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Digital-Twin-Assisted Task Assignment
in Multi-UAV Systems: A Deep
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Jin Ye, Fengzhu Tang, and Qian Chen

Abstract—Most existing multiunmanned aerial vehicle (multi-
UAV) systems focus on fly path or energy consumption for task
assignment, while little attention has been paid to the dynamic
feature of the task, resulting in poor task completion ratio.
The machine learning (ML) paradigm provides new methodolo-
gies for task assignment. However, ML methods are usually of
heavy resource-consumption that cannot be directly applied in the
UAV. In this article, a digital-twin (DT)-assisted task assignment
approach is proposed to improve the resource-intensive utiliza-
tion and the efficiency of deep reinforcement learning (DRL)
in multi-UAV system. The approach has a three-layer network
structure which can dynamically assign tasks based on the task
time constraints. Moreover, the approach is divided into two
stages of initial task-assignment and task-reassignment. In the
first stage, airship divides a task into multiple subtasks according
to the shortest distance based on genetic algorithm and assigns
them to UAVs. In the second stage, the DT can be leveraged to
enable the airships to learn from the features of tasks and to
generate the Q-value of the estimated value network of DRL for
UAVs via pretrain of DT. The Q-value can be directly applied
for deep Q-learning network (DQN) in the UAVs to reduce the
training episode. Furthermore, the DQN is adopted to train task-
reassignment strategy. Simulation results indicate that the DQN
with DT can significantly reduce the training episode, improving
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30% of the task completion ratio and 19% of the system energy
efficiency compared with that of the baseline methods.

Index Terms—Deep reinforcement learning (DRL), digital twin
(DT), multiunmanned aerial vehicle (multi-UAV) system, task
assignment.

I. INTRODUCTION

IN RECENT years, due to the advantages of low cost,
high flexibility, fast deployment, and mobile intelligence,

multiunmanned aerial vehicle (multi-UAV) system has been
widely used in a variety of scenarios, such as Internet of
Things (IoT) applications, intelligent transportation, agricul-
tural protection and communication relay [1], [2], [3], [4], [5].
When the services are gradually evolving and becoming more
and more complex, a single UAV is unable to complete com-
plex tasks due to its limited energy reservation and payload
capacity. As the number of tasks increases, multi-UAV coop-
eration has become very important to improve task completion
ratio. To this end, the use case of multi-UAV cooperation
has attracted growing interests. Many related works focus on
static task assignment strategies, which are made according to
the initial requirements of the tasks. In [6], a particle swarm
optimization algorithm is used to plan the task path of UAVs
according to the task position given in advance, and it realizes
the task execution in the shortest time. In [7], the planning
algorithm is used to assign tasks according to the known task
position in order to maximize the task revenue, and the genetic
algorithm (GA) is applied to plan UAV path for minimizing
energy consumption. Wang et al. [8] proposed a task allo-
cation model for heterogeneous targets, which executes task
assignment and path planning through the improved GA to
minimize the task execution time and energy consumption. A
coalition formation algorithm based on cooperative planning is
proposed in [9], which considers the relationship between UAV
energy consumption and task types to improve the rationality
of task assignment. Moreover, Liu et al. [10] proposed a novel
divide and conquer framework for multi-UAV task schedul-
ing, in which a tabu-list-based simulated annealing algorithm
is used to finish task allocation among multiple UAVs. In [11],
a modified Wolf Pack algorithm together with a joint digraph-
based method and meta-heuristic optimization method is used
to solve the problem of multi-UAV cooperative task assign-
ment. However, the above-mentioned researches are mostly
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Fig. 1. Example of the comparison of different task assignment methods in a UAV, where the relationship of some time constraints of different task is
described. (a) Tasks arriving randomly. (b) Arrival-time-considering task assignment. (c) Time-constrained-considering task assignment.

using static task assignment without considering dynamics dur-
ing task execution, and thus it is difficulty to adjust execution
behaviors or strategies according to the real-time state of UAVs
and task. Moreover, most of tasks have strict deadlines to be
completed, and an emerging task is considered to successfully
executed only if it can be completed before its specified dead-
line. Such as, when the UAV arrives at the area where the
task is executed, start time of task execution must be before
end time. Otherwise, multi-UAV system has a low completion
ratio of tasks.

To better introduce the research motivation of this article,
an example in Fig. 1 is given below to illustrate the chal-
lenges that existing multi-UAV systems face when dealing
with multiple tasks. We define task completion ratio as the
ratio of the currently completed tasks to the total tasks in this
article. Fig. 1(a) shows that the UAV receives four randomly
arriving tasks within a period T includes 50 timeslots, and
each task has its time constraints, such as the deadline or end
time (i.e., Te) and the latest start time (i.e., Ts). For simplic-
ity, the size of each task can be represented by the number
of timeslots. Fig. 1(b) shows the UAV executes tasks accord-
ing to the sequence of the arrival time of the tasks (i.e., tasks
that arrive first will be executed first). The result is that only
task1 and task2 can be completed, and task3 is only executed
for 5 timeslots. In addition, task4 has not been executed and
UAV does not have enough timeslots to complete the task3.
The task completion ratio is 50%. Fig. 1(c) shows the UAV
dynamically adjusts the sequence of tasks according to the
time constraints of tasks. A flexible method is to consider the
latest start time of task in advance and assign different prior-
ities to them, respectively. Then, task2 is divided into task2-1
and task2-2. The advantage is that task4, which is close to
the deadline, will be executed after task2-1 and task3 will be
executed after task4, so task1, task3, and task4 can all be exe-
cuted by the UAV. The task completion ratio is 75%. It can

also be seen from the above example that the task assign-
ment in a single UAV is typically a dynamic process. And
the real-time assignment of multitask will pose a great chal-
lenge to the static task assignment with the participation of
multiple UAVs. Furthermore, lots of computation and storage
resources of UAV are inevitably required as a guarantee for
the implementation of dynamic task assignment. However, it
is in contradiction with the limited resources of multi-UAV
system. Therefore, a dynamic and high energy-efficiency task
assignment approach is needed.

To overcome the challenges, we deploy deep Q-learning
network (DQN) on UAVs to deal with highly dynamic task
execution environments. At the same time, training an effec-
tive machine learning (ML) model is a complex and time-
consuming process [12]. Moreover, the training will consume
a lot of computation and storage resources as a cost, so the
training period needs to be shortened. To this end, we consider
to the training process of ML of UAVs on some edge devices in
advance, such as airships. The advantage of this is as follows.
On the one hand, the edge devices possess powerful comput-
ing capacities and storage resources, which can be used as an
excellent resource supplement to the UAVs. On the other hand,
the edge devices are capable to collect a large number of his-
torical and environmental real-time state data. These data can
provide comprehensive data input for the training process of
ML, and the training results are often better than the training
effect of a single UAV or a swarm of UAVs. Furthermore, the
edge device sends the trained model parameters to multi-UAV
for direct use or as the basis for its training, which solves the
contradiction between the high consumption of resources of
ML and the limited resources available. However, how to real-
ize the above-mentioned model pretraining method so that the
training results can be directly used by UAVs is a challenge.
A novel approach is to create a avatar in virtual space for the
UAV and train it synchronously. Fortunately, digital twin (DT)



15364 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 17, 1 SEPTEMBER 2023

is a promising technology by creating virtual models of phys-
ical entities in the digital way and the models can understand
the state of physical objects through collected data, so as to
quickly and accurately predict and analyze the time-varying
features.

In this article, we propose a DT-assisted multi-UAV system
for achieving dynamic, fast and energy efficient task assign-
ment. Different from the previous works, we leverage airships
equipped with powerful computer to pretrain the DT model.
The DT constructs a parallel virtualization of the physical
multi-UAV system by mapping the system data to a virtual
space. It enables the UAVs to learn the task assignment strat-
egy via a pretrain model, which saves computing resources
and reduces the delay of task assignment. Multi-UAV system
collects the historical and environmental real-time state data by
airships and UAVs for task assignment. These data empowered
the decision-training process of the task assignment. Finally, a
case study of DT assisted multi-UAV system for task assign-
ment is investigated based on deep reinforcement learning
(DRL). The aggregated task completion ratio, energy con-
sumption and task priorities data are constructed as the training
data set. Simulation results indicate that the proposed method
can significantly increase the speed of model training, improv-
ing the task completion ratio and the system energy efficiency.
The main contributions of this article are as follows.

1) A model of multi-UAV systems with DT assisted for
task assignment is proposed. The DT model is built
and stored in the airship which is used to enhance the
efficiency of task assignment of UAV.

2) A three-layer network structure combining the advan-
tages of hierarchy and distribution for task assignment
in multi-UAV systems is designed. The impacts of flight
distance and energy consumption on task completion
ratio are also analyzed.

3) A method of task-reassignment for time-constrained
tasks is proposed. The method can track the real-time
features of tasks and UAVs by UAV-to-UAV (U2U),
airship-to-airship (A2A), and UAV-to-airship (U2A),
which enables the UAVs to quickly generate strategy via
a pretrain approach at airship for increasing the ratio of
task completion.

The remainder of this article is organized as follows. In
Section II, a comprehensive survey of the related works is
provided. In Section III, a model of multi-UAV systems
with DT assisted task assignment is given and described.
Section IV describes a approach of task-reassignment in multi-
UAV system. Section V gives the experimental results and
analysis. Finally, Section VI concludes this article.

II. RELATED WORK

In this section, we review the related work about UAV
dynamic task assignment, DRL-based techniques for UAV tra-
jectory optimization and multi-UAV systems based on DRL
and DT.

UAV dynamic task assignment has been an important topic
in multi-UAV system in recent years. Some researchers have
combined UAV with distributed architecture to satisfy the

requirements of dynamic task assignment. Wang et al. [13]
presented a two-layer optimization method for optimizing the
deployment of UAVs and task scheduling, with the aim of
minimizing system energy consumption by adaptively adjust-
ing the number of UAVs. Moreover, to solve the problem of
information coupling between task assignment and path plan-
ning of UAVs, a strategy based on the distributed architecture
is proposed to improve the efficiency of UAV and re-evaluate
the assigned tasks in [14]. Furthermore, in [15], an improved
auction mechanism algorithm with the constraints of com-
munication and endurance time is proposed to assign tasks.
Li et al. [16] proposed a new multitask cooperated UAVs
network framework and an AggreGate Flow-based scheduler
in which ML is used to precisely estimate the task urgency-
level, and improve efficiently the multitask completion rate.
The above researches can carry out real-time task cooperation
according to the features of UAV or task. However, the poor
task completion caused by ignoring time constraints remains
unsolved.

Trajectory optimization is a part that must be considered in
the process of multi-UAV task assignment, and its performance
is crucial to the completion of the task. Recently, DRL-based
techniques for trajectory optimization are attractive to many
researchers. Zhang et al. [17] studied to minimize the flying
time of the rechargeable UAVs for completing the backscat-
tering data collection task. They propose a single-agent deep
option learning and a deep option learning base on hier-
archical DRL and compared the proposed algorithms with
different DRLs to prove their algorithms can achieve bet-
ter performance. Challita et al. [18] focused on UAV path
planning in the network of cellular-connected UAVs. They pro-
pose a DRL-based on echo state network cells algorithm for
UAVs which learn its optimal path, transmission power, and
cell association vector at different locations along its path.
Furthermore, Han et al. [19] proposed a method of simultane-
ous target assignment and path planning based on a multiagent
deep deterministic policy gradient algorithm, in which the
system model is trained to solve target assignment and path
planning simultaneously for deal with dynamic environments
effectively and improve real-time performance. In addition,
some researchers have considered the problem of obstacle
avoidance in UAV trajectory optimization. Singla et al. [20]
used a DRL-based method for UAV obstacle avoidance in
unstructured and unknown indoor environments and proposed
a deep recurrent Q-network with memory to learn the control
policy. Ouahouah et al. [21] proposed a probabilistic and DRL-
based algorithm, and they run on the top of the UAV or at a
multiaccess edge computing that can gather data from UAVs
sensors and then select the optional decision to avoid the obsta-
cles. Although these researches achieve good performance in
multi-UAV system, the training for the DRL model usually
consumes a long time, which might not be acceptable to many
latency-sensitive tasks.

The DT has been considered as a promising approach for
addressing the above issue and attracted lots of interests in recent
years [22]. The potential advantages of the DT has enabled the
application of DT in various areas, such as real-time remote
monitoring and control in intelligent transportation system,
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Fig. 2. System model.

testing and assessment in self-driving car, and the scheduling
in intelligent industrial systems [23], [24]. Ji et al. [25] explored
the effect of the DT in UAVs on providing medical resources
quickly and accurately during COVID-19 prevention and con-
trol. Shen et al. [26] integrated DRL with DT to improve the
practicality of flocking motion of multi-UAV systems in the
real environment which unknown and stochastic. However, DT
focuses on modeling an individual physical object in the virtual
space, and a DT model always gathers and processes the objects
state information in an independent mode without interacting
with other models. As a result, the constructed object model
may be not accurate, and both time and energy consumption of
this construction process may be significant. Compared with
a mapping between the physical object and its virtual twin,
i.e., DT, the DT network uses advanced communication tech-
nologies to realize real-time information interaction between
the physical object and its virtual twin, the virtual twin and
other virtual twins, and the physical object and other physical
objects. Zhang et al. [27] exploited the DT technology to map
the edge caching system into virtual space, which facilitates
constructing the social relation model. Dai et al. [28] proposed
a paradigm DT network to establish model of network topology
and the stochastic task arrival in Industrial IoT (IIoT) systems.
Lu et al. [29] integrated DTs with edge networks and proposed
the DT network with edge computing between physical edge
networks and digital systems. In spit of its many application, the
DT has not been leveraged for task assignment in multi-UAV
cooperative systems.

Therefore, to meet different requirements of tasks in
dynamic scenarios and improve the task completion ratio, this
article proposes a three-layer network structure which can flex-
ibly assign task. Moreover, a novel task-reassignment method
is proposed to generate new priority of the tasks executed
based on real-time state data, and makes decisions based on
DRL with assistance from DT. Then, UAVs dynamically adjust
the execution sequence of subtasks under time constraints
and completes dynamic reassignment of multiple subtasks.
The results indicate that the proposed method improves the
task completion ratio in the scenario of issuing new tasks at
any time.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This article proposes a multi-UAV system assisted by DT
that includes airships and mult-UAV systems, in which UAVs
are assigned to execute time-constrained tasks. The model of
the multi-UAV systems is described in Fig. 2. We consider that
the airships in an area of several hundred square kilometers are
deployed to work in the task assignment layer. The airships
are used to receive real-time tasks from the generation layer.
Furthermore, each airship is interconnected with corresponding
groups of UAVs in the execution layer to execute some specific
tasks. Specifically, we design the role of the airships to include
two aspects. The first aspect is to realize the initial assignment
of tasks based on the GA. The second aspect is to construct
the DT model of the UAVs and collect historical and real-time
task assignment. In this way, the airship pretrain DRL network
model, and sends the trained network parameters to the UAVs.
Correspondingly, the main work of the UAVs is responsible
for the specific execution of the task, and receives the DRL
network parameters from the corresponding airship, which is
used to build a more accurate local training model and complete
the task-reassignment. The advantage of our proposed model
is that the local network training of the UAV can converge
quickly, thereby achieving fast dynamic task-reassignment and
reducing energy consumption. The process of task assignment
of a multi-UAV system is divided into five steps.

Step 1 (Task Generation and Release): The control center
generates tasks and randomly releases them to the
assignment layer.

Step 2 (Initial Task-Assignment): Each task is divided
into several subtasks and distributed to different
UAVs. This step assigns the subtasks based on their
positions and the number of the UAVs.

Step 3 (Subtask Execution): The UAVs receive and exe-
cute subtasks assigned. During the process of
execution, UAVs interact with each other to obtain
the real-time features of subtasks.

Step 4 (Task-Reassignment): Each UAV generates new
subtask priority based on the subtask features.
The subtask execution sequence of each UAV is
adjusted to complete the task assignment again.
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Step 5 (Task Completion): When all the subtasks are
completed, the corresponding tasks are completed.

In order to realize the above five steps, in this article, the
multi-UAV system is divided into the generation layer, the
assignment layer and the execution layer. The generation layer
generates and releases tasks from time to time according to the
requirements of the control center. The assignment layer per-
forms the initial task-assignment according to the global state
of tasks and UAVs. The initial task-assignment divides the
tasks into several subtasks and distributes them to the UAVs
based on the shortest distance. The distance is obtained by GA.
Furthermore, due to the limited computing power of UAV, the
assignment layer runs as a computing agent for each UAV. It
provides computing resources for UAV to dynamically adjust
task priority under current task completion ratio and time con-
straints. The computing results are transmitted through the
wireless connection between U2A. Moreover, to capture the
features of dynamic tasks and to obtain accurate DT model of
current tasks, in this article, the DT model of UAV is estab-
lished from the perspective of task execution in the airship to
update the estimated value network of DRL for UAVs in real
time. Considering the influence of the information transmis-
sion delay between the airship and the UAV on the DT model,
we designed a correction model (see Section IV-B). The model
calculates the action of the UAV during the information trans-
mission process between the airship and the UAV through the
DQN algorithm, calibrates the DT model according to the
completion of the task, and make the DT model accurate.
The execution layer is responsible for executing subtasks and
performing the task-reassignment. Each UAV executes task-
reassignment algorithm to make decisions and dynamically
adjust the sequence of subtasks, according to the real-time
priority and ratio of completion of subtasks and the energy
consumption of UAV, to improve the completion ratio of tasks.
The relevant parameters of task assignment approach and its
physical meaning are described in Table I.

The task set is represented by z = {z1, z2, . . . , znt }, nt rep-
resents the number of tasks. Along with the task, there are
also related features of the task, and W = {P, A, Ts, Te, η, P′}
represents the feature set of each task. Among them, the pri-
ority of the task z is represented by P = {Pz

1, Pz
2, . . . , Pz

nt
},

the execution area of the task z is represented by the set
A = {Az

1, Az
2, . . . , Az

nt
}, and the task start time and end time are

represented, respectively, by the sets Ts
z = {Ts

z
1, Ts

z
2, . . . , Ts

z
nt
}

and Te
z = {Te

z
1, Te

z
2, . . . , Te

z
nt
}.

When the assignment layer receives the task from the gen-
eration layer, task target positions are assigned in this task
which are represented by the set g = {g1, g2, . . . , gnp}, np

is the number of task target positions. The total number of
UAVs in a multi-UAV system is nu, and the UAVs are rep-
resented by the set n = {n1, n2, . . . , nnu}. It divides the task
z into several subtasks m according to the number of UAVs
nu and the coordinates of the subtask target positions Li. The
subtasks are represented by the set m = {m1, m2, . . . , mnu},
where nu represents the number of subtasks into which the
task z is divided. Among them, subtask mi includes nip target
positions, and nip indicates that the i task contains np task tar-
get positions. When dividing tasks, it is necessary to achieve
the goal of the shortest distance of all subtasks. In subtask mi,

TABLE I
LIST OF PARAMETERS

the coordinate of target position gi is Li = (xi, yi), and the
coordinate of target position gj is Lj = (xj, yj).

A. Stage of Initial Task-Assignment

For initial task-assignment, we focus on the path planing of
executing subtasks. The optimization objective is to minimize
the flying distance of the UAVs. We transform the path plan-
ning problem into a GA optimal solution problem. Consider
each solution as a chromosome, and then several chromosomes
form a population. The population continues to evolve, and the
chromosomes continue to mutate and inherit until the fitness
function converges or reaches the maximum number of iter-
ations. Specifically, the GA selects chromosomes through the
combination of optimal retention strategy and roulette. It not
only retains the best samples, but also improves the diversity of
samples. And it performs the genetic operation of classifying
and crossing the chromosomes according to the fitness func-
tion value during the crossover. At the same time, the crossover
probability and mutation probability are dynamically adjusted
according to the fitness function value of the current chromo-
some which speeds up the GA convergence. Hence, the fitness
function can be modeled by

froute = 1

di
(1)

where the fitness function value is maximized, the shortest path
of the UAV is determined. At the same time, the execution
sequence of subtasks is also the position sequence of subtasks
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on the shortest path. The distance di of target positions of
subtask mi is set by

di =
nip∑

i=1

njp∑

j=1

dijkij (2)

where kij represents whether the target position gi is connected
to, if it is connected, kij = 1. If the task target position gi and gj

are not connected, kij = 0. The Euclidean distance dij between
the target position gi and gj is set by

dij =
√(

xi − xj
)2 + (

yi − yj
)2

. (3)

Then, the distance of all subtasks in task z is defined as

D =
nu∑

i=1

di. (4)

In order to make the distance in each subtask relatively
balanced, we find the variance of the distance which is
given by

l2 =
∑nu

i=1

(
di − AV

)2

nu
(5)

where AV is the average of the execution distance of the
subtask, which is given by

AV = D

nu
. (6)

The objective function f1 to divide tasks of the assignment
layer can be expressed as

f1 = 1

D
+ 1

l2
. (7)

To simplify the analysis, the following constraints in the
above process of task-assignment model are as follows.

1) Each task target position is executed by at least one UAV
and at most one UAV

nu∑

j=1

Gij = 1
(∀i = 1, 2, . . . , np

)
. (8)

2) Each subtask is executed by at least one UAV and at
most one UAV

nu∑

j=1

Mij = 1, (∀i = 1, 2, . . . , nu). (9)

3) Each UAV can only execute one subtask of the same
task at most

nu∑

i=1

Mz
ij = 1, (∀z = 1, 2, . . . , nt ∀j = 1, 2, . . . , nu).

(10)

4) Each UAV is assigned at least two subtasks
∣∣∣∣∣

nu∑

i=1

Mij

∣∣∣∣∣ ≥ 2, (∀j = 1, 2, . . . , nu). (11)

5) Each UAV can only execute one subtask at the same
time ∣∣∣∣∣

nu∑

i=1

Mij
t

∣∣∣∣∣ = 1, (∀j = 1, 2, . . . , nu). (12)

6) Different UAVs can execute subtasks from different
tasks at the same time

nu∑

j=1

Mij
t ≥ 1, (∀i = 1, 2, . . . , nu). (13)

B. Stage of Task-Reassignment

In the stage of initial task-assignment, the sequence of
subtasks forms the initial task execution list of the UAV
by GA. The amount of subtask is represented by the set
S = {S1

1, S1
2, . . . , S1

nu
, . . . , Snt

1 , Snt
2 , . . . , Snt

nu}. After receiving a
series of assigned subtasks, the UAVs in the execution layer
will fly to the planned area for executing the subtasks in the
initial execution sequence. As the task is executed, the task
completion ratio gradually increases. A constant v is the speed
of each UAV to execute tasks. Thus, in the time slot t, subtask
mz

i has been completed by UAV nj which is defined as

Szt
ij = vtζ z

ij (14)

where

ζ z
ij =

{
1, UAV nj is executing subtask mz

i
0, otherwise.

(15)

Then, the completion ratio ηzt
ij of subtask mz

i that is executed
by UAV nj in time slot t is defined as

ηzt
ij = Szt

ij

Sz
i
. (16)

In the process of task execution, each UAV continuously
exchanges the state information of their respective tasks.
Meanwhile, every UAV updates the task completion ratio to
quantify the task features based on the task completion ratio
and task size in real time. Thus, at the time kT , the completion
ratio of task z is defined as

ηz =
nu∑

i=1

k∑

k=1

ηzkT
i · Sz

i∑nu
i=1 Sz

i

=
nu∑

i=1

k∑

k=1

nu∑

j=1

ηzkT
ij · Sz

i∑nu
i=1 Sz

i
. (17)

Thus, the ratio of total completion is as follows:

η =
nt∑

K=1

(
ηz · SK∑nt

x=1 Sx

)

=
nt∑

K=1

nu∑

i=1

k∑

k=1

nu∑

j=1

SKkT
ij∑nt

x=1 Sx

=
nt∑

K=1

nu∑

i=1

k∑

k=1

nu∑

j=1

vkTζK
ij∑nt

x=1 Sx
(18)

where Sx is the size of task z.
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Moreover, UAVs will generate a certain amount of energy
consumption in the process of executing tasks. Thus, we use
Ew to represent the energy consumption of UAV when exe-
cuting tasks, Ef to represent the energy consumption of UAV
when flying, and Eh to represent the energy consumption of
UAV when hovering, which is given by in the time slot t

Ew = ξ1e (19)

Ef = ξ2γ (20)

Eh = ξ3h (21)

where e, γ , and h are the average energy consumption dur-
ing task execution, flying, and hovering, respectively. ξ1, ξ2, ξ3
is the corresponding effective coefficient. When the UAV is
executing, flying, and hovering, ξ1, ξ2, ξ3 is equal to 1, respec-
tively. Otherwise, it is equal to 0, respectively. In time slot t,
the energy consumption Ej of UAV nj is as follows:

Ej = Ew + Ef + Eh. (22)

The total energy cost E of all UAVs is as follows:

E =
nu∑

j=1

Ej. (23)

As the generation layer issues new tasks from time to time,
the execution list of subtasks is constantly updated. However,
when the UAV executes tasks according to this list, the time
constraints that are important for completing the tasks are
ignored. Furthermore, UAVs is difficult to judge the urgency
of task execution, resulting in the low completion ratio of all
task. Therefore, for multiple task execution in dynamic sce-
narios, the initial task-assignment is no longer applicable. In
order to improve the capabilities of the multi-UAV system
when tasks are randomly assigned, and the ratio of task com-
plement with time constraints. This article proposes a method
of task-reassignment. The UAV can make decisions by DRL
based on the real-time state of the task, and dynamically adjust
the sequence of subtask execution. We consider a new task
priority of subtask during the subtask execution is generated
according to the time constraints and the task completion ratio
at the current moment, and then continuously update it. When
the remaining of the task is the largest, its new priority will
be the highest. And the task execution sequence of each UAV
is adjusted dynamically to realize task assignment considering
time constraints and the new task priority, which can com-
plete more tasks in the shortest time. We use P′ to represent
the new priority of the subtask mz

i in the current slot t, and P′
is defined as follows:

Tzt
ri = Sz

i − Szt
ij

v
(24)

P′ = Tzt
ri

Tz
ei − t

(25)

where Sz
i is the size of subtask mz

i , and Tz
ri and Tz

ei are the
remaining time and end time of subtask mz

i , respectively. The
larger the value of P′, the earlier the task is executed.

Then, the optimization goal f2 of the energy consumption
efficiency of task-reassignment is defined as energy ratio, and

the energy ratio is expressed as follows:

f2 = P′ + η

E
. (26)

In order to ensure the real-time performance of task-
reassignment, we set up periodic interaction between UAVs to
obtain the real-time task features of each other. The periodic
T should be less than the time Tmin required to complete the
minimum task, and to avoid wasting computing resources, the
T should be greater than or equal to half of the time required to
complete the minimum task. Moreover, the E generated when
each UAV executes tasks in the sequence of new tasks is less
than the maximum energy consumption Eu of the UAV itself.
The following constraints in the above model are as follows:

Tmin

2
≤ T < Tmin (27)

E < Eu. (28)

IV. DT AND DQN-BASED TASK-REASSIGNMENT

Fig. 3 illustrates the main framework of the proposed DT
and DQN-based task-reassignment of a multi-UAV system
model construction approach. Airships execute all operations
of data fusion, analysis and computation in the digital mod-
els. This approach not only increases the depth and breadth
of the training model and the predicting accuracy, but also
shortens data training period. Meanwhile, the DT model in
airship remedies the limited computation and storage capabili-
ties of small-sized UAVs. Thus, the performance of multi-UAV
system can be effectively improved by concentrating UAVs
on the operations of dynamic tasks. Besides, the historical
and real-time date of the multi-UAV system both facilitates
the optimization of network parameters and improves the effi-
ciency of DQN. In the multi-UAV system, the DT model
consists of four parts, the data collection part gets the param-
eters of UAVs through U2A. These parameters include UAVs
position, subtask features and energy consumption. The state
update part gets priority of tasks and completion ratio of tasks.
As the virtual model of UAVs is built in the airships hovering
in an area, the multiairship collaboration part is responsible for
exchanging data between the airships and maintaining their DT
model consistency. The model is builted and stored in the DT
construction module in the airship, and periodically updated
based on the data collected and state updated. The adjustment
of the value networks of DQN in airship will be issued to the
UAVs through the instruction output part, thereby changing
the state sampling of UAVs and the estimated value network
and the target value network. After establishing the DT, which
offers a virtual representation of the physical UAVs, we need to
extract some key features of task-reassignment and construct
a multi-UAV system model.

A. DQN Model Construction on UAV

The essence of task-reassignment is the NP-hard problem.
This problem is solved in a dynamic environment that tasks
are released at any time, and the decision of the UAV is
only related to the dynamic task state at the current moment.
Furthermore, the dynamic Markov decision process can be
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Fig. 3. DT and DQN-based task-reassignment of multi-UAV model construction.

used to solve task-reassignment problems. Therefore, this
article chooses DQN with a dynamic Markov properties algo-
rithm to solve the task-reassignment problem. The process of
the DT assisted task-reassignment are shown in Algorithm 1.
As an unsupervised learning method, the DQN continuously
interacts with the dynamic environment through the agent,
and then takes actions to obtain corresponding rewards. At
the same time, it learns the laws of the environment until the
optimal solution of the strategy is obtained [30], [31]. Each
UAV is an agent in solving the task-reassignment problem
for the multi-UAV system. In order to reduce the difficulty of
training, each agent finishes training separately while sharing
the environment to generate experience replay and network
structure. However, since the agents collectively affect the
environment, they can be represented by joint actions and
states. We suppose there are nu agents, and each agent can
choose na actions, which are represented by {a1, a2, . . . , ana}.
At the same time, each agent generates ns states, which are
represented by {s1, s2, . . . , sns}. The DQN parameters are set
as follows.

Action Space: The action space of UAV n is the number of
subtasks to be executed, at

n = {1, 2, 3, . . . , ln} represents the
action of UAV n in time slot t. ln is the number of subtasks
assigned to UAV n.

State Space: In our scenario, the decision process of
multiple agents and produces a large amount of data. We
preprocess the global state of the environment and elimi-
nate the features irrelevant to the optimization objective of
this article. The goal of the proposed method is to improve
the completion ratio of all tasks and minimize the energy
consumption. We define the features of the task as W(see
Section III). After the initial-assignment, the task is divided
into multiple subtasks. From the global state of the environ-
ment, each subtask is treated as a specific target position, so
the task area A is transformed into the coordinate position

Algorithm 1 DT Assisted Task-Reassignment of UAV Based
on DRL.
Input: List of actions which are taken by each UAV(i.e. agent)
Output: Optimal sequences of actions to maximum the ratio of task

completion
1: Initialize the memory replay
2: Receive and store Q(s, a; θ) issued by the airship
3: Update the Q-network in UAV according to (36)
4: begin
5: for episode e = 1, . . . , n do
6: Initialize simulation environment
7: Randomly generate and receive an initial state, including the

coordinates, size, priority and time constrains of tasks, as well
as the coordinates of multi-UAV

8: Update s for each UAV
9: for time step t = 1, . . . , T do

10: Calculate the ratio of task completion η, energy cost E,
priority of subtask P′

11: Select an action at with ε, which means the UAV selects
the task that it is currently executing

12: Select at = maxaQ(st, a; θ) with 1 − ε
13: Calculate and observe Rt and next state st
14: Store (st, at, Rt, st+1) in the replay buffer
15: Select (st′ , at′ , Rt′ , st′+1) from the replay buffer
16: Using SDG to train DQN model by the loss function (37)
17: Update θ , Q(st, a; θ), and Qtarget(st, a; θ) according

to (38)
18: end for
19: Store the Q-network
20: end for
21: end

Lm of the task. In addition, the real-time task priority P′ can
be obtained by parameters, such as the start time Ts and
the end time Te of the task, as well as the task completion
ratio η during the executing task of the UAV. Then, the orig-
inal task priority P and parameters, such as Ts and Te are
replaced by P′. In addition, the decision process of the UAV
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also includes its own coordinate Ln. Therefore, the states of
multiple agents is represented by X = {η, P′, LM, LN}. By the
way, Xn = {η, P′, Lm, Ln} is the state of subtask mz

i being
executed by UAVn.

Reward Functions: The ultimate goal of task-reassignment
is to improve the task completion ratio and reduce energy
consumption. Thus, the reward settings are as follows:

R
(
s, a, s′) =

⎧
⎨

⎩

r1
r2
r3

(29)

where r1 is the reward defined according to the new priority
P′ in the task execution process. Depending on the level of
priority, different rewards are given. r1 is given by

r1 =
⎧
⎨

⎩

b1, P′ = max
(
P′)

c1, P′ = min
(
P′)

0, else
(30)

where b1 is a positive constant value, and c1 is a negative value
whose absolute value is smaller than b1. When the priority of
a task is the highest among all tasks in the UAV, r1 equals
to b1. On the contrary, r1 is equal to c1. It means that the
behavior of the UAV to execute tasks with high priority will
be rewarded. Otherwise, the behavior of the UAV will not only
not be rewarded (r1 = 0), but will be punished (r1 = c1).

r2 is a reward defined according to the task completion ratio
η in the task execution process

r2 =
⎧
⎨

⎩

b2, ηm = max(ηm)

c2, ηm = min(ηm)

0, else
(31)

where b2 is a positive constant value, and c2 is a negative
value whose absolute value is smaller than b2. It means that
the UAV executes a task with a high completion ratio, the
behavior of UAV will receive a positive reward.

r3 is a reward defined according to the energy consumption
E during task execution

r3 = −ρE (32)

where ρ is the reward coefficient of UAV energy consump-
tion. The reward value r3 is negative, which means that the
behavior of the UAV is punished, so as to urge the UAV to
reduce unnecessary energy consumption, such as reducing the
consumption of hovering.

In order to maximize the of the task completion ratio
and reduce the energy consumption of UAV, it is neces-
sary to optimize the cumulative expected reward. Rt used
as the reward parameter of DRL, which means that UAV
is encouraged to execute tasks with high priority and high
task completion ratio, while reducing unnecessary energy con-
sumption. That is, the energy consumption is reduced while
improving the task completion of the UAV system.

The reward R at time slot t is expressed as follows:

Rt = r1 + r2 + r3. (33)

Value Function: Each state is described by a certain value,
so as to judge whether the state is good or bad. Then, the
value function is used to quantify the cumulative reward of a

state at time t, considering the discount factor γ . The value
function is defined as

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =
∞∑

k=0

γ kRt+k+1. (34)

The function of action value directly measures each action
in state s, and strategy π specifies a certain action a in state s.
The cumulative reward obtained by performing the action a in
state s is as follows:

Qπ (s, a) = Eπ [Gt|St = s, At = a]. (35)

The value iteration algorithm is used to find the Q-value,
and then updates the value by selecting the largest Q-value in
the next state s′. The update scheme is as follows:

Q(s, a) = Q(s, a) + α
[
R + γ max

a
Q

(
s′, a

) − Q(s, a)
]

(36)

where α presents the learning rate.
The optimization objective of DQN is to make the Q-value

of the estimated value network to close to the Q-value of the
target value network, which is as follows:

Loss(θ) = E

[((
R + γ max

a′ Q
(
s′, a′; θ

)) − Q(s, a; θ)

)2
]
.

(37)

The network parameters θ are updated by using the stochas-
tic gradient descent (SGD), as follows:

θt+1 = θt + ∇Q(s, a; θ)

× α
[
Rt+1 + γ maxa′Q

(
s′, a′; θ

) − Q(s, a; θ)
]
. (38)

B. DQN Model Construction Based on DT at Airship

High-fidelity DT models rely on real-time interactions
between physical entities and virtual models. Therefore, by
analyzing the transmission delay between the UAV and the
airship, the action space and the state space are calibrated in
real time which is to update the input data of the DQN in the
airship, so as to ensure the validity of the pretraining results
on the airship. For UAV n, its virtual model DTt

n at time t can
be expressed as

DTt
n = {

ãt
n, X̃t

n

}
(39)

where ãt
n and X̃t

n represent the action space and the state space
of UAV n to execute tasks, respectively.

When the UAV transmits the data of action and state space
to the airship at time t, the delay τ can be measured at the
airship. The calibrated DT model of the UAV n in the airship
at time t + τ as follows:

DTt+τ
n = {

ãt+τ
n , X̃t+τ

n

}
(40)

where ãt+τ
n and X̃t+τ

n represents the calibrated action space
and the state space of UAV n to execute tasks at time t + τ ,
respectively. At time t + τ , the airship receives the action and
state space data of UAV n at time t. Furthermore, the airship
needs to infer the action and state space data of the UAV at
time t + τ . Assuming that the UAV n is executing task mz

i at
time t+τ , the remaining completion time of each task at time
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t can be calculated by (24). Furthermore, the task completion
size is calculated, the priority of the task in UAV n received
in the airship is updated, and the correction of the action and
state space data is further completed

Pz′
i =

⎧
⎪⎨

⎪⎩

Tzi
ri −τ

Tz
ei−(t+τ)

, σ = 0

Tzt
ri −

(
τ−∑σ

x=1
Sz
x
v

)

Tz
ei−(t+τ)

, σ > 0
(41)

where σ represents the number of completed tasks in the UAV
within the time τ , and σ can be obtained according to the task
priority and the remaining completion time of each task. If
σ = 0, the priority of task mz

i is updated in the state space.
If σ > 0, removing the completed σ actions and their corre-
sponding state space data in the action space, and updating the
priority of task mz

i executed by the UAV n in the state space
at time t + τ .

According to the analysis of the above-mentioned transmis-
sion delay and the calculation of the completion progress of
the task, the priority of the task received by the airship is
updated, which improves the fidelity of the DT model on the
airship to a certain extent.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed schemes
performance in terms of convergence, transmission delay, task
completion ratio, and energy ratio.

A. Simulation Setup

In order to verify the effectiveness of the method, we design
a simulation map of 40 km * 40 km. Assuming that the control
center randomly distributed new tasks. We deploy four multi-
UAV systems in which each system has four UAVs connected
by U2U. Each UAV executes the task at a uniform speed.
Each task is sent to the assignment layer from time to time.
The computing platform is Intel Xeon, E5-2660, the memory
is 32 GB, and the GPU is NVIDIA GeForce RTX 2080. We
use the TensorFlow deep learning framework to implement the
neural network part of the DQN.

In general, the parameter configuration of ML model has
a direct impact on the models performance [12]. In this arti-
cle, the maximum number of timeslots in the synchronization
period is 200 to run the pretraining model, and on these times-
lots, the airships are used to receive real-time tasks from
the generation layer. The pretrained network parameters are
send by U2A to the UAVs. Meanwhile, the UAVs execute the
specific the task, and receives the network parameters from
the corresponding airship. ε − greedy is used as the method
of action selection strategy. When the probability is 1 − ε,
the agent selects the action corresponding to the maximum
Q-value. If the probability is ε, an action is randomly selected,
ε is 0.99, and the discount factor γ is 0.9. The DQN only needs
to learn through states, actions and rewards. In order to relieve
the correlation between the states, we construct an experience
replay to store the sample data (s, a, r, s′) which is generated
during the agent training process, and then randomly select
some samples for training. The algorithm proposed in this arti-
cle is trained for 10 000 periods, of which one period is from

TABLE II
SIMULATION PARAMETERS

Fig. 4. Reward with the training periods.

the beginning to the end of the task execution. The following
Table II is related parameters of simulation. We compare our
proposed algorithm in the training of task-reassignment with
the following schemes.

1) Greedy Algorithm (Greedy): Greedy executes the task
with the highest value and the earliest start time which
focuses on the task with the greatest return at present
and does not pay attention to the completion ratio of all
tasks.

2) GA: GA is based on the shortest distance to select the
sequence of task execution, and does not consider the
time characteristics of dynamic tasks. In this way, it is
easy to increase the hover time in the process of task
execution.

3) Optimal Selection Algorithm (Priority): Priority is to
preferentially select tasks with a small size of tasks
for execution. The advantage is to improve the task
completion ratio in terms of the number of tasks com-
pleted. However, it is also easy to lead to excessive hover
waiting time, which increases energy consumption.

4) Random Selection Algorithm (Random): Random is not
based on any features of the task, such as high value,
short distance, and small size, but rather performs the
task in a random way. The consequence of this is that
the performance of the system is not prone to very good
or bad results.

B. Convergence of DQN and DQN With DT

The cumulative reward value of the algorithm is shown in
Fig. 4. The algorithms are in the exploratory stage during the
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Fig. 5. Task priority with task time constraints and random arrival.

beginning of training. After the training is started, the cumu-
lative reward value increases rapidly. Then, the algorithms
will update the parameters regularly during the process. Thus,
there are a slight fluctuation in the middle of the training.
Finally, the DQN with DT shows a slight upward trend and
stabilizes gradually, indicating that the strategy of dynamic
task-reassignment with UAVs has been learned and continu-
ously applied. However, the original DQN algorithm needs
more than 2000 times to gradually stabilize, and the training
period of the DQN with DT proposed in this article is short-
ened by 1000 times compared with the DQN, that is, the model
training speed is increased by 50%, and the fluctuation of the
reward value is lower than the DQN. This benefits from we
leverage airship to pretrain the DT model. This model then can
be directly applied for DQN in the UAVs to reduce the train-
ing episode. Therefore, combining DT for the model training
of the DQN can increase the speed of training greatly.

C. Transmission Delay Analyze

Fig. 5 shows the variation of task priority with transmis-
sion delay and the time-varying priority of four tasks executed
by a UAV in a synchronization period. At the beginning of
the period, task1 with the highest priority is executed first,
and the priority of task1 will decrease. At the same time,
with the increase of time τ , the deadline of each task grad-
ually approaches, and the priority of other unexecuted tasks
will gradually increase. The experimental results also verify
the effectiveness of (25). At τ = 300, task1 is completed.
According to the task priority at the beginning of the period,
the UAV will continue to execute task2, and so on for other
tasks. It should be noted that when τ = 0, the UAV takes the
priority of each task as state space data and uploads it to the
airship. After the transmission delay τ , the airship receives
the state space data. If the airship directly uses the state space
data as the input for the construction of the DT model of the
UAV, it will cause the DT model in the airship to be differ-
ent from the real UAV data by a period of time τ . Moreover,
the experimental results also show that if τ is less than the
remaining completion time of a task (e.i. σ = 0), then the
airship only adjusts the priority of the currently executed task.
For example, if τ = 100, the state space data received by the

Fig. 6. Task completion ratio without task time constraints.

airship indicates that the priority of task1 is 7, and the priority
of task1 tends to decrease with the execution of the task. In
order to reflect the changes of the real state space data on the
airship, this article proposes the DQN optimization approach
base on DT (see Section IV-B). According to (41), it can be
estimated that after the delay τ , the true priority of task1 is
about 4.7, indicating that the task priority input to the DT has a
32 % error, such poor input data is not conducive to DT-based
DQN model pretraining effect. The experimental results fur-
ther illustrate that the transmission delay analysis model and
priority calibration method of the DT model proposed in this
article can correct the priority of tasks at τ > 0. Then, the
original priority at τ = 0 will be replaced by the estimated
priority at τ > 0, so that the data in the state space of the
airship can reflect the changes in the state space of the actual
UAV in real time, which can effectively improve the fidelity
in the construction of the DT model.

D. Task Completion Ratio Comparison

As can be seen from Fig. 6, with the change of training
steps, the task completion ratio of each algorithm increases
steadily, and can complete all tasks. But in the process of
task execution, the task completion ratio of DQN is higher
than others. It shows that at the same time, the DQN can
dynamically adjust the order of task execution according to
the task completion ratio and priority.

As shown in Fig. 7, the DQN can achieve the maximum task
completion ratio. At the beginning of the execution, the task
completion ratio of the DQN is the same as that of the greedy
algorithm, and it is slightly lower than that of the greedy algo-
rithm. The reason for this is that in the early stage of the
execution, the essence of the greedy algorithm determines that
the UAV chooses to execute the task with the earliest start time
at the current time step. But it also ignores the task completion
time, resulting in the low completion of the late task. On the
contrary, the DQN considers the time constraints in the process
of task execution, and makes task-reassignment. Therefore,
compared with other algorithms, the DQN can achieve the
highest ratio of task completion. In Fig. 8, the task completion
ratio shows a slight downward trend when the generation layer
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Fig. 7. Task completion ratio with task time constraints.

Fig. 8. Task completion ratio with task time constraints and random arrival.

releases a new task. However, with the continuous implemen-
tation of the task, the completion of the task gradually returns
to the upward trend. The DQN focuses on the task completion
time with considering the time constraints. Therefore, the task
completion ratio of the DQN is still significantly higher than
other algorithms, which indicates that the DQN can improve
task completion ratio of the random arrival tasks with time
constraints.

E. Energy Ratio Comparison

As can be seen from Fig. 9, the energy ratio of the DQN is
the highest, followed by greedy algorithm. It can be seen from
Fig. 7 that the task completion ratio of the algorithm in the
mid-term phase of execution is lower than that achieved by
the greedy algorithm. Thus, the energy ratio in the mid-term
phase is lower than that of the greedy algorithm. But due to
the dynamic decision-making ability, in the end, the DQN can
achieve the highest energy ratio. In Fig. 10, when new tasks
randomly arrive, the energy ratio of each algorithm decreases
in the beginning and increases gradually. It can be seen from
Fig. 8 that the task completion ratio of the DQN in the mid-
term phase is lower than that of the greedy algorithm, so its
energy ratio is lower than that of the greedy algorithm in the
mid-term phase. Because the DQN focuses on the dynamic
decision-making, the energy ratio of the DQN is higher than

Fig. 9. Energy ratio with task time constraints.

Fig. 10. Energy ratio with task time constraints and random arrival.

Fig. 11. Comparison of parameters with different number of tasks.

that of the greedy algorithm in the end. Therefore, the DQN
in this article can achieve the highest energy ratio.

Fig. 11 compares the parameters of algorithms under time
constraints when the number of tasks is different. The abscissa
represents different parameters, and the ordinate represents the
value of the parameters. Among them, for the convenience
of comparison, task completion ratio is the real value, and
system energy consumption and energy ratio are the normal-
ized values. When the number of tasks increases gradually,
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the overall task completion ratio of the multi-UAV cooper-
ation implemented by the proposed method decreases, the
energy consumption increases, and the energy ratio decrease.
Obviously, the performances of the DQN are higher than the
greedy algorithm. It shows that with the increase of the number
of tasks, the DQN can still dynamically process tasks under
time constraints, 30% task completion and 19% system energy
efficiency are improved.

VI. CONCLUSION

In order to solve the poor ratio of task completion caused
by time constraints of existing multi-UAV systems, this arti-
cle proposed a DT and DRL-based task assignment method
in multi-UAV systems. Moreover, we proposed a novel task
assignment method which includes the initial task-assignment
and the task-reassignment. In the initial task-assignment,
according to the task area, the task is divided into subtasks
and distributed to the UAV by using GA. Next, in the task-
reassignment, the behavior decision of UAV is made by DRL
based on DT to achieve task-reassignment and improve the
task completion subject to the time constraints. Simulation
results show that the training period of the DQN with DT
proposed in this article is shortened. Furthermore, compared
with other algorithms, the task completion ratio and the energy
ratio can be improved in the scenario of task delivery under
stringent time constraints. For future work, we will design a
novel multiagent DRL-based algorithm to assign task prop-
erly in the multi-UAV system. And the integration model of
communication and computing for U2A and U2U should be
considered to improve the latency performance of moving
edge devices and minimize the overall costs of the multi-UAV
systems.
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