = FCH(wCH)/BCH (4)

where FCH(wCH) is the loss of the Cluster Head, CH, and BCH

is its current boost factor. Observe that the scaled loss is sup-
posed to decrease for Cluster Heads that have the good fitting
models (i.e., low FCH(·)) and that did not transmit their model
parameters recently (i.e., high BCH). By using the boost fac-
tor and normalizing the loss function using this factor allows
to guarantee more fairness inside the system by fostering a
kind of turnover among nodes that disseminate their models.
Also, choosing better fitting nodes as those disseminating the
models has the advantage of fostering, as we will see in the
following, faster convergence of the model. For example, in
Fig. 3, the loss values for the four Cluster Heads at the end of
the initialization phase are F1(w1) = 69.11, F2(w2) = 26.72,
F3(w3) = 66.32, and F4(w4) = 98.75. Therefore, given that
the boost factors for all of them is equal to 1, the correspond-
ing scaled losses are SL1(w1) = 69.11, SL2(w2) = 26.72,
SL3(w3) = 66.32, and SL4(w4) = 98.75.

4We will denote the Cluster with the identifier of the corresponding Cluster
Head, therefore, if we say Cluster 1, we mean the Cluster for which node 1
is the Cluster Head.
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Fig. 3. i-WSN league protocol in action (cluster heads).

At the end of the initialization phase, the Cluster Heads
broadcast their model parameters to their own CMs (line 5).
Also, the Cluster Heads broadcast their scaled loss in the
Cluster Head network (line 6). In this way, Cluster Heads iden-
tify which of them has the lowest scaled loss and, thus, who
will broadcast its model parameters.

When the initialization phase is completed, Cluster Heads
execute the regular operations sketched in lines 7–30 of
Algorithm 1, which are event-based. More specifically, three
types of events can occur.

1) Broadcast: In this event, the Cluster Head broadcasts
its model parameters, i.e., the Cluster Head with the
lowest scaled loss broadcasts its model parameters to its
CMs and its neighboring Cluster Heads. In this case, the
node executes the operations sketched in lines 10–18 of
Algorithm 1.

2) Receive Model Parameters: In this event, the Cluster
Head receives the model parameters wk. When the
model parameters are received, the Cluster Head
executes the operations sketched in lines 19–27 of
Algorithm 1, including retraining of the model.

3) Receive Data Chunk: In this event, the Cluster Head
receives a chunk of data from one of its CMs for
retraining. The Cluster Head will execute the operations
sketched in lines 28–31 of Algorithm 1.

At the end of the initialization phase t1 and at the end of
each iteration, each Cluster Head broadcasts its scaled loss
to all other Cluster Heads. Thus, each Cluster Head has the
scaled losses of other Cluster Heads to make a comparison
and realize if it has the lowest scaled loss. If this is the
case, it will perform the operations reported in lines 10–18
of Algorithm 1. The Cluster Head will broadcast the model
parameters wCH to the one-hop neighbors in the CH-network
and compresses the model to broadcast the compressed model
parameters ŵCH to its own CMs. In our experiments, the
Tensor-flow model is compressed into a Tensor-flow lite
model.

In the case shown in Fig. 3, at the end of the initialization
phase, Cluster Head 2 has the lowest scaled loss which is
26.72. Hence, it broadcasts its model parameters w2 to its
neighboring Cluster Heads 1 and 3, then it compresses its
model and transmits the resulting compressed parameters, ŵ2,
along with the value of the loss, FCH(ŵCH), to its CMs 21 and
22. The operations executed by the CMs when they receive
the compressed model parameters are sketched in Algorithm 2
and are explained later in this section. After it broadcasts its
model parameters and the loss value, CH resets the boost factor
BCH to 1.

Lines 19–27 of Algorithm 1 show the functions of the
Cluster Head when it receives the model parameters from
another Cluster Head through the CH-network. More specifi-
cally, the boost factor is multiplied by two and the weights of
their models are updated according to (3). Finally, the result-
ing model is trained using the data locally available. In our
example, Cluster Heads 1 and 3 have received the model by
Cluster Head 2, therefore, they train the updated model using
their data. At the end of the training, their losses become 64.70
and 22.10, respectively. Both their boost factors become equal
to 2 and the scaled losses is evaluated accordingly.

Similarly to the first round, the Cluster Head with the lowest
scaled loss is identified. Therefore, the Cluster Head 3, which
has SL3=11.05 broadcasts its model parameters.

As we explain later it might happen that the Cluster Head
receives a chunk of data by one of its CMs, say j. As reported
in lines 28–31 of Algorithm 1, where DAj represents the
received chunk of data, in this case, the Cluster Head trains
the model using the received data along with the rest of the
data locally available. Then, the new model is sent back to the
CM j.

Algorithm 2 illustrates the functions of the generic CM
when it receives the model parameters from its Cluster Head.
Before updating its model, the node evaluates the loss which it
would obtain using the model ŵCH transmitted by the Cluster
Head, Fj(ŵCH) and compares its own loss Fj(ŵj) with the
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Algorithm 1 i-WSN Protocol-Cluster Head
1: /* Protocol initialization */
2: Initialize BCH=1
3: Initialize wCH=train_model(XCH, RND)

4: Calculate SLCH = FCH(wCH)/BCH

5: Broadcast(wCH) to CM
6: Broadcast(SLCH) in CH network.
7: /* Regular operations */
8: while TRUE do
9: Wait for Event

10: if Event.Type==Broadcast then
11: /* Cluster-Head CH will send its model parameters

wCH */
12: Broadcast(wCH) in CH network.
13: Reset BCH = 1
14: Calculate SLCH = FCH(wCH)/BCH

15: Broadcast(SLCH) in CH network.
16: Compress the model
17: Broadcast the modellite parameters ŵCH

18: end if
19: if Event.Type == Receive Model Parameters wK

then
20: /* Node CH is receiving the model parameters

wCH from neighbor Cluster Head K */
21: BCH = BCH ∗ 2
22: Calculate SLCH = FCH(wCH)/BCH

23: wCH = α · wK + (1 − α) · wCH

24: wCH = train_model(XCH, wCH)

25: Broadcast(wCH) to Cluster Members
26: Broadcast(SLCH) in CH network.
27: end if
28: if Event.Type == Receive Data Chunk DAj then
29: wCH = train_model(DAj, wCH)

30: Broadcast(wCH) to j
31: end if
32: /* End of regular operations */
33: end while

value coming from using ŵCH . If the difference between the
two values is larger than a given threshold σTH , it means that
the data set available at the Cluster Head is not representative
of the data available at the CM. Accordingly, the CM sends a
chunk of its data to the Cluster Head. As explained earlier, the
Cluster Head will use such data for training its model. This
is the reason why there is a change in the loss in the Cluster
Head at the second iteration though it has not received the
model parameters (point A in Fig. 3). Since the Cluster Head
has received the data chunk and trained on it, there is a change
in the loss from 98.75 to 80.33 in Fig. 4 where we detail what
happens in Fig. 3 at the second iteration in Cluster Head 4.

IV. PERFORMANCE EVALUATION

In this section, we assess the performance of i-WSN League
by analyzing its behavior in a case study. In such context, we
will also analyze the impact of some scenarios and protocol
parameters.

Algorithm 2 i-WSN Protocol-CM
1: Wait for Event
2: if Event.Type == received ŵCH then
3: wj = α · ŵCH + (1 − α) · wj

4: Evaluate Fj(wj) and Fj(ŵCH)

5: if Fj(wj) − Fj(ŵCH) ≥ σTH then
6: /* Sends data to Cluster Head for training */
7: Transmit DAj to CH
8: end if
9: end if

Fig. 4. i-WSN league protocol in action (inside Cluster 4).

Accordingly, in the following section, i.e., Section IV-A,
we describe the scenario and the data set considered in our
experiments. Then, in Section IV-B, we present and discuss
the numerical results.

A. Scenario

We consider a wireless sensor network consisting of sensor
nodes collecting environmental parameter to perform anomaly
detection. We use a well-known data set containing the envi-
ronmental parameters measured in 2017 by a wireless sensor
network of 56 nodes deployed in Krakov. The data are IID and
the positions of nodes are available in the data set as well. The
data set is available in Kaggle.5

Since the sensors collect one value for each parameter every
hour, the data set for one month (i.e., 30 days) considered for
the kth sensor should consist of nk = 24 · 30 = 720 entries of
seven values. These seven values represent the day, time, tem-
perature, humidity, and PM1, PM2.5, and PM10 parameters
measured in July 1–30, 2017. Unfortunately, certain values
for 31 sensors out of the 56 are missing, and, therefore, we
will consider only the 25 sensors for which we have all the
values available.

The topology of the sensor network is shown in Fig. 5.
The above topology has been constructed considering the real
position of the sensors and assuming that each of them is
equipped with a wireless interface giving a radio coverage of
4 km.

For the training in Cluster Heads, we consider the data from
the first 25 days and we consider the data from the last five
days for the inference.

5https://www.kaggle.com/datascienceairly/air-quality-data-from-extensive-
network-of-sensors
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Fig. 5. Wireless network scenario for the simulation.

The training data comprises of 25 (days) * 24 (h) = 600
entries of five parameters. The parameters are temperature,
humidity, PM1, PM2.5, and PM10. More specifically, one
training sample consists of five values and each sensor has
600 samples. For the training of the auto-encoder model, the
batch size was varied to generate batches of different sizes of
the input data.

Similarly, in the case of the CMs, the data from the first 25
days is split in chunks, while the last five days’ data is utilized
for the inference.

For our experiments, we consider four cases with different
clustering strategies which result in the configurations shown
in Fig. 6.

1) Case 1: The network in this case has five Cluster Heads
with an equal number of CMs. Therefore, each cluster
Head has four CMs. The Cluster Heads are nodes 1, 3,
14, 19, and 22.

2) Case 2: The network in this case has eight Cluster
Heads. Therefore, the sizes of the clusters are smaller
in this case as compared to Case 1. The Cluster Heads
are nodes 1, 4, 6, 7, 9, 15, 21, and 25.

3) Case 3: The clustering, in this case, is designed to have
five Cluster Heads in the network but each exhibiting a
different number of CMs. More specifically, the Cluster
Heads are nodes 1 (9 CMs), 10 (4 CMs), 15 (4 CMs),
18 (3 CMs), and 22 (4 CMs).

4) Case 4: In this case, the network is divided into two
large clusters only, and the Cluster Heads are nodes 4
and 20.

In all the above cases, there are no nodes that belong to
more than one cluster. Note that Cases 1 and 3 are simi-
lar as the number of Clusters considered is 5 in both cases.
However, the number of CMs in Case 1 is equal to 4 in all
clusters. Instead, in Case 3 there are different numbers of CMs.
Case 3 has been considered for analyzing the impact on i-WSN
performance of the distribution of nodes in the different clus-
ters. In Cases 2 and 4, there are different number of Clusters,
i.e., 8 and 2, respectively, and, therefore, have been considered
to analyze the impact of the number and size of Clusters on
performance.

i-WSN League can be applied whatever is the ML approach
utilized. Nevertheless, in our experiments, we assume that
each Cluster Head trains an autoencoder [45] which is highly

utilized for anomaly detection [46]. Also, we assume that the
all nodes can perform inference with a trained model.

An autoencoder is a type of artificial neural network that
operates in an unsupervised way to learn efficient data encod-
ing. In Fig. 7, we present the architecture of an autoencoder.

Specifically, backpropagation is used so that the values
given as output by the neural network, denoted as X′ in Fig. 7,
are as close as possible to the input ones, denoted as X in the
same figure.

Besides learning an efficient representation of data, autoen-
coders can denoise and decorrelate data. Furthermore, autoen-
coders can be used for anomaly detection as well. In fact a
large difference between X and X′ means that the current input
data is significantly different from the data used to train the
autoencoder, which is the evidence of an anomaly.

Since our focus is not on the specific ML approach, in
our experiments, we have employed the simplest type of
autoencoder which consists of one-hidden layer, only.

Accordingly, in our experiments, the autoencoder consists
of a three-layer neural network, thus, having one input, one-
hidden and one-output layer.

In the encoding process, the autoencoder first converts
the input vector X into a hidden representation Z using
weights w′. During the decoding, instead, the autoencoder
maps the hidden representation back to obtain the orig-
inal format and obtains X′ through other weights w′′.
The model parameter optimization is aimed at minimiz-
ing a loss measure which is proportional to the average
reconstruction error, i.e., the difference between X′ and X.
More specifically, the loss is calculated as the mean square
error (MSE) [47].

Concerning the specific values, we focus on the values of
temperature, humidity, PM1, PM2.5, and PM10; therefore, the
input size of the autoencoder is 5. The intermediate size, which
is also known as compressed dimension is equal to 3.

Therefore, the uth entry in the data set of the kth sensor,
denoted as Xk,u, is Xk,u = (X(0)

k,u, X(1)
k,u, . . . , X(4)

k,u).

B. Numerical Results

In this section, we report the numerical results obtained
in the scenario described in the previous Section IV-A by
applying the i-WSN League approach in all four Cases. We
carried out a large simulation campaign to evaluate the rele-
vant performance parameters which we have selected, i.e., the
average loss of any node, the number of times a Cluster Head
is trained, and the number of times CMs have sent their data
to their Cluster Heads.

More specifically, ten simulations in each case were exe-
cuted for different values of α (i.e., α = 0.5, 0.7, 0.9, and 1)
in (3), and a different number of epochs (i.e., 10, 15, and 20),
which denote the number of passes that the optimization algo-
rithm utilized to train the autoencoder will work through the
entire local data set. Note that, instead, an iteration denotes
the execution of the complete algorithm, that is starting from
the broadcast of the model parameters by the Cluster Heads
to the operations performed by the CMs as discussed in the
previous section.



17928 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

Fig. 6. Clustering cases considered in the experiments. (a) Clustering topology 1. (b) Clustering topology 2. (c) Clustering topology 3. (d) Clustering
topology 4.

Fig. 7. Model of an autoencoder.

We explicitly observe that in i-WSN League each iteration
involves the broadcast of the model parameters of one-Cluster
Head which is the one exhibiting the best fitness performance
in terms of loss function.

In Fig. 8, we report the average loss with respect to the
number of iterations for different values of epochs in each
case and α = 0.7. We observe that, when the number of iter-
ations increases the average loss significantly decreases in all
cases. However, interesting observations can be drawn regard-
ing the comparison between the performance of Cases 1 and 3
with the performance of Case 2 and Case 4. In fact, when

the number of clusters is small (i.e., Case 4) convergence
is fast because consensus must be reached between a small
number of Cluster Heads, however, the loss obtained is high
because the model of each Cluster Head must be represen-
tative of a large number of CMs. This is reflected in Fig. 8
where the performance of Case 4 are the worst. In the same
figure, however, we can observe that a higher number of clus-
ters does not always result in better performance. In fact, in
Case 2 the average loss reaches a smaller number than in
Case 4 but convergence is slower than in Cases 1 and 3.
This is because more iterations are required to reach a shared
model between all Cluster Heads. Nevertheless, in Fig. 12,
we will observe that in Case 2 the number of transmissions
by CMs is minimal which represents the key goal in our
scenario.

In Fig. 9, we report the average loss with respect to the
number of iterations for different values of α and 15 epochs.
We observe that higher values of α cause convergence to
be, in general, faster in all cases. In fact, the parameter α

is the weight that controls the model parameters updates
as given in (3). More specifically, if α is higher than 0.5,
then in the aggregation the node which receives the model
by another one will give more importance to the received
model than to its own. The objective of the gossiping in
our approach is to spread the best fitting models through-
out the network. Therefore, more importance is given to the
received models, and, thus, high values of α are used to spread
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Fig. 8. Average loss versus the number of iterations for different values of epochs. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

the fitting models quickly in the network so achieving faster
convergence.

In Fig. 10, Note that for α = 0.7 still the slope of the
average loss convergence is slower for the Case 1 as compared
to Case 3 because of the more balanced distribution of CMs
in Case 1 as compared to Case 3.

In Fig. 11, we report the average number of times a Cluster
Head gets trained after the 20th iterations versus the number
of epochs and when α is 0.9. Note that, a Cluster Head does
not only perform training at the beginning of an iteration but
it also retrains its model exploiting the data chunks it receives
from its CMs. Observe that the average number of times a
Cluster Head gets trained is the highest in Case 4 and lowest
in Case 2 and it is quite similar in Cases 1 and 3. It is the
highest in Case 4 because the Cluster Heads have to train on
the data chunk sent by its CMs more times because there are
only 2 Cluster Heads and, thus, it is more likely that their
losses will be larger. Therefore, the two Cluster Heads which
have more than ten CMs each will go through a larger number
of training cycles.

The training counts in Cases 1 and 3 are approximately
the same because the number of clusters is equal. Thus,
the training load of the Cluster Heads is not as high as in
Case 4 and not as low as in Case 2. Similarly, Case 2 has
the lowest count because each Cluster Head has approxi-
mately two CMs and, therefore, the training load will be the
lowest.

Finally, observe that the impact of the number of epochs is
not significant.

Analogously, in Fig. 12, we report the average number of
times CMs have transmitted their data chunks to the corre-
sponding Cluster Heads when α is 0.9. Note that in i-WSN
League scenarios this performance metric is extremely impor-
tant because it gives a measure of the amount of resources
consumed by common nodes, which are resource constrained.
Observations can be drawn similar to those regarding Fig. 11.

This result is not surprising. In fact, in our setting, the eval-
uation of the model parameters performed by the Cluster Head
can be seen as a consensus problem within the cluster as
well. Therefore, when the number of clusters increases the
number of CM in each cluster decreases. Therefore, reach-
ing the consensus on the model parameters within the cluster
becomes easier. Accordingly, we have added the following
note in Section IV-B.

In Fig. 13, we report the average number of times each
Cluster Head has been trained in Case 1 when the num-
ber of epochs is 15 and the value of α is 0.9. The Cluster
Heads in Case 1 are nodes 1, 3, 14, 19, and 22. Observe that
all Cluster Heads are trained for the same number of times
which is the evidence of fairness in processing and communi-
cation load. Fairness is an important factor in WSN scenarios
and maintaining good fairness in the network will lead to
balanced energy consumption and, thus, a longer network
lifetime.
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Fig. 9. Average loss versus the number of iterations for different values of α. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Fig. 10. Average loss versus the number of iterations in each case.

Similar observations can be made regarding Fig. 14 in
which we show the average number of times each CM has sent
data chunks to its Cluster Head in Case 1, when the number
of epochs is 15 and the value of α is 0.9. Approximately, all
nodes transmit data chunks the same number of times which,
on average, is lower than 1. This means that, after a few data
chunk transmissions from the CMs, the Cluster Heads have
succeeded in training a fitting model for their clusters.

Fig. 11. Average train count versus the number of epochs.

Concerning the policy for the selection of the data chunks
that CMs will transmit, we applied an approach in which these
are chosen randomly in the data set of the CM and after they
are transmitted they are marked so that they will not be chosen
anymore in the following rounds. However, note that other
policies for data chunks selection can be applied and that will
not limit the effectiveness of the i-WSN solution.

To assess fairness, we calculated the Jain’s Fairness
index [48] regarding the number of times the Cluster Heads
have been trained in all the cases.
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Fig. 12. Average data chunk transmissions versus the number of epochs.

Fig. 13. Average number of times each cluster head has been trained.

Fig. 14. Average number of times each CM has transmitted data chunks.

The Jain’s Fairness index is calculated as given below

F(x1, x2, . . . , xn) =
(∑n

i=1 xi
)2

n · ∑n
i=1 x2

i

(5)

where n represents the number of Cluster Heads (in our case
n = 25) and xn represents the number of times the nth Cluster
Head is trained.

TABLE I
FAIRNESS INDEX REGARDING THE NUMBER OF TIMES CLUSTER

HEADS HAVE BEEN TRAINED FOR DIFFERENT VALUES

OF α AND EPOCHS IN CASE 1 AND CASE 2

In Table I, we report Jain’s Fairness index values for dif-
ferent values of α and the number of epochs in all the cases.
We observe high fairness values in all the cases, i.e., fairness
index closer to 1, which illustrates balanced energy consump-
tion in all clusters. Observe that the highest fairness index
values have been obtained in Case 4. However, this is due to
the fact that there are only two clusters in Case 4. Cases 1,
2, and 3 show similar fairness index values. We also observed
that the number of epochs and the α parameter value do not
have a significant impact on fairness.

V. CONCLUSION

In this article, we have presented the i-WSN League frame-
work which involves the definition of a specific architecture
of the wireless sensor networks nodes besides the introduction
of a protocol to support distributed ML in the wireless sen-
sor networks. In the proposed framework, we have considered
a heterogeneous network where all nodes can execute infer-
ence, whereas only some of them, called Cluster Heads, have
enough resources to execute the model training. Accordingly,
nodes are divided into Clusters, one for each Cluster Head,
and the Cluster Head broadcasts the trained model to the other
nodes of the Cluster, called CMs. The proposed protocol aims
at minimizing the consumption of resources of CMs, even if
some extra effort is required at the Cluster Head. Performance
results, achieved by considering autoencoders as an example
of an ML scenario, demonstrate that the proposed scheme is
effective and is characterized by high fairness.
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