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Automatic Tuning of Privacy Budgets
in Input-Discriminative Local Differential Privacy
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Abstract—Local differential privacy (LDP) and its variants
have been recently studied to analyze personal data collected
from Internet of Things (IoT) devices while strongly protecting
user privacy. In particular, a recent study proposes a general
privacy notion called input-discriminative LDP (ID-LDP), which
introduces a privacy budget for each input value to deal with
different levels of sensitivity. However, it is unclear how to set
an appropriate privacy budget for each input value, especially,
in current situations where reidentification is considered a major
risk, e.g., in GDPR. Moreover, the possible number of input val-
ues can be very large in IoT. Consequently, it is also extremely
difficult to manually check whether a privacy budget for each
input value is appropriate. In this article, we propose algorithms
to automatically tune privacy budgets in ID-LDP so that obfus-
cated data strongly prevent reidentification. We also propose a
new instance of ID-LDP called one-budget ID-LDP (OneID-LDP)
to prevent reidentification with high utility. Through comprehen-
sive experiments using four real data sets, we show that existing
instances of ID-LDP lack either utility or privacy—they overpro-
tect personal data or are vulnerable to reidentification attacks.
Then, we show that our OneID-LDP mechanisms with our pri-
vacy budget tuning algorithm provide much higher utility than
LDP mechanisms while strongly preventing reidentification.

Index Terms—Frequency estimation, Internet of Things (IoT),
local differential privacy (LDP), privacy budget, reidentification.

I. INTRODUCTION

W ITH the advancement of Internet of Things (IoT)
devices, such as wearable devices, connected cars,

smart homes, and activity monitoring systems, personal data
are increasingly collected for various types of data analy-
sis. For example, a large amount of location data collected
from wearable devices or connected cars are analyzed to
calculate a frequency distribution (geographic population dis-
tribution). The frequency distribution is useful for providing
traffic information to users [1] or finding popular point of
interests (POIs), such as restaurants and cultural landmarks [2].
For another example, person activity data from monitoring
systems are analyzed to extract typical activity patterns of
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elderly people [3]. Power-consumption data from smart meters
are analyzed to find typical daily consumption patterns [4]
or the right customers to target for demand response pro-
grams [5]. Although these data are useful for industry and
society, the disclosure of personal data can lead to serious pri-
vacy issues. Therefore, there is a need to develop algorithms to
perform data analysis while strongly protecting user privacy.

Differential privacy (DP) [6], [7] is known as a gold stan-
dard for a private analysis. It strongly protects user privacy
against adversaries with any background knowledge. There are
roughly two types of DP: 1) centralized DP and 2) local DP
(LDP). Centralized DP assumes a centralized model where a
central server has personal data of all users and obfuscates
analysis results, e.g., frequency distribution. In this model,
there is a risk that the personal data of all users are leaked
from the server by illegal access [8]. In contrast, LDP assumes
a local model where each user obfuscates her personal data
and sends the obfuscated data to a data collector; i.e., it does
not assume a trusted party. Thus, LDP does not suffer from
the data breach issue and has been adopted in companies, such
as Google [9], Apple [10], and Microsoft [11].

LDP prevents an adversary from distinguishing any pair of
input values and controls the indistinguishability by a param-
eter called a privacy budget ε. LDP regards all input values
as equally sensitive and uses the same privacy budget for all
pairs of input values. However, different input values have
different levels of sensitivity in practice. For example, homes
and hospitals are highly sensitive locations, whereas parks,
restaurants, and sightseeing places would be less sensitive for
most users. Cancers and HIV are highly sensitive diseases,
whereas headache, sore throat, and stomachache would be
less sensitive. In these scenarios, LDP mechanisms excessively
obfuscate personal data and cause the loss of data utility.

To address this issue, a recent study proposed a general
privacy notion called input-discriminative LDP (ID-LDP) [12].
ID-LDP deals with different levels of sensitivity in input values
by introducing a privacy budget εx for each input value x. ID-
LDP controls the indistinguishability of a pair of two input
values x and x′ as a function of the corresponding budgets εx

and εx′ . ID-LDP is general in that we can use any function
for the pair. It includes MinID-LDP [12] and high-low LDP
(HLLDP) [13], [14] as instances, both of which provide higher
utility than LDP.

However, it is difficult to manually determine an appropriate
privacy budget for each input value in practice. For example,
it is well known that DP strongly protects user privacy when
the privacy budget is small; e.g., ε ≤ 1 [15]. Thus, it is natural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5110-1261


MURAKAMI AND SEI: AUTOMATIC TUNING OF PRIVACY BUDGETS 15991

to allocate such small privacy budgets to sensitive locations,
such as homes and hospitals. However, it is unclear how much
privacy budgets should be allocated to less sensitive locations,
such as parks and restaurants.

In particular, even if some input values are nonsensitive for
users, the disclosure of them may lead to the reidentification
of records [16]. For example, assume that Alice disclosed the
fact that she went to a coffee shop, which was nonsensitive
for her. An adversary who obtains this information may use
it for reidentifying another sensitive record (e.g., hospital she
regularly visits near the coffee shop) in a different database.
Consequently, various kinds of personal data from different
databases may be linked to make a user profile [17], and it
might be sold on the dark Web [18]. Since reidentification is
considered a major risk in general data protection regulation
(GDPR) [19], [20], we need to strongly protect all personal
data, including nonsensitive data, from reidentification attacks.

Moreover, IoT devices can collect various data, and the pos-
sible number of input values can also be very large, e.g., larger
than 10 000 in our experiments. Thus, it is extremely difficult
to manually set an appropriate privacy budget for each input
value and to manually check whether each value is appropri-
ate. Setting an appropriate privacy budget is also recognized
as an important challenge in Internet of Vehicles (IoV) [21].

In this article, we propose algorithms to automatically deter-
mine privacy budgets in ID-LDP so that obfuscated data
strongly prevent reidentification. Note that in many practical
scenarios of the local model, an adversary needs to per-
form reidentification attacks to link the obfuscated data to
users [22]. For example, some applications (e.g., Foursquare,
Google Maps, and YouTube recommendation) can be used
without a login, i.e., without sending a user ID. For another
example, a data collector pseudonymizes obfuscated data to
reduce the risks to the users, as described in GDPR [19]. In
both cases, an outsider adversary who obtains the obfuscated
data needs to reidentify the data. Our algorithms automatically
determine privacy budgets to strongly prevent this attack.

As a task for the data collector, we consider frequency esti-
mation [9], [12], [23], which is a fundamental task in the local
model. We show that our proposed algorithms strongly prevent
the reidentification attack while providing much higher utility
than LDP.

Our Contributions: Our contributions are as follows.
1) We propose privacy budget tuning algorithms for ID-

LDP, which automatically determine privacy budgets
so that obfuscated data prevent reidentification. To our
knowledge, this work is the first to automatically deter-
mine a privacy budget for each input value to prevent
reidentification (see Section II for details).

2) We also propose a new instance of ID-LDP called
one-budget ID-LDP (OneID-LDP) to bound the reidenti-
fication risk with high utility. We prove that OneID-LDP
upper bounds the reidentification accuracy for every
obfuscated data, hence, every user.

3) Through comprehensive experiments using four real data
sets (one location data set with six cities and three person
activity data sets), we show that two existing instances of
ID-LDP lack either utility or privacy—MinID-LDP [12]

TABLE I
RELATIONSHIP BETWEEN THE EXISTING WORK AND OUR PROPOSAL.

OUR PROPOSAL IS HIGHLIGHTED IN BOLD

TABLE II
PRIVACY AND UTILITY OF THE THREE PRIVACY NOTIONS. WE ASSUME

THAT OUR PRIVACY BUDGET TUNING ALGORITHMS ARE

APPLIED TO MINID-LDP AND ONEID-LDP

still overprotects personal data and lacks utility, and
HLLDP [13], [14] is vulnerable to reidentification.

4) Finally, we show the effectiveness of our algorithms
using the four data sets. Specifically, we show that our
OneID-LDP mechanisms with our privacy budget tuning
algorithms provide much higher utility than MinID-LDP
and LDP mechanisms while preventing reidentification.

Novelty: Below, we explain the novelty of our work in more
detail. As explained above, our proposal is twofold: 1) auto-
matic tuning of privacy budgets and 2) OneID-LDP. Table I
shows the relationship between the existing work and our
proposal.

First and most importantly, the automatic tuning of pri-
vacy budgets (i.e., the third column of Table I) is a totally
new research direction. All of the existing work on ID-
LDP [12], [13], [14] manually set a privacy budget εx for
each input value x without theoretical justification; e.g., εx =
ln 6 [12] or∞ [13], [14] for nonsensitive data. In contrast, our
privacy budget tuning algorithms automatically determine εx to
provide theoretical guarantees against reidentification attacks.

Second, our OneID-LDP (i.e., the fourth row of Table I)
is a new privacy notion. OneID-LDP is designed to prevent
reidentification with much higher utility than MinID-LDP.
We propose OneID-LDP with a manual setting of εx in
Section IV-B. Then, we propose privacy budget tuning algo-
rithms for OneID-LDP (resp., MinID-LDP) in Sections IV-D
and IV-F (resp., Sections IV-E and IV-F). We show that
both OneID-LDP and MinID-LDP prevent reidentification
when using our privacy budget tuning algorithms. Then, we
show that OneID-LDP provides much higher utility than
MinID-LDP.

Note that our privacy budget tuning algorithms cannot be
applied to HLLDP (“N/A” in Table I). This is because HLLDP
always sets εx = ∞ for nonsensitive data. In contrast, our
privacy budget tuning algorithms use a finite value of εx for
some nonsensitive data to prevent reidentification. Thus, they
are incompatible with HLLDP.

Table II summarizes the privacy and utility of the three
privacy notions. Here, we apply our privacy budget tuning
algorithms to MinID-LDP and OneID-LDP. We say an algo-
rithm provides “high privacy against reidentification” when it
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upper bounds the reidentification accuracy for every user by a
desired value. Because HLLDP does not protect nonsensitive
data at all (i.e., εx = ∞), it is vulnerable to reidentification.
MinID-LDP lacks utility. In contrast, our OneID-LDP provides
high privacy and utility. See Section V for details.

Remark on Privacy Risks: This article shows that our pro-
posal (OneID-LDP with automatic tuning of privacy budgets)
is secure against reidentification. There are other privacy risks
in the privacy literature. Specifically, two types of information
disclosure are known as privacy risks: 1) identity disclosure
and 2) attribute disclosure [24]. Identity disclosure takes place
when the adversary correctly links a user to a record in the
database. Attribute disclosure takes place when the adver-
sary correctly obtains some information about an attribute of
a user.

Identity disclosure is caused by reidentification attacks
and membership inference attacks [25], [26] as follows. The
adversary first performs membership inference attacks, which
determine who are members, i.e., users in the database. Then,
the adversary performs reidentification attacks, which link one
of the (inferred) members to each record in the database. The
adversary succeeds in identity disclosure if she accurately per-
forms both membership inference and reidentification. In this
article, we assume that the adversary completely knows who
are members/nonmembers when she performs reidentification.
In other words, we consider a worst case scenario where
the accuracy of membership inference is 100%. In practice,
the accuracy of membership inference would be smaller than
100%. In that case, the accuracy of identity disclosure would
be smaller than what is reported in our experiments.

Attribute disclosure is caused by attribute inference
attacks [27], which infer an attribute of a user. LDP is a
privacy notion to strongly prevent the inference of attributes
from output data. Similarly, our OneID-LDP strongly prevents
the inference of sensitive attributes from output data. One
might think that the adversary might infer attributes from a
frequency distribution. For example, assume that users in a
certain area are likely to visit a hospital and that Alice lives
in this area. Then, the adversary who obtains a frequency
distribution estimated by the data collector would infer that
Alice is likely to visit the hospital. This kind of attack is
inevitable in any LDP (or ID-LDP) mechanism when the goal
is to estimate a frequency distribution. In addition, this kind of
inference is not considered a privacy violation in [28], because
it is statistical inference. Thus, it is outside the scope of this
article.

In summary, our proposal strongly prevents both identity
and attribute disclosure other than statistical inference.

Paper Organization: The remainder of this article is orga-
nized as follows. In Section II, we review the previous work
related to ours. In Section III, we explain some preliminaries
for our work, such as basic notations, utility/privacy metrics,
and randomized mechanisms. In Section IV, we propose our
privacy budget tuning algorithms and OneID-LDP. We also
prove that both OneID-LDP and MinID-LDP bound the rei-
dentification accuracy when using our privacy budget tuning
algorithms. In Section V, we show our experimental results.
In Section VI, we conclude this article.

II. RELATED WORK

LDP and Variants: LDP [29], a local model version of DP,
has been widely studied in both academia [9], [23], [30], [31],
[32], [33], [34], [35], [36], [37] and industry [9], [10], [11].
LDP has also been applied to IoT, such as IoV [21], [37],
wearable sensors [38], and blockchain-based IoT [39], [40].

The limitation of LDP is that it requires too much noise; it
is proven in [32] that LDP needs an extremely large number of
users (e.g., dozen million [9]) to enable accurate data analysis
due to the large noise. One reason for the low utility of LDP
is that it regards all input data as equally sensitive.

Numerous variants of DP/LDP have been studied to over-
come its limitation. A recent Systems of Knowledge (SoK)
paper [41] classifies these variants into seven categories,
depending on which aspect of the original DP/LDP is modi-
fied. Out of the seven categories, we focus on the V (Variation
of Privacy Loss) category because it attempts to address
the utility issue explained above; see [41] for details of
the other six categories. The V category varies the pri-
vacy level of DP/LDP across inputs. The variants in this
category include HLLDP [13], [14], MinID-LDP [12], and
context-aware LDP [14].

The first variant of LDP in the V category was proposed by
Murakami and Kawamoto [13]. They introduced the notion
of HLLDP,1 which provides a privacy guarantee equivalent to
LDP only for sensitive data. Then, they proposed a subclass
of HLLDP called utility-optimized LDP (ULDP), which opti-
mizes the utility within HLLDP. Later, Gu et al. [12] proposed
the notion of ID-LDP that includes HLLDP as a special case.
They proposed an instance of ID-LDP called MinID-LDP and
showed that it provides higher utility than LDP. In this arti-
cle, we focus on ID-LDP because it is a general notion—it
includes both HLLDP and MinID-LDP as instances.

Another interesting variant of LDP in the V category
is context-aware LDP proposed by Acharya et al. [14]. It
allocates a privacy budget εx,x′ for each pair of two input
values x and x′. This is also very general and includes
various variants of LDP as special cases, e.g., HLLDP,
geo-indistiguishability [43], and dx-privacy [44]. They also
introduced a new instance of context-aware LDP called block-
structured LDP [14], which hides input values within the same
group. We do not focus on context-aware LDP, because our
interest is in handling different levels of sensitivity in input
values, as described in Section I. For this purpose, it is suffi-
cient to use ID-LDP that allocates a privacy budget εx to each
personal data x.

A crucial issue in these variants of LDP is how to set
appropriate privacy budgets. As explained in Section I, the
disclosure of nonsensitive input values may lead to the rei-
dentification of records in another database. It is extremely
difficult to manually set an appropriate privacy budget for each
input value, as the possible number of input values can be very
large. Unfortunately, all of the above studies [12], [13], [14] do
not consider how to automatically set appropriate privacy bud-
gets. Therefore, we propose privacy budget tuning algorithms

1Murakami and Kawamoto [13] called this privacy notion one-sided LDP
(OSLDP) because it is a local model version of one-sided DP (OSDP) [42].
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and a new instance of ID-LDP called OneID-LDP to prevent
reidentification while keeping high utility.

DP and Reidentification Risks: The relationship between
DP and the reidentification risk was shown in recent studies
by Cohen and Nissim [45], [46]. Specifically, they formally
defined a concept of predicate singling out, which is weaker
than singling out in GDPR. Security against predicate singling
out is a necessary (but not sufficient) condition for security
against singling out in GDPR. They showed that DP pre-
vents predicate singling out (whereas k-anonymity does not)
in an asymptotic setting where the number of users goes to
∞. However, they do not clarify the relationship between the
privacy budget in DP and the reidentification risk. They also
do not consider different levels of sensitivity in input values.

There are also some variants of DP related to the rei-
dentification risk. For example, Gehrke et al. [47] proposed
the notion of crowd-blending privacy, which weakens cen-
tralized DP so that each record is indistinguishable from at
least k − 1 other records. Bindshaedler et al. [48] proposed a
similar notion called plausible deniability and showed that a
plausible deniability mechanism generates differentially pri-
vate synthetic data under some conditions. Murakami and
Takahashi [22] proposed personal information entropy (PIE)
privacy as a relaxation of LDP to reduce the reidentification
risk.2 All of these studies [22], [47], [48] do not consider
different levels of sensitivity in input values.

Finally, we note that our work is totally different from
a recently proposed shuffling technique [49], [50], [51].
Specifically, the shuffling technique reduces the privacy bud-
get in DP by introducing an intermediate server (shuffler)
that randomly shuffles obfuscated data. Our work is differ-
ent from this technique in three ways. First, our algorithms
upper bound the reidentification accuracy, whereas the shuf-
fling technique does not consider it. Second, our work deals
with different levels of sensitivity in input values, whereas
the shuffling technique does not. Third, we show that reiden-
tification is strongly prevented even if the privacy budget is
∞ in some cases (see Section IV-D for details), whereas the
shuffling technique cannot reduce the privacy budget in this
case.

In summary, our work is the first to automatically determine
a privacy budget for each input value to prevent reidentifica-
tion, to our knowledge.

III. PRELIMINARIES

In this section, we provide some preliminaries for our work.
Section III-A introduces basic notations used in this article.
Sections III-B–III-D explain utility metrics, privacy metrics,
and randomized mechanisms, respectively.

A. Notations

Let R, N, R≥0, Z≥0 be the sets of real numbers, natural
numbers, nonnegative real numbers, and nonnegative integers,

2We also note that PIE privacy is weak in that some users can be completely
reidentified. In contrast, our OneID-LDP guarantees a small reidentification
risk for every obfuscated data, hence, every user. In other words, there are no
victims in OneID-LDP. See Section IV-D for details.

TABLE III
BASIC NOTATIONS

respectively. For a ∈ N, let [a] = {1, 2, . . . , a}. All logarithms
in this article are base e.

Let U be a finite set of users who use an application (e.g.,
wearable device and connected car). Let n ∈ N be the number
of users, and ui ∈ U be the ith user; i.e., U = {u1, . . . , un}.

Let X be a finite set of personal data (e.g., locations and
physical activities). We assume that continuous data are dis-
cretized into some bins; e.g., a location map is divided into
smaller regions or POIs. We also assume that each user ui

sends a single datum (we discuss the case where a user sends
multiple data in Section IV-B). Let X(i) be a random variable
representing personal data of user ui. Let X = {X(1), . . . , X(n)}
be a set of all personal data.

Let Y be a finite set of obfuscated data. Let Y(i) be a
random variable representing obfuscated data of user ui. Let
Y = {Y(1), . . . , Y(n)} be a set of all personal data. Each user
obfuscates her personal data using a randomized mechanism
Q, which maps x ∈ X to y ∈ Y with probability Q(y|x), and
sends the obfuscated data to a data collector.

We consider frequency estimation as a task of the data col-
lector. Let c be a frequency distribution, whose element c(x)
is the number of users who possess x; i.e.,

c(x) =
∑

i∈[n]

1X(i)=x

where 1X(i)=x is an indicator function that takes 1 if X(i) =
x and 0 otherwise. The data collector estimates a frequency
distribution c from obfuscated data of all users. Let ĉ be an
estimate of c.

Table III shows the basic notations in this article.

B. Utility Metrics

In this article, we use the mean absolute error (MAE) and
mean-squared error (MSE) as metrics of utility loss. The MAE
and MSE are defined using the l1 loss and l2 loss, respectively.

Specifically, let l1 (resp., l22) be the l1 (resp., l2) loss func-
tion, which maps a frequency distribution c and its estimate
ĉ to the loss; i.e., l1(c, ĉ) = ∑

x∈X |c(x) − ĉ(x)|, l22(c, ĉ) =∑
x∈X (c(x) − ĉ(x))2. Then, the MAE is the mean of l1(c, ĉ)

over multiple realizations of obfuscated data Y. The MSE is
the mean of l22(c, ĉ) over multiple realizations of Y.

C. Privacy Metrics

LDP: LDP is defined as follows.
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Definition 1 (ε-LDP [29]): Let ε ∈ R≥0 be a privacy bud-
get. A randomized mechanism Q provides ε-LDP if and only
if for any x, x′ ∈ X and any y ∈ Y

Q(y|x) ≤ eεQ
(
y|x′).

Intuitively, LDP guarantees that an adversary who obtains
obfuscated data y cannot determine, for any pair of input val-
ues x and x′, whether it comes from x or x′. This holds,
especially, when the privacy budget ε is close to 0 because
all of the input values in X are almost equally likely; i.e.,
Q(y|x) ≈ Q(y|x′) for any x and x′. Thus, LDP strongly protects
user privacy when ε is small; e.g., ε ≤ 1 [15].

ID-LDP: LDP regards all input values in X as equally sen-
sitive. However, the sensitivity differs according to the input
values in practice; e.g., hospitals and homes are highly sen-
sitive locations, whereas other locations, such as parks and
restaurants, are not sensitive for most users. Thus, LDP causes
excessive obfuscation and a significant loss of utility.

To address this issue, Gu et al. [12] proposed ID-LDP. The
feature of ID-LDP is that it introduces a privacy budget εx

for each input value x in X . Formally, ID-LDP is defined as
follows.

Definition 2 ((E, r)-ID-LDP [12]): Let εx ∈ R≥0 be a pri-
vacy budget for personal data x ∈ X . Let E = {εx}x∈X . Let
r : R≥0 × R≥0 → R≥0 be a function that takes two privacy
budgets as input and outputs a nonnegative value. A random-
ized mechanism Q provides (E, r)-ID-LDP if and only if for
any x, x′ ∈ X and any y ∈ Y

Q(y|x) ≤ er(εx,εx′)Q
(
y|x′). (1)

We refer to r(εx, εx′) as a pair budget for x and x′. ID-LDP
is general in that we can use any function as r.

MinID-LDP: As an instance of ID-LDP, Gu et al. [12]
proposed MinID-LDP.

Definition 3 (E-MinID-LDP [12]): Let εx ∈ R≥0 be a pri-
vacy budget for personal data x ∈ X . Let E = {εx}x∈X . A
randomized mechanism Q provides E-MinID-LDP if and only
if it provides (E, r)-ID-LDP, where r(εx, εx′) = min{εx, εx′ }.

MinID-LDP controls the adversary’s capability of dis-
tinguishing x and x′ by using the minimum of εx and
εx′ . For example, assume that the set of personal data is
X = {cancer, headache, sore throat}. We set εcancer = 1 and
εheadache = εsore throat = 2 because a cancer is the most sensi-
tive disease. Then, MinID-LDP adopts 1 as a pair budget for
(cancer, headache) and 2 for (headache, sore throat). For a pair
of nonsensitive input values x and x′, MinID-LDP can assign
a large pair budget. However, it needs to use a small pair bud-
get when either x or x′ is sensitive. Consequently, when we
consider a reidentification as a risk, MinID-LDP still overpro-
tects personal data—the utility gain of MinID-LDP over LDP
is limited, as shown in our experiments.

HLLDP: Murakami and Kawamoto [13] and
Acharya et al. [14] introduced HLLDP. HLLDP assigns
a privacy budget εS ∈ R≥0 for sensitive data and ∞ for
nonsensitive data. Although the relationship between HLLDP
and ID-LDP is not clarified in [12], [13], and [14], HLLDP
is an instance of ID-LDP. Specifically, we can define HLLDP
as follows.

Definition 4 ((XS, εS)-HLLDP [13], [14]): Let εx ∈ R≥0 be
a privacy budget for personal data x ∈ X . Let E = {εx}x∈X .
Let XS ⊆ X be a finite set of sensitive data. Let εS ∈ R≥0 be a
privacy budget for sensitive data. A randomized mechanism Q
provides (XS, εS)-HLLDP if and only if it provides E-ID-LDP,
where

εx =
{

εS, (if x ∈ XS)

∞, (otherwise)
(2)

and r(εx, εx′) = εx.
Since HLLDP assigns εx = ∞ for nonsensitive data x, it

provides much higher utility than LDP [13]. However, this
comes at the expense of privacy—HLLDP is vulnerable to
reidentification attacks, as shown in our experiments.

Remark on Sensitive Data: Note that the distinction between
sensitive and nonsensitive data can be different from user to
user; e.g., x1 ∈ X is sensitive for Alice and Bob, whereas
x2 ∈ X is sensitive for only Carol. The study in [13] pro-
poses a distribution estimation method under LDP in such
a personalized scenario. Specifically, their method first maps
sensitive data for each user to a bot symbol “⊥” and uses
an ID-LDP mechanism with domain X ∪ {⊥}. After comput-
ing the frequency distribution of input data including ⊥, their
method discards the frequency of ⊥ and normalizes the other
frequencies so that the sum is n. It is shown in [13] that a
distribution can be accurately estimated by using this method.

In our experiments, we assume that the set of sensitive
data is common to all users, e.g., POIs with “home” and
“hospital” categories in the location data set. However, our
proposed methods are easily extended to the personalized sce-
nario explained above by mapping each user’s sensitive data
to a bot ⊥ in the same way as [13].

D. Randomized Mechanisms

UE: As a randomized mechanism Q providing LDP, we
use the unary encoding (UE) mechanism [23]. The set of
obfuscated data in UE is Y = {0, 1}|X |.

Specifically, we express the set of personal data as X =
{x1, . . . , x|X |} without loss of generality. For any k ∈ [|X |],
the UE mechanism first maps xk to the kth standard basis
vector ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}|X | with 1 in the
kth element and 0s elsewhere. Let y ∈ {0, 1}|X | be obfuscated
data. Then, for each element i ∈ [|X |], the UE mechanism
outputs 1 with the following probabilities:

Pr(y[i] = 1|ek[i] = 1) = p, Pr(y[i] = 1|ek[i] = 0) = q (3)

where p > q. UE provides ε-LDP, where ε =
ln([p(1− q)]/[(1− p)q]).

RAPPOR [9] is a special case of UE where p =
(eε/2/eε/2 + 1) and q = (1/eε/2 + 1). Wang et al. [23] proved
that the UE mechanism minimizes the MSE when p = (1/2)

and q = (1/eε + 1). They refer to UE with these parameters
as optimal UE (OUE).

IDUE: As a randomized mechanism Q providing ID-LDP,
we use the input-discriminative UE (IDUE) mechanism [12].
The IDUE mechanism is a modification of UE to provide
ID-LDP.



MURAKAMI AND SEI: AUTOMATIC TUNING OF PRIVACY BUDGETS 15995

For any k ∈ [|X |], the IDUE mechanism first maps xk to the
kth standard basis vector ek ∈ {0, 1}|X |. Let y ∈ {0, 1}|X | be
obfuscated data. Then, for each element i ∈ [|X |], the IDUE
mechanism outputs 1 with the following probabilities:

Pr(y[i] = 1|ek[i] = 1) = ai, Pr(y[i] = 1|ek[i] = 0) = bi (4)

where ai > bi for any i ∈ [|X |]. By (3) and (4), IDUE dif-
fers from UE in that it assigns different flip probabilities to
different bits.

By (1), (4), and simple calculations, the following proposi-
tion holds (see [12] for the proof).

Proposition 1: The IDUE mechanism Q with

ai
(
1− bj

)

bi
(
1− aj

) ≤ e
r
(
εxi ,εxj

)

for any i, j ∈ [|X |] provides E-ID-LDP.
Gu et al. [12] proposed an IDUE mechanism Q that mini-

mizes the MSE. Assume that the input domain X is divided
into t ∈ N subsets X1, . . . ,Xt according to privacy budgets;
i.e., all input values have the same privacy budget within each
subset. Let mi = |Xi|. Then, the optimization problem can be
written as follows (see [12] for details):

min
ai,bi

t∑

i=1

mibi(1− bi)

(ai − bi)
2
+max

{
1− ai − bi

ai − bi

}

s.t.
ai

(
1− bj

)

bi
(
1− aj

) ≤ e
r
(
εxi ,εxj

)

(∀i, j = 1, 2, . . . , t)

0 < bi < ai < 1 (∀i, j = 1, 2, . . . , t). (5)

The objective function represents the upper bound of the MSE.
The constraints are imposed to satisfy ID-LDP.

The optimization problem in (5) is nonconvex. In our exper-
iments, we used FindMinimum3 in Mathematica as a solver
for nonconvex optimization problems.

IV. AUTOMATIC TUNING OF PRIVACY BUDGETS IN

INPUT-DISCRIMINATIVE LDP

ID-LDP provides fine-grained protection for input values
with different sensitivity. A crucial issue in ID-LDP is that
appropriate values of privacy budgets (|X | budgets in total) are
unknown, as explained in Section I. Since the possible number
of input values can be very large in IoT devices, it is also
extremely difficult to manually set and check an appropriate
privacy budget for each input value.

To address this issue, we propose algorithms to automati-
cally determine privacy budgets in ID-LDP so that obfuscated
data prevent reidentification, which is considered a major
risk in GDPR [19]. We first introduce OneID-LDP as a new
instance of ID-LDP and prove that OneID-LDP can be used to
bound a reidentification risk. Then, we propose algorithms for
automatically tuning privacy budgets in OneID-LDP to prevent
reidentification.

Section IV-A describes the overview of our approach.
Section IV-B introduces OneID-LDP. Section IV-C formalizes

3We also confirmed that FindMinimum provides higher utility than
NMinimize, another solver for nonconvex optimization problems.

Fig. 1. Overview of our approach. The privacy budget tuning algorithm can
optionally take auxiliary data as input.

a reidentification risk. Section IV-D (resp., IV-E) shows the
relationship between OneID-LDP (resp., MinID-LDP) and the
reidentification risk. Section IV-F proposes our privacy budget
tuning algorithms. The proofs of all statements in this section
are given in Appendix A.

A. Overview

Fig. 1 shows the overview of our approach. Our approach
consists of two phases: 1) privacy budget tuning phase and
2) frequency estimation phase.

In the privacy budget tuning phase, a data collector cal-
culates privacy budgets E = {εx}x∈X using a privacy budget
tuning algorithm proposed in this article. This algorithm out-
puts privacy budgets E such that obfuscated data prevent
reidentification. It can optionally take some auxiliary data as
input. We propose one budget tuning algorithm without any
auxiliary data and two budget tuning algorithms with auxiliary
data. We explain their details in Section IV-F. After calculating
privacy budgets E , the data collector distributes E to each user.

In the frequency estimation phase, each user ui ∈ U uses a
randomized mechanism providing OneID-LDP, which is intro-
duced in Section IV-B. By using OneID-LDP as a privacy
metric, we can strongly prevent reidentification, as explained
in Sections IV-C and IV-D. Each user ui obfuscates her per-
sonal data X(i) using OneID-LDP with privacy budgets E
and sends obfuscated data Y(i) to the data collector. Finally,
the data collector calculates an estimate ĉ of the frequency
distribution c from the obfuscated data.

B. OneID-LDP

We now introduce OneID-LDP as a privacy metric. As
described in Section III-C, MinID-LDP adopts the minimum
of εx and εx′ as a privacy budget for a pair of x and x′ (see
Definition 3). In contrast, OneID-LDP uses only one privacy
budget εx for this pair. Formally, it is defined as follows.

Definition 5 (E-OneID-LDP): Let εx ∈ R≥0 be a privacy
budget for personal data x ∈ X . Let E = {εx}x∈X . A random-
ized mechanism Q provides E-OneID-LDP if and only if it
provides E-ID-LDP with r(εx, εx′) = εx.
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Fig. 2. Example of pair budgets r(εx, εx′ ) in MinID-LDP, HLLDP, and
OneID-LDP.

In other words, Q provides E-OneID-LDP if and only if for
any x, x′ ∈ X and any y ∈ Y

Q(y|x) ≤ eεx Q
(
y|x′). (6)

Fig. 2 shows an example of pair budgets r(εx, εx′) in MinID-
LDP, HLLDP, and OneID-LDP when ε1 = ε2 = 1, ε3 = 2,
ε4 = 4, ε5 = 8, X = {x1, x2}, and εS = 1. In this example, x1
and x2 are more sensitive than the others, and x5 is the least
sensitive. MinID-LDP adopts the minimum of εx and εx′ as
a pair budget for x and x′. Consequently, it uses a small pair
budget (= 1 or 2) for most pairs. Thus, MinID-LDP lacks
utility, as shown in our experiments.

HLLDP is a special case of OneID-LDP where εx is set
by (2). HLLDP sets the privacy budget of nonsensitive data
(x3, x4, and x5) to ∞. This is too drastic and leads to
reidentification, as shown in our experiments.

In contrast, OneID-LDP provides more fine-grained protec-
tion for each input value and prevents reidentification attacks,
as shown in Section IV-D. Moreover, OneID-LDP uses only
one privacy budget εx for a pair of x and x′. Therefore, it
uses large pair budgets for less sensitive data (x3, x4, and x5).
Consequently, OneID-LDP provides much higher utility than
MinID-LDP while preventing reidentification.

It is well known that DP has basic properties, such as
compositionality and immunity to post-processing [7], [15].
OneID-LDP also has these properties.

Proposition 2 (Sequential Composition): Let ε
(1)
x , ε

(2)
x ∈

R≥0 be privacy budgets for personal data x ∈ X . Let
E (1) = {ε(1)

x }x∈X and E (2) = {ε(2)
x }x∈X . Let Q(1) be a ran-

domized mechanism and y ∈ Y be its output. If Q(1) provides
E (1)-OneID-LDP and Q(2)(y) provides E (2)-OneID-LDP for
any y ∈ Y , then the sequential composition of Q(1) and Q(2)

provides E-OneID-LDP, where E = {ε(1)
x + ε

(2)
x }x∈X .

Proposition 3 (Post-Processing): Let εx ∈ R≥0 be a privacy
budget for personal data x ∈ X . Let E = {εx}x∈X . Let λ be a
randomized algorithm. If a randomized mechanism Q provides
E-OneID-LDP, then the composite function λ ◦ Q provides
E-OneID-LDP.

For example, assume that a user obfuscates k (> 1) data
using a mechanism providing E-OneID-LDP, where E =
{εx}x∈X . Then by Proposition 2, we obtain E∗-OneID-LDP
in total, where E∗ = {kεx}x∈X . By Proposition 3, this privacy
guarantee is immune to any post-processing algorithm run by
the data collector.

C. Formalizing Reidentification Risk

Next, we formalize a reidentification risk. Let U be a ran-
dom variable representing a user in U . Let Y be a random

variable representing obfuscated data of U. We assume that
user U sends obfuscated data Y to a data collector and that
Y is leaked to an adversary. Since each user sends a single
datum, a prior distribution of U before obtaining Y is uniform
for this adversary;4 i.e., Pr(U = ui) = (1/n) for any ui ∈ U .
Assume that Y takes a value y ∈ Y . The adversary attempts
to determine whether U is u1, u2, . . ., or un based on Y = y.

Let pU|Y=y be the posterior distribution, whose element
pU|Y=y(ui) represents the posterior probability that U is ui;
i.e., pU|Y=y(ui) = Pr(U = ui|Y = y). Using the posterior dis-
tribution, we can define the reidentification accuracy of the
Bayes classifier. Specifically, let AccU|Y=y be the following
quantity:

AccU|Y=y = max
ui∈U

pU|Y=y(ui).

AccU|Y=y is the reidentification accuracy of the Bayes classi-
fier after observing Y . In other words, it is the highest possible
reidentification accuracy. AccU|Y=y is a reidentification risk
caused by sending Y = y.

D. Relationship Between OneID-LDP and Reidentification
Accuracy

We prove that OneID-LDP can be used to upper bound the
reidentification accuracy AccU|Y=y by a desired value.

Theorem 1: Let εx ∈ R≥0 be a privacy budget for per-
sonal data x ∈ X . Let E = {εx}x∈X . Let Q be a randomized
mechanism providing E-OneID-LDP, where

εx =
{

log γ (n−c(x))
n−γ c(x) ,

(
if c(x) < n

γ

)

∞, (otherwise)
(7)

and γ ∈ [1, n]. Then for any y ∈ Y output by Q

AccU|Y=y ≤ γ

n
. (8)

Theorem 1 states that if we set privacy budgets E = {εx}x∈X
by (7), then we can upper bound the reidentification accuracy
by (γ /n) for any obfuscated data y, hence, any user. Note that
even if the adversary randomly guesses U, the reidentification
accuracy is (1/n). By (7), this accuracy is achieved when γ =
1 and εx = 0, i.e., no utility.

A study in [22] proposed a privacy notion that upper bounds
an average reidentification accuracy over all users. However,
this average notion is weak because some users can be victims;
e.g., even if the average reidentification accuracy is 1%, the
adversary may reidentify 1% of all users with high confidence.
In contrast, OneID-LDP with E in (7) upper bounds the rei-
dentification accuracy for every user; i.e., the adversary cannot
reidentify any user with high confidence. Thus, OneID-LDP
is very strong in that there are no victims.

The value γ should be larger than 1 and much smaller than
n to guarantee a small reidentification risk for every user with
high utility. For example, we set γ = 100� n in our experi-
ments. Then by (7), εx ≈ log γ for an unpopular input value

4Note that the adversary may obtain obfuscated data of all users rather
than a single user. For such scenarios, we assume a naive Bayes classifier
that independently identifies each datum because it is highly scalable and
accurate [52]. Then, the prior distribution of U is uniform for the adversary.
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x whose frequency is c(x) � (n/γ ). εx is much larger or ∞
for a popular input value x whose frequency is c(x) ≈ (n/γ )

or more. This means that for popular input values, we can
strongly prevent reidentification with very little noise.

E. Relationship Between MinID-LDP and Reidentification
Accuracy

We prove that MinID-LDP can also upper bound the
reidentification accuracy AccU|Y=y by a desired value.

Proposition 4: Let εx ∈ R≥0 be a privacy budget for per-
sonal data x ∈ X . Let E = {εx}x∈X . Let Q be a randomized
mechanism providing E-MinID-LDP, where

εx =
{

log γ (n−c(x))
n−γ c(x) ,

(
if c(x) < n

γ

)

∞, (otherwise)

and γ ∈ [1, n]. Then for any y ∈ Y output by Q

AccU|Y=y ≤ γ

n
.

By Theorem 1 and Proposition 4, the privacy budgets are the
same between OneID-LDP and MinID-LDP. This means that
our privacy budget tuning algorithms for OneID-LDP, which
are proposed in Section IV-F, can also be used for determining
privacy budgets in MinID-LDP to prevent reidentification.

F. Automatic Tuning of Privacy Budgets E
In Section IV-D, we showed that we can upper bound the

reidentification accuracy AccU|Y=y by using OneID-LDP with
privacy budgets E = {εx}x∈X in (7). However, E in (7) includes
the true frequency distribution c. Unfortunately, the data col-
lector cannot obtain c in advance, because the goal for the
data collector is to estimate c.

Therefore, we propose three privacy budget tuning algo-
rithms, all of which do not use the true frequency distribution
c. Our three algorithms differ in the auxiliary data used for
input. The first algorithm does not use any auxiliary data
as input and determines the privacy budget εx based on the
worst case value (i.e., smallest possible value) of c(x). We
refer to this algorithm as a worst case tuning algorithm. The
second algorithm assumes that the data collector knows that
c(x) is larger than or equal to some value for some input val-
ues x. Then it determines εx by using the prior knowledge
as auxiliary data. We refer to this algorithm as a prior-based
tuning algorithm. Note that this prior knowledge is weak in
that the data collector does not know the value of c(x) itself.
The third algorithm uses obfuscated data of some users out-
put by OneID-LDP mechanisms as auxiliary data. It estimates
a confidence interval of c(x) from the obfuscated data and
determines εx based on the confidence interval. We refer to
this algorithm as a confidence interval tuning algorithm. As
explained in Section IV-E, all of the three algorithms can be
applied to both OneID-LDP and MinID-LDP.

Below, we explain these algorithms in detail.
Worst Case Tuning: The worst case tuning algorithm uses

the fact that εx in (7) takes the smallest value when c(x) = 0.
Specifically, it outputs privacy budgets E = {εx}x∈X , where

εx = log γ. (9)

Then, the reidentification accuracy AccU|Y=y is bounded by
(γ /n) for any y ∈ Y .

The worst case tuning algorithm does not use any auxiliary
data as input. The next two algorithms provide higher utility
than this algorithm by using auxiliary data.

Prior-Based Tuning: The prior-based tuning algorithm uses
some weak prior knowledge about the frequency count c(x).
Specifically, it assumes that the data collector knows c(x) is
larger than or equal to some threshold for some input values
x. This assumption is reasonable in many practical scenarios.
For example, suppose that the data collector wants to esti-
mate a population distribution in 47 prefectures of Japan from
two million users (n = 2 × 106). It is well known that more
than 11% of people live in Tokyo. Thus, the data collector
would know that c(x) ≥ 105 for Tokyo. Note that the data
collector does not know the exact value of c(x) in Tokyo. We
can use OneID-LDP mechanisms with this prior knowledge to
accurately estimate the exact value of c(x) in Tokyo.

Formally, let X̃ ⊆ X be the set of personal data for
which the data collector has prior knowledge. The data col-
lector knows that c(x) is larger than or equal to a threshold
λ(x) ∈ Z≥0 for x ∈ X̃ . Then, the prior-based tuning algorithm
assigns λ(x) to c(x) for x ∈ X̃ and 0 to c(x) for x /∈ X̃ in (7).

That is, the prior-based tuning algorithm takes λ(x) for x ∈
X̃ as input and outputs privacy budgets E = {εx}x∈X , where

εx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log γ (n−λ(x))
n−γ λ(x) ,

(
if x ∈ X̃ and λ(x) < n

γ

)

∞,
(

if x ∈ X̃ and λ(x) ≥ n
γ

)

log γ,
(

if x /∈ X̃
)
.

(10)

Note that c(x) ≥ λ(x) for x ∈ X̃ and c(x) ≥ 0 for x /∈ X̃ .
Since εx in (7) is monotonically increasing with respect to
c(x), AccU|Y=y is bounded by (γ /n) for any y ∈ Y .

Confidence Interval Tuning: The prior-based tuning algo-
rithm assumes weak prior knowledge about the frequency
count c(x). Although this is reasonable in many practical sce-
narios, as explained above, it can happen that the data collector
has no prior knowledge about c(x) in some cases. For exam-
ple, the data collector may not have any prior about c(x) for
health conditions collected from new wearable devices.

For this scenario, we propose the confidence interval tuning
algorithm to estimate c more accurately than the worst case
tuning algorithm. In the confidence interval tuning, we divide
users into two groups: 1) worst case group and 2) confidence
interval group. First, we use the worst case tuning algorithm
for users in the worst case group and collect their obfuscated
data providing OneID-LDP. Then, we estimate the confidence
interval of c(x) from the obfuscated data. Based on the con-
fidence interval, we determine privacy budgets E = {εx}x∈X
for users in the confidence interval group. Finally, we collect
their obfuscated data providing OneID-LDP and calculate an
estimate ĉ. All users are protected by OneID-LDP.

Formally, let U0 ⊆ U be the worst case group. Without loss
of generality, we assume that the worst case group is U0 =
{u1, . . . , un0}, where n0 ∈ [n]. Each user in the worst case
group U0 obfuscates her personal data using an IDUE mecha-
nism (described in Section III-D) to provide OneID-LDP with
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Algorithm 1 Confidence Interval Tuning

Input: Y0 = {Y(1), · · · , Y(n0)}, α ∈ R≥0
Output: E = {εxi |1 ≤ i ≤ |X |}

1: z← ZValue(α)

2: for i = 1 to |X | do
3: ti ← FrequencyCount(Y0, i)

4: r(xi)← ti+ 1
2 z2

n+z2 − z
n+z2

√
ti(n−ti)

n + z2

4
5: c(xi)← max{ n

ai−bi
(r(xi)− bi), 0}

6: if c(xi) < n
γ

then

7: εxi ← log γ (n−c(x))
n−γ c(x)

8: else
9: εxi ←∞

10: end if
11: end for
12: return E = {εxi |1 ≤ i ≤ |X |}

E in (9), i.e., worst case tuning. Then, she sends her obfus-
cated data to the data collector. Let Y0 = {Y(1), . . . , Y(n0)} be
the set of obfuscated data of U0. The data collector estimates
a confidence interval of c(x) from Y0 and determines E based
on the interval.

Algorithm 1 shows our confidence interval tuning algo-
rithm. Assume that the input domain is X = {x1, . . . , x|X |}
without loss of generality. For i ∈ [|X |], the data collector
estimates a confidence interval of c(xi) and sets εxi based
on the interval (lines 2–11). Recall that the output range
of IDUE is Y = {0, 1}|X |. For i ∈ [|X |], let ti ∈ Z≥0
be the number of “1”s in the ith bit of output data in Y0
(output of FrequencyCount(Y0, i) in line 3). The relative
frequency of “1” (resp., “0”) in the ith bit of input data is
([c(xi)]/n) (resp., 1 − ([c(xi)]/n)). Thus, by (4), the proba-
bility that the ith bit of output data is “1” can be written as:
([c(xi)]/n)ai + (1− ([c(xi)]/n))bi = (ai − bi)([c(xi)]/n)+ bi.

Let r(xi) be the following quantity:

r(xi) = (ai − bi)
c(xi)

n
+ bi. (11)

r(xi) is the probability that the ith bit of output data is “1.”
Thus, we can assume that the number ti of “1”s in the ith
bit of output data is generated from the Binomial distribution
B(n, r(xi)) with success probability r(xi)

ti ∼ B(n, r(xi)). (12)

A confidence interval for r(xi) is known as the binomial
proportion confidence interval [53], [54], [55]. It can be esti-
mated from ti and n using estimators, such as the Normal
approximation interval and the Wilson score interval.

We estimate the confidence interval of r(xi) from ti and n.
Here, we use the Wilson score interval because it is accu-
rate [53], [54], [55]. Specifically, let z ∈ R≥0 be the 1− (α/2)

quantile of a standard normal distribution N(0, 1) correspond-
ing to the significance level α (output of ZValue(α) in line
1). For example, for a 95% (resp., 99%) confidence interval,
α = 0.05 and z = 1.96 (resp., 2.576). Then, the Wilson score

interval of r(xi) is given by

r(xi) = ti + 1
2 z2

n+ z2
± z

n+ z2

√
ti(n− ti)

n
+ z2

4
. (13)

By (11), we can calculate the confidence interval of c(xi) cor-
responding to r(xi) in (13) (if c(xi) becomes negative, we
set c(xi) = 0). Since εx in (7) is a nondecreasing function
of c(x), we adopt the minimum values of r(xi) and c(xi) in
the intervals (lines 4 and 5). In other words, we consider the
worst case about c(xi) in the confidence interval. Then, we set
E = {εxi |1 ≤ i ≤ |X |} by (7) (lines 6–10).

Finally, each user in the confidence interval group U \ U0
obfuscates her personal data using an IDUE mechanism to
provide OneID-LDP with E output by the confidence interval
tuning algorithm (Algorithm 1). The data collector estimates
c from obfuscated data Y. Note that the worst case group
and confidence interval group use different randomized mech-
anisms. To deal with this difference, we calculate an empirical
estimate [12] for each group and then calculate an estimate ĉ of
c by the inverse-variance weighting [56] of the two empirical
estimates.

Significance Level: The utility and privacy of our confi-
dence interval tuning depend on the significance level α. If
we set the significance level α to α = 0, then z = ∞ and
the estimated minimum value of c(xi) becomes 0. Thus, the
confidence interval tuning with α = 0 is identical to the worst
case tuning. As α is increased from 0, the privacy budgets E
become larger and the utility is increased. However, the true
frequency count c(xi) can be smaller than the estimated min-
imum value with probability (α/2). Thus, the reidentification
accuracy AccU|Y=y may exceed (γ /n) when α is too large.

In our experiments, we set α = 0.05 and show that
AccU|Y=y does not exceed (γ /n) in this case.

Which Tuning Algorithm to Use? We have so far proposed
three privacy budget tuning algorithms. Here, we provide a
guideline for which algorithm to use in practice.

As we will show in our experiments, an appropriate tuning
algorithm depends on the task of the data collector and the
prior knowledge about the frequency count c(x). In some tasks,
frequency counts of popular input values [e.g., c(x) ≥ (n/γ )]
are, especially, important; e.g., they are used for finding popu-
lar POIs [2] and automatic labeling of POIs, such as offices and
schools [57]. For popular input values, the worst case tuning
provides the lowest utility, and the prior-based tuning provides
the highest utility. Thus, if we have some prior knowledge
about c(x), we should use the prior-based tuning algorithm.
Otherwise, the confidence interval tuning could be the best
choice.

However, for unpopular input values [e.g., c(x) � (n/γ )],
our three tuning algorithms provide almost the same utility.
Thus, if we want to estimate frequency counts of unpopular
input values, the worst case tuning would be sufficient.

V. EXPERIMENTAL EVALUATION

In this section, we show through experiments that our
algorithms provide much higher utility than LDP mecha-
nisms while preventing reidentification. We also show that
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TABLE IV
NUMBERS OF USERS AND INPUT VALUES IN EACH DATA SET

existing ID-LDP mechanisms (i.e., MinID-LDP and HL-LDP
mechanisms) lack either utility or privacy.

Section V-A explains our experimental setup. Section V-B
reports our experimental results.

A. Experimental Setup

Data Set: We conducted experiments using the following
four real data sets.

1) Foursquare Data Set: The Foursquare data set (Global-
scale Check-in Data Set with User Social Networks) [58]
is a large-scale location data set. It includes 90 048 627
check-ins all over the world, each of which is associated
with a POI ID and venue category (e.g., hospital, restau-
rant, park, and university). Following [58], we selected
six cities with numerous check-ins and with cultural
diversities: Istanbul (denoted by IST), New York (NYK),
Tokyo (TKY), San Paulo (SP), Kuala Lumpur (KL), and
Jakarta (JK). We extracted one check-in from each user.

2) Localization Data Set: The Localization data set [3]
(denoted by Local) is a person activity data set collected
using wearable sensors. It includes 164 860 records, each
of which has an activity value, such as walking, falling,
lying, and on all fours (11 values in total).

3) ADL Data Set: The activities of daily living (ADL) data
set [59] (denoted by ADL) is a person activity data set
collected using a wireless sensor network. It includes
741 records, each of which has an activity value, such
as toileting, sleeping, showering, and lunch (10 values
in total).

4) RFID Data Set: The RFID-based activity recognition
data set [60] (denoted by RFID) is a person activity
data set collected from older people using RFID reader
antennas around rooms. It includes 75 128 records, each
of which has an activity value, such as sitting on a bed,
lying on a bed, and ambulating (4 values in total).

In Local, ADL, and RFID, we assumed that each record is
from a different user. In the Foursquare data set, we assumed
that input values (POIs) with “home” or “hospital” categories
are sensitive. In the person activity data sets, we assumed
sleeping (or lying/lying down), toileting, and showering as
sensitive because they reveal detailed life patterns. We set the
privacy budgets for these sensitive input values to 1 [15] to
strongly protect them, as described in Section I.

Table IV shows the number of users, input values, and
sensitive input values in each data set.

Randomized Mechanisms: Using the four data sets, we
evaluated the following randomized mechanisms.

1) RAPPOR: Google’s RAPPOR [9] described in
Section III-D. It provides ε-LDP.

2) OUE: The optimal unary encoding (OUE) mecha-
nism [23] described in Section III-D. It provides ε-LDP.

3) MinID-LDP Mechanism: A randomized mechanism pro-
viding E-MinID-LDP. To provide MinID-LDP, we used
the optimal IDUE mechanism in Section III-D.

4) HLLDP Mechanism: A randomized mechanism provid-
ing (XS, εS)-HLLDP. Specifically, we used the utility-
optimized RAPPOR [13] as an HLLDP mechanism.

5) OneID-LDP Mechanism: Our E-OneID-LDP mecha-
nism in Section IV-B. To provide OneID-LDP, we used
the optimal IDUE mechanism.

Parameters: We set the privacy budgets for sensitive input
values to 1, as explained above. Since LDP regards all input
values as equally sensitive, we set ε = 1 for RAPPOR and
OUE. For HLLDP, we set the privacy budget to εS = 1 for
the sensitive input values XS and ∞ for the remaining input
values. For the MinID-LDP and OneID-LDP mechanisms, we
used our privacy budget tuning algorithms to determine the
privacy budgets E .

Our privacy budget tuning algorithms have three parameters:
γ , α, and n0 (α and n0 are used only in the confidence interval
tuning algorithm). In our experiments, we set γ = 10 or 100;
i.e., we set E so that the reidentification accuracy is smaller
than (10/n) or (100/n) (see Theorem 1). In the prior-based
tuning algorithm, we assumed that the data collector knows
popular personal data x whose frequency c(x) is larger than or
equal to (n/γ ). In other words, we used the set of the popular
personal data as X̃ and set λ(x) = (n/γ ) for x ∈ X̃ . In the
confidence interval tuning algorithm, we set the significance
level α to α = 0.01 or 0.05 and assumed that 10% or 50% of
users are in the worst case group; i.e., n0 = 0.1n or 0.5n.

We set γ = 100, α = 0.05, and n0 = 0.1n as default values.
Then, we changed each of γ , α, and n0 while fixing the other
two to see how each parameter affects the performance.

Utility and Privacy: We evaluated the utility and privacy of
the randomized mechanisms.

For utility loss, we evaluated the MAE and MSE over all
input values, as described in Section III-B. We also evalu-
ated the MAE and MSE over popular input values x whose
frequency counts c(x) are larger than or equal to (n/100).

For privacy, we considered the following reidentifica-
tion attack. In our experiments, the input domain is X =
{x1, . . . , x|X |} and the output range is Y = {0, 1}|X |. Given
obfuscated data y ∈ Y , the adversary extracts indices whose
corresponding values in y are 1. Then, the adversary chooses
an index i whose privacy budget εxi is the largest among the
extracted indices. Finally, the adversary outputs a user who
has xi as a reidentification result (if multiple users have per-
sonal data with the largest privacy budget, then the adversary
randomly outputs one user from them).

Note that this adversary knows the values of privacy budgets
and each user’s personal data xi, i.e., maximum-knowledge
attacker [61], [62]. The maximum-knowledge attacker model
is useful for evaluating reidentification risks when we assume
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Fig. 3. MAE and MSE over popular input values where c(x) ≥ n/100
(W: worst case tuning, C: confidence interval tuning, P: prior-based tuning,
γ = 100, α = 0.05, and n0 = 0.1n). Smaller values mean higher utility. In
JK, there is no such popular input value. Note that HLLDP is vulnerable to
reidentification attacks, as shown in Figs. 5 and 6.

a worst case scenario about the adversary’s background knowl-
edge. It also poses a threat in some practical situations. For
example, if a user sends some additional information (e.g.,
time and health condition) along with xi (e.g., location) from
her wearable device, the adversary can link the additional
information to the user by this reidentification attack. The
linked information may also be used for reidentifying other
databases or making a user profile, as described in Section I.

We implemented the above reidentification attack and evalu-
ated a reidentification rate, which is the proportion of correctly
identified data. For both utility and privacy, we ran a ran-
domized mechanism 1000 times and evaluated the average
performance.

B. Experimental Results

Utility: Figs. 3 and 4 show the MAE/MSE over popular
input values and all input values, respectively (W, C, and P
in the parentheses represent the worst case tuning, confidence
interval tuning, and prior-based tuning, respectively). Here, we
set γ = 100, α = 0.05, and n0 = 0.1n (later, we will change
the values of γ , α, and n0). In JK, there is no popular input
values such that c(x) ≥ (n/100). Thus, we do not show the
results for JK in Fig. 3.

Figs. 3 and 4 show that LDP mechanisms (RAPPOR and
OUE) provide poor utility. This is because LDP regards all
input values as equally sensitive. MinID-LDP provides utility
similar to LDP, and the prior-based tuning does not improve
the utility of MinID-LDP. This is because MinID-LDP uses
a small pair budget when either of the two input values is
sensitive. In other words, it still overprotects personal data.
Figs. 3 and 4 also show that HLLDP provides the highest
utility. However, it comes at the expense of privacy—later, we
will show that HLLDP is vulnerable to reidentification attacks
and cannot be used for our purpose of privacy protection.

Except for the insecure HLLDP, our OneID-LDP mecha-
nisms provide the best performance. They outperform LDP
and MinID-LDP mechanisms by one or two orders of

Fig. 4. MAE and MSE over all input values (W: worst case tuning, C:
confidence interval tuning, P: prior-based tuning, γ = 100, α = 0.05, and
n0 = 0.1n). Smaller values mean higher utility. Note that HLLDP is vulnerable
to reidentification attacks, as shown in Figs. 5 and 6.

magnitude. For popular input values, OneID-LDP (C) out-
performs OneID-LDP (W), and OneID-LDP (P) provides the
highest utility (see Fig. 3). For example, the MSEs of OneID-
LDP (W), OneID-LDP (C), and OneID-LDP (P) in IST were
4.43, 3.72, and 2.04, respectively. In contrast, for all input val-
ues, all of our three OneID-LDP mechanisms provide almost
the same utility (see Fig. 4). This is because most of the input
values are unpopular (c(x)� (n/γ )) and εx ≈ log γ for these
input values in all of our three OneID-LDP mechanisms. In
other words, the worst case tuning is sufficient for estimating
the frequency counts of unpopular input values.

Thus, an appropriate tuning method depends on the task
and the prior knowledge about c(x). If we want to accurately
estimate popular input values and have some prior knowledge
about c(x), then we should use the prior-based tuning. If we
want to estimate popular input values without any prior, then
we could use the confidence interval tuning. Otherwise, the
worst case tuning would be sufficient.

Privacy: Next, we evaluated the reidentification risk. Fig. 5
shows the reidentification rate for all users. when γ = 100,
α = 0.05, and n0 = 0.1n (later, we will change γ , α, and n0).
We show the results for HLLDP and our three OneID-LDP
mechanisms (W, C, and P). We do not show the results for
RAPPOR, OUE, and MinID-LDP, because they lack utility as
shown in Figs. 3 and 4.

Fig. 5 shows that all of our three OneID-LDP mechanisms
(W, C, and P) keep the reidentification rate smaller than the
required value (= [γ /n]). This is because our privacy budget
tuning algorithms determine privacy budgets in OneID-LDP
so that the reidentification accuracy is bounded by (γ /n),
as described in Section IV-F. In contrast, the reidentification
rate of HLLDP is much higher than the required value in the
Foursquare data set. This is because HLLDP assigns εx = ∞
for nonsensitive data and reveals the corresponding input val-
ues. In Local, ADL, and RFID, the number |X | of input values
is very small, as shown in Table IV. Thus, many users have the
same input value, and reidentification is difficult in these data
sets. However, |X | is very large in the Foursquare data set,
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Fig. 5. Reidentification rate for all users (W: worst case tuning, C: confidence
interval tuning, P: prior-based tuning, γ = 100, α = 0.05, and n0 = 0.1n).

Fig. 6. Reidentification rate for outliers in the Foursquare data set (W: worst
case tuning, C: confidence interval tuning, P: prior-based tuning, γ = 100,
α = 0.05, and n0 = 0.1n). Outliers have a unique input value and an output
value with at least one “1” in nonsensitive bits.

and consequently, many users have a “unique” input value;
i.e., many input values are associated with only one user.
Therefore, HLLDP is vulnerable to the reidentification attack
in the Foursquare data set.

To show the vulnerability of HLLDP more comprehensively,
we also evaluated the reidentification rate for “outliers” who
have a unique input value and an output value with at least
one “1” in nonsensitive bits. Fig. 6 shows the results in the
Foursquare data set. We observe that the reidentification rate of
HLLDP is 100%. This is because, in the HLLDP mechanism
in [13], every output value with at least one “1” in nonsensi-
tive bits reveals the corresponding input value. These output
data are called invertible data in [13]. Since the invertible
data reveal the corresponding input values, HLLDP allows the
adversary to perfectly reidentify the outliers. Thus, HLLDP
cannot be used to prevent reidentification.

In contrast, our three OneID-LDP mechanisms keep the rei-
dentification rate smaller than the required value (= [γ /n])
even for the outliers. This is because OneID-LDP upper
bounds the reidentification accuracy by (γ /n) for any obfus-
cated data y ∈ Y , hence, any user (Theorem 1).

Note that MinID-LDP also upper bounds the reidentification
accuracy by (γ /n) because MinID-LDP uses smaller privacy
budgets than OneID-LDP. However, it comes at the cost of
utility, as shown in Figs. 3 and 4.

Effects of Parameters: We also examined how the param-
eters γ , α, and n0 in our privacy budget tuning algorithms
affect the utility and privacy. Fig. 7 shows the MAE/MSE over
all input values5 when we set γ = 100 or 10. In addition,

5We do not evaluate the MAE/MSE over popular input values, because
there is no popular input value such that c(x) ≥ (n/10) in the Fourqaure data
set.

Fig. 7. Effect of the parameter γ on the MAE and MSE over all input values
(W: worst case tuning, C: confidence interval tuning, P: prior-based tuning,
α = 0.05, and n0 = 0.1n). Smaller values mean higher utility.

Fig. 8. Effect of the parameter γ on the reidentification rate for all users
(W: worst case tuning, C: confidence interval tuning, P: prior-based tuning,
α = 0.05, and n0 = 0.1n).

Figs. 8 and 9 show the reidentification rate for all users and
outliers, respectively, when we set γ = 100 or 10.

Figs. 7–9 show that γ controls the privacy–utility tradeoff—
as γ decreases from 100 to 10, the privacy is improved at the
cost of utility. Figs. 8 and 9 also show that our OneID-LDP
mechanisms keep the reidentification rate smaller than the
required value (= [γ /n]), irrespective of the value of γ . This
result demonstrates that our privacy budget tuning algorithms
successfully determine the privacy budgets so that obfuscated
data prevent reidentification, as desired.

Finally, we examined the effect of the other two param-
eters α and n0 in our confidence interval tuning algorithm.
Figs. 10–12 show the MAE/MSE over popular input values,
the MAE/MSE over all input values, and the reidentification
rate, respectively, when we change α and n0.

Fig. 10 shows that as the significance level α decreases from
0.05 to 0.01, the utility becomes worse, especially, in IST and
KL. This result is expected, as the privacy budgets decrease
with decrease in α. Fig. 12 shows that the privacy is slightly
improved with decrease in α. However, our OneID-LDP mech-
anisms keep the reidentification rate smaller than the required
value even when α = 0.05, as shown in Figs. 8 and 9. Thus,
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Fig. 9. Effect of the parameter γ on the reidentification rate for outliers
(W: worst case tuning, C: confidence interval tuning, P: prior-based tuning,
α = 0.05, and n0 = 0.1n).

Fig. 10. Effects of the parameters α and n0 on the MAE and MSE over
popular input values (C: confidence interval tuning and γ = 100). Smaller
values mean higher utility.

Fig. 11. Effects of the parameters α and n0 on the MAE and MSE over
all input values (C: confidence interval tuning and γ = 100). Smaller values
mean higher utility.

α = 0.05 is sufficient for the purpose of privacy protection in
our experiments.

Figs. 10–12 also show that as the number n0 of users in
the worst case group increases from 0.1n to 0.5n, the utility

(a)

(b)

Fig. 12. Effects of the parameters α and n0 on the reidentification rate (C:
confidence interval tuning and γ = 100). (a) All users. (b) Outliers.

becomes worse, and the privacy is slightly improved. This is
because the users in the worst case groups have smaller privacy
budgets. Note that when n0 = n, our confidence interval tuning
is equivalent to the worst case tuning. Our confidence interval
tuning provides higher utility when there are a lot of users in
the confidence interval group.

Summary: In summary, our experimental results show that
the existing instances of ID-LDP lack either utility or pri-
vacy. Specifically, Min-IDP still overprotects personal data,
and, therefore, its utility gain over LDP (i.e., RAPPOR and
OUE) is limited. HLLDP assigns εx = ∞ for nonsensitive
data and, therefore, is vulnerable to the reidentification attack.

In contrast, our OneID-LDP mechanisms with our privacy
budget tuning algorithms provide much higher utility than
LDP and Min-LDP mechanisms while keeping the reidenti-
fication accuracy smaller than the required value. Thus, our
mechanisms can be used for accurate analysis of personal
data collected from IoT devices while strongly preventing
reidentification, which is considered to be a major risk in
GDPR.

One limitation of our proposed methods is that our
confidence interval tuning algorithm does not theoretically
upper bound the reidentification accuracy. As described in
Section IV-F (“Significance Level”), the reidentification accu-
racy may exceed the required value (γ /n) when the signifi-
cance level α is too large. If we want to theoretically upper
bound the reidentification accuracy, we should use the worst
case tuning algorithm or the prior-based tuning algorithm.

VI. CONCLUSION

We proposed three privacy budget tuning algorithms for
ID-LDP to provide high utility while preventing reidentifi-
cation. We also proposed OneID-LDP as a new instance of
ID-LDP and proved that it upper bounds the reidentification
accuracy for every user. Through experiments using four real
data sets, we showed that existing ID-LDP mechanisms lack
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either utility or privacy. Then, we showed that our OneID-LDP
mechanisms with our privacy budget tuning algorithms provide
much higher utility than LDP mechanisms while keeping the
reidentification accuracy smaller than the required value.

In this article, we focused on frequency estimation of per-
sonal data such as locations and person activity data as a task
of the data collector. As future work, we would like to develop
ID-LDP mechanisms and privacy budget tuning algorithms for
more complicated tasks, such as item recommendation [63]
and subgraph counting in a social graph [34].

APPENDIX A
PROOF OF THEOREM 1

Recall that U and Y are random variables representing a
user and obfuscated data of U, respectively. Let X be a random
variable representing personal data of U. Personal data X is
uniquely determined given U. Let x be the personal data of ui.
Then, c(x) ≥ 1 and the posterior probability pU|Y=y(ui) can
be written as

pU|Y=y(ui)

= Pr(U = ui|Y = y)

= Pr(U = ui|X = x) Pr(X = x|Y = y)

= 1

c(x)
Pr(X = x|Y = y)

(as there are c(x) users whose input value is x). (14)

Below, we write Pr(x|y) as a shorthand of Pr(X = x|Y = y).
By Bayes’ theorem, we have

Pr(x|y)
= Pr(y|x) Pr(x)∑

x′∈X Pr(y|x′) Pr(x′)

= Pr(y|x) Pr(x)

Pr(y|x) Pr(x)+∑
x′ �=x Pr(y|x′) Pr(x′)

≤ Pr(y|x) Pr(x)

Pr(y|x) Pr(x)+∑
x′ �=x e−εx Pr(y|x) Pr(x′)

(by (6))

= Pr(x)

Pr(x)+ e−εx(1− Pr(x))

= c(x)
c(x)+ e−εx(n− c(x))

(by c(x) = n Pr(x)). (15)

By (14) and (15), we have

pU|Y=y(ui) ≤ eεx

eεx c(x)+ (n− c(x))
. (16)

Assume that c(x) < (n/γ ). In this case, eεx =
([γ (n− c(x))]/[n− γ c(x)]) by (7). Thus, (16) can be writ-
ten as

pU|Y=y(ui) ≤ γ (n− c(x))
γ (n− c(x))c(x)+ (n− c(x))(n− γ c(x))

= γ

γ c(x)+ (n− γ c(x))

= γ

n
.

Since this inequality holds for any ui ∈ U , (8) holds.

Assume that c(x) ≥ (n/γ ). In this case, εx = ∞. Thus, (16)
can be written as

pU|Y=y(ui) ≤ 1

c(x)
≤ γ

n
.

Thus, (8) holds for any y ∈ Y .

APPENDIX B
PROOF OF PROPOSITION 2

Let x, x′ ∈ X and y(1), y(2) ∈ Y . Let Q be the sequential
composition of Q(1) and Q(2); i.e.,

Q
((

y(1), y(2)
)
|x

)
= Q(1)

(
y(1)|x

)
Q(2)

(
y(2)|

(
y(1), x

))
.

Since Q(1) provides E (1)-OneID-LDP and Q(2)(y(1)) provides
E (2)-OneID-LDP, we have

Q
((

y(1), y(2)
)
|x

)

= Q(1)
(

y(1)|x
)

Q(2)
(

y(2)|
(

y(1), x
))

≤ eε
(1)
x Q(1)

(
y(1)|x′

)
Q(2)

(
y(2)|

(
y(1), x

))

≤ eε
(1)
x Q(1)

(
y(1)|x′

)
eε

(2)
x Q(2)

(
y(2)|

(
y(1), x′

))

= eε
(1)
x +ε

(2)
x Q

((
y(1), y(2)

)
|x′

)

which proves Proposition 2.

APPENDIX C
PROOF OF PROPOSITION 3

Let x, x′ ∈ X , y ∈ Y , and z ∈ Range(λ). Since Q provides
E-OneID-LDP, we have

(λ ◦Q)(z|x) =
∑

y∈Y
Q(y|x)λ(z|y)

≤
∑

y∈Y
eεx Q

(
y|x′)λ(z|y)

= eεx(λ ◦Q)
(
z|x′)

which proves Proposition 3.

APPENDIX D
PROOF OF PROPOSITION 4

We prove Proposition 4 via the following lemma.
Lemma 1: Let εx ∈ R≥0 be a privacy budget for personal

data x ∈ X . Let E = {εx}x∈X . If a randomized mechanism Q
provides E-MinID-LDP, then Q also provides E-OneID-LDP.

Proof of Lemma 1: If a randomized mechanism Q provides
E-MinID-LDP, Q provides (E, r)-ID-LDP, where r(εx, εx′) =
min{εx, εx′ } (see Definition 3). This means that for any x, x′ ∈
X and any y ∈ Y , we have

Q(y|x) ≤ emin{εx,εx′ }Q(
y|x′) ≤ eεx Q

(
y|x′).

Thus, Q also provides (E, r)-ID-LDP, where r(εx, εx′) = εx,
which means that Q provides E-OneID-LDP (see Definition 5).

Proposition 4 is immediately derived from Theorem 1 and
Lemma 1. Specifically, a randomized mechanism Q providing
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E-MinID-LDP for E in (7) also provides E-OneID-LDP for E
in (7) (by Lemma 1). Therefore, Q provides

AccU|Y=y ≤ γ

n
for any y ∈ Y (by Theorem 1).
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