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Abstract—The expeditious propagation of Internet of Things
(IoT) technologies implanted in different smart devices, such
as smartphones and smartwatches have a ubiquitous conse-
quence on the modern population. These devices are employed
to collect data and to aid in tracking and analyzing the users’
daily activities using various human activity monitoring and
recognition (HAMR) techniques. However, most current HAMR
approaches rely on exploratory case-based shallow feature learn-
ing architectures, which endeavor to recognize activities correctly
in real-world situations. To address this issue, we offer a unique
strategy for HAMR that leverages the attention mechanism with
multihead convolutional neural networks (CNNs) and long-short-
term-memory (LSTM). The accuracy of activity detection is
improved in the presented method by integrating attention into
multihead CNNs followed by LSTM for better feature extraction
and selection. Verification investigations are carried out using
data from the University of California (UCI) repository, which is
publicly available. The results show that our proposed framework
is more accurate than current frameworks using both the 10-fold
and leave-one-subject-out cross-validation. Finally, the proposed
method can recognize human activity in real time, regardless of
the type of smart device.

Index Terms—Attention mechanism, deep learning, human
activity monitoring and recognition, Internet of Healthcare
Things (IoHT).

I. INTRODUCTION

THE FAST growth of wearable and mobile technologies
has made it simple to apply Internet of Things (IoT)

technology in healthcare. Real-time human activity monitor-
ing, especially for older people’s activities of daily living
(ADL), is a crucial problem in smart healthcare. Mobile and
wearable sensors might enhance senior care and medical reha-
bilitation. In order to better understand people’s daily behavior
and interactions with their living environments, human activity
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monitoring and recognition (HAMR) in pervasive computing
environments has become a hotly debated topic. This topic
has been thoroughly investigated for the so-called Internet of
Healthcare Things (IoHT) [1].

Including HAMR, inertial sensors can be used to bet-
ter understand human behavior, which could open up many
doors for IoHT applications in various systems (such as med-
ical healthcare, smart home, smart city, smart transportation,
and smart manufacturing). For instance, successful monitor-
ing of the young and the elderly in smart homes necessitates
a thorough understanding of residents’ everyday home-life
activity, which might be used to control smart appliances
effectively [1]. Smart devices, such as smartwatches and smart-
phones that consist of built-in inertial sensors (accelerometer
and gyroscope) are used to collect and transmit real-time
human activity data through wireless sensor networks due to
their low cost and nonintrusive human feature [2].

Earlier, most traditional HAMR techniques employ exten-
sive feature engineering to capture the vibrant signal rep-
resentations, which are then fed into machine learning for
categorization [3]. However, such techniques depend on expert
domain knowledge, and the typical use of shallow features
reduces the computation efficiency of IoHT-based HAMR.
Recently, various deep learning models demonstrated remark-
able performance for a range of HAMR tasks by learning
high-level feature representation directly from the raw data of
smart device sensors, which improves HAMR performance in
comparison to conventional methods [4]. Even though current
DL studies for HAMR have had much success in many IoHT-
related applications, the generalization capacity of the HAR
models, or the effectiveness of applying the trained models
to a new, unseen, untested data set, remains a crucial diffi-
culty. The variability of the mobile devices disturbances, such
as movement artifacts, baseline noise, the occurrence of new
activities, different hardware configurations, and user differ-
ences, has an impact on the identification rate of the HAMR
system and prevents the generalization capability. The model’s
performance is likely to decline when tested on a new end
user whose activity data are never seen in the training set.
Moreover, if the unseen, independent data set is from any other
smart device and test online then the performance of the model
is likely to drop. As a result, a compelling need is to develop
a novel automated technique that can efficiently extract essen-
tial features and identify and classify human behaviors in
IoHT contexts. This article proposes attention-based multihead
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convolutional neural network (CNN), followed by long-short-
term-memory (LSTM), a new DL model for HAMR that
comprises three steps to close that gap. A six-head CNN
extracts local features from the tri-axial accelerometer and tri-
axial gyroscope in the first step. However, all the extracted
local features are not equally important to identify efficiently.
Thus, in the second step, an attention mechanism is used to
adjust the weights of the features to retain only the most impor-
tant features from the tri-axial accelerometer and gyroscope
from different modalities. Then, using LSTM, the proposed
network learns high-level representations and encodes the tem-
poral correlations of the learned local features [5]. LSTM
best extends temporal characteristics and processes sequential
data, while CNN is best for spatial abstraction and general-
ization. Therefore, it is crucial to examine the relationship
between the human activity’s spatial properties and the cor-
responding information in the time dimension while building
a human activity prediction model. The correlation between
multidimensional data is mined using CNN, which filters out
noise and unstable components. For long sequence prediction,
LSTM leverages the information processed by CNN.

In our previous work [6], we proposed an attention-based
DL architecture for hemiplegia gait detection, in which the
attention mechanism is used with the CNN and LSTM. In this
work, we use multihead attention-based CNN with different
filter sizes for all the axes of the accelerometer and gyroscope
to learn discriminant features from a smartwatch-based data
stream for activity recognition.

The primary advantage of the proposed deep learning
model over the present HAMR techniques is the significant
performance gain achieved by meaningful feature learning and
efficient recognition of physical activities. Unlike multihead
convolutional attention approaches like those described in [7]
and [8], the proposed method does not use LSTM to represent
temporal dependency for feature learning which is essential
for time-series data. The primary contributions of this article
are as follows.

1) The attention-based multihead deep learning framework
is proposed for the first and most accurate HAMR in the
context of IoHT.

2) A multihead CNN is proposed to learn discriminant
features from smartwatch-based tri-accelerometer and
tri-gyroscope parallelly with different filter sizes to
improve the performance.

3) The multihead convolutional attention mechanism is
introduced to adjust the weights of the local features
to retain only the essential features.

4) Finally, LSTM is used to represent temporal depen-
dency for feature learning and enhance recognition
performance of physical activities.

5) The proposed activity recognition mechanism is imple-
mented offline and online. In offline mode, the
smartwatch-based collected data is sent to the PC for
activity recognition. In online mode, the activity recog-
nition mechanism is implemented on the smartphone.
The classification is done in real time using an unseen,
independent data set on an Android smartphone.

II. RELATED WORK

We divide the prior work pertaining to our contribu-
tions into three sections: 1) deep learning-based human
activity recognition (HAR) (Section II-A); 2) multihead
CNN-based HAR (Section II-B); and 3) attention models
(Section II-C).

A. Deep Learning for HAR

Recent studies [4] have provided a taxonomy that divides
deep learning systems for sensor-based HAR into three dif-
ferent groups. The first group consists of only CNN-based
architectures. Only LSTM-based architectures fall into the sec-
ond category, which is further separated into the LSTM and
convolutional LSTM subcategories of models. The raw data
was directly fed to the LSTM models proposed in [9], [10],
and [11]. In these works, the authors mentioned the limita-
tions of “recurrent neural networks” (RNNs), particularly in
long-term dependencies, and used LSTM to overcome those
limitations. Though, in HAR literature several approaches
proposed using either CNN or LSTM, it has been seen that
none of them are perfect for all types of activities, such
as static and dynamic. As a result, the researchers started
working on different variations of LSTM. Zebin et al. [9]
offered a context-aware HAR framework. The authors used
body-worn inertial sensors to distinguish between static and
dynamic physical activities using a “multilayer LSTM with
batch normalization.” However, the computational cost and
memory needs were rather high in this study since edge
computing was employed. With the University of California
(UCI)-HAR data set, Yu and Qin [10] proposed a HAR
framework based on bidirectional LSTM. Bidirectional LSTM
is a slower model and requires more time for training.
Zhao et al. [11] proposed a residual bidirectional LSTM archi-
tecture to recognize various human behaviors using the UCI
smartphone and body-worn sensor (OPPORTUNITY) data
sets. However, training LSTM on raw sensory input with a
high-sampling rate is not practical due to normal memory
and processing resource constraints. They perform poorly
because they do not simultaneously leverage temporal and
spatial information. Convolutional LSTM models maintain
spectral structural locality in their representation. It replaces
the inner product of the LSTM with convolutions. Ye et al. [12]
proposed two-stream convolutional LSTM and achieved 93.9%
accuracy. Two individual spatial-stream and temporal-stream
ConvNets are used in this using video data sets to recognize
human activities. The third category focuses on hybrid mod-
els that use both the CNNs and LSTMs [13], [14], [15], [16].
The correlation between multidimensional data is mined using
CNN, which filters out noise and unstable components. For
long sequence prediction, LSTM leverages the information
processed by CNN. Finally, other deep learning techniques
used for HAR are InnoHAR [17], and Multivariate LSTM-
FCNA [18]. The authors validated the model using single-
device data. Independent, unseen data were not tested yet.
Hence, we can say the proposed models suffered from gener-
alization issues.
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TABLE I
STATE-OF-THE-ART HAR SYSTEMS

B. Multihead CNN-LSTM for HAR

There is very little evidence in HAR literature regarding
multihead CNN-LSTM. Ahmad et al. [19] presented a
multihead CNN-LSTM architecture to identify six activities
and achieved 95.76% accuracy. However, the filter size is fixed
for each convolutional layer. Ni et al. [21] proposed a multi-
head CNN-LSTM without attention and got an accuracy and
F1-score of 98%, using the UCI HAR data set. The used data
set is well processed and consists of 561 statistical features.
Moreover, in [21], bidirectional LSTM has been used, which
is slow to train.

C. Attention-Based Models

Zhang et al. [7] proposed a multihead convolutional
attention-based architecture, validated its performance using
the WISDM data set, and achieved 96.4% testing accuracy.
They have not considered either sensor fusion or different
devices to validate their model. Buffelli and Vandin [23]
proposed a purely attention-based mechanism for HAR,
which replaced RNN. The authors merged the convolutional
network with an 8-headed attention layer and used WISDM-
UCI [24] data set. In this architecture, layer normalization
was used after the attention layer and the fence layer, which
enhanced the complexity of the model. Khan and Ahmad [8]
proposed attention-based multihead CNN architecture using
both the WISDM and UCI data sets. The authors did not men-
tion the required number of epochs to converge. However, they
set the number of epochs as 260, which increased the training
time of the model. Hence, unsuitable for real-time applica-
tions. Yin et al. [25] proposed a CNN-based BiLSTM parallel
model with an attention mechanism and achieved 96.71% and
95.86% accuracy using the UCI and WISDM data sets, respec-
tively. However, to achieve these many accuracies the authors
adopted a handling model which is almost impossible to use
in low-energy efficient and memory-based devices. Luptáková
et al. [26] proposed an attention-based Transformer model
and achieved an average accuracy of 99.2% using Ku-HAR
data where the smartphone’s location is fixed. In this work,

the authors added normalization layers three times, which
may increase the computational complexity of the model.
Moreover, the testing accuracy with unseen, independent data
is not presented in this work. Zhou et al. [28] proposed
a hybrid attention-based deep neural network where feature
compression and reconstruction module was used separately.

Many attention-based HAR systems have been explored for
healthcare use during the last few decades as shown in Table I.
However, all of them mitigate the effect of heterogeneity using
any of the preprocessing techniques. Moreover, in HAR, atten-
tion models have only been used in addition to a CNN or
multihead CNN and not as a means to both the multihead
CNN and LSTM, which is the approach we propose in this
work.

III. PROPOSED METHODOLOGY

A. Data Collection

The publicly available smartwatch-based raw sensor data is
used in this study that is downloaded from the UCI reposi-
tory [24]. This is a heterogeneous HAR data set. The smart-
phone and smartwatch-based accelerometer and gyroscope
sensors were used to collect the data set. Eight smartphones
(two Samsung Galaxy S3 mini, two Samsung Galaxy S3, two
LG Nexus 4, and two Samsung Galaxy S+) and four differ-
ent smartwatches (two LG watches, and two Samsung Galaxy
Gears) are used to collect the data from nine users’ age range
from 25 to 30 years. The users were asked to perform six
different activities, such as “Biking,” “Sitting,” “Standing,”
“Walking,” “Stair Up,” and “Stair down.” In this study, we use
only the smartwatch-based accelerometer and gyroscope data
set. Each user conducted five minutes of each activity, which
ensured a near-equal data distribution among activity classes
(for each user and device). The two different smartwatches
were used for diverse sensing scenarios. The smartwatches
yielded different maximum sampling frequencies: 200 Hz for
LG G and 100 Hz for Samsung Galaxy Gears. Furthermore,
the devices exhibit different accelerometer biases and gains.
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The data collection was controlled by a custom-made applica-
tion that ran on the smartwatch. The total number of instances
in this smartwatch-based data set is 2738449.

B. Data Preprocessing and Segmentation

To see the impact of the heterogeneity on HAR, no data
preprocessing methods are applied in this study. The data set
is collected using various smart devices with different sam-
pling rates. In the literature, sub- or super-sampling is often
used as a preprocessing technique before training or applying
a HAR system to mitigate the heterogeneity effects [24]. In
real-time, online HAR, it is not necessary to get the data from
a specific device with the same sampling frequency. Using any
of the data preprocessing techniques, we mitigate the impact
of heterogeneity on HAR. To see the impact of the data hetero-
geneity on HAR, we investigate the effects without any sub- or
super-sampling techniques to train the proposed HAR. In line
with the standard approaches [24], we employ a sliding win-
dow approach that overcomes the need for explicit semantic
segmentations. For processing the time-series data in the HAR
problem, a 10-s sliding window with 50% of the overlapping
proportion is used to segment the raw data. Some of the sam-
ples contain null values which are removed from the data set.
Five hundred samples are therefore present in each segment.
Each windowed set of data is used to calculate feature vectors.

C. Automatic Feature Learning

The sample size for our studies is 500 × 6. We design a
6-head CNN to learn local features on each dimension of sen-
sors. 6-head CNN is used to learn features from the x, y,
and z-axis of the accelerometer and the x, y, and z-axis of
the gyroscope, respectively. Each head in the proposed mul-
tihead CNN uses a different filter size to enable the network
to learn discriminative features from the input time-series data
and improve the performance. Hence, the input vector at time
t is denoted by

St =
[
Saccx

t , S
accy
t , Saccz

t , S
gyrox
t , S

gyroy
t , S

gyroz
t

]
. (1)

In order to learn discriminant features, a 6-head CNN is
designed to process the input vector as shown in Fig. 1. The
convolutional layer utilizes a set of learnable kernels to per-
form the convolution operation. Using the activation function,
the convolution operation produces the feature map for the
next layer. The jth feature map at the lth layer of the hth
head of the multihead CNN is denoted by α

i,h
lj which can be

represented as

α
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(
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))
, where h = 1, 2, 3, . . . , 6. (2)

Here, f (.) is the ReLU activation function used to reduce
the vanishing gradient problem in the network. Negative input
values become zero at the activation layer. i is the row number
of the feature map matrix. The hth head convolution function
of the proposed multihead CNN is denoted by f h

conv2D(α
i+q
l−1)

and can be represented as
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where blj refer to the bias for this particular feature map, ω
q,h
ljp

is the weight matrix at the position q of the convolutional
kernel at layer l, kh

l is the length of the kernel of the hth
head at the lth layer, p is the index of the feature maps at
the (l − 1)th layer. multihead CNN derives local features with
time dependency from sensory data and then fed to the next
step for further processing.

D. Attention Mechanism

The attention mechanism was initially developed to focus
on a particular area of an image rather than the entire picture to
identify it. However, the emphasis changes over time. By mod-
ifying the weights of the data extracted by the multihead CNN,
we adopt an attention network based on this concept to concen-
trate only on the critical features. Filtering out the significant
representations for recognition is the task of the attention layer.
The weights of representations are redistributed using an atten-
tion method. As opposed to single-head attention, multihead
attention can better attend to more information while incurring
a similar cost in computation, allowing the network to learn
more quickly in parallel. In order to create a new intelligent
activity recognition method, we think about combining this
attention with CNN; more specific model parameters will be
provided in the following section. The attention mechanism
uses the “key-value” pair format to represent the input feature
to map a query. The “key” is used to calculate the attention
distribution and the “value” is used to generate the selected
feature. Every key is attended to by the attention operator,
which also calculates a similarity score that is then used to
determine the weights for each value vector. Subsequently, we
use the scaled dot-product to get the similarity score. Then we
use softmax to get the attention weights. The values are then
scaled according to their corresponding attention weight. The
entire process is represented as

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V (4)

where softmax(αij) = [exp(αij)/
∑

j exp(Xji)], Q is the query
matrix, V is the value matrix and K is the key matrix, and dk

is the dimension of Q and k. For each query, the values associ-
ated with the keys with the highest similarity score are given
a higher weight (i.e., higher importance). To put it another
way, the weights are employed to give greater importance to
values that are more relevant to the specific query. When the
query, key, and value matrices together relate to elements in the
same sequence, we refer to self-attention. Here, a multihead
convolutional attention mechanism is used to exploit the fea-
tures extracted using different convolution channels. Multihead
attention mechanism executed parallel attention function c
times. In our case, the value of c is 30. The multihead attention
is represented as

Multihead(Q, K, V) = Concat(head1, head2, . . . , headc)W
O

(5)

where headi = Attention(QWQ
i , KWK

i , VWV
i ), WQ

i , WK
i ,

WV
i , and WO are the parameter matrices with dimension

dk/h, dk/h, dv/h, and dO, respectively. In our experiment,
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Fig. 1. Proposed attention-based deep learning architecture.

dk/h = dv/h = 128. The outputs of all the heads are then
combined together.

E. Proposed Framework for HAR

Fig. 1 demonstrates the suggested HAR framework with an
attention mechanism. To learn local features with time depen-
dency, a sliding window of the 6-D sensory data is fed into
multihead CNN. In order to keep the important details of the
features from one sensor dimension and to decrease the param-
eters, the output of each of the six heads is concatenated and
passes through a max-pooling layer. The attention mechanism
then kicks in to modify the weights of the traits in order to
keep the crucial features. These crucial elements are then sent
into an LSTM network in order to develop latent feature rep-
resentations. LSTM integrates the crucial features of each time
segment into a unified sequential feature as follows:

ht = f
(
w

[
ht−1, xt

] + b
) ∗ tanh(Ct) (6)

where ht−1 is the hidden state of the previous time, xt is the
current time input, w is the weight of gate of LSTM cell, Ct

is the current time memory unit, and ht is the forward output.
To obtain more abstract characteristics, the output of the

LSTM is processed through a fully connected layer (FCL). The
final step is to categorize physical activities using a softmax
layer. In conclusion, we develop an attention-based multihead
CNN followed by LSTM that can automatically learn impor-
tant features from sensory data gathered at high-sampling rates
instead of depending on feature engineering.

IV. PERFORMANCE EVALUATION

In this section, we first describe the specifics of the data set
used in the studies. The basic descriptions of the experimental
setup employed in this work are then given. Finally, we display
the outcomes of our suggested method’s experimental testing.

A. Data Set

We conduct our experiments using the UCI public standard
data set, as described in Section III-A. This data collection
contains 2738449 samples of a total of six different activities,
including Bike (A1), Walk (A2), Stand (A3), Sit (A4), Stairsup
(A5), and Stairsdown (A6). Table II is a list of the specific
details for this data set.

TABLE II
INSTANCES OF EACH ACTIVITY IN UCI DATA SET

B. Experimental Setup

To validate the proposed method, we compare it with several
complex learning algorithms, including the “random forest”
(RF), “support vector machine” (SVM), “extreme learning
machine” (ELM), “artificial neural network” (ANN), and
“multilayer perceptron” (MLP), as well as the DL algorithms,
1-D-CNN, 2-D-CNN, LSTM, “recurrent convolutional neu-
ral network” (RCNN), and “gate recurrent unit” (GRU). The
approaches mentioned above are either used for HAR or
combined CNN modules with recurrent modules. The hyper-
parameters involved in the approaches mentioned above and
the proposed solution are fine-tuned using the 10-fold cross-
validation (CV) on the training set. A grid search is applied
to calculate the hidden nodes in ELM, ANN, and MLP with
the validation set. Grid search is also applied to optimize the
hyperparameters of SVM. The best hyperparameter values are
C = 1000, γ = 0.001, and kernel = “rbf.” Five hundred
decision trees are used in RF for ensemble learning.

The data set is separated into two groups to carry out the
experiment: 30% of the volunteers are chosen to test the sug-
gested HAR solution, while 70% of the volunteers are chosen
for training. Therefore, neither the training nor the testing use
data from the same subjects. Since CV is less computation-
ally intensive, we employ it in our experiment to create several
splits of the training and validation sets from the training set.
For a more thorough analysis, a leave-one-subject-out (LOSO)
CV is also carried out. In this, data from one subject are
used for testing, and data from the other subjects are used
for training. The fact that the test data is concealed from the
models makes this cross-subject test more rigorous. It provides
a more realistic environment for assessing the generalization
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TABLE III
RECOGNITION PERFORMANCE OF ALL THE ACTIVITIES

capabilities of the models. 2-D convolution is performed in
the input layer of the multihead CNN using a smartphone-
based tri-axial accelerometer and gyroscope data. The 3-axial
accelerometer and 3-axial gyroscope take six different heads in
the multihead CNN. In this experiment, the convolution layers
with kernel size 3 and stride 2 are activated using the “ReLU”
activation function. In the max-pooling layer, the stride and
pooling sizes are both of size 2. The rate of learning is set
at 0.001. Three different filter sizes are used in the different
heads of the multihead CNN. For head-1 and head-4, the filter
size is 3×3, for head-2 and head-5, the filter size is 5×3, and
for head-3 and head-6, the filter size is 7×3. The deep LSTM
comprises one LSTM layer with a size of 64, an FCL layer
with a size of 128, and a softmax layer for classification. The
suggested fusion structure uses one LSTM layer with a size
of 64. In order to approach or achieve the optimal value, the
Adam optimizer calculates and adjusts the network parame-
ters that have an impact on the model’s training and output,
decreasing the loss function.

C. Experimental Results for Offline Recognition

The purpose of the offline recognition is to implement and
test the proposed framework in a PC for activity recogni-
tion with the previously collected data and then the offline
implemented model can be deployed on a smart device to
test the model for real-time, online data. This enables a user-
independent, device-independent HAMR system for activity
monitoring and recognition. We present the experimental find-
ings of the suggested technique in this part in terms of
accuracy, precision, recall, and ROC score. The findings of our
suggested method for identifying each activity are examined
next, and they have condensed in Fig. 2 and Table III. Fig. 2
shows the confusion matrix on test data using our proposed
model. The misclassification rate of Sit(A3), and Stand(A4)
activities are higher in comparison with other activities. It may
be possible due to the static nature of these activities. Table III
shows the average precision, recall and F1-score for the test
data using 10-fold CV. Fig. 3 demonstrates the accuracy and
loss with respect to the number of epochs with our proposed
model. The loss curve starts to converge just after 40 epochs
as shown in Fig. 3.

1) Comparison With Traditional Approaches: The afore-
mentioned traditional ML and DL-based approaches are tested
using the same smartwatch-based UCI data set with 10-fold
CV and the experimental results (accuracy, F1-score, and
ROC-AUC score) are tabulated in Table IV. Our proposed
approach achieves higher performance with the accuracy and
F1-score of 97.07% and 96.30%, respectively. Hence, our

Fig. 2. Confusion matrix on test data of the proposed method.

Fig. 3. Accuracy and loss w.r.t epochs of the proposed method on test data.

TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT METHODS USING 10-FOLD CV

proposed method in which Multihead CNN with attention
mechanism followed by LSTM learns the features more effi-
ciently to achieve higher performance. Table V demonstrates
the performance of different methods using LOSO CV. This
cross-subject test is more challenging since the models are not
aware of the test data, which creates a more realistic environ-
ment for testing the generalization skills of the models [4].
According to the findings shown in Tables IV and V, our
suggested strategy performs better than the aforementioned
methods when employing both the 10-fold and LOSO CV.

2) Ablation Experiment: Ablation is a long-used technique
in neuroscience that involves inflicting controlled damages
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TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT METHODS USING LOSO CV

TABLE VI
EXPERIMENTAL RESULTS OF ABLATION STUDY

on neural tissue to see how they affect the brain’s ability to
accomplish given tasks. This method yields an in-depth under-
standing and explanations of each aspect of the activity’s pat-
tern and function in response to external stimuli [30]. Ablation
is used to better comprehend DL-based approaches as a natural
extension. An ablation study examines the performance of
a system by deleting specific components to determine the
component’s contribution to the system. An ablation study
as shown in Table VI is performed to reveal the importance
of each component such as multihead, CNN, attention, and
LSTM included in the proposed method. First, we experiment
only using the CNN model without an attention network. The
designed CNN learns the sequential local features on the data
streams and achieves an accuracy of 88.56% to detect activ-
ities. As LSTM has strong sequential modeling capabilities,
we use only the LSTM model without an attention network
and achieve an accuracy of 89.23%, which is greater than the
CNN model. After that, we combine both the CNN and LSTM
models to recognize activities. The integrated CNN-LSTM,
according to Table VI, increases model performance. The inte-
grated CNN-LSTM with the attention layer also enhances the
performance of the model. To see the effectiveness of six
different heads with different filter sizes, we use multihead
CNN with and without an attention layer. Multihead CNN
with attention layer gives higher accuracy in comparison with
the previous approaches, as shown in Table VI. Then, we com-
bine LSTM with CNN to encode the temporal dependencies
of the learned local features and, subsequently, high-level rep-
resentation. After combining CNN-LSTM, we also adopted an
attention network to dynamically adjust the importance of the
features extracted using multihead CNN, the results further
improved. In Fig. 4, the results on test data are listed. The
proposed model still has the best performance thinking about

Fig. 4. Accuracy and loss for different variations of the proposed method.

accuracy and loss at the same time. Its accuracy is 97.07%,
which is a little higher than different variations of the models,
but the loss is far better than these. Thus, Multihead CNN,
attention, and LSTM are used and added to our proposed
model.

3) Comparison of the Proposed Method With SOTA
Approaches: In the HAR literature, several attention-based
deep learning methods are proposed, which are presented in
Section II. To compare our proposed method’s effectiveness
with other current methodologies described in the literature,
mentioned in Table VII, we employ accuracy and F1-score as
the performance metric. The mentioned benchmark schemes
used either a smartwatch or smartphone-based accelerometer
and gyroscope data to demonstrate the performance of their
proposed model. Out of the five benchmark schemes, the atten-
tion mechanism was used in [7], [8], and [23]. The achieved
accuracy and F1-score in [7] and [23], are lower than our
proposed method. In [8], the achieved accuracy is higher than
our proposed method using the WISDM [22] data set but lesser
using the UCI [20] data set. Khan and Ahmad [8] set the batch
size to 130 and the number of training epochs to 260, which
is very high compared to our proposed method. Moreover,
the WISDM data set is based on a tri-axial accelerometer
only. Further, in [8] the experimental results were not eval-
uated using either 10-fold CV or LOSO. Mekruksavanich and
Jitpattanakul [31] used WISDM smartwatch data to show the
performance of their proposed model. Ni et al. [21] proposed
a multihead CNN-LSTM without attention and got an accu-
racy and F1-score of 98%, which is more than our proposed
model just because they have used the smartphone-based UCI
HAR data set. This data set is well-processed and consists of
561 statistical features. Moreover, in [21], bidirectional LSTM
has been used, which is slow to train. Hence, not suitable for
real-time applications. In our proposed method, we use the raw
smartwatch-based sensory signal collected using two different
models of smartwatches with different sampling frequencies to
train the model. Without the attention layer using our proposed
Multihead CNN-LST architecture, we get 95.24% accuracy
and 93.72% F1-score, respectively. The proposed attention
mechanism dynamically adjusts the importance of features
from the two modalities. Thus, we can say that our proposed
model outperforms the existing benchmark classifiers yielding
an increased F1-score rate of 96.3% with the attention layer.
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TABLE VII
COMPARISON OF THE PROPOSED METHOD WITH SOTA METHODS

TABLE VIII
PERFORMANCE OF THE PROPOSED MODEL FOR THE REAL-TIME, ONLINE EXPERIMENT ON SMARTPHONE

D. Real-Time, Online Experiment on Smartdevice

HAR requires efforts to build a generalized model using the
training data sets with the hope to achieve good performance
in test data sets. However, in real applications, the training
and testing data sets may have different distributions due to
various reasons, such as different body shapes, acting styles,
and habits, damaging the model’s generalization performance.
Hence, to validate the generalization of the proposed model,
an unseen, independent smartphone-based data set is collected
to test the performance of the same with one of the differ-
ent activities, i.e., jogging. The proposed activity recognition
framework is also implemented for Android mobile using
an Android programming language. Previously, for offline
activity recognition, 70% of the 2738449 instances of the col-
lected data, presented in Section III-A, are used for training.
Whereas, due to the limited computation power of smart-
phones, ten instances of each activity for six subjects (subjects
2, 3, 4, 6, 8, and 9) are chosen from the previously selected
training data to train the on-device model. The test data is
taken from the rest of the subjects (subjects 1, 5, and 7) whose
activity data is not involved in training data. The purpose of
this online model is to monitor the real-time activity of the
user. In this experiment, data preprocessing (segmentation)
and classification are performed on the Android phone itself.
To prove the generalization of the proposed model, it is also
tested on the online data stream, which was collected using
a smartphone instead of a smartwatch. The smartphone-based
collected data is new, unseen, and independent of the trained
model. Three different subjects (subjects 1, 2, and 3) data,
while keeping the mobile in the front pant pocket or hand,
are tested on the smartphone. The selected activities are “sit-
ting,” “standing,” “walking,” “jogging,” “walking upstairs,”
“walking downstairs,” and “biking.” Among all these activ-
ities, biking data is collected using a smartwatch, and jogging
data are collected using a smartphone only. In both cases, the

average classification accuracy is higher. This signifies that
the proposed framework is device independent as well as user
independent.

There is no significant difference in the average accuracy
for all the activities performed by different users with various
device-based unseen, independent data with different posi-
tions, as shown in Table VIII. This makes the proposed model
more efficient and intelligent as it overcomes user-dependent,
device-dependent, and position-dependent issues. This appli-
cation is also tested on a Samsung M32 mobile with MediaTek
Helio G80 processor to check the CPU utilization. It uses
under 8% CPU utilization. Hence, this application can also
be run with other applications simultaneously.

V. CONCLUSION AND FUTURE DIRECTIONS

This article proposes a novel attention-based deep learn-
ing approach to HAR based on a tri-axial accelerometer and
gyroscope signal in the context of IoHT. In this work, we
address the following major challenges: 1) using training
data sets from two different smartwatches with two differ-
ent tri-axial sensors; 2) the use of the proposed method in a
smartphone i.e., a memory and energy constraints device; and
3) validate the generalizability of the proposed architecture
using an unseen, independent, real-time data set. The proposed
method combines multihead CNN, an attention mechanism,
and an LSTM network. The proposed framework does not
require specific data preprocessing and feature engineering
methods which are mandatory in traditional HAR approaches.
The proposed framework automatically learns important dis-
criminant features using an attention mechanism to efficiently
recognize human activities. The attention mechanism works
as a mitigation technique to overcome data heterogeneity
impairments. The results of the experiments show that the
suggested method may get a very high-identification rate of
97.07% using 10-fold CV and 96.03% using LOSO CV when
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testing accuracy is measured and F1-score of 96.30% and
95.77% using 10-fold and LOSO CV, respectively. Moreover,
the proposed method is tested using unseen and independent
data from both the smartphone and smartwatch are 95.5% and
96.7%, respectively, which validates the generalizability of the
proposed model.

There are several future directions and research chal-
lenges concerning next-generation computing using DL. In
line with the recent study of [33], future work will con-
sider edge computing with a higher number of activities
and even under more complex situations as new challenges.
Moreover, the developed algorithm will be validated with sev-
eral wearable devices to improve its identification ability for
tiny devices with limited memory, computational power, and
energy [34], [35]. We also expect to embed intelligence into
the proposed model for real-time decision making.
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