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Abstract—Exactly once data processing/delivery can be
guaranteed in traditional big data processing systems, e.g.,
Apache Flink. Checkpoint is commonly used as the solution.
Each operator in these systems can restart from the last success-
fully saved state whenever a failure happens. It is not necessary
to restore the logical job graph onto the same device(s) in
traditional datacenter scenarios with powerful servers close to
each other. However, the datacenter-oriented solutions are not
suitable for IoT collaborative edge computing scenarios. The
logical job graph is tightly coupled to the physical topology
in IoT networks. Data processing task(s) cannot be placed at
a random edge device to recover from a network failure as it
needs to evaluate the benefits of transmitting data versus pro-
cessing/aggregating the data. To address the above challenges,
this article proposes an information-centric networking-based
solution and correspondent protocols to provide exactly once
computation for the collaborative edge in IoT (ECE). It contains
a job execution scheme to deliver IoT jobs with exactly once data
computation guarantee and a recovery procedure to dynamically
change the IoT job execution graph while experiencing link fail-
ures. The protocol also provides a checking procedure on data
state (received/unreceived and computed/uncomputed) to prevent
any data loss or duplicated data processing due to the updated
job graph. A data identification approach based on the job graph
is devised to support the ECE functionality. A testbed has been
developed on ndnSIM and the simulation results have verified
the feasibility and scalability of ECE design. It also evaluates
the overhead incurred by the ECE protocol to guarantee exactly
once data computation.

Index Terms—Collaborative edge computing, exactly once
computation, information-centric networking (ICN), Internet of
Things (IoT).

I. INTRODUCTION

THE INTERNET of Things (IoT) [1]-enabled smart
systems thrive in diverse areas. All of them rely on sens-

ing devices to capture a vast amount of raw data from the
physical world as the first step. Edge computing [2], [3],
proposed to be complementary of cloud computing, has proved
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its ability to boost IoT Big Data processing by placing compu-
tation at the proximity of data sources. Researchers [4] further
demonstrate that computation-intensive tasks, e.g., image pro-
cessing and speech recognition, can benefit from the synergy
of multiple edge devices than offloading to a single edge
server. It is defined as collaborative edge computing [5], [6]
which distributes data computation to multiple edge devices
and coordinates them working together to complete the whole
job(s).

Many complex IoT applications invoke the collaborative
edge computing framework for better performance, such as
the collaborative cross-edge analytics to preprocess training
data for artificial intelligence (AI) IoT [7] and the hierarchi-
cal federated learning system with partial model aggregation
deployed on edge servers [8]. Fruitful studies in this area
have focused on optimizing resource usage and task deploy-
ment, handling network failures during job execution is not
the main concern in their works. In fact, it may result in
data loss or duplicated data transmission and/or processing
if a network failure happens during the edge collaboration,
which could end with wrong processed results or trained
models.

This article addresses the challenge of guaranteeing exactly
once computation on the same data in collaborative edge sce-
narios. Existing works related to this topic is very scarce.
Initial attempts utilize the checkpoint scheme to save the
state of an IoT task into Docker images [9], concerning
task migration from one edge device to another [10] and
information transfer between different tasks [11]. However,
their works are limited to task execution on a single edge
device. Although checkpoint-based solution has been maturely
developed in traditional big data processing frameworks, e.g.,
Apache Spark [12] and Apache Flink [13], this article argues
that the solution is difficult to be applied into IoT scenarios.
First, it is not necessary to restore the logical graph onto the
same device(s) in traditional datacenter scenarios with power-
ful servers close to each other. In sharp contrast, the logical
job graph is tightly coupled to the physical topology in IoT
edge environment. Data processing task(s) cannot be placed
at a random edge device to replace the previous failed one
as it needs to evaluate the benefits of transmitting data versus
processing/aggregating the data. Second, the traditional check-
point approach requires the system to take a snapshot of each
operator’s state periodically. Then the snapshots are normally
saved to a durable storage, e.g., Hadoop distributed file system
(HDFS) [14], which is not widely available in edge computing
environments.
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Thus, this article identifies the following challenges to
achieve exactly once computation in collaborative edge
computing for IoT data processing.

Challenge-1 (Backup Essential Data Processing
Information in Distributed Edge Nodes): Edge collaboration
can be interrupted by IoT network failures due to unstable
network connections and IoT device mobility. It requires to
decide which information of data processing is essential and
sufficient to be used to recover from the failures. Then it
brings the challenge on how to save the information effi-
ciently. Unlike the datacenter environments, a central storage
for the essential information is not practical in IoT edge sce-
narios. As edge computing is proposed to complement cloud
computing to deal with the high volume/velocity/variety
of data produced by massive amounts of IoT devices,
it is preferable to distribute the information storage on
the edge.

Challenge-2 (Handle Network Failures During Edge
Collaboration While Guarantee Exactly Once Computation
on the Same Data): When the network connection between
two edge devices fails, it breaks the original job execution
graph containing the two edge devices. The downstream edge
is not sure if its data has been successfully delivered to its
upstream neighbor. This requires designing a scheme to uti-
lize the information described in Challenge-1 to repair the
job execution graph to resume normal data processing. It also
needs to check whether any data has been lost or duplicate
processed due to the network failure.

Challenge-3 (Limited Storage Space at Edge Devices): Only
capable edge devices can participant in the collaborative edge
computing for IoT applications. The burden of edge devices
becomes heavier if they need to process data meanwhile
store relevant information. Thus, the information described in
Challenge-1 cannot be saved on edge devices permanently.
As edge devices cooperate with each other to complete each
IoT job, one edge device randomly deletes some information
at its local storage may affect the whole job processing pro-
cedure. For example, the job cannot be recovered from the
failures described in Challenge-2 if the information saved on
edge devices has been deleted before the failure happens. As
a result, it brings the challenge on how to assess whether the
job-state (JS)-related information is out-of-date/of-no-use and
then how to clean the information distributedly saved on edge
devices.

To address the challenges, this article designs exactly once
computation for collaborative edge (ECE) protocol which
consists of a job execution procedure (to solve Challenge-1
and Challenge-3) and a job recovery procedure (to solve
Challenge-2). Some basic concepts are described to facilitate
the introduction of the proposed design. As a continuous work
of our previous one (MR-Edge) [15], the following keeps the
same: 1) a tree topology is adopted as the job execution graph,
with the device issuing jobs as the root; 2) a completed JS is
defined as the final job results correctly computed by edge
devices following the prebuilt job tree and received by the
root node; and 3) all communication between devices is real-
ized in the way based on the information-centric networking
(ICN) [16].

ECE job execution procedure is implemented by:
1) differentiating each (raw or computed) data sample to sup-
port the storage (Challenge-1) and deletion (Challenge-3) of
job-processing-related information and 2) getting a consensus
among devices on who process which data samples and when
to delete which information. ECE devises a data identifica-
tion (ID) approach which combines the job ID it belongs to
and the device/node ID that has collected/computed the data.
Specifically, the job ID is set by the root node before job
dissemination. The node ID is uniquely created and updated
along the data computation path on the job tree in a distributed
manner, from the root node to each other node.

With the ID assignment available, ECE defines two types
of information to answer Challenge-1, i.e., the data sample
ID and its corresponding raw/computed content. Each node
on the job tree saves the defined information in a pair as one
record after they process. However, each node knows what data
content it has computed but has no idea of the computation
progress at other nodes and whether the job has completed,
which is a reaching consensus problem in a distributed system.
Inspired by the two-phase commit protocol [17], ECE job exe-
cution procedure contains two phases. The Job Execute Phase
distributes job requests, returns computed data results, and
saves essential data processing information. The JS Commit
Phase is launched periodically by the root node to notify others
on the job tree of the job(s) state, i.e., completed or uncom-
pleted. Therefore, each device can delete their local records
of specific completed jobs.

ECE job recovery procedure can coexist with the job execu-
tion procedure. It empowers nodes experiencing link failures
to explore an alternative route (to reach the root node) to
replace the failed one. The affected nodes can resume the job
execution procedure on the updated job tree. Afterward, the
nodes interact with the root node to trace back their previous
data computation path to check whether any data samples
are lost due to link failures. The previous data computation
path is obtained by decomposing the ID of the node that has
just recovered from link failures. If data losses are found,
the recovered nodes retransmit the lost data sample(s) to the
root node. Otherwise, no retransmission is arranged so that
duplicated data processing can be avoided.

To the best of our knowledge, this is the first work to
implement the exactly once data computation in IoT collab-
orative edge scenarios. The contributions of this article are
summarized as follows.

1) A job tree-based ID assignment approach is devised
to support the storage and deletion of data-processing-
related information. The ID format embeds the knowl-
edge of nodes that collect or compute the data, which
assists checking on data loss or duplicated computation
after recovering from network failures.

2) A job execution procedure is proposed for nodes on the
job tree to achieve a consensus on data processing plan
and remove of processing-related information with the
exactly once data computation guarantee.

3) A job recovery procedure is designed to handle link
failures happened during the job execution, aiming to
dynamically update the job tree to eliminate failed links.
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After the job tree is updated, synchronization on the data
delivery (received or unreceived) and computation (pro-
cessed or unprocessed) state is activated among affected
data sources and edge devices.

4) Simulation experiments are developed to evaluate and
compare ECE performance with a checkpoint-based
benchmark solution, in terms of network traffic and job
execution time. It also analyzes the overhead associated
with computation records (CRs) storage and unique ID
assignment.

The reminder of this article is organized as following:
Section III presents the related work. Section IV describes the
protocol design in detail. The experimental setup and evalua-
tion results are presented in Section IV. Section V concludes
this article and discusses the future work.

II. RELATED WORKS

A. Collaborative Edge in IoT

Various IoT applications benefit from the collaborative edge
computing framework, such as less production order delivery
time in industrial IoT [18] by self-organized task mecha-
nism among multirobots, a trustworthy framework for smart
cities [19] and an edge-assisted data monitoring system to
minimize response latency and reduce cloud workload [20].

Despite the extensive research works on IoT edge comput-
ing, little work has considered guaranteeing exactly once data
delivery and processing.

The solution proposed in [21] improves the message queue
systems, e.g., Kafka [22] and RabbitMQ [23], to ensure exactly
once processing through a consumer side protocol. All mes-
sages are stored in a shared databased and a state transition
graph is introduced on each message to control access and
operation. IoTEF [24] is a federated edge–cloud architecture
based on Docker containers, which deploys one Kafka cluster
in the edge and one in the cloud. It uses Kafka to buffer data
streams in case of network failures and ensure exactly once
data semantics within a cluster.

As described in the introduction section, checkpoint-based
approach is applied to save the state of an IoT task as a
container image in [10] and [11] to facilitate task migration
and restarting. However, the job execution is undertaken by
a single edge device in these works. The traditional big data
processing frameworks, e.g., Apache Spark [12] and Apache
Flink [13], have employed the checkpoint-based schemes to
achieve exactly once processing. However, the solution is not
suitable for IoT edge environments. The main reason is that
the logical job graph is tightly coupled with the physical job
graph in IoT networks. The gain of data processing versus data
transmission should be considered when mapping the logical
job graph into the physical devices.

B. Distributed Consensus Protocol

To achieve exactly once computation in IoT collaborative
edge, it is necessary to obtain a consensus on the data com-
putation plan among the edge devices. The two-phase commit
protocol [17], [25] is widely used in distributed systems to
coordinate all parties to agree or abort an action. The two

phases are the commit-request phase and the commit phase.
It designates a coordinator node, and the rest of nodes are par-
ticipants. The main procedure of the protocol is summarized as
follows. In the commit-request phase, the coordinator sends a
message to all participants asking to commit. Each participant
votes yes or no according to its state. The commit phase starts
when the coordinator receives all participants’ replies. If all
participants vote yes, the coordinator sends a commit message
to all participants. If any participant replies no, the coordina-
tor sends a rollback message to all participants to abort the
operation. This article is inspired by the two-phase commit
protocol, which defines a Job Execute Phase for disseminat-
ing and executing jobs (i.e., the commit-request phase) and
a JS Commit Phase to commit the job completion state only
if all nodes returning computed job results correctly (i.e., the
commit phase).

C. Named Data Networking Basics

The proposed design is implemented upon the named
data networking (NDN) [26] architecture to meet the
data/information-centric nature of IoT applications. NDN
uniquely identifies each data/content with a specific name
and uses the name to retrieve and forward data. The nam-
ing is hierarchically constructed in NDN. For example,
the first reading value of the humidity sensor in room
1 of the SRI office in the TUS campus can be named
/TUS/SRI/room1/humidity/reading1.

Communication in NDN is achieved by exchanging two
packets: 1) interest and 2) data. A content consumer sends
an Interest carrying the name of the desired data. A matched
data/content is embedded in the Data packet and returned to
the consumer in the reverse path of the Interest. This arti-
cle defines specific Interest naming for different phases of the
protocol to support its functionalities of the respected phase.

NDN routers maintain three tables to facilitate data lookup
and forwarding [27]. The first one is content store (CS) which
caches the Data locally. If a matched Data is found in the CS of
an NDN router, the Data is returned by the router directly. The
second is forwarding information base (FIB) which provides
the name-based routing information. When a router receives
an Interest packet, it will first check its CS. If it fails to find
a matched Data, the router looks up its FIB to forward the
Interest to the next hop matching the naming of Interest packet.
The third table is pending interest table (PIT). A router saves
all received Interests waiting for the matched Data packet in
its PIT. Each PIT entry includes the name of the Interest and
all interfaces from which the Interest(s) is received. When
multiple Interests for the same data are requested, the router
only forwards the first one toward the data source. When
a Data arrives, the router finds the matching PIT entry and
returns the Data to the corresponding interface(s). Afterward,
the router deletes the PIT entry and caches the Data in its CS.

D. ICN-Based Edge Computing for IoT

The original design of ICN supports in-network data
forwarding and caching while lacks the in-network process-
ing functionality. To tackle this issue, paper [16] assumes all
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edge nodes are able to process data and then the final execution
placement depends on the tradeoff between the data transmis-
sion and computing resource cost. Edge-ICN [28] facilitates
the deployment of ICN in large network scale by leveraging
SDN technology. The architecture proposed in [29] explores
ICN-featured forwarding strategy to dynamically deploy edge
services based on the service popularity. The main difference
between this article and the above works is to ensure the
exactly once data computation in a distributed manner in the
ICN style.

III. PROTOCOL DESIGN

This section presents the ECE solution and its potential
application scenarios.

A. Target IoT Scenarios

The proposed computing framework can serve many IoT
applications requiring sensory data dispersed across a large
area. While the IoT data is transmitted from data sources to
the final job processor, the intermediate nodes (e.g., edge,
network, and cloud devices) along the path may contribute
their resources to execute computational task over the data
passing through them. A hierarchical edge structure is usually
formed to organize edge nodes with different powers under-
taking (sub) tasks that matches their capabilities. Such as a
four-layer fog computing architecture for big data analytic
in smart cities [30], a three-tier edge computing paradigm
for intelligent warehouse system [31] and a multilayer IoT-
Fog-Cloud continuum [32] with coordinated management
strategies. In these systems, IoT end devices at the bottom
layer could use ZigBee or Wi-Fi [33] to communicate with the
edge server in their area. The communication between hierar-
chical edge servers (e.g., base stations and access points) can
be achieved through LTE or 5G [34].

This article is an improvement of our previous work MR-
Edge, i.e., a MapReduce-based computation framework for
IoT edge computing environments [15]. The concerned com-
putation jobs are those requiring processing the data from
multiple static IoT end devices, such as temperature sensors
and speed sensors on the road. The intermediate nodes that
can process the data are called reducers which run user-defined
reduce function on received data, whereas those cannot process
the data but can forward the data are called forwarders. The
stub nodes of IoT edge networks are called mappers, which
connect with multiple sensors. They take raw sensing data as
input and run user-defined map functions on the data.

B. ECE Protocol Overview and Assumptions

Fig. 1 presents the relationship of the five phases in the
design. Normal job operation is not disturbed by recovering
from failures. The definition of each phase is listed as follows.

1) Job Tree Build Phase forms a job tree with each new
user as the root and the user could issue multiple jobs
on its job tree.

2) Job Execute Phase disseminates jobs requests, returns
computed results and saves intermediate state of job
processing.

Fig. 1. Overview of the ECE five phases.

3) JS Commit Phase periodically clears intermediate state
of completed jobs on edge devices.

4) Job Tree Rebuild Phase updates the job tree to eliminate
failed link(s) when network failures happen.

5) JS Sync Phase ensures link failures and the updated
job tree cause neither data losses nor duplicated data
computations.

As ECE is built upon NDN, the communication between
nodes in all phases is achieved by exchanging the NDN
Interest and Data. Different Interest naming schemes have been
designed to facilitate the functionalities at each phase. The job
tree is created using the shortest path algorithm of the NDN
routing protocol. Additional metrics (e.g., link bandwidth [35]
and, energy-efficiency [36]) can be considered when creating
the job tree to optimize the performance, which is beyond the
scope of this article. This article is also aware that the capa-
bilities of the massive IoT devices are significantly different.
Describing their resources and selecting the appropriate ones
for IoT jobs [37] are not the main concern in this article.
Moreover, the protocol currently is limited to execute state-
less jobs [38] whose output is solely based on its input, not
the intermediate computational states. Specifically, the same
computation on the same data can be undertaken by any capa-
ble edge devices. The computed result is only related to the
number of input values rather than the order of them. To this
end, the data computation can be recovered from a changed
job tree due to link failures.

The following sections will describe each phase in detail.

C. Job Tree Build Phase

A tree topology is built with a user node (sink node) as
the root node before it issues jobs in the proposed framework.
This procedure is called the Job Tree Build Phase. The job tree
is formed based on the NDN routing table which employs the
shortest path algorithm. Every node has its own table so that
it knows how to reach a specific node from itself. However,
a node may have no idea of the routing information of other



17342 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 19, 1 OCTOBER 2023

nodes. All nodes need to exchange their information to form a
tree, which is achieved by sending NDN Interest and replying
NDN Data packets.

A BuildJobTree Interest is defined for the Job Tree Build
Phase and written as follows:

/NeighborName/BuildJobTree/JobTreeID/UpstreamNodeName (1)

where: 1) /NeighborName is the name of each neighbor of the
current node; 2) /BuildJobTree is the identifier to trigger the
procedure of building job trees; 3) /JobTreeID is the combi-
nation of the name of the root node and a random number;
and 4) /UpstreamNodeName is the name of the current node,
which is used to for the downstream neighbors to identify the
sender of this Interest.

The sink node initiates this phase by creating and sending
a BuildJobTree Interest. The reducers and forwarders mod-
ify the “UpstreamNodeName” part and then forward it to
their neighbors, until reaching the mappers. After receiving a
BuildJobTree Interest, each node checks its own routing table
and selects the neighbor on the shortest path to the sink node
as its upstream node on the current job tree. Replying the
BuildJobTree Interest starts from mappers to reducers and for-
warders, and finally to the sink node. The result is that each
node has a record of “JobTreeID – JobNeighbors” locally. The
information is used for disseminating job(s) later. The job tree
construction completes when the sink node receives all replies
from its neighbors. More details of the job tree building steps
can be found in MR-Edge [15] paper.

D. Job Execute Phase

The Job Execute Phase starts when the job tree is ready.
It contains two steps, the first is node ID allocation that is
proposed in this article to differentiate each data sample. It
is the fundamental support of the exactly once data com-
putation feature. The second step is job dissemination and
execution, which is the same procedure as in MR-Edge [15].
An improvement is made during the job execution compared
with MR-Edge, which saves the intermediate state of job pro-
cessing on edge devices. The aim of this design is to deal with
link failures happening during job execution.

ID Allocation and Maintenance: The data content identifi-
cation is challenging. One may argue that each data content
can be uniquely identified by using an NDN name as the ID.
The problem of directly using NDN names is that it cannot
reveal which node(s) has(ve) computed the data sample. Thus,
it is hard to check the data computation state after recovering
from link failures so that fails to guarantee the exactly once
computation on the same data.

For two nodes connected by the same edge on the job tree,
we call the one closer to the sink node as the upstream node,
the other as the downstream node for clarity in the rest of
this article. When a link failure happens during the data trans-
mission, the downstream node may not be sure if the data
has been successfully delivered. After the downstream node
rejoins the job tree by connecting to a different upstream node,
it needs to check if the local cached data had been deliv-
ered before retransmission to ensure exactly once computation.
This becomes more complicated when the data delivered to the

previous upstream node is still under transmission/processing
in the job tree.

ECE embeds the information of data provider and data com-
puting nodes into the ID of each data content during the job
execution as the solution. To identify each data content in the
network, this article first assigns a global ID for each node
based on the shortest path of the job tree. ID allocation is
launched before issuing any job requests. As mapper nodes
are the data sources in the proposed design, they label each of
their returned data with their node ID plus the job tree ID cre-
ated by the user/sink node. Data samples from different nodes
can only be computed by reducers if they have the same job
tree ID to ensure the computation correctness. The ID of a
computed data content consists of its reducer’s global ID plus
the job tree ID. Whenever a link failure happens, the affected
node can use the data sample ID(s) to trace back the CRs of
its provided data content, such that the node can inquire the
computation state of its data content, i.e., whether received
and computed correctly.

An AssignID Interest is designed to assign node ID and
it is written as (2). Where, /JobNeighbor is the name of a
neighbor obtained in the Job Tree Build Phase. /JobTreeID is
created by the sink node when sending the job tree building
request. /NodeGlobalID is the actual global ID assigned to the
corresponding job neighbor and it is construed as follows:

/JobNeighbor/JobTreeID/NodeGlobalID. (2)

The upstream node assigns a unique identifier (e.g., a
number) to each of its downstream nodes as a local ID. The
records of local IDs are only maintained at each upstream
node. Since each node on the job tree has a unique path
between itself to the sink node, a tree-path-based global ID
of each node is constructed by accumulating the local IDs on
the path from the sink node to itself. The sink node assigns
the global node ID to its neighbors, which is the same as
the nodes’ local ID as the sink node has no upstream node.
The intermediate reducers and forwarders receive their global
ID from their upstream node and then allocate global IDs to
their downstream nodes, which is done by concatenating the
local ID of a downstream node at the end of the global ID
of the current reducer/forwarder, separated by a hyphen. The
reducers and forwarders assign global IDs to their neighbors
using the AssignID Interest. The mappers are the leaf nodes
of the job tree and consequently they only receive the global
ID from their upstream node. All upstream nodes maintain
an ID table to save the global and local ID of its downstream
neighbors. Each record in the table is for a downstream
neighbor, in a tuple <downstream job neighbor name, its
local ID, its global ID>.

The global ID allocation is undertaken hop by hop starting
from the sink node and reaching all the nodes on the job tree.
An ACK message is replied from the mappers, in the reversed
path of ID allocation, and finally returns to the sink node. To
this end, the sink node knows that the ID allocation procedure
is complete and it is ready to issue jobs.

Fig. 2 presents an example to explain how the ID allocation
procedure works. An IoT network topology is shown in
Fig. 2(a) with the original connections between the nodes.
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Fig. 2. Illustration of ID allocation of ECE protocol. (a) Original network
topology. (b) Job tree topology. (c) Updated job tree due link failure.

The numbers inside each circle are used to represent their
NDN name, respectively. For instance, “13” is the NDN name
of the node 13 and node 1 uses “13” as the “NeighborName”
when constructing the BuildJobTree Interest during the Job
Tree Build Phase (described in Section III-C). The NDN name
of a node keeps the same no matter which role it acts in ECE
protocol.

Assume that node 0 wants to issue a job, it becomes
the sink node or user node in the design. It first sends the
BuildJobTree Interest to the network, resulting in the job tree
shown in Fig. 2(b). The solid lines in the figure indicate orig-
inal network links currently being used on the job tree. The
nodes with numbers 8–14 labeled with a green color are the
mappers for the current job. Other nodes may act as a reducer
or forwarder according to their computing capabilities and
the number of downstream neighbors. For instance, node 1
becomes a reducer (in red color) because it receives data
samples from multiple neighbors on the job tree, and it is
currently capable of computing these data. Node 6 is a for-
warder (in yellow color) because it connects with only one
mapper (node 10). Node 5 does not join the job tree as none

Fig. 3. Illustration of ECE node ID tables. (a).Initial ID tables. (b) ID tables
update as job tree Change. (c) Node global ID update as job tree Change.

of the nodes selects it as the neighbor for sending data to
node 0.

When the job tree is ready, node 0 as the sink node assigns
the local ID to its job neighbors, i.e., node 1 and node 2.
Recursively, every upstream node assigns a number (for sim-
plicity, starting from 0) to each of its downstream neighbor
as the local ID. Node 1 receives 0 as its global ID and node
2 receives 1 as its global ID as illustrated in Fig. 2(b) with
blue text. Node 1 and node 2 continue the global ID assign-
ment by creating global IDs for their downstream neighbors.
Specifically, node 1 assigns the local ID 0 to node 3 and local
ID 1 to node 13. Then node 1 concatenates node 3’s local ID
to its own global ID separated by a hyphen symbol, conse-
quently, the global ID of node 3 is 0-0. Similarly, node 15
obtains 0-1 as its global ID. Node 2 assigns local IDs 0, 1,
2 to its neighbor nodes 6, 4, and 16, respectively, and conse-
quently the corresponding global IDs for nodes 6, 4, and 16
are 1-0, 1-1, and 1-2, respectively. All the intermediate reduc-
ers and forwarders follow this rule to allocate a global ID to
their neighbors, until all the mappers receive their global ID.
The blue texts in Fig. 2(b) presents each node’s global ID sent
by its upstream node on the job tree.

All the upstream nodes create and maintain an ID table
to save the details of the assigned local and global IDs. To
explain the details, the path on the established job tree in
Fig. 2(b) with the nodes: 10/11 –> 3 –> 1 –> 0 is chosen
as an example. Fig. 3(a) shows the respective ID table of
the sink node 0 and reducer 1 and 3. The first column of
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the ID table saves the NDN name of each downstream node,
abbreviated as “Nei_node.” The second and last column are the
local ID and global ID of the downstream node. The local ID
is only known between two direct connected nodes (one is the
upstream and the other is the downstream) and is supervised
by the upstream node.

The mappers save their global ID and uses the received job
ID (sent by the sink node) to label each data they produced,
for example, the incremental sequence numbers attached to
nodes 10 and 11 shown in Fig. 3(a). Only data content and its
ID are returned during the Job Execute Phase. The global ID
of a node is used to check whether the data it has produced
or computed is affected by link failures.

Job Dissemination and Execution: When ID allocation is
complete, the sink node can send computation tasks by using
the ComputingJob Interest which is defined and written as
follows:

/JobNei/JobTreeID/JobID/MapFunc/ReduceFunc/ContentFilter

(3)

where /JobNei is the name of the neighbor obtained in the Job
Tree Build Phase, /JobTreeID is created by the sink node in the
Job Tree Build Phase, which is used to identify the job and
to retrieve the corresponding job neighbors in case multiple
jobs co-existing in the network, and /JobID is constructed
by the sink node for each issued job. The sink node can
send multiple jobs on the built job tree. The rest parts of the
Interest (/MapFunc/ReduceFunc/contentFilter) are defined by
each sink node, which describes the functions to process the
data and the desired data content.

Every job is sent by the sink node, traverses the intermediate
reducers and forwarders and finally reaches the mappers. The
procedure of job execution is in the reverse direction of job
dissemination. The /ContentFilter section specifies the data
that should be computed by the job. The mappers first decom-
pose the ComputingJob Interest to retrieve the user-defined
map function. They run the /MapFunc to process captured
data and then return to their selected upstream node. All map-
per data is further processed by the reducers at each level of
the job tree through the /ReduceFunc.

For example, a job of counting temperature values in the
range of 20–30 Celsius in the Engineer Building can be
written as:

/map(x => (x, 1))/reduceByKey((y1, y2) => (y1 + y2))/

content(EngineerBuilding/temperatureSensor).

The content filter specifies target data sources for this job,
i.e., all temperature sensors in the Engineer Building. Each
selected sensor acts as a mapper, which runs the Map function
to process its reading and returns the data content in the format
of (temperature-reading, 1). The temperature reading of each
sensor is treated as the key and the value “1” is the appearance
of the temperature reading for this job. Intermediate reducers
receive key-value pairs from its job neighbor. They run the
Reduce function to add values with the same key.

The sink node gets the computed result(s) returned from
its job neighbors and perform the final computation, which

indicates the completion of the current job. The data process-
ing/computing requirement of an exactly once job is defined as
that all the mapper data requested by the sink node is retrieved
and each data sample is computed exactly once on the way to
the sink node.

Two tables are designed to aid ECE nodes to log the data
computation state of each job in case link failures happen dur-
ing executing tasks. The first table is called the JS Table that
is managed by the sink node. The table is useful to check
completed job ID(s) in the JS Commit Phase to clear cor-
responding information saved at edge nodes. The sink node
creates a record of each issued job request and checks the
corresponding received computation results. The JS is saved
as a pair of “JobID—State (Completed/Uncompleted).” A
completed job means that each edge node on the job tree
has finished its processing on the issued job request and
final computed result has been correctly delivered to the sink
node, which ensures the reliability of the data delivery and
computation. More detailed protocol is described in the Job
Tree Build Phase. The second table is the CR Table which
saves the job tree ID and the data received from downstream
neighbors for the job (abbreviated as dataContent) with its cor-
responding ID (abbreviated as dataID). Each record in the CR
Table is in the form of “JobTreeID—DataID—dataContent.”
All reducers, forwarders and mappers maintain a CR Table
locally. Each of them inserts a record to its CR Table after
returning or forwarding the computed/produced data to its
upstream node.

E. Job State Commit Phase

As IoT edge devices are resource-constraint, the
intermediate state (saved in the JS Table and CR Table)
of job execution cannot be stored permanently. Meanwhile,
the saved information can only be cleaned if the correspon-
dent task has completed. The JS Commit Phase is designed
to achieve the goal.

The sink node notifies its job neighbors of the specific job
ID(s) that have completed in the Job Execute Phase so that
ECE nodes can clear the corresponding saved information.
The JobCompleted Interest for this phase is defined as (4)
and it can be sent periodically depending on the job require-
ments, e.g., every 30 s or every ten completed jobs. This article
assumes that the sink node is aware of the resource constraints
of the edge nodes and then decides the frequency of send-
ing the JobCompleted Interests accordingly. The sink node
creates the JobCompleted Interest. Intermediate reducers and
forwarders forward this Interest until it reaches mappers

/JobNeighbor/JobTreeID/CompletedJobID(s) (4)

where /JobNeighbor is the name of a neighbor obtained
in the Job Tree Build Phase. /JobTreeID is created by
the sink node when sending the job tree building request.
/CompletedJobID(s) is the successfully computed job ID(s)
summarized by the sink node to inform others on the job tree.

As a result, all the ECE nodes achieve the consensus of
the completed tasks they have participated and they no longer
need to maintain the history records of the completed job(s),
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e.g., the cached computed data content at reducers and the
saved previously captured data samples at mappers. It helps to
release resources and space for the edge devices engaged in the
data processing. In contrast, the intermediate processing state
of tasks should be saved if nodes receive no notifications from
the sink node. An ACK procedure is employed to response the
JobCompleted Interest, which is initiated by the mappers and
traverses in the reverse path of the JobCompleted Interest and
finally reaches the sink node as the end of the JS Commit
Phase.

F. Job Tree Rebuild Phase

ECE nodes experiencing link failures can initiate the Job
Tree Rebuild Phase to recover. If there is only one neighbor
in the original IoT network, i.e., the current upstream node,
the node must check the link regularly until it recovers. For
instance, as shown in Fig. 2(b), node 13 only has one neighbor
(node 7) on the network. Here, we focus on the case that the
nodes have other paths connecting to the sink node besides
the one just failed.

A failed link affects two neighboring nodes. To help explain
the design, the upstream node is defined as the Previous-
Upstreamer and the downstream node is defined as Rebuilder.
For example, if the link between node 12 and node 6 in
Fig. 2(c) is disconnected, node 6 is the Previous-Upstreamer
and node 12 is the Rebuilder. The Job Tree Rebuild Phase is
always initiated by the Rebuilder. This article assumes that the
link condition is detected by periodically exchanging HELLO
messages between the neighboring nodes, which is a widely
used scheme in routing protocols. The following procedure is
adopted whenever a link failure is detected.

The Rebuilder checks if it has other neighbors on the orig-
inal IoT network, excluding the Previous-Upstreamer and its
child nodes. Two cases are designed according to the checking
result.

Case 1 [Rebuilder Has Other Neighbor(s)]: A
RebuildJobTree Interest is defined as (5) and (6) with a
slight difference for this case. Interest (5) is sent by the
Rebuilder and Interest (6) is used for the neighbors of the
Rebuilder to forward the rebuilding request when needed. The
meaning of each part of the Interest is: 1) /NeighborName
is the name of each neighbor of the Rebuilder found in the
original IoT network; 2) /RebuildTree is the identifier for
the Job Tree Rebuild Phase; 3) /RebuilderName is the NDN
name of the Rebuilder; 4) /JobTreeID is to indicate the job
tree of interest; and 5) /UpstreamNodeName is the name of
the upstream neighbor of the Rebuilder.

/NeighborName/RebuildTree/RebuilderName/JobTreeID (5)

/NeighborName/RebuildTree/UpstreamNodeName/JobTreeID. (6)

If the Rebuilder finds any neighbor(s), it sends a
RebuildJobTree Interest (5) to each of its neighbors. A node
receives the RebuildJobTree Interest and parses the con-
tent. Two scenarios may happen after the node extracts the
JobTreeID in the Interest and checks whether it is already on
the job tree.

Scenario-I: the node has joined the job tree with the
requested JobTreeID. The node assigns a local and global
ID to the downstream neighbor that sends the RebuildJobTree
Interest, also inserts the record to its ID table as introduced
in Section III-D. It then replies a “Rebuild-OK” message
with the assigned global ID. If multiple “Rebuild-ok” mes-
sages are received, the Rebuilder node always chooses the
first one received and notifies the other neighbors to withdraw
its rebuilding requests.

Scenario-II: the node is not on the job tree with requested
JobTreeID. The node rewrites the RebuildJobTree Interest as
(6) and forwards it to its neighbors, which repeats the above
procedure to process the Interest. If a node has no neigh-
bors available, it directly replies “Rebuild-Rejected.” Note
that, the mappers are defined as not responsible for dis-
seminating or forwarding jobs to others due to their limited
resources and capabilities. Therefore, when a mapper receives
a RebuildJobTree Interest, it refuses the request by replying a
“Rebuild-Rejected” message even though it is working on the
job tree. Finally, if the Rebuilder receives “Rebuild-Rejected”
messages from all its neighbors, it takes the same action as
defined in case 2.

The Rebuilder can reenter the Job Execute Phase after
receiving its new global ID. Meanwhile, the Rebuilder
launches the JS Sync Phase to make sure neither data
losses nor data duplications are caused by the link failure,
which is described in the next section. If the Rebuilder is
connecting downstream nodes on the job tree, it needs to
update their global IDs by notifying them with the ChangeID
Interest defined as (7). The interest includes three parts:
1) /JobNeighbor is the name of a neighbor on the job tree;
2) /JobTreeID is to specify the affected job tree in case
multiple job trees coexist; and 3) /ChangeID(NodeGlobalID)
is to inform the downstream neighbors the new ID assigned
for the specific job tree

/JobNeighbor/JobTreeID/changeID(NodeGlobalID). (7)

Case 2 [Rebuilder Has No Other Neighbor(s)]: If the
Rebuilder cannot find any neighbors, it needs to notify its
downstream neighbor(s) to search for a new path to reach the
sink node. This design aims to reduce the number of nodes
affected by link failures as less as possible.

A ChangePath Interest is defined for this case and it is
written as (8). In the Interest, /JobNeighbor is the name
of a neighbor used to disseminate jobs in the Job Execute
Phase, /ChangePath is the identifier to notify the downstream
neighbors to alter the path for reaching the sink node, and
/JobTreeID is to specify the affected job tree in case multiple
job trees coexist

/JobNeighor/changePath/JobTreeID. (8)

Each downstream neighbor of the Rebuilder becomes a new
Rebuilder when it receives the ChangePath Interest, which is
named downstream-Rebuilder for clarity. A new round of Job
Tree Rebuild Phase is initiated for each downstream-Rebuilder.
When the downstream-Rebuilder successfully finds a new path
on the job tree, it should notify the Rebuilder by replying a
“Leave-tree” message. This notification helps the Rebuilder to
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maintain its downstream neighbors for the specific job once
it recovers from the link failure and re-enters the Job Execute
Phase. Any downstream-Rebuilders that have failed to find an
alternative path will regularly checks with the Rebuilder to get
updates of the failed links (whether it is recovered).

Two examples of link failures are illustrated in Fig. 2(c).
The following steps are the rebuilding procedure for the job
tree edge between node 4 and node 2 failed.

Step-1: Node 4 as a Rebuilder finds that no other neighbors
exist except the current upstream node 2 and the current down-
stream node 7 on the job tree. It notifies node 7 by sending a
ChangePath Interest.

Step-2: Node 7 becomes a downstream-Rebuilder and sends
the RebuildJobTree Interest to its neighboring node 9 and 16.

Step-3: Node 16 is already on the requested job tree, but
it replies “Rebuild-Rejected” as it is a mapper. As node 9 is
not on the requested job tree, it rewrites the RebuildJobTree
Interest and sends to its neighbors. Node 8 takes the same
action as node 9 and gets a “Rebuild-ok” message from node
2. Node 9 then replies to node 7 after it receives the “Rebuild-
ok” message and its global ID from node 8. Details of the
nodes’ ID table are presented in Fig. 3(b).

Step-4: Node 7 receives its new global ID and notifies its
downstream neighbors on the job tree, i.e., node 13 and node
14, with a corresponding changed global ID by sending the
ChangePath Interest. The ID table of node 7 is updated as
shown in Fig. 3(c). Meanwhile, node 7 notifies node 4 of
the path change result. Node 4 can rejoin the job tree by
connecting node 7 as the upstream node if needed.

G. Job State Sync Phase

The JS Sync Phase aims to prevent any violations of the
exactly once computation requirement due to the job tree
changes, i.e., to avoid the local cached data in the Rebuilder to
be recomputed if the data has been computed in the previous
upstream node of this Rebuilder. The Rebuilder initiates this
phase after it finds a new path to recover from link fail-
ures. The procedure is to synchronize the data computation
state starting with the sink node, traversing the reducers or
forwarders on the previous path (before link failures), until
reaching the Previous-Upsteamer of the Rebuilder. Note that
the newly arrived data (after the link failure) from the down-
stream nodes to the Rebuilder node will be processed as
normal, and therefore, this phase can coexist with the Job
Execute Phase.

A JobSync Interest is defined for the JS Sync Phase, as
shown in (9). The meaning of each part of the Interest
is as follows. /SinkNodeName is the NDN name of the
sink node. As the sink node gathers all computed results
for each job, the Rebuilder first asks the sink node as the
starting point. /JobSync is the identifier for the JS Sync
Phase. /RebuilderGlobalID is the global ID of the Rebuilder.
/JobTreeID is to indicate the specific job tree in case multiple
job trees running at the same time. /JobID/DataID contains
the ID(s) of data-samples for specific job to be checked

/SinkNodeName/DataCheck/RebuilderGlobalID/

JobTreeID/JobID/DataID. (9)

The following steps are undertaken in this phase.
Step-1: The Rebuilder constructs the JobSync Interest and

sends it to the sink node.
Step-2: The sink node parses the JobSync Interest to get the

/JobID. It first checks whether the task has completed. If a task
is marked as completed, it means that all the data content has
been correctly computed and received, and consequently the
data-samples to be checked is not affected by the Rebuilder’s
link failure. The sink node can reply a “DataSample-Received”
message to the Rebuilder, which indicates that the JS Sync
Phase has finished. If the sink reducer finds that the task state
of the JobID is uncompleted, it means that the corresponding
job execution is still ongoing and the sink node requires more
information to answer the JobSync Interest.

The sink node further extracts the RebuilderGlobalID
and DataID from the JobSync Interest. It searches the
RebuilderGlobalID in its ID table resulting in the two cases
below.

If the RebuilderGlobalID is found, it means that the sink node
is the Previous-Upstreamer of the Rebuilder. The sink node then
checks the DataID in its JS Table. If the data has been received,
the sink node replies a “DataSample-Received” message to the
Rebuilder, which indicates that the JS Sync Phase has finished.
Otherwise, the sink node replies “DataSample-Not-Received”
and asks the Rebuilder to resend those data.

If the sink node fails to find the RebuilderGlobalID in its ID
table, it needs to forward the JobSync Interest to the previous
path of the Rebuilder before the link failure. This requires to
decompose the global ID of the Rebuilder to obtain the next
hop node to reach the Previous-Upstreamer of the Rebuilder.
As described in Section III-D, the global ID of a node consists
of its upstream neighbors’ global IDs separated by hyphens.
The sink node is the starting point of each individual path on
the job tree. Therefore, it extracts the first sub-ID (the number
before the first hyphen) to find the next destination node to
forward the Interest. The sink node compares the sub-ID with
all the assigned local IDs in its ID table. The node with a
matched local ID is the next hop node (named NextHop for
clarity) to forward the JobSync Interest.

As the downstream nodes require further information to
parse the message, the sink node creates a new Interest
named ForwardJobSync, as defined in (10). The Interest is
based on the JobSync Interest with two different components.
/NextHopName is the NDN name of the NextHop. /HopNum
is the hop number of the current node to reach the sink node
on the job tree. This design assists other nodes to parse the
RebuilderGlobalID in the ForwardJobSync Interest

/NextHopName/DataCheck/RebuilderGlobalID/

JobTreeID/JobID/DataID/HopNum. (10)

Step-3: The NextHop node extracts the RebuilderGlobalID
and DataID after having received the ForwardJobSync
Interest. It then checks each data sample ID in the DataID in
its CR Table. For each data sample, if it is received, it means
either this node is the Previous-Upstreamer of the Rebuilder
or the upstream node of the Previous-Upstreamer which has
received the processed data content after the link failure. The
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Fig. 4. Procedure of ECE JS sync phase.

NextHop replies a “Data-received” message for each received
data sample to the node (either the sink node or an upstream
NextHop) that has sent the ForwardJobSync Interest.

If the DataID is not found, the NextHop node searches the
RebuilderGlobalID in its ID table. If the RebuilderGlobalID
is found, it means the ForwardJobSync Interest has reached
the Previous-Upstreamer of the Rebuilder. The NextHop node
replies “DataSample-Not-Received.” If the NextHop fails to
find the RebuilderGlobalID in its ID table, it rewrites the
NextHopName and HopNum parts of the ForwardJobSync
Interest and forwards it to the downstream NextHop. Suppose
that the HopNum is n in the received ForwardJobSync Interest,
the current NextHop node knows that the hop number of its
upstream node is n so that its own hop number equals to n+1,
which means the current NextHop node extract the (n+1)th
sub-ID as the local ID of the next destination node. It then
finds the neighbor with the matched local ID, replacing the
NextHopName by the neighbor’s name. Repeating step-3 until
a NextHop node finds the RebuilderGlobalID matching one of
the neighbors’ global ID in its ID table.

Step-4: If a NextHop node is neither the Previous-
Upstreamer of the Rebuilder nor the one found the matched
DataID content in its CR Table, it simply forwards the received
reply message.

Step-5: The sink node receives the replied message. If the
message content is “DataSample-Received,” the sink node for-
wards this message to the Rebuilder, which means the JS Sync
Phase has finished. If the message content is “DataSample-
Not-Received,” the sink node asks the Rebuilder to resend
those data. The JS Sync Phase is complete when the sink
node receives all the missed data-samples from the Rebuilder.

Fig. 4 presents an example for the JS Sync Phase. Node 12
finds a new upstream node (node 5) after the link between
itself and node 6 fails. The green lines with arrows in the
figure indicate the normal data computation flow in the Job
Execute Phase. Steps of the JS Sync Phase are the blue lines
with arrows, labeled as steps 1)–6). To explain in detail:

1) node 12 as the Rebuilder sends the JobSync Interest to
node 0;

2) node 0 as the sink node checks the task ID, node global
ID and data ID embedded in the Interest and does not
find the corresponding records. Therefore, it constructs

the ForwardJobSync Interest and sends to the next hop
neighbor;

3) node 2 as the NextHop parses the received Interest
and checks the embedded node global ID and the
data sequence numbers. As it does not find matched
information, it revises the ForwardJobSync Interest and
continues the forwarding process;

4) node 6 as the NextHop of node 2 receives
the ForwardJobSync Interest. It finds that the
RebuilderGlobalID within the Interest matches one of
its downstream neighbor’s global ID. To this end, Node
6 is the Previous-Upsteamer of node 12. It checks the
corresponding data CRs and then replies;

5) node 2 as the intermediate NextHop forwards the reply
from node 6 to node 0;

6) node 0 replies to node 12 according to its received
message content.

H. Overhead Analysis of ECE

The overhead incurred by ECE design includes two parts,
one is the CRs saved at each ECE node and the other is the
network traffic generated to handle link failures and ensure the
exactly once data computation.

Network Traffic: The network traffic transmitted in the Job
Tree Build Phase and the Job Execute Phase is defined as the
actual job traffic, which sends job requests and returns com-
puted job results in the formed job tree. Extra cost besides
the actual job traffic is exchanged to deal with link failures
and guarantee the exactly once computation on the same data,
which includes the Job Tree Rebuild Phase, the JS Sync Phase
and the JS Commit Phase, abbreviated as ECE-RSC phases.
For clarity and simplicity, let XRSC−Interest and XRSC−Data
denote the corresponding size of the Interest and Data packets
used in the ECE-RSC phases, including the RebuildJobTree,
the ChangePath, the JobCompleted, the JobSync and the
ForwardJobSync Interests introduced in previous sections.

In the Job Tree Rebuild Phase, at most three procedures con-
tribute to the overhead traffic. The first is that the Rebuilder
searches the alternative path(s) to find an upper stream neigh-
bor which is already on the job tree in order to rejoin the
job tree. For example, in Fig. 2(c) node 3 is the upper stream
neighbor of node 12. We call this upper stream neighbor as
Joint-Upstream for clarity and use DJoint−Up

Rebuilder to represent the
path distance between the Rebuilder to the Joint-Upstream.
The second procedure is the notification of ID change. After
the Rebuilder finds a new path to rejoin the job tree, it
receives a new global ID. If the Rebuilder is a mapper
node, the second procedure can be ignored as mapper nodes
have no downstream neighbor in ECE design. Otherwise,
the Rebuilder then needs to update the global ID of all
its downstream neighbors and notify them of the change.
Suppose Nchild denotes the total number of nodes on the sub-
tree with the Rebuilder as the root. The number of edges
traversing by the ChangePath Interest equals to the number
of nodes (i.e., Nchild) on the subtree. The third procedure is
optional. More traffic is generated when the Job Tree Rebuild
Phase involves node(s) acting as downstream-Rebuilder(s).
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For example, node 7 as a downstream-Rebuilder communi-
cates with node 4 which is the Rebuilder in Fig. 2(c). Suppose
Ndown is the total number of downstream-Rebuilder connected
to the Rebuilder and DRebuilder

down(i) is the path distance between
the downstream − Rebuilder i and the Rebuilder. To simply
the overhead expression, the cost of each IoT network link is
assumed to be the same and labeled as Cl. The total overhead
occurred in the Job Tree Rebuild Phase (OR) can be written
as follows:

OR = Cl ∗
(

DJoint−Up
Rebuilder + Nchild +

Ndown∑
i=1

DRebuilder
down(i)

)
∗

(XRSC−Interest + XRSC−Data). (11)

The overhead traffic in the JS Sync Phase also includes three
procedures at most. The first is the communication between
the Rebuilder and the sink node. Let DSink

Rebuilder denotes the
path distance from the Rebuilder to the sink. If the sink
node has already received the data sample(s) matched the
ID(s) in the JobSync Interest, this phase is finished and the
rest two procedures can be omitted. Otherwise, the second
procedure is the enquiry between the sink node and Previous-
Upstreamer of the Rebuilder or the upstream node of the
Previous-Upstreamer which has received the processed data
content after the link failure. Suppose DUpstream

Sink is the path
distance between the sink node and the upstream node which
can answer the ForwardJobSync Interest. The third procedure
is optional. It is for data retransmission if finding any data
samples missing in the previous procedures. The Rebuilder
resends the specific data samples to the sink node. Thus, the
overhead traffic in the JS Sync Phase (OS) can be written as
follows:

OS = Cl

(
DSink

Rebuilder + DUpstream
Sink + DSink

Rebuilder

)
(XRSC−Interest + XRSC−Data). (12)

In the JS Commit Phase, the sink node sends the notification
to all other nodes on the job tree periodically. Suppose if Ntotal
is the number of nodes on the job tree, there are (Ntotal-1)
edges to transmit the Interest and Data packets in this phase.
Let Ttotal denotes the time length of the current sink node
issuing jobs on the job tree and tcommit as the frequency for
the sink node to send the JobCompleted Interest. The overhead
traffic in the JS Commit Phase (OC) can be written as follows:

OC = Cl(Ntotal–1) (XRSC−Interest + XRSC−Data)

(Ttotal/tcommit). (13)

The network traffic overhead of ECE altogether is calculated
as OR+OS+OC. Observing equations (11), (12), and (13) can
conclude three factors that affect the overhead. The first is the
job tree size. Both the depth and width of the job tree decide
the number of nodes required by current job(s). The deeper
and wider the job tree, the bigger the variable Ntotal in equa-
tion (13), which increases the overhead traffic. The second
factor is the predefined frequency for the sink node to send
notifications, i.e., tcommit in equation (13). For the same job
running the same time on the job tree, the smaller the value of
tcommit, the more rounds of the JS Commit Phase are invoked.

It results in a bigger value of OC which contributes to the
whole overhead of ECE. The last factor is the node that expe-
riences a link failure, i.e., the Rebuilder in ECE. The overhead
traffic OR in equation (11) is tightly related to the number
of messages that the Rebuilder sent in the Job Tree Rebuild
phase, i.e., to find a new upstream node (DJoint−Up

Rebuilder), to notify
downstream neighbors of ID change (Nchild) and the previous
upstream neighbor of path change (

∑Ndown
i=1 DRebuilder

down(i) ). In addi-
tion, the distance between the Rebuilder and the sink node
directly affects the overhead OS in equation (12). The longer
the distance, the more messages exchanged to finish the JS
Sync Phase.

CR Storage: The intermediate state of job execution is saved
at each ECE node, i.e., the sink node maintains the JS Table
and others have their corresponding CR Table. Let Wi rep-
resent the number of records for nodei to insert to its local
TS/CR Table per second and Tclear is the time length for wait-
ing the notification of clearing records from the sink node.
The number of records saved by all ECE nodes for each clear-
record-cycle (WECE) can be calculated as (14). It is easy to
summarize that the overhead of ECE CR storage is decided by
Tclear. The smaller the Tclear value, the less records maintained
by each node. However, it is worth to mention that a smaller
Tclear results in entering the JS Commit Phase more frequent,
which increases the network traffic overhead. It is up to the
sink node or IoT applications to decide the best Tclear value

WECE =
Ntotal∑
i=1

(Wi ∗ Tclear). (14)

IV. EVALUATION AND ANALYSIS

This section presents tests to verify the feasibility of
ECE and evaluate its performance under different link fail-
ure scenarios. As ECE relies on a job-tree-based ID and a
multiple-phase job execution scheme to assure the exactly once
data computation, overhead analysis is conducted in terms of
ID allocation (varying according to the tree depth), the job
maintenance (occurred in ECE-RSC phases), and intermediate
state of job processing save at edge nodes.

Due to no existing approaches targeting the same problem as
studied in this article, a benchmark solution is developed based
on the checkpoint scheme. It is abbreviated as CP-Benchmark
for clarity and its main idea is summarized as follows.

Step-1: The sink node has the information of processing-
capable devices in the network. It generates a job execution
plan/graph before issuing computation tasks, which randomly
picks the processing nodes and then splits the data sources into
subgroups accordingly. The sink node notifies each selected
processing node of the generated job graph.

Step-2: During the job execution, the sink node sends a
checkpoint message periodically to all nodes on the job graph.
Each node returns its current state to the sink node (to mimic
the central and durable storage for checkpoint snapshots) as the
reply for the checkpoint message. The checkpoint is success-
fully saved if the states of all nodes are normal. Otherwise, the
sink node initiates a recovery procedure to fix the failure/error.
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Fig. 5. Job tree built and updated by ECE. (a) Initial built job tree. (b) Job tree updated after 1st link failure. (c) Job tree updated after 2nd link failure.

Step-3: The sink node randomly picks another device to
replace the failed one and migrates the computation tasks on
the new-picked node.

Step-4: The sink node asks all nodes on current job graph
to rollback to last checkpoint to restart. The system jumps to
step-2 to repeat.

All tests are implemented on ndnSIM [39] which is a sim-
ulator specially designed for NDN. The following settings are
applied to all tests: the sink/user node sends one task Interest
per second. ECE mappers/CP-Benchmark data sources return
a Data packet per received task Interest. Edge nodes process
data samples every five seconds, which facilitates the ndnSIM
simulator to capture link failure events. It can be flexibly set
to meet the requirements of IoT applications. The network
traffic is calculated by accumulating the number of transmit-
ted Interest and Data packets by all nodes involved in the job
tree/graph.

Two types of data transmission speed (bandwidth + delay)
are set for the simulation: 250 Kbits per second + 10 ms
based on the ZigBee protocol between a mapper and a
reducer/forwarder of ECE, and between a data source and
a processing node of CP-Benchmark. 54 Mbits per second
+ 1 ms using the IEEE 802.11 parameter between reduc-
ers and forwarders of ECE, and between processing nodes
of CP-Benchmark.

A. Feasibility of ECE

To verify if ECE functions correctly as described in the pro-
tocol design section, the network topology shown in Fig. 2(a)
is created in ndnSIM. Node 0 is configured as the user node
and nodes 10–16 are set as mappers. Nodes 1–9 may act as a
reducer or a forwarder or do not participate in data processing
depending on their situations. The user node has a job request
which consecutively issues 100 computational tasks. It also
sends a JobCompleted Interest every 20 committed tasks to
notify other nodes on the job tree to clear the corresponding
history job records.

The cost of all links is set to the same. The job tree is built
according to the NDN routing protocol utilizing the short-
est path algorithm. Link failures are defined to happen during
the job execution at different moments: the first failed link is
between node 6 (a forwarder) and node 12 (a mapper) and the
second is between node 2 (a reducer) and node 4 (a forwarder).

Fig. 6. Traffic on ECE nodes.

Fig. 5 shows different job trees during the simulation: (a) is
the initial job tree built with node 0 as the root, (b) is the
updated job tree after the link between node 6 and 12 fails
and (c) is the job tree after the second link failure happens
(between node 2 and 4). In the figures, each node is shown as
a red dot, and the green lines indicate the edges on the job tree
while the black ones are not currently used by the tree. The
updated job trees prove that ECE protocol can deal with link
failures without suspending normal job execution procedure.
Moreover, the final job result is received correctly neither with
data lost nor duplicated processing.

Fig. 6 reflects the transmitted traffic at each node during
the test. The figures of node 10, 11, 15 and 16 have the same
curve pattern, which are stable and repeat regularly. Because
the four nodes are not affected by any network failures. They
act as mappers to receive task requests and return data content.
The peaks in their figures represent the periodic JobCompleted
Interest sent in the JS Commit Phase, i.e., every 20 committed
tasks.

After the first link failure happens, it causes more traffic
for the following nodes. First, the highest peak in the figure
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of node 12 is the extra messages of ECE-RSC to handle the
first link failure. Second, as node 6 only has one job neighbor
(node 12) and after the link between them fails, it neither
receives nor returns job data. Consequently, its curve stays
at 0 after the first link failure. Third, node 5 is the updated
upstream job neighbor of node 12, it starts to transmit Interest
and Data packets because of the rebuilt job tree. Lastly, the
number of transmitted packets of node 3 increases after the
first link failure because it adds one more job neighbor (node
5) and therefore it needs to send more ComputingJob Interests
and reply with more computed job results.

The second link failure forces node 4 to leave the job tree
as it has no backup routes reaching the sink node, resulting
its curve turning to 0. Meanwhile, node 4 notifies the link
failure situation to its child neighbor node 7 so that node 7
can try to find an alternative route without being affected by
the link failure. The rebuilt job tree enables node 7 to con-
tinue working on the job tree by adding nodes 8 and 9 as
forwarders on the new path. Thus, the curve in the figure of
node 8 and 9, respectively shows transmitted packets after the
second link failure. Furthermore, the number of transmitted
packets by node 7 grows as labeled by the red oval in its
figure, which is the procedure initiated by node 7 to search
alternative paths. The global ID of node 7 changes because its
upstream neighbors on the job tree has been updated. It also
changes the global ID of the child nodes of node 7. The high-
est peak in the figure of nodes 13 and 14 shows the increased
number of messages for the notification of updated global ID.

B. Network Traffic Comparison and Analysis

ECE network traffic overhead is evaluated by comparing
with the CP-Benchmark. Two network topologies are created
to show the performance. A job in the tests is defined as con-
secutively executing and completing 100 computational tasks.
The sink node sends a JobCompleted Interest every 20 com-
mitted tasks in ECE test case. As more network traffic is
incurred by a higher checkpoint frequency, two checkpoint
intervals are deployed for the CP-Benchmark tests, i.e., every
5 s and every 20 s.

Toy-Topology in Fig. 2(a): The network topology in
Fig. 2(a) is created in ndnSIM for tests. Two failures are
set during the job execution for ECE and CP-Benchmark,
respectively. Node 0 is the user node and node 10-16 are
data sources. Other nodes act as edge devices and whether
an edge node joins data processing depends on the job
tree/graph generated by the protocol. CP-Benchmark randomly
picks three edge nodes to undertake data processing and
therefore the data sources are randomly separated into three
groups.

Fig. 7 shows the test results, i.e., the black curve represents
ECE and CP-Benchmark with checkpoint interval in 5 and
20 s is in blue (CP_5) and red (CP_20), respectively. At the
beginning of the simulation, the highest peak of ECE is the
number of messages exchanged by all nodes in the Job Tree
Build Phase. The job tree is built once for every new user
node, which brings the most overhead in a round of job exe-
cution. As the sink node is assumed to have the information

Fig. 7. Network traffic comparison: ECE versus CP-benchmark.

of network resources in advance for the CP-Benchmark solu-
tion, the initial cost of generating job graph is lower than that
of ECE.

When the job execution starts, it is easy to observe that
the network traffic of CP-Benchmark is always above ECE no
matter the setting of checkpoint interval. The main reason is
CP-Benchmark takes no consideration of the physical topology
when generating the logical job plan. In this test, the job graph
generated by the CP-Benchmark is selecting node 1 to process
data samples from nodes 10, 13, 14, and 16, node 5 to be
responsible for nodes 11 and 12, and node 7 to manage node
15. The cost of transmitting raw data to edge nodes is larger
than the gain of data computation or aggregation. In most
cases, the distance between a data source and a processing
node is longer than the path of directly sending data samples
from the data source to the sink node.

The peaks with a dot on the top of CP-Benchmark curves
are the moments to handle link failures. It produces more traf-
fic than the job execution procedure because the sink node
needs to pick another edge node to recover and notify all
nodes on the job graph to rollback to last checkpoint state.
The network traffic of CP-Benchmark with 5-s checkpoint
interval (blue curve) is higher than it with 20-s interval (red
curve) because checkpoint messages are transmitted more fre-
quent during the job execution. The benefit is that the system
can detect and recover from failures more quickly, which
reduces job execution latency. The time cost of CP-Benchmark
with 20-s checkpoint interval is approximately 30s longer
than both its 5-s interval and ECE by observing the x-axis
of Fig. 7.

An enlarged view of ECE curve is added in Fig. 7 to show
more details. The peaks with a dot on the top indicate the two
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Fig. 8. Job graph on BRITE-topology. (a) ECE job tree. (b) CP-benchmark
job graph.

link failures. According to equations (11) and (12) described
in previous section, more messages are exchanged to rebuild
the job tree, sync JSs and retransmit lost data if any. The peaks
with a square on the top are the moments of the JobCompleted
Interest traversing all nodes on the job tree to clear history job
data, as described in equation (13). The job completion time
of ECE is the same as CP-Benchmark with 5-s checkpoint
interval.

BRITE-Topology: To test the scalability of ECE protocol,
a network topology consisting of 100 nodes is generated by
using BRITE [40] topology generator with RouterWaxman
model. It is called BRITE-Topology for clarity. Node-0 is
configured as the sink/user node. For the rest 99 nodes,
69 nodes (node numbers 31–99) act as mappers/data sources
and 30 nodes are edge nodes. Five link failures are set during
the simulation for ECE and CP-Benchmark, respectively.

Fig. 8(a) and (b) is the corresponding job graph generated
by ECE and CP-Benchmark. The red dots represent nodes,
green lines with arrows are links used on the job graph, and
black lines are original network links that are not used by
current job. ECE builds the job tree with node-0 as the root.
CP-Benchmark randomly selects five edge nodes to undertake
data computation tasks. All data sources are split into five
groups and the number of nodes in each group is random in
the range from 5 to 15.

Fig. 9. Network traffic comparison on BRITE-topology. (a) ECE overhead
analysis. (b) ECE versus CP-benchmark.

Fig. 9(a) presents the test results of ECE to complete the
same job with/without failures. ECE-Exec (red curve) is the
test case that no failures happen during the job execution.
ECE-RSC (black curve) shows the network traffic varying with
ECE to handle five failures during the job execution. Both
curves have the highest peak at the initial of the test because
of ECE nodes exchanging the routing information to build the
job tree.

The ECE-Exec curve goes up and down every 5 s during the
whole test, which keeps the same as the frequency of reducers
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to process data every 5 s. The network traffic increases when
the reducers return the Data packets after processing. The
black curve overlaps with the red curve most time of the sim-
ulation, which proves limited extra cost incurred by ECE to
achieve exactly once data computation. The peaks with a blue
diamond on the top above the black curve represent the sink
node sending JobCompleted Interests in the JS Commit Phase.
These peaks also contain the network traffic for ECE handling
link failures, which explains the first two peaks are higher
than others in the zoomed view of Fig. 9(a). Observing the
network traffic, the black curve is lower than the red one from
approximately 50th second of the test. As link failures result
in updated job trees, the number of Interest and Data packets
decreases because of nodes changing their role during the job
execution to aggregate multiple packets into one. For example,
the number of Data packets can reduce if a node that was not
on the job tree becomes a reducer to aggregate multiple job
data content into one Data packet.

The network traffic comparison between ECE and CP-
Benchmark is shown in Fig. 9(b). CP-Benchmark with 5-s
and 20-s checkpoint interval are, respectively, presented as
the blue (CP_5) and red (CP_20) curve. ECE curve is in
black, which is the same as the ECE-RSC shown in Fig. 9(a)
if need to see more details. As more nodes are included in
the BRITE-Topology, the cost of ECE to build the job tree
grows consequently. It also results in the network traffic of CP-
Benchmark increasing significantly, which always transmits
more packets than ECE to complete the same job.

With the network size increases in IoT, data transmission
from data sources to processing nodes contributes a lot to the
total network traffic if ignoring their physical topology during
job assignment, such as CP-Benchmark randomly grouping
data sources with edge nodes. In addition, it causes notice-
able delay to finish the same job when using checkpoint-based
scheme to guarantee exactly once data computation, which
could even double the job execution time if observing the red
curve in Fig. 9(b).

C. Overhead of ECE Computation Record Storage

For the evaluation purpose, the clear-record-frequency
(CRF) is defined as the number of completed tasks to clear
all history records once. The job tree built in Fig. 5(a) is
applied. A job in this simulation is defined as consecutively
executing and completing 200 tasks. The sink node sends a
JobCompleted Interest with CRF = 50/20/10, respectively, for
the same job.

Fig. 10 shows the number of records saved at each ECE
node with different CRF settings. The red curves represent
CRF = 50, the green curves are for CRF = 20 and the blue
ones for CRF = 10. The black lines in the figure track the
network traffic for the job tree building and job execution
processes, which are the same as the ECE-Exec results dis-
cussed in previous section. As nodes 5, 8, and 9 are not on
the job tree, they neither transmit job data nor save CRs.

The number of saved records varying with CRFs can be sep-
arated into two types. One is the test results of mappers (node
10–16). In the case of CRF = 50, the red curve repeats in a

Fig. 10. Overhead of job CRs storage.

period of increasing from 0 to 50 and dropping to 0. Similarly,
the green curve rises from 0 to 20 and downs to 0 with
CRF = 20 and the blue curve is in a cycle of 0 to 10 to 0 with
CRF = 10. The curves of mappers grow smoothly for all CRF
settings because mappers reply each received ComputingJob
Interest immediately. A job CR is added after returning each
Data packet. The number of transmitted packets for executing
actual jobs stays at 2 no matter the CRF settings, i.e., one Data
packet plus one received Interest packet per second in the Job
Execute Phase.

The rest of the ECE nodes, i.e., node 0 as the sink node
and nodes 1–4, 6, and 7 as a reducer or a forwarder, present
another type of test results. All curves grow every 5 s due to
the predefined data processing frequency of reducers and for-
warders. The number of save job CRs is cleared every 10/20/50
completed jobs with corresponding CRF settings. The curves
of job execution packets keep the same, which is not affected
by CRF changes. The test results follow the same conclusion
of the equation (14) in the previous section that the bigger
CRF value the more records maintained by all ECE nodes.
It depends on the specific IoT applications to decide the best
CRF setting.

D. Overhead of ECE ID Allocation and Update

As the ECE node ID is constructed based on the path of the
job tree, the depth of a job tree directly affects the cost of the
initial ID allocation and as well as the ID update whenever a
network failure happens. Two network topologies are created
in Fig. 11 as a comparative study of the cost of the ECE ID
allocation and update affected by the job tree depth. The only
difference between the two initial job trees, i.e., Job-Tree-A
and Job-Tree-B, is the number of intermediate nodes between
the sink node and the mappers.
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Fig. 11. ECE ID affected by job tree depth.

The simulation runs on each job tree for 100 s. Three
link failures are configured at 32nd, 62nd, and 82nd second,
respectively, during the simulation. For Job-Tree-A, the failed
links in temporal order are the link between node 2 and m3,
the link between node 3 and m4 and the link between node 1
and m2. For Job-Tree-B, the link failures happened in order
are the links between node 8 and m3, node 9 and m4, and
node 7 and m2. The two updated job trees after the three link
failures are also shown in Fig. 11 with red dashed lines to
indicate the failed links.

The number of transmitted packets by each node varying
with the simulation time is presented in Fig. 12(a) and the
total network traffic is shown in Fig. 12(b). The black curves
represent the test data generated on the Job-Tree-A and the
red curves are for Job-Tree-B. For nodes 4–9, they only have
transmitted packets for Job-Tree-B.The curves of mapper m1
and m5 are the same for both tree topologies as the link fail-
ures have no effect on their job execution procedure. There
is a slight difference in the number of packets in the figures
of mappers m2–m4. Because changing from Job-Tree-A to
Job-Tree-B only generates more traffic in the JS Sync Phase
with more intermediate nodes involving to forward Interest
and Data packets. The transmitted packets by mapper m2-m4
in other ECE phases keep the same.

For nodes 1–3, they disseminate less job requests on
Job-Tree-B than that on Job-Tree-A because they are only
responsible for one downstream neighbor on Job-Tree-B. The
ComputingJob Interest in the Job Execute Phase is sent per
job node so that more downstream neighbors introduce more
traffic, which is doubled with returned job Data.

The total cost of the whole job tree is shown in Fig. 12(b).
The number of transmitted packets almost increases two

Fig. 12. Overhead of ECE ID update. (a) Cost at each node to update ID.
(b) Total cost of ECE nodes to update ID.

times when changing from Job-Tree-A to Job-Tree-B. The
formulated equation (11) in the previous section can also
apply here. Besides the above reasons, the cost on Job-Tree-
B also involves nodes leaving (rejoining) the job tree due to
no downstream neighbors [connecting new downstream neigh-
bor(s)], indicated by the variable DRebuilder

down(i) in equation (11).
For instance, when the link between node 8 and m3 fails, m3
finds a new path via node 7 on the job tree. When node 8
finds no job neighbors available after losing m3, it leaves the
job tree by notifying node 5 the situation. The same actions
are taken by both node 5 and 2. When the second link failure
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between node 9 and m4 happens, m4 sends rejoin request to
node 8. To this end, nodes 8, 5, and 2 need to initiate the
rejoin tree procedure one by one until getting the reply from
the sink node, indicated by the variable DJoint−Up

Rebuilder in equation
(11). Thus, the number of packets transmitted to allocate and
update ECE ID is closely related to the tree topology as well
as the specific node that experiences the link failure.

V. CONCLUSION

Collaborative edge computing is a data processing paradigm
which employs multiple edge devices cooperating with each
other to execute jobs for IoT applications. To achieve exactly
once data computation in collaborative edge computing sce-
narios, one of the challenges to be addressed is the network
connections between edge devices may fail during the job exe-
cution. This may result in data losses or duplicated data trans-
mission/computations, and consequently violates the exactly
once computation guarantee.

This article proposes the ECE protocol as a solution. It
consists of five phases and is built upon the novel ICN archi-
tecture. The Job Tree Build Phase is launched before running
any jobs and forms a tree-based job graph with the sink/user
node as the root of the tree. The Job Execute Phase dissemi-
nates job requests and returns the computed job results in the
form of NDN Interest and Data packets. Whenever a network
failure happens during the job execution, the Job Tree Rebuild
Phase and the JS Sync Phase are invoked to update the job
graph and ensure no data is affected by the failures. Finally,
the JS Commit Phase is designed to notify all the nodes on
the job tree on the completed jobs. A set of tests have been
performed to show the feasibility and scalability of the ECE
protocol and the overhead associated with ID assignment and
computation information storage is analyzed.

Future work includes improving ECE with a device capa-
bility aware algorithm to build/maintain the job tree for
different IoT applications considering the resource constraints,
device heterogeneity, energy consumption, and mobility of
edge devices. As the proposed design is built upon ICN, the
naming scheme and/or name resolution may be improved to
support more types of IoT jobs, e.g., filtering data sources
and/or selecting edge devices.
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