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Multitask Deep Learning for Human Activity,
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Abstract—Healthcare professionals and individual users use
wearable devices equipped with various sensors for healthcare
management. Recently, the joint usage of artificial intelligence
and these wearable sensors has played an essential role in health-
care management by providing a wide range of applications, such
as fitness tracking, gym activity monitoring, patient rehabilita-
tion monitoring, and disease detection. These tasks eventually
aim to enhance personal well-being and better manage the user’s
physical health by monitoring different activity types and body
weight changes. Here, we present an efficient multitask learn-
ing (MTL) framework based on commercial smart insoles that
can solve three tasks related to physical health management:
1) activity classification; 2) speed estimation; and 3) body weight
estimation. Our multitask framework converts the sensor data
from the smart insole to a recurrence plot, which shows signifi-
cant performance improvement compared to processing the raw
time-series data. In addition, we utilized a modified MobileNetV2
as our backbone network, which has a total parameter of less
than 100K and a computational budget of 0.34G of multiply-
accumulate operations. Furthermore, we collected a vast data
set from 72 users carrying out 16 experiments, which con-
tains the largest number of people for MTL purposes using
smart insoles. Extensive experiments show that the proposed
MTL framework is extremely efficient while outperforming
or leading to comparable performance against single-task
models.
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I. INTRODUCTION

ARTIFICIAL intelligence (AI) equipped with numerous
sensors is becoming more and more in use in our

everyday lives. The smart healthcare industry is one domain
to which such device has significantly contributed. Fig. 1
shows the quadrant of sensor-based AI application cases in
healthcare, consisting of two axes: 1) sensor type (wear-
able/nonwearable) and 2) demander (healthcare profession-
als/personal consumer) [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12]. In particular, the third and fourth quad-
rants of wearable device-related AI applications encompass
practical use cases, including fitness tracking, monitoring
gym activities, aiding in patient rehabilitation, and detecting
diseases. The ultimate goal of these tasks can be summa-
rized by obtaining physical well-being and health treatment,
whose success depends on monitoring exercises and body
weight changes [13], [14], [15]. In this article, we focus on
human activity recognition (HAR) and body weight estima-
tion (BWE), which are representative AI usages to achieve
the goal of the third and fourth quadrants. Here, HAR refers
to a comprehensive study of identifying any named actions
or movements of human activity based on raw sensor sig-
nals, such as activity classification (AC) and speed estimation
(SE) [16], [17]. Similarly, BWE is the task of approximating a
person’s body weight [18], [19], [20]. Thus, the majority of the
tasks in the two quadrants can be achieved by combining HAR
and BWE technologies, which enable simultaneous monitoring
of body weight change and activity posture. However, so far,
most research in developing AI models for HAR or BWE in a
mobile environment focuses on an AI model that targets a sin-
gle task, either HAR or BWE, but not both due to the tradeoffs
between the number of functions and the overall computation
cost that need to be considered in edge devices. Unfortunately,
deploying multiple single-task models to mobile devices is a
nontrivial problem due to the extra constraint of limited model
capacity on mobile platforms. Besides, retraining or updating
several single-task models over-the-air (OTA) makes model
maintenance harder than a single multitask model [21], [22].

We focus our research on smart insoles, as they are effec-
tive data collection equipment that is low cost, low powered,
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Fig. 1. Quadrant of AI application in the healthcare industry based on various
sensor devices, including real-world examples.

and mobile. Since the smart insole receives plantar pressure
and acceleration feedback directly from a person, it is advan-
tageous for monitoring and measuring all activities that put a
load on the body [23]. Despite the usefulness of smart insoles,
much AI-based healthcare research using smart insoles has
limited its use in the HAR study with only a handful number of
BWE studies. Moreover, the HAR studies based on the smart
insoles have focused on obtaining high predictive performance
and have thus used hand-crafted smart insoles made in the
lab [24], [25]. Multiple sensors are included for data collection
purposes, but the increased amenities translate to higher costs
and are less likely to be commercial. Increased communica-
tion cost and instability of wirelessly transporting data without
data losses to mobile devices are additional concerns for an
increased number of sensors. Thus, there is a need for research
focused on solving HAR and BWE together based on com-
mercial smart insoles, which generally have fewer numbers of
embedded sensors.

In this article, we introduce a lightweight multitask learn-
ing (MTL) deep learning framework that addresses three
interconnected tasks related to HAR and BWE using a com-
mercial smart insole. These tasks include predicting the type
of human activity, the user’s speed, and the user’s body weight.
Our proposed network uses MobileNetV2 as its backbone
model to process time-series input, which is first converted into
a recurrence plot (RP). Our experiments demonstrate that using
RP-based input can lead to outstanding performance compared
to using raw time signals. The main contributions of our work
are as follows.

1) We present a lightweight MTL deep learning model
using commercially available smart insoles to deliver
wearable-device-related AI healthcare services (i.e., the
third and fourth quadrants), performing three crucial
tasks: AC, SE, and BWE. To the best of our knowl-
edge, this is the first time these key tasks have been
combined into a unified framework. Our framework can
be extended to other edge-device settings, such as smart-
phones and smartwatches, as it is designed with an MTL
architecture for real-world applications.

2) Our MTL model is comparable to single-task models in
terms of effectiveness and is three times more efficient

than separate single-task models, making it a practical
choice for mobile services. We achieved this by incor-
porating an uncertainty-weighted loss to balance the
task losses, using a reduced version of the RP-based
MobileNetV2 architecture as the backbone. The layers
of the MobileNetV2 were strategically trimmed to strike
a balance between effectiveness and efficiency.

3) We have created a novel data set1 for multivariate time-
series (MTSs) analysis, composed of raw sensor signals
obtained from 72 individuals engaging in various activi-
ties using a commercial smart insole fitted with a 3-axis
accelerometer and four force-sensing resistor (FSR) sen-
sors per foot. The collection of labeled MTS data can
be challenging as it requires human supervision during
data collection, resulting in many open-source data sets
having a small number of subjects, limited tasks, and
channels. Our data set stands out for its diversity, featur-
ing 72 subjects, the ability to address multiple problems
in deep learning (seven class classification, two regres-
sion problems, and MTL) using 14 channels, and being
multilabeled. This data set represents a valuable resource
for researchers working on time-series applications in
the future.

4) Our study also provides new insights into BWE, a cru-
cial yet under-researched area in wearable-device-related
AI healthcare services. By evaluating the largest num-
ber of subjects to date, we identified critical locations of
the foot region and specific experimental conditions that
help to improve BWE performance. These findings will
substantially benefit the research community and serve
as a valuable reference for future studies.

The remainder of this article is organized as follows.
Section II reviews previous works of AC, SE, and BWE. We
then describe our data collection protocol and the collected
MTS data set for our task in Section III. Subsequently, we
introduce and elaborate on our proposed methods in detail in
Section IV. Sections V and VI entail all the details of our
experimental setups and their results. In Section VII, we pro-
vide our discussions regarding BWE. Finally, we conclude our
results in Section VIII.

II. RELATED WORKS

This section summarizes previous works with single-task
and multitask models related to our three main tasks: 1) AC;
2) SE; and 3) BWE. It should be noted that not much
research has been conducted for SE and BWE compared
to AC. However, common to all three tasks, early works
focused on using conventional machine learning algorithms,
such as support vector machine (SVM), k-nearest neighbors
(KNNs), and decision trees (DTs) [26], [27], [28], [29], [30].
Conventional machine learning methods are easy to implement
and have proven to be mathematically sound. However, their
performances usually depend on knowledge-driven feature
engineering of the input, such as the generation of statisti-
cally transformed features (e.g., mean and median), and feature
selection and extraction, which requires in-depth domain

1https://github.com/Gilon-Inc/GILON-MULTITASK-DATASET
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expertise. Compared to conventional machine learning models,
deep learning is known to automatically extract meaningful
features from the input through multiple hidden layers and
show better model performances. Accordingly, deep learning
methods, such as recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) have been the mainstream
in recent works [20], [25], [31], [32], [33], [34], [35].

A. Activity Classification

Conventional machine learning-based AC heavily relied on
numerous feature engineering techniques for high predictive
performance. For example, Atallah et al. [26] developed
an activity of daily living classifier based on the features
generated from the fast Fourier transform (FFT). Similarly,
Yang et al. [28] used the first-order inertial filtering and
Kalman filtering methods to reduce the high-frequency noise
from the raw time signals and utilized a KNN classifier to
classify different types of lower limb motion. Merry et al. [27]
applied SVM, DT, and KNN to classify workplace behaviors,
such as sitting, standing, and walking based on hand-crafted
features, such as mean, mode, median, and sum from univari-
ate time-series data. The features were then preselected before
model training based on various filter-based feature selec-
tion methods, such as chi-square, Fisher score feature, Gini
index, and info-gain. In addition to the complicated feature
engineering process, this study utilized 48 plantar FSR sen-
sors for right and left insoles, which makes commercialization
challenging. In general, we notice that there is no one-size-
fits-all strategy for generating features; rather, the strategy is
very task-dependent. In addition, we contend that the approx-
imate 10 subjects utilized in the aforementioned studies is
insufficient for generalization performance.

Deep learning-based AC works can be categorized into
two, based on how the input data is processed for model
training. The first approach applies an RNN or 1-D CNN
model to the raw input times series data. The suggested
method of Agarwal and Alam [31] employed a simple two-
layer LSTM to classify six activities based on smartphone
sensors. Ronao and Cho [32] validated the performance of
a regularized 1-D CNN model in conjunction with other tradi-
tional machine learning models, such as SVM on the HAR
data set collected from smartphone sensors. However, the
performance gain from the deep network compared to other
machine learning baseline models was minute. The second
approach converts time-series signals to image-based data, thus
making better use of models originating to process image data.
Lu and Tong [33] converted raw time-series data to an RP and
classified different activities using a modified ResNet model.
This improved RF, SVM, and LSTM models with the raw
time-series data, but it needs to be further studied in a larger
data set.

B. Speed Estimation

The works of SE can be grouped into two: classification
models classifying the broad range of speed and regres-
sion models regressing the exact speed value. Mannini and
Sabatini [29] suggested an SVM-based speed classification

model through a data set collected from 30 subjects who
wore a single thigh-mounted triaxial accelerometer. The model
aimed to classify speed-related tasks, including running and
walking. This work is an early stage of SE studies, which
can predict only the range of speed. As for the deep learning
approach for SE classification, Low et al. [34] proposed a bidi-
rectional LSTM speed classifier that classifies three walking
types: slow, standard, and fast.

In contrast to the rough classification of speed,
Wei et al. [30] proposed an artificial neural network-based
SE model, which predicted the precise speed value with an
average root-mean-square error (RMSE) of 0.003±0.043 m/s.
However, the result was obtained from four subjects,
which is insufficient to guarantee the model’s reliability.
Seethi and Bharti [35] used a 1-D CNN for SE regression.
The convolution operation is performed on accelerometer and
gyroscope sensors separately, and the output hidden features
are concatenated before being processed by an output layer.
The data was collected from wrist-worn wearable sensors,
and 15 adults were involved in this study. In general, previous
works on SE train and validate their work with less than
30 subjects, which lowers the generalization performance.

C. Body Weight Estimation

Sazonova et al. [18] proposed a simple formula-based equa-
tion to predict the body weight based on pressure sensors
in a smart insole. The body weight was estimated when the
subject was in a standing posture, resulting in a rough esti-
mate of 10.52 kg (RMSE). The equation has been tested on
nine subjects. Kim and Hong [20] carried out the first deep
learning-based BWE study, where the team utilized a simple
deep neural network to measure body weight for those with
a physical disability. A smart mat was embedded with 128
FSR sensors where the subjects were asked to lie down for
measurement.

D. Multitask-Based Works

In addition to the single-task-based models, multitask-
based models for different HAR tasks have been suggested.
Under the assumption that the MTL model shows compa-
rable performance and the number of parameters is similar
to single-task models, it would be beneficial to deploy an
MTL model for all parties involved. Barut et al. [36] proposed
an LSTM-based multitask model performing AC and activity
intensity estimation of each activity. A measurement device
was attached to the waist for data collection, and the model
was verified on ten subjects, with additional evaluation on a
public data set. Martindale et al. [25] used a combination of
CNN and RNN models to predict the type of activity and gait
cycle based on inertial measurement unit sensors.

Generally, MTL models show improved performance com-
pared to single-task models when the tasks are related and
have beneficial knowledge shared between tasks. However,
due to the difficulty in training an efficient MTL model, there
seems to be a lack of research on MTL models that is suitable
for tasks in the third and fourth quadrants of sensor-based AI
applications.
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Fig. 2. (Top) Sensor location in the smart insole. (Middle) Product drawing
of the smart insole used for data collection. (Bottom) The data collection tools
used.

III. DATA COLLECTION

A. Collection Tools

In this work, we used a commercial smart insole made by
Gilon, INC. for data collection. The smart insole comes in
various sizes with 5-mm units, ranging from 230 to 280 mm.
All participants were able to select the size appropriate to
their feet. As shown in Fig. 2, a single insole has a 3-axis
accelerometer sensor and four FSR sensors embedded, mak-
ing it a total of 14 different sensors for a pair of insoles.
The accelerometer sensors measure the acceleration along the
x-, y-, and z-axis, and the FSR sensors detect the relative
change in force at four different key points. The data were
collected at 40 Hz using the Raspberry Pi 3 system.

TABLE I
EXPERIMENT DESCRIPTION AND LABELS ASSIGNED

B. Experiment Design

A total of 72 subjects (38 males and 34 females) partici-
pated in our experiments, with ages ranging from 19 to 65
(35±11.7). All subjects engaged in 16 different tasks, and the
details of each task can be found in Table I. The data were col-
lected for 4–50 s for each task, and participants were allowed
to take a 1-min break at the end of each task. To ensure that the
data collection and experimental outcomes are not affected by
the sequence in which the actions are taken, half of the partic-
ipants carried out the experiment in the order of experiments
1–16, while the other half did it in reverse order. The study
was approved by the Ulsan National Institute of Science and
Technology Institutional Review Board (IRB).

The experiment was designed to effectively and accurately
collect the labels for our MTL framework. In detail, each
subtasks required participants to perform one specific action
on the ground floor or treadmill. For HAR, actions, such
as standing still, walking on the ground, squatting, lunging,
and jumping jacks were performed on the floor, and tread-
mill walking and running were done on the treadmill. We
used all experiment sets for the task of AC. Subsequently, the
label for SE was acquired while participants were staying still
or carrying out treadmill walking and running, thus utilizing
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Fig. 3. Overview of our MTL framework. First, the raw sensor signals collected from the smart insole are converted to RP images. Second, the RP images
are fed into the MTL encoder, which simultaneously predicts the result of AC, SE, and BWE.

experiment sets EXP 01 to EXP 11. The treadmill was set to
the target speed, and participants were asked to either walk or
run based on the target speed. Speed labels were acquired for
0, 3, 3.5, 4, 4.5, 5, 5.5, 7, 7.5, and 8 km/h. The range between
5.5 and 7 km/h was excluded in our experiment design as par-
ticipants either jogged or walked fast, making the activity type
ambiguous. Finally, we utilized experiment sets EXP 09 to
EXP 11 for BWE. For EXP 02 and 13, we asked participants
to wear a backpack that contained books of weight 3.4 kg, but
these experiment subsets were later found to be not helpful and
were not used in BWE. We discuss the reasonings behind this
selection of subsets in Section VII. The users’ body weight
was measured twice before the experiments, and the average
was used as the final body weight label for individual users.

IV. METHODOLOGY

A. MTL Framework

Here, we illustrate the general overview of our MTL frame-
work, which performs three related but different tasks: AC,
SE, and BWE of the smart insole user. The overall flow of
our work is presented in Fig. 3. First, we segment the raw
sensor data into time-series samples. As a data preprocess-
ing step, we apply 4 s successive time windows with a 3-s
overlapping window [37]. Since the data is collected from
14 sensors at 40 Hz, the data for 4 s consists of 160 sig-
nal sequences with 14 features. Here, we consider a specific
case in which we process a raw time series of 2000 time
steps (40 Hz × 50 s) collected from a single user conducting
one experiment. With our preprocessing strategy, we obtain an
approximate of ([(2000 − 160)/(160 − 120)] + 1) = 47 sam-
ples for this experiment. Each raw time-series sample has the
shape of (14, 160). Second, since our sample has 14 features,
14 different RPs are generated by converting each feature into
an RP. These RPs are stacked into channels, resulting in an
image-like data set of shape (14, 160, 160), which is processed
by the shared backbone module. The shared representation
output from the backbone module is then fed as an input to
three task-specific, fully connected neural networks: 1) activ-
ity classifier; 2) speed regressor; and 3) body weight regressor.
The activity classifier outputs a class probability of the actions
while the speed regressor and body weight regressor return a
single estimate of the speed and body weight.

B. Notations

For all time-series sample i = 1 to N, let Xi ∈ R
d×T be an

MTS data of the ith sample where d is the number of features
with T time steps of view. Here, X = [x1, . . . , xd] is a collection
of d number of univariate time series xj = [x1, x2, . . . , xT ]T ,
where j ∈ {1, . . . , d}. Given N number of samples, {Xi}N

i=1,
the MTL model Fθ processes the ith MTS sample Xi to output
yactivity

i ∈ R
7, yspeed

i ∈ R, and ybodyweight
i ∈ R.

C. Recurrence Plot

The RP was developed by Eckmann et al. [38], which is one of
the image encoding techniques for time-series data. The image
visualizes the recurrence behavior between time points, such
as periodicity or irregular cyclicity, a typical pattern observable
in a nonlinear dynamical system. Recently, the RP has been
widely used in deep learning to transform a univariate time-
series data into a 2-D image for CNN. It has been shown that
the RP brings performance improvement compared to using
the raw time-series data in several applications [39], [40].

To transform the univariate time-series data into the 2-D
image (RP), the time delay τ and embedding dimension m
hyperparameters must be set. Specifically, from a univariate
time series x, we can generate L � T − (m − 1)τ number of
new vectors s1, . . . , sL, where sk is a vector defined as in

sk = [
xk, xk+τ , xk+2τ , . . . , xk+(m−1)τ

]T
. (1)

In detail, the RP image is constructed by calculating the pair-
wise distance between all sk=1,...,L which results in an L × L
sized image. Specifically, each elements of RP can be defined
as follows:

RP(k,l) = H(ε − ||sk − sl||) ∀k, l ∈ {1, . . . , L}. (2)

Here, ε is a threshold distance, H is a heaviside step function,
and ||.|| is the norm function. RP(k,l) = 1 when the norm
between sk and sl is smaller than ε, and RP(k,l) = 0 otherwise.

D. MobileNetV2

The MobileNetV2 architecture [41] is used as the shared
backbone for our experiment. This model is known for its
inverted residual blocks, and linear bottlenecks, which improve
its performance, and its lightweight and efficient design makes
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TABLE II
CUSTOMIZED MOBILENETV2

it suitable for mobile applications. To adapt it to our specific
use case, we made slight modifications to increase parameter
efficiency while preserving its original design principles.

We modified the original seven-bottleneck MobileNetV2
architecture by using only the first three and last bottlenecks and
added a 1×1 convolution at the front and after the MobileNetV2,
as well as a global averaging layer. We have provided a detailed
architecture structure in Table II. The 1 × 1 convolution added
at the very beginning and end of the MobileNetV2 and the
global averaging layer, helped us to adjust the number of
channels and aggregate the activations in a 1-D vector of
size 128, which allowed us to achieve a balance between
good performance and reduced computational complexity and
memory allocation requirements. We observed that the number
of parameters increased exponentially in the later bottlenecks
of the original MobileNetV2, but the performance of our tasks
did not necessarily increase with the increased layers. Thus,
we removed them to achieve a better balance of performance
and efficiency. A detailed ablation on the number of layers
in the MobileNetV2 and its corresponding performance is
shown in Appendix A.

E. Multitask Loss

In our proposed MTL approach, we defined a loss function
that is composed of three different terms. The first term L1, is
a cross-entropy (CE) loss for AC. The second term L2, and the
third term, L3, are mean-squared error (MSE) losses for SE
and BWE, respectively. We chose CE and MSE losses as they
are simple and widely used for classification and regression
tasks, respectively [42], [43], [44], [45]

L1 = − 1

N

N∑

i=1

C∑

c=1

yic · log ŷic (3)

L2,L3 = 1

N

N∑

i=1

||yi − ŷi||22 (4)

yic ∈ {0, 1}, ŷic ∈ [0, 1], yi, ŷic ∈ R. (5)

Here, y and ŷ represents the true and predicted value, respec-
tively. N is the total number of samples and C represents
the number of total classes. By jointly minimizing these loss
terms, MTL training becomes robust to overfitting as each
task receives information from another task-specific learning
through the shared backbone network, improving performance
relative to single-task training. However, training a multitask
model is challenging as it requires a delicate balance between
tasks-specific losses [46]. Simply averaging all the taskwise
losses may degrade the multitask model’s overall performance
since it might cause negative transfer between tasks due to the
different scales of the losses across tasks and the complexity of
each task. For example, the scale in which the CE loss works
differs from that of a MSE loss. Moreover, some tasks may be
more difficult to train compared to other tasks. Thus, the loss
balancing coefficients should be well measured and calibrated.
One naive solution is to perform a grid search between the
coefficients and use the combination which results in the low-
est error. Unfortunately, such a naive grid search is impractical
in most cases as the search space grows exponentially with the
number of tasks. Besides, a fixed coefficient cannot respond to
the dynamics of each loss in training. With the above consid-
eration, we utilized the uncertainty-based weighting method
from the work of [47].

Overall, the multitask loss function based on the
uncertainty-based method maximizes the data’s Gaussian like-
lihood by considering each task’s homoscedastic uncertainty.
The homoscedastic uncertainty σ is a learnable parameter with
the final loss function balanced as

Ltotal = 1

σ 2
1

L1 + 1

2σ 2
2

L2 + 1

2σ 2
3

L3

+ log σ1 + log σ2 + log σ3. (6)

As the uncertainty parameter works as the loss balancing
coefficients throughout the training process, the losses between
tasks are better adjusted than a uniform loss. Here, adding the
logarithms of uncertainty parameters works as a regularizer to
penalize when the uncertainties become too large.

V. EXPERIMENT

Here, we highlight the objectives of our experiments. We
first compared the effectiveness and efficiency of our MTL
models against single-task models. Subsequently, we carried
out experiments to determine the optimal backbone model and
multitask loss for our MTL framework. Finally, we look into
the implementation details, including the evaluation scenario
and the hyperparameter used for each experiment.

A. Experiment Overview

1) MTL Versus Single-Task: We conducted a performance
comparison of our MobileNetV2-based MTL model to
single-task MobileNetV2 models on a single V100 GPU with
an Intel Xeon Gold 6254 CPU. All models were compiled
using PyTorch 1.8.2 [48]. The model performance was com-
pared in all AC, SE, and BWE tasks. To evaluate the efficiency
of the model in a resource-constrained environment, we used
Nvidia Jetson Nano with 4 GB of memory to measure the
inference speed. The Jetson Nano is a popular edge device for
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deep learning performance evaluation and is equipped with a
128-core NVIDIA Maxwell GPU and Cortex A57 CPU. To
precisely measure the inference speed, we synchronized the
CPU thread and CUDA stream and set the batch size to 1
with a GPU warmup step of 10 instances in advance.

2) Backbone Model Selection: We show the MobileNetV2
model performance compared to other deep learning models,
such as LSTM [49] and GRU [50]. The LSTM and GRU
were chosen as baselines as they are commonly used in other
works for handling raw time-series data [51], [52], [53]. For
the LSTM and GRU models, we used two hidden layers with
a hidden unit size of 256, and applied a dropout rate of 0.3 to
reduce overfitting. The hidden output representations from all
the layers were then passed through max pooling and average
pooling, and concatenated for the final fully connected layer.
This resulted in 871K and 670K parameters for LSTM and
GRU models, respectively, in the single-task models.

3) Comparison Between MTL Loss Functions: Multitask
models exploit knowledge from multiple tasks, often show-
ing improved performance compared to single-task models.
However, incorporating irrelevant task knowledge or being
unable to balance the multiple losses in an effective manner
can lead to degraded performance, known as “negative trans-
fer.” To mitigate this, it is crucial to select an optimal loss
function for each task. Here, we compared three different loss
functions: 1) uniform loss; 2) random loss weighting (RLW);
and 3) uncertainty-weighted loss. The uniform loss function
applies a uniform weighting between the loss incurred in each
task. RLW uses randomly sampled weights from a normal
distribution and has been shown to result in stable training.
The original paper argues that RLW should be used as a lit-
mus test for MTL problems. The uncertainty-weighted loss
function assumes that the noise in each observed data point
follows a Gaussian distribution, allowing the model to learn
the uncertainty per task and optimize the weighting coefficients
for each task’s loss.

B. Implementation

1) Deployment Scenario Under Mobile Conditions: In this
section, we outline the deployment scenario of our MTL model
in a mobile application. We distinguish the training and infer-
ence phase. Our scenario involves training and optimizing the
model on a server and deploying the trained model weights
to the mobile device for offline inference. Thus, the model
effectiveness was measured on the server, and the efficiency
(inference speed) was tested on an edge device.

2) Train and Test Split: To ensure the robustness of our
models and their ability to generalize to new subjects, we
employed a subjectwise split for training and testing. Our
training set consisted of 50 subjects (70%) and our testing
set consisted of 22 subjects (30%). To further evaluate the
models, we divided the training set into five subjectwise folds
and used onefold as a validation set for each of five runs. To
account for any variability due to randomness, we repeated
this process with five different seeds, resulting in a total of 25
runs using the same test set. The results of these runs were
then averaged and the standard deviation was reported.

3) Hyperparameters Used for Model Training: Here, we
elaborate on the hyperparameters used for our model train-
ing and constructing the RP. We employed a batch size of
512 and the AdamW optimizer [54] with a learning rate of
0.002 for training our model. We chose AdamW as it demon-
strated faster convergence and superior performance compared
to other optimizer such as Adam. The learning rate was
selected through a grid search of values between {0.02, 0.002,
0.0002}. The training process was stopped when the valida-
tion loss did not decrease for more than 24 consecutive epochs.
Additionally, we set the embedding dimension of the RP to 1,
resulting in an image size of 160 × 160. The Euclidean dis-
tance was used as the norm || · || and we set threshold distance
ε to be 10% of the maximum distance value.

4) Evaluation Metrics: Three tasks must be evaluated:
1) AC; 2) SE; and 3) BWE. For AC, we used accuracy as our
metric. For regression tasks, we report the mean absolute error
(MAE), RMSE, and mean absolute percentage error (MAPE).
The exact equations for each metrics are listed below

MAE = 1

N

N∑

i=1

|yi − ŷi| (7)

RMSE =
√

∑N
i=1

(
yi − ŷi

)2

N
(8)

MAPE = 1

N

N∑

i=1

∣∣
∣∣
yi − ŷi

yi

∣∣
∣∣. (9)

VI. RESULTS

In this section, we present the experimental results as
described in Section V. First, we compare the single-task mod-
els and our MTL models in terms of both effectiveness and
efficiency. Then, we compare the results of our MobileNetV2
against LSTM and GRU. Additionally, we verify that negative
transfer between tasks can occur without careful selection of the
MTL loss function. We examine the performance of different
MTL loss functions in our experiment. Finally, we visualize
the embedding space of our proposed MTL to demonstrate that
our model successfully distinguishes the underlying patterns
for the three different tasks: 1) AC; 2) SE; and 3) BWE.

A. MobileNetV2-Based MTL Model Versus
MobileNetV2-Based Single-Task Models

1) Effectiveness: Table III compares the MobileNetV2-
based MTL model against MobileNetV2-based single-task
models. Our results show that the MTL model performed
equally well or better than single-task models in all AC, SE,
and BWE tasks. In the AC task, the MTL model achieved an
accuracy of 97.2%, similar to the single-task model’s accuracy
of 97.1%. In the SE task, the single-task models show better
performance compared to the MTL model in all three metrics,
MAE, RMSE, and MAPE. For example, the single-task model
had a MAE of 0.258 compared to 0.268 in the MTL model.
However, the MTL model showed stronger performance in the
BWE task in all three metrics. The MTL model had a 6.85 MAE,
8.36 RMSE, and 0.107 MAPE, surpassing the single-task mod-
els’ 7.27 MAE, 9.04 RMSE, and 0.112 MAPE. In conclusion,
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TABLE III
PERFORMANCE COMPARISON BETWEEN SINGLE-TASK AND MULTITASK MODELS

TABLE IV
RP-BASED MOBILENETV2 WITH DIFFERENT MULTITASK LOSS FUNCTIONS

the MobileNetV2-based MTL model demonstrated similar or
improved performance compared to the single-task models,
with particularly higher performance gains in the BWE task.

2) Efficiency: In Table V, we show the computational cost
of our RP-based MobileNetV2 in single and multitask sce-
narios. Although our MTL model performs three different
tasks, the operation only adds up a minor increase in the num-
ber of parameters and multiply-accumulate (MAC) operations
compared to the most efficient single-task model. The total
parameters decreased from a total of 290.1K for all single-
task models (AC: 97.3K, SE: 96.4K, BWE: 96.4K) to 97.3K
in the MTL model. The model size remains 0.39 mb for all
single and multitask models.

Our evaluation of the inference speed on the Jetson Nano
showed improved performance for our MTL model compared
to the single-task models. The inference speed of a 4 s win-
dowed sample took 112.5 ms (AC: 37.4, SE: 37.5, BWE: 37.6)
for single task models on the GPU and 6.39 s (AC: 2.14, SE:
2.12, BWE: 2.13) on the CPU. However, our MTL model takes
only 38.0 ms and 2.08 s on both GPU and CPU, leading to a
threefold speedup in inference.

Likewise, our MobileNetV2-based MTL model has been
found to be both effective and efficient. Its performance is
comparable to using multiple single-task models, making it a
practical option for real-world applications.

B. RP-Based MobileNetV2 Versus LSTM/GRU

In this section, we compared the RP-based MobileNetV2
with LSTM and GRU in both single-task and multitask
settings. We first show that the RP-based MobileNetV2 outper-
forms in all single-tasks. As shown in Table III, a significant

TABLE V
EFFICIENCY COMPARISON BETWEEN SINGLE

AND MULTITASK MODELS ON JETSON NANO

performance gain occurs when the raw input signals are con-
verted to an RP for single-task models of AC, SE, and BWE.
For AC, the accuracy is 97.1% for MobileNetV2, whereas the
next best performing model is LSTM which has an accuracy of
94.6%. In both SE and BWE, we observe that MobileNetV2 is
once again the best performing model compared to LSTM and
GRU. In all metrics, MAE, RMSE, and MAPE, MobileNetV2
outperforms GRU and LSTM by quite a margin. Likewise, it is
apparent that converting a raw input signal to an RP and pro-
cessing with the MoibleNetV2 shows enhanced performances
for all single-task settings.

In the multitask setting, the MobileNetV2 outperforms
LSTM and GRU in both AC and BWE. For AC, we see that
the MobileNetV2 has an accuracy of 97.2% while the next best
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Fig. 4. t-SNE representation of the learned representation of our MTL model is shown in (a)–(c). (a) Embedding space of the AC is displayed and each
color represents different types of activities. (b) Embedding space of SE is shown and the predicted speed range is colored in a sequential color range.
(c) Embedding space of BWE is displayed, with the note that the body weight is estimated when the user is running on the treadmill.

model is LSTM with 95.4%. For BWE, the MobileNetV2 has
an MAE of 6.85 MAE, while LSTM and GRU have scores of
8.48 and 8.92. For SE, we see that all three models have simi-
lar MAE, RMSE, and MAPE scores. However, the LSTM and
GRU was the best performing model in terms of MAE and
RMSE, respectively. The MobileNetV2 had the best MAPE
score of 0.052 compared to 0.055 of both LSTM and GRU.

C. MTL Loss Functions

The MobileNetV2-based MTL model was tested with three
different MTL loss functions: uniform, RLW, and uncertainty
weighted loss. The results, as shown in Table IV, showed that
the uncertainty weighted loss function was the most effective,
achieving the highest performance in all AC, SE, and BWE
metrics. In the AC, the uncertainty weighted loss achieves
97.2% accuracy, while the uniform loss and RLW had a lower
accuracy of 93.1% and 92.9%. The uncertainty weighted loss
also provided the best results in SE, with an MAE of 0.268,
RMSE of 0.349, and MAPE of 0.052. The second best per-
forming loss was the uniform loss which obtained an MAE
of 0.309, RMSE of 0.390, and MAPE of 0.061. In BWE, the
uncertainty-weighted loss was slightly better than the other
two loss functions, with a score of 6.85, 8.36, and 0.107 for
MAE, RMSE, and MAPE, respectively.

D. Embedding Space

We show how the embedding space of our MTL result looks
like by visualizing the extracted features from the test samples.
The features were taken from the last output layer of the shared
backbone model. Here, Fig. 4 is the t-SNE representation of
the AC (a), the SE (b), and the BWE (c). The three images are
identical in shape, and only the relevant subset of experiments
for each task was visualized. Note that Fig. 4(c) is a magnified
version of the ‘treadmill run’ class in AC. The labels for each
specific AC, SE, and BWE are placed at the median sample
of each class. We see that in Fig. 4(a) the embeddings form a
unique cluster for each type of activity, with similar activities,
such as “Ground Walk” and “Treadmill Walk,” “Lunge,” and
“Squat” set side by side. In Fig. 4(b), we observe that the
speed features are placed in sequential order. For Fig. 4(c), the

body weights are placed in descending order except for 65 kg.
We conjecture that this mismatch can be fixed with a more
significant number of samples.

VII. DISCUSSION

This section will discuss two intriguing findings of our study
in BWE. First, the performance of BWE is better when running
than standing still. Second, our research contributes to com-
mercializing an AI-based BWE model by outperforming the
prior BWE research based on a smart insole without utilizing
user-related information.

To begin with, one of the interesting aspects of our work is
that experiments 9, 10, and 11, the running on the treadmill
tasks, worked best for weight estimation compared to other
experiments. Generally, a stationary position is thought to be
more favorable for weight estimation, as we measure body
weight on a scale while standing still. However, a point worth
noting is that the FSR sensor measures the relative pressure
difference, which is different from how a mechanical scale
works. This disparity can be attributed to explaining why
estimating the body weight in stationary conditions was not
easy, which goes against our intuition. Furthermore, although
a user might be standing still, the center of mass in the smart
insole keeps changing as it is nearly impossible to stay perfectly
stationary [56]. On the contrary, this seemingly imperceptible
movement in the body is translated to erratic fluctuation in sensor
reading, generating a great deal of noise in the time-series data,
making BWE difficult. Paradoxically, we hypothesized that
regular activities in a controlled environment, such as running
on a treadmill, reduce random noise and create a cyclic pattern
in sensor readings. Thus, this “stabilized” condition might make
deep learning algorithms easily regress the body weight value.

Consequently, we discovered that while running on a tread-
mill, the FSR3 sensor values had substantially less noise than
other sensors, resulting in a more stable reading of the sensor
values. To be specific, we first subdivided samples into five
categories depending on the body weight (below 50, 50 to 60,
60 to 70, 70 to 80, and above 80) in each experiment. Then, we
calculated the mean of each sample x and visualized the degree
of spread of these mean values by the body weight groups in
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Fig. 5. Distribution of mean values for the FSR3 sensors is depicted in a box plot for each experiment. From the graph, it can be seen that the range of
sensor values is relatively low in experiments 9–11, as evidenced by the minimal standard deviation. This indicates that the sensor values in these experiments
were more consistent and stable compared to those in other experiments.

every experiment and for each sensor. Intriguingly, we found
that in FSR3 sensors, the degree of spread of the mean val-
ues per each body weight group was significantly smaller in
experiments 9–11 (Fig. 5) compared to the rest, indicating that
the noise level of FSR3 sensors drops dramatically when the
user is running. In contrast, there was no significant differ-
ence in experiments with the rest of the sensors. As to why
the FSR3 sensor made a difference, we note that the sensor
is embedded at the lateral hill region of both left and right
feet, as shown in Fig. 2. Prior studies [57], [58] showed that
the plantar pressure is substantially different in the lateral fore-
foot region per different body weight ranges, implying that the
location of the FSR3 sensor is likely to be the critical location
in discriminating different body weights.

To further support this assumption, we trained a random
forest classifier and a regressor based on several summary
statistics (mean, median, min, max, sum, variance, and stan-
dard deviation) extracted from the raw sensor data to predict
the body weight range of users as classes or as values, respec-
tively. Indeed, the features extracted from the FSR3 sensors
are positioned highly (Fig. 6) in both the feature importance
of the random forest classifier and regressor. Although this
method of showing the importance of features does not exploit
the nonlinear interactions between features in deep learning, it
seems to be one approach to explain why the “running on the
treadmill” experiment works for BWE compared to others.

Finally, we created a commercially feasible BWE model
based on a smart insole without compromising user privacy.
While several works focus on human AC through wearable
sensors, little attention has been given to estimating a user’s
body weight. Nevertheless, numerous studies demonstrate that
monitoring physical activity and body weight changes is vital
to maximizing the effect of exercise [59]. Moreover, mon-
itoring body weight is necessary for managing mental and
physical health since a sudden change in body weight is
a warning sign for multiple disorders, such as depression,
obesity, and kidney diseases. Still, keeping track of one’s body
weight is a proactive action that requires considerable time and
effort. Thus, it would be beneficial to automatically estimate

Fig. 6. (a) Feature importance score from the random forest body weight
classifier. (b) Feature importance score from the random forest body weight
regressor. Both models are trained to predict body weight with several
summary statistics extracted from each sensor. Statistics extracted from the
FSR3 sensor are colored in green.

body weight with a smart insole that could be worn in our
everyday lives. In this work, we are the first to use a deep
learning approach to estimate a person’s body weight with
a commercially viable smart insole. The performance of the
proposed BWE model is 8.36 RMSE, which is superior to
10.52 RMSE of [18], which is the only previous study on BWE
based on a smart insole. Additionally, whereas most studies on
BWE utilized user-related information, such as sex, age, calo-
rie intake, and calorie burn, we demonstrated that it is possible
to estimate body weight using only the smart insole’s real-time
sensor data. Our system is more user-friendly and removes any
potential privacy concerns. Most of all, our research opens new
possibilities for real-time weight estimation research.

VIII. CONCLUSION

In this work, we proposed our MTL framework to solve
three tasks using a commercial smart insole that addresses
wearable-device-related AI healthcare services: AC, SE, and
BWE. To build our framework, we created an MTS data set
containing a total of 72 different users carrying out 16 different
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types of experiments. We showed that our MTL model
is lightweight and efficient, with improved or comparable
performance compared to the single-task models. Moreover,
we show that rather than using the raw sensor signals, con-
verting the data to an image-based RP improved performance
in all tasks, especially for BWE. The performance of our MTL
framework was verified in various ablation experiments. As for
our training strategy, we employed the uncertainty weighing
losses to balance the losses incurred in each task. The result-
ing embedding space of our MTL model makes reasonable
clusters within all three tasks.

Finally, we discuss the limitations of our work and the
potential future research directions. First, any deep learning
model could fail when it faces data distribution that it was not
trained on. In our experiments, participants were instructed to
walk or run on a treadmill to collect the data for SE and BWE
regressor. Unfortunately, the distribution of the data collected
under these specific conditions will likely differ from that of
data collected in the wild. Second, the BWE works when the
user is at a particular running speed range which may limit the
applicability. However, our work is the first attempt to develop
an MTL model dealing with the three tasks via a commercial
smart insole. Thus, future research can focus on collecting
the real-world MTL data set containing more than 16 exper-
iments and maximizing the weight estimation performance.
Finally, we are confident that our research will bring about
new research ideas in the field of HAR and BWE and will
serve as helpful for those working with wearable devices.

APPENDIX A

LAYER ABLATION OF MOBILENETV2

Our MobileNetV2 architecture design was experimentally
validated through an analysis of the correlation between the
number of parameters and the maximum memory allocation
for varying numbers of bottleneck layers. As shown in Fig. 7
(Left), we observed that the total number of parameters in
our implementation increases exponentially with the number
of bottleneck layers. Specifically, it increases from 97.3K for
4 bottlenecks to 350.6K for 5 bottlenecks. On the other hand,
Fig. 7 (Right) illustrates that the maximum memory allocated
remains relatively consistent between 3 and 4 bottlenecks, but
increases from 26K in 4 bottlenecks to 28K in 5 bottlenecks.

We also present the results of our performance evaluation
based on different numbers of layers. To simplify the anal-
ysis, we use a single metric for each task: AC-Accuracy,
SE-RMSE, and BWE-RMSE. Fig. 8 illustrates that for the AC
task, the highest accuracy was achieved with four bottlenecks,
whereas for both SE and BWE tasks, the best performance
was achieved with five bottlenecks, with a marginal differ-
ence when using four bottlenecks. These results demonstrate
that while there is a slight improvement with the use of addi-
tional bottleneck layers, it is not significant enough to justify
the exponential increase in parameters and memory allocation,
which are crucial considerations for mobile applications. This
highlights the reason for our choice to only use the first three
and the latest bottlenecks of the original MobileNetV2, as it
strikes a balance between performance and resource efficiency.

Fig. 7. Figure illustrates the comparison of the number of parameters (Left)
and maximum memory allocation (Right) between different numbers of bot-
tlenecks. The left graph shows the exponential increase in the number of
parameters as the number of bottlenecks increases, while the right graph
illustrates how the maximum memory allocation remains relatively constant
between three and four bottlenecks, but increases from 26K in four bottlenecks
to 28K in five bottlenecks. This highlights the tradeoff between performance
and resource efficiency when using different numbers of bottlenecks.

Fig. 8. This figure illustrates the results of our performance evaluation for
three different tasks: AC-accuracy (Left), SE-RMSE (Middle), and BWE-
RMSE (Right) as a function of the number of bottleneck layers. The left
graph shows how the accuracy of the AC task increases with the number of
bottlenecks and reaches the highest value with four bottlenecks. The middle
and the right graphs, on the other hand, demonstrate that the best performance
for both SE and BWE tasks is achieved with five bottlenecks, with a marginal
difference when using four bottlenecks. These results show the relationship
between the number of bottleneck layers and the performance of the network
on different tasks.

TABLE VI
OPTIMIZER COMPARISON RESULTS: ADAMW AND ADAM

APPENDIX B

OPTIMIZER COMPARISON RESULTS

Here, we have conducted a comparison study of Adam
and AdamW optimization algorithms for our specific MTL
task and have found that AdamW results in a smaller
number of training epochs while achieving comparable or
better MTL results. We kept all other parameters constant
and compared Adam (learning rate=0.002) with AdamW
(learning rate=0.002) using our MTL model. The results,
presented in Table VI, show that AdamW and Adam perform
similarly in AC and SE, however, AdamW demonstrated an
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improvement in BWE with an RMSE of 8.359(0.901) com-
pared to Adam’s 8.995(0.798). Additionally, AdamW had an
average training epoch of 114.0(13.34), while Adam took
131.6(34.782) epochs.
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