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Abstract—With the rise of the Internet of Things (IoT), tiny
devices capable of computation and data transmission are being
deployed across various technological domains. Due to the wide
deployment of these devices, manual setup and management are
infeasible and inefficient. To address this inefficiency, intelligent
procedures must be established to enable autonomy that allows
devices and networks to operate efficiently with minimal human
intervention. In the traditional client–server paradigm, auto-
nomic computing has been proven effective in minimizing user
intervention in computer systems management and will benefit
IoT networks. However, IoT networks tend to be heterogeneous,
distributed, and resource constrained, mandating the need for
new approaches to implement autonomic principles compared
to traditional approaches. We begin by introducing the basic
principles of autonomic computing and its significance in IoT.
We then discuss the self-* paradigm and monitor, analyze, plan,
and execute (MAPE) loop from an IoT perspective, followed by
recent works in IoT and key enabling technologies for enabling
autonomic properties in IoT. Based on the self-* paradigm and
MAPE loop analysis from the existing literature, we propose a set
of qualitative characteristics for evaluating the autonomy of the
IoT network. Finally, we provide a comprehensive list of chal-
lenges associated with achieving autonomic IoT and directions
for future research.

Index Terms—Artificial intelligence (AI), autonomic comput-
ing, blockchain, edge computing, Internet of Things (IoT),
machine learning (ML), self-* paradigm.

I. INTRODUCTION

THE Internet of Things (IoT) is a network of objects
connected to the Internet using various protocols that

are traditionally not connected. The goal is to exchange
information and communicate to achieve various objectives,
such as monitoring, tracking and management, depending on
the use case. Usually, IoT objects (referred to as devices or
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things) in IoT are low-cost yet robust devices capable of mon-
itoring, communication, data processing, and, in some cases,
actuation. These smart devices use diverse communication
technologies and protocols to achieve network-specific and
common goals. The number of IoT devices is on the rise
and will become an integral part of various applications
in the future. IoT will affect many domains ranging from
large industrial systems to tiny devices for healthcare. As
a result, a wide range of applications are being developed
and deployed. Since IoT involves the deployment of a large
number of devices, it faces challenges in terms of manage-
ment and system design, communication, resource allocation,
system modeling, networking algorithms, business models,
and interoperability [1], [2]. Any management system for the
IoT should consider several factors that set it apart from the
traditional Internet as more smart devices come online [3].
To manage various operations in the IoT, several interesting
research works have been proposed describing various frame-
works, middleware options, models, and protocols. However,
handling IoT networks still presents significant difficulties,
including security, device heterogeneity, and dynamic resource
optimization.

A. Motivation

Increasing pervasiveness and adoption of connected devices
in daily life give rise to novel challenges. It is extremely
challenging to manage IoT due to the following reasons.

1) Smart devices are often remotely located and unat-
tended. These smart devices, realizing the vision of
ubiquitous computing, are deployed in a distributed
manner and influence how we interact with our sur-
roundings. Due to this reason, the troubleshooting and
manual maintenance of devices located in the field is
often challenging.

2) With new issues of technological interoperability emerg-
ing, deployed IoT systems are becoming more complex.
The complexity of integrating heterogeneous devices
keeps increasing as more vendors enter the IoT land-
scape. In due course, human management of the
deployed smart devices will become too complex, ren-
dering manual setup, management, and maintenance
inefficient and expensive.
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3) Issues related to privacy and security have become a
matter of concern due to increased attacks targeted at
resource-constrained devices.

4) Difficulty in using existing standards and technologies
for IoT. For example, established algorithms to secure
network communication in IoT do not work well due to
several limitations.

Therefore, it is necessary to develop automated and intel-
ligent connected device management systems to address the
aforementioned issues. One such approach that can reduce
user involvement in the management of the IoT ecosystem
is autonomic computing. IBM introduced the idea of auto-
nomic computing to define a structural framework that would
facilitate the management of computer systems [4]. The term
“autonomic system” or “autonomic computing” refers to the
idea that computer and software systems could operate simi-
larly to the autonomic nervous system. This biological notion
refers to a system that provides automatic response and activ-
ity in biological processes. An autonomic computing system
can manage itself by executing the required actions in a
fully autonomous manner. The idea of autonomic comput-
ing effectively reduces user intervention in computer system
management. Autonomic computing has evolved beyond the
traditional client–server and mobile computing paradigms, and
the focus has shifted toward ubiquitous computing. Most IoT
implementations currently use centralized client–server archi-
tecture to connect to the cloud over the Internet, where the
data is processed to provide insights. Centralized implemen-
tation is sufficient for current IoT ecosystems where hundreds
or even thousands of devices are involved. However, central-
ized architecture is not a suitable design choice for billions
of devices as it will create a bottleneck. Such implemen-
tation will require costly upgrades and maintenance of the
cloud servers to handle a vast volume of data and manage the
devices.

The future of IoT will be distributed and decentralized,
and the management of billions of heterogeneous devices
needs to be automated. Therefore, autonomic computing con-
cepts are highly relevant in the IoT setting and must be
adapted to realize autonomic management in IoT. To man-
age the entire operation of the network, the IoT ecosys-
tem as a whole (from the device layer to the application
layer and all components in between) must be sufficiently
intelligent to handle, analyze, and adapt according to the
dynamic environment and address various challenges in an
IoT ecosystem. This will be enabled by autonomic IoT,
allowing distributed decision making to maximize operational
efficiency by being aware of the operating environment.
Intelligence will come from autonomic implementations at
each layer of the IoT ecosystem that will enable prop-
erties like self-security, self-organization, self-adaptation,
self-optimization, and self-configuration. Autonomic com-
puting in IoT will be aided by advances in edge com-
puting, fog computing, Blockchain, and machine learning
(ML) to enable real-time decentralized decision making to
optimize various network operations. There has been increased
interest by the research community in investigating auto-
nomic computing applications in IoT. However, the progress

is relatively slow due to fragmented research, development
time, and the inherent complexity of the vast scale of
heterogeneous IoT networks to implement self-managing
applications.

B. Novelty and Contribution

This research is unique since it captures the subset of
IoT relating to autonomic IoT. The work presented is not
a survey article on the technologies, architectures, applica-
tions, and prototypes covering the complete scope of the IoT
paradigm. Our work focuses on the unique challenges involved
in minimizing human intervention on a massive scale of IoT
deployment using autonomic computing principles. The cur-
rent work extends the conference version of our prior work [5]
and contributes to the current state of literature in the following
manner.

1) Discussion on the benefits of applying autonomic prin-
ciples in the IoT from component level to system
level.

2) Analysis on self-* paradigm and monitor, analyze,
plan, and execute (MAPE) loop for enabling autonomic
behavior in IoT.

3) Role of key enabling technologies toward enabling
autonomic computing.

4) Evaluation criteria for determining the level of autonomy
in an IoT system.

5) Future research challenges, open issues, and research
directions for applying autonomic concepts in IoT.

C. Comparison With Existing Literature

Few surveys have been conducted concerning traditional
autonomic computing [6], [7]. The current study, in con-
trast, highlights the ideas for enabling autonomic behavior in
the IoT by taking into account the size, scalability, and lim-
ited features of IoT nodes and comparing them with current
autonomic techniques. Data mining techniques for IoT-related
applications have been presented in [8]. A broad range of
industrial applications using autonomic principles have also
been proposed, which have been surveyed in [9]. IoT design
aspects ranging from low-requirement software solutions to
efficient hardware systems have been discussed in [2] and [10].
Regarding the autonomic protection of systems, autonomy1 is
also essential for security. There is a lack of thorough analy-
sis of autonomic security, which is a vast area of study on its
own. Ashraf and Habaebi of this article investigated autonomic
security protocols suitable for the IoT in [11]. Consequently,
the previous work on autonomic security for IoT has motivated
us to describe the fundamental components of autonomy in IoT
and the methodology for assessing autonomic schemes for IoT.
Several surveys exist in the literature covering IoT technology,
IoT security, protocols, prototypes, and applications. A broad
survey on IoT architecture has been performed by Ray [12]

1The goals of both “autonomous systems” and “autonomic systems” are the
same, i.e., minimize human intervention. However, the significant difference
is that “autonomic systems” work according to the autonomic control loop,
allowing an agent/system to respond and recover during unforeseen events.
Autonomous systems can operate independently but do not necessarily have
self-* properties of autonomic systems.
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summarizing the current state-of-the-art IoT architectures in
various domains. A survey on autonomic architectures has
been conducted by Savaglio and Fortino [13]. The authors also
addressed the cognitive computing paradigm in IoT. Another
survey paper [14] highlighted the security of the various IoT
frameworks. They also explored design flaws and provided in-
depth security analysis against potential threats. A survey [15]
on security challenges focused on standardization activities
and discussed privacy, access control, trust, and identifica-
tion. Several other surveys have focused on software-defined
networking (SDN) [16], Context-aware computing, learning,
and big data [17]. More recently, Fizza et al. [18] surveyed
various metrics for measuring the quality of IoT applications
to enable resilient quality-aware autonomic IoT applications.
Based on the evaluation of existing studies, the work presented
in this article on autonomic IoT is significantly different.
We provide holistic coverage of the application of autonomic
computing in IoT, its significance and various enabling tech-
nologies, which have not been covered comprehensively. We
also provide an evaluation framework to identify various prop-
erties of autonomic computing ranging from the individual
components to complete systems. Table I provides a sum-
mary of the existing literature in a comparative manner, which
supports our claim of lack of survey as presented in this
article.

D. Research Methodology

This article aims to survey the existing literature on auto-
nomic computing in IoT to identify key characteristics to
measure the autonomy of an IoT. The survey covers a range
of topics that may enable autonomic computing in IoT and
identify research gaps and future research direction, focusing
on the literature published predominantly in the last decade.
For this purpose, scientific papers were sourced from notable
venues like IEEE Xplore, Scopus, WoS, Springer, Science
Direct, MDPI, Wiley and the ACM Digital Library. Besides the
journals, books, conferences and proceedings, symposiums,
edited volumes, magazines, and preprints were also explored.
The existing literature was identified by searching terms like
IoT, autonomic computing, IoT Models, cloud computing,
edge computing, fog computing, artificial intelligence (AI),
ML and various combination of such terms, with IoT being a
common term in all searches. Based on the analysis and survey
of existing literature, this article aims to answer the following
questions.

1) What are the key properties required to exhibit auto-
nomic behaviors in each layer of the IoT ecosystem and
their significance to IoT?

2) What are the key enabling technologies in an IoT
ecosystem and their influence on enabling autonomic
computing?

3) How can we evaluate the autonomic behavior of IoT
systems to identify whether they exhibit autonomy?

E. Article Organization

Section II presents autonomic computing elements and
their functional components and discusses self-* properties.

Section III discusses relevant technologies that are being used
to enable autonomic concepts in IoT. Section IV discusses
the layerwise requirements for autonomy in IoT. Section V
presents the evaluation criteria and discusses examples of eval-
uation usage. Section VI lists key challenges and issues that
need to be addressed to enable IoT autonomy. In Section VII,
overall observation regarding the autonomic behavior in IoT
is summarized in light of existing literature. Finally, the
conclusion is drawn in Section VIII.

II. FUNDAMENTALS OF AUTONOMIC COMPUTING

This section presents characteristics, requirements, and
essential features present in an autonomic system and the con-
trol loop operation for an autonomic framework. We present
sufficient theoretical background and explanations to prop-
erly aid the discussion in subsequent sections. Discussion of
each topic in Section II is followed by relevant literature for
interested readers to explore further.

A. Definition of Autonomic Computing

IBM defined autonomic computing as an architectural
framework for simplifying system management in 2001. A
later definition of autonomic computing stated that it is “a
vision that enables any computing system to deliver much
more automation than the sum of its individually self-managed
parts” [26]. Autonomic concepts are helpful and are applied
in various technological areas. For example, NASA uses the
autonomic computing principle to enable several operations in
remote missions, where human intervention is impossible, to
increase the chances of survival [27]. To establish autonomy,
the system is divided into smaller components to establish
modularity, and the central authority assigns the roles. As
a result, the existence of a central authority is a necessary
requirement. An autonomic system can also be described as
an intelligent system, or system of systems, where information
obtained through sensing or monitoring capability is used in
a general autonomic decision-making process. An autonomic
system should be able to configure itself in response to varying
and unpredictable conditions. The autonomic system man-
ages the computing resources to minimize user (or manual)
intervention. The idea of autonomy is created to enable tech-
nology to be deployed and manage other technology while
maximizing its functionality.

B. Autonomic Control Loop

The MAPE control loop (monitor, analyze, plan, and exe-
cute) is the motivation for the concept of autonomic com-
puting. Two elements: 1) an autonomic manager and 2) an
autonomic managed resource enable autonomy through the
control loop [4]. The MAPE control loop is not a sequen-
tial process but a structural arrangement of its subprocesses.
The architectural components suggested in the autonomic con-
trol loop must be adhered to implement autonomic computing
concepts in IoT systems. The reference model for MAPE is
presented in Fig. 1. Each element is discussed below based on
the functionality it offers.
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TABLE I
EXISTING SURVEY ON AUTONOMIC COMPUTING IN IOT

Fig. 1. MAPE control loop.

1) Monitor Module: The data collection is done using this
module in the MAPE loop. The autonomic system can
monitor changes in the environment and be aware of
the state of its surroundings with the aid of this module.
IoT has a wide range of parameters that can be tracked,
including sensor and control data as well as the envi-
ronment and device states. The monitor module is the
primary interface between the system and the environ-
ment. Therefore, it generates the bulk of the data in the
system.

2) Analyze Module: After the system has gathered sensor
and control data, it is analyzed to generate useful
information. Based on the data gathered, the analyze
module enables the modeling of complex scenarios. This
model enables the system’s central authority to discover,
recognize, and forecast environmental patterns.

3) Plan Module: The plan module manages the system with
the aid of higher level rules and user-defined policies.
The higher level policies impose restrictions placed on
functionality and services. Planning is a crucial compo-
nent of any system actuation that is required as it justifies
the operation of remote devices and the required action.

4) Execute Module: This module manages the workflow
execution in an autonomic system. It manages how
the policies and rules are implemented and gives feed-
back to the monitor module. The best combination of
services that can be used within the restrictions set by
the plan module determines the workflow. The execu-
tion module handles the actuation process and related
procedures.

C. Functional Components

An autonomic system needs two sets of actors or agents
to play the parts of the managed resources component and
the autonomic manager component. In the setup that Kephart
and Chess [4] suggested, these two agents vary significantly
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in their capabilities and functionality. The managed resource
components are more basic and consist of connected actua-
tors and sensors. The managed resource provides an interface
that the autonomic manager can use. In the original design,
any piece of hardware or software with autonomic capabilities
serves as the managed resource component. Some examples
of managed resources are Web servers, printers, and clus-
ters of machines in a grid. In the IoT context, the managed
resources include mobile nodes, end nodes, smart objects,
sensor nodes, devices, gateways, middleware, motes, smart-
phones, and electronic media devices. The resources in IoT
are assigned requirements so that they portray the features
of a managed resource. The devices classified as managed
resources in IoT vary in several aspects, such as computational
power, battery life, memory, mobility, and quantity.

The autonomic manager is considered to be the central
authority. There may be other components that have higher
privileges than the autonomic manager. The autonomic system
can have a hierarchical arrangement of autonomic managers.
For instance, in cluster-based networks, a cluster head or a
reasonably powerful device, like a gateway or end router, can
be chosen as the autonomic manager for a collection of sim-
ilar nodes. In addition to running on hardware, autonomic
managers can also be represented by cloud-based services
or software modules [such as visualization using SDN and
network function visualization (NFV)] that are eventually
connected. Differentiating between the nature of these two
components is one of the difficulties in implementing auto-
nomic computing in IoT. In contrast to the original definition
of autonomic computing, which assumed highly rigid and
static systems, the IoT is very dynamic and open-ended, with
diverse resources and workload capabilities [28]. Which com-
ponents in IoT are chosen for the role of the managed resource
is an important consideration.

In IoT, the autonomic concepts can be implemented in a
layered manner at different layers independent of each other.
Therefore, based on the system design, autonomy can be
implemented in middleware, higher level applications, or at
the device layer. A managed resource typically consists of
a collection of sensors and actuators. The sensors are only
constrained by memory, processor usage, connectivity, and
response times as they generate data based on observations
of their environment. The IoT ecosystem significantly relies
on sensors, which offer feedback based on sensing the envi-
ronment. A managed resource now refers to environmental and
surrounding data rather than server or machine data. Any IoT
device generating data is a candidate for the managed resource
role. Table II describes the functional component comparing
the role of various entities in the IoT context and the original
scope of autonomic computing.

The scope of decision making in autonomic IoT is illustrated
in Fig. 2. It highlights the interaction between autonomic man-
agers and managed resources at the component and system
levels. Fig. 2 also highlights the components and the posi-
tion of autonomic agents (managed resource and manager). In
Fig. 2, the left side shows the standard layers and components
of an Internet-based system. The components are organized as
fog and things. In fog computing, the computational resources

that are usually located in the cloud are brought closer to the
end devices [29]. The fog in Fig. 2 comprises the network,
visualization capabilities, middleware, and Web applications.
In contrast, things are made up of sensors and gateways. In an
IoT system, like the one shown in Fig. 2, realizing the control
loop of autonomy necessitates determining which parts will be
handled as managed resources and managers. Given the flex-
ibility of IoT, any IoT component can be given a manager or
managed resource role as long as the hierarchy is maintained.
As a result, any component at a higher level can take over as
the autonomic manager of the lower component. IoT auton-
omy will aid in decision making for several tasks, including
identity management, device management, and access man-
agement. Because it is necessary to manage gateways, end
devices, numerous middleware, and remote servers, manage-
ment issues arise at every IoT layer. The autonomic concepts
can be used to manage and increase the effectiveness of each
component, whether they are working individually or in a
group.

For example, a discussion on the application of auto-
nomic computing technology in the cyber–physical system
(CPS), the autonomic computing cycle (ACC) (implement-
ing MAPE control loop) and autonomic computing supervisor
(ACS) serving as autonomic manager was proposed in [30].
In the proposed autonomic system for CPS, self-protection is
handled by distributed CPS middleware, while ACC imple-
ments self-configuration, self-healing, and self-optimization.
The complete autonomic cycle is implemented in every object
of the CPS. Each CPS object individually, and the collection
of CPS objects collectively can deliver seamless service with-
out user involvement. ACS collects a large amount of data
from numerous sensors and monitoring devices. Using the
information gathered and data stored in the knowledge base,
it determines whether the system is experiencing abnormal
situations and creates and implements strategies to accom-
plish management objectives in accordance with the operation
policy and service level required.

D. Goals of Autonomic Computing in IoT

In this section, various objectives of autonomic comput-
ing are outlined. These objectives focus on the common traits
discussed in the autonomic computing literature.

1) Goal 1: Integration of state-of-the-art technologies, in
particular, to manage and improve the operation of the
overall system.

2) Goal 2: Intelligent decision making based on the contex-
tual data obtained through sensing or monitoring at each
layer for optimization and performance improvement.

3) Goal 3: Minimize the need for human intervention by
automating the healing, optimization, configuration, and
security processes.

Minimizing human intervention by using the data collected
to make decisions about identity, access, and device manage-
ment is the common objective and essential for autonomic IoT.
Earlier, in Fig. 2, the scope of decision making in autonomic
IoT was presented along with the discussion on managed
resources and autonomic managers. In the following section,
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TABLE II
AUTONOMIC COMPUTING FUNCTIONAL COMPONENT COMPARISON

Fig. 2. Model for management of autonomic component using an autonomic scheme.

we discuss the self-* paradigm that has been extensively used
in the literature to discuss autonomic computing principles and
discusses the key properties of all self-* paradigms relevant
to IoT.

E. Self-*Paradigm

Self-* (self-star) paradigm comprises concepts, such as self-
configuring, self-adapting, self-organizing, self-security, and
other similar processes. Depending on the characteristics and
goals of the processes, the operation of any autonomic system
can be described by a combination of the self-* paradigm.
The self-* paradigm is critically analyzed in [31] with several
examples for self-managing the elements based on different
needs and scenarios. Modularity between various constituent
parts of a larger system can enable self-* to be realized. The
Internet of Underwater Things (IoUT) is one example [32] that
requires high autonomy because maintenance is expensive in
the underwater ecosystem, and it is challenging to provide con-
tinuous human administration. Such systems must implement
self-* capabilities to cater to the deployment in such extreme
conditions. Furthermore, requirements, such as mobility, make
the system design more challenging, making management and
maintenance even harder. The various components included in
the self-* paradigm and related literature2 are briefly described
as follows.

1) Self-Security: The ability of devices to identify and react
to security risks without human intervention is referred
to as self-security. This calls for a variety of strategies,

2Relevant recent works on self-* are presented in Table IV. Only selected
literature is presented to give the reader an understanding of the concepts and
their application in autonomic IoT.

such as adaptive security policies, threat analysis and
response, and intrusion detection and prevention. Self-
security comprises self-protection and self-healing [11].
Self-protect is the ability to prevent, detect, and respond
to any action that is deemed adversarial to the func-
tioning of the system, which includes communication,
hardware and software components, data, and intel-
lectual property rights. In contrast, self-healing allows
the system to detect failures and initiate policy-based
action to recover without disrupting the operation of the
system. For example, a device may alter its state or make
changes in other components of the IoT system. The
system must identify the cause of malfunction and take
necessary corrective action without human intervention.
In self-healing, fault detection is straightforward com-
pared to implementing the mitigation approach required
to fix the fault. The self-protecting part under self-
security should enable the system to identify and protect
itself from random attacks by identifying any hos-
tile activity. Hostile activity may include, for example,
Denial-of-Service (DoS) attacks, unauthorized access,
replay attack, and the man-in-the-middle attack (MiTM).
Healing a system after an attack or failure results in
unavailability, which is directly related to the capabil-
ity goal of the confidentiality, integrity, and availability
(CIA) security triad. Therefore, self-healing can be clas-
sified under the security paradigm in an autonomic
system. A wide variety of IoT devices are available in
the market that varies in cost, performance, memory,
and processing power. This variation in the capabilities
of IoT devices presents a significant security challenge.
Furthermore, IoT devices can become an attack surface



ASHRAF et al.: TOWARD AUTONOMIC INTERNET OF THINGS 14731

to further infiltrate the system or launch attacks on
other networks after they have been compromised, such
as the Mirai Botnet attack. Therefore, self-protection
and self-healing are very critical parts of autonomic
IoT systems. To implement the self-security feature,
Marchal et al. [33] proposed an efficient system for iden-
tifying the type of an IoT device by analyzing network
communication. The model referred to as “AuDI” uses
unsupervised learning to model the periodic communica-
tion traffic of IoT devices to perform identification. The
model autonomously learns without human interven-
tion or the need for labeled data to identify previously
unseen device types after initial setup. Similarly, an auto-
nomic system for detecting compromised IoT devices
using federated learning for a distributed system is
presented in [34]. The proposed system detected mali-
cious behavior from devices infected by the Mirai
malware autonomously. In [35], security management
architecture using NFV/SDN is presented for security
and privacy in IoT. The contextual and monitoring
information from the IoT environments is used to act
according to the actual status of IoT networks, systems,
and deployed security policies to enable self-healing
and self-protection. The architecture enables monitor-
ing, detecting, and triggering autonomous responses to
mitigate DDoS and IoT malware attacks.

2) Self-Organization: Self-organization is the ability to
achieve the desired global state based on the interaction
between various components of the system without
the aid of a centralized entity, which in some cases
is the human operator. Self-organizing systems exam-
ine their environment, collaborate to form topologies,
monitor environmental changes and respond without
any external intervention. A self-organizing IoT system
should be able to stabilize itself in response to external
changes solely through the coordination of its con-
stituent parts, which operate with no knowledge of any
system-wide properties and only a partial, estimated
view of the overall system. “Reduced determinism” is
the primary issue with autonomy and self-organization in
general. Because self-organization is inherently random
due to the dynamic and ad-hoc nature of IoT networks,
self-organizing systems frequently exhibit high unpre-
dictability and uncontrollability. As the system grows
in complexity and scale, it becomes difficult to manage
via centralized control as the system loses predictability
and control. Predictability and scalability have an inverse
relationship. The relationship between determinism and
scalability over the different levels of self-organizational
systems is shown in Fig. 3. Typically, distributed algo-
rithms and protocols are used by self-organizing systems
in autonomic computing for IoT to allow devices to
find and connect to one another, exchange information,
and coordinate actions. From a communication perspec-
tive, a load-balancing scheme for self-organizing IoT is
proposed in [37] to avoid saturation and improve the
reliability of the wireless link. The links are managed
dynamically considering the spatiotemporal variations

Fig. 3. Reduced determinism in self-organized systems [36].

of data and control the signalling overhead to reduce
the reconfiguration. However, the system uses a cen-
tralized orchestrator, creating a bottleneck and making
it unsuitable for large-scale networks. The use of game
theory for decision making and reaching stable outcomes
in terms of topology control or self-organization has
been an active research area in recent years. A static
game model of selfish IoT nodes with multiple interfaces
that decide on communication with others is presented
in [38]. The proposed game-theoretic model results in
realistic topologies and stable multihop network struc-
tures without a centralized entity. In [39], various game
models that can be applied in massive distributed IoT
networks for resource management are discussed.

3) Self-Adaptation: Self-adaptation allows monitoring of
runtime and operating conditions of the components
to assess if objectives are being achieved. A self-
adaptive system continuously assesses the operating
environment to ensure the goals are met and take
corrective actions by adapting to any events such as
system crashes. In contrast to self-organization, self-
adaptation takes place locally, which is then reflected
globally through self-organization. For instance, a self-
organizing swarm of robots may also have self-adaptive
control systems that allow them to modify their behavior
in response to rapidly changing environmental factors.
Components which self-adapt may necessitate frequent
communication between agents and adapt accordingly.
Adaptation necessitates constant monitoring of the envi-
ronment and quick decisions to change the process to
keep the operation running smoothly. Since most IoT
devices are resource constrained, frequent communica-
tion will result in a short lifespan due to increased
energy usage. Therefore, the adaptation can occur fre-
quently or occasionally, depending on the requirement.
Designing a system that can self-adapt depends on
the available energy resources and is an important
performance parameter for IoT energy efficiency. In
autonomic IoT, the self-adaptation of IoT elements is
important due to its highly distributed nature and opera-
tion of a large number of devices in unsupervised mode.
This may involve the usage of a range of techniques,
including dynamic resource allocation, load balancing,
and adaptive control. A Quality-of-Service (QoS)-aware
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TABLE III
EXAMPLE OF PARAMETERS THAT CAN BE SELF-CONFIGURED BY AN AUTONOMIC IOT SYSTEM

self-adaptive framework for critical IoT networks for
e-health is presented in [40]. The proposed framework
uses a discrete controller synthesis that relies on rules
and labeled state transitions to monitor new contexts
and monitoring requirements dynamically. A service-
level agreement (SLA) is defined for each sensor and
compared with the global SLA to set adaptation objec-
tives. The gateway monitors the QoS of each sensor
(gets the data from the device, adjusts their functional
parameters, monitors their nonfunctional properties), and
informs the discrete controller with events to decide on
a self-adaption strategy. Arcaini et al. [41] proposed a
concept for formal modeling, verifying, and validating
a distributed self-adaptive system. The MAPE loop is
adopted for self-adaptation in an abstract stateful lan-
guage like abstract state machines (ASMs). In [42], an
adaptive architecture based on the MAPE loop using fog
and cloud computing for IoT-based health monitoring
systems is presented. In [43], a self-adapting framework
is proposed using a finite verification-machine-based
model to perform runtime verification.

4) Self-Optimization: Typically, optimization refers
to choosing the best option based on goals,
decision-making guidelines, and constraints. Similarly,
self-optimization refers to continuous monitoring
and choosing optimal behaviors to tune resources
automatically for optimizing system performance and
resource utilization in real time. This could encompass
both hardware and software components in order to
maximize resource usage and satisfy design goals with-
out the need for human intervention. Self-optimization
may include allocating available resources to improve
overall utilization, such as responding to dynamically
changing workloads, allocating appropriate resources to
meet specified QoS and discovering optimal routes from
source to destination. Self-optimization is particularly
important in the context of IoT due to the resource-
constrained nature of IoT devices and the varying
QoS requirements of IoT networks. A method to
manage and optimize the QoS based on multiobjective
optimization is proposed for IoT applications in [28].
The proposed method explores and learns the tradeoffs
of different deployments to autonomously optimize the
QoS and other quality attributes of IoT applications.
In [44], energy optimization for energy harvesting in
decentralized wireless sensor networks is presented
using game theory and reinforcement learning. The
game theory models the interaction among sensor
network nodes and formulates utility for the energy

balancing problem. Whereas reinforcement learning is
used to address the time-varying availability of energy
sources. By iterative learning, the sensors adapt their
behaviors to the dynamic and unknown environment
and thus optimize energy utilization. In [45], a method
for self-optimizing topology using a backpropagation
algorithm is presented to improve robustness against
cyberattacks. The method uses a genetic algorithm to
generate topology evolution data to train the back-
propagation algorithm to achieve the desired level of
accuracy for achieving optimum topology.

5) Self-Configuration: Self-configuration enables the
system to automatically set up its components in an
unknown environment. Self-configuring allows the
system to respond to changes, such as the addition
of new components (e.g., new nodes, hosts, routers,
protocols and applications) or removing existing
ones, as well as substantial changes in the operating
characteristics of the system. It is highly inefficient to
manually configure the system every time a change
in the system behavior is needed. The delivery of
new parameters or the distribution of services to
devices may necessitate the need to change system
behavior. For example, self-configuration can include
schemes, such as device registration, adjusting device
parameters, service, and device discovery [46]. Thus,
self-configuration allows dynamic behavior without
compromising the ease of management. Every part
of the IoT system must exhibit a certain level of
self-configuration. Some parameters and state variables
used for self-configuration in IoT devices are listed
in Table III. A fully autonomic gateway is presented
in [47] to support IoT device registration and solve
the heterogeneous network transmission problems. The
proposed self-configurable autonomic gateway allows
real-time detection and configuration over wireless
networks. The gateways were tested using the AllJoyn
framework for dynamic automatic updates of hardware
changes, connection management of smart things, and
discovery of home IoT devices. In [48], an adaptive
self-configuring LORA network that dynamically
adjusts the link parameters for scalable and efficient
network operations is presented. The scheme increases
the network delivery ratio while improving the reliabil-
ity and energy efficiency of communications regardless
of the network size. Focussing on CPS, Dai et al. [49]
presented a case study for a baggage handling system
capable of self-optimization and self-configuration by
defining autonomic service management. The proposed



ASHRAF et al.: TOWARD AUTONOMIC INTERNET OF THINGS 14733

Fig. 4. Generic model for self-* IoT paradigm.

autonomic system allows for service orchestration using
information and rules from an ontological knowledge
base (OWL) base built using the MAPE loop. The
rule-based autonomic service management provides
device-level smart control using the knowledge base
with rules defined using the semantic Web rule language
(SWRL). However, the performance is reduced when
using a distributed version where the size of the OWL
files and the SQWRL engine time requirements can
lead to inefficiency in the system.

In conclusion, autonomy IoT refers to implementing self-
security, self-organization, self-adaptation, self-optimization,
and self-configuration. Fig. 4 shows the core self-* behaviors
for achieving autonomy. Only four of the self-* paradigms—
1) self-healing; 2) self-protection; 3) self-optimization; and
4) self-configuration—were covered in the original discussion
of the autonomic framework by IBM. Even though there are
many self-* properties [50], [51], we identified the key self-
* properties most relevant in the autonomic IoT context. We
envision that autonomy in IoT can be characterized by five
behaviors: 1) self-optimization; 2) self-configuration; 3) self-
organization; 4) self-adaptation; and 5) self-security. The
reason for additional self-* properties compared to the original
IBM framework is to deal with the unique characteristics of
IoT networks, which include high heterogeneity, complexity,
and resource constraints. The choice of self-* properties
varies and can be fine-tuned according to the application
needs. Section V presents a framework to evaluate the self-*
properties discussed in this section based on the various
characteristics exhibited by each self-* property. Separation of
self-adaptation and organization from self-configuration makes

it easier to design a complex system in which each self-* prop-
erty can be managed or developed independently (e.g., just like
in the case of the OSI layer model). Furthermore, the self-*
properties are not mutually exclusive and may have a depen-
dency on each other. For instance, self-protecting actions may
lead to self-healing actions. The self-healing processes may
result in self-configuration, which could then result in self-
optimization [52]. Self-adaptation covers all transient failures
that can destabilize the overall operation and deal with the
operation of individual devices. In contrast, self-organization is
more focused on global interactions and cooperation between
multiple elements (e.g., deals with joins and leaves that
alter the topology of the network). Self-configuration is more
closely related to the individual setup of parameter configu-
ration of end devices or reacting to an external disruption to
restore, maintain, or enhance functionality. A standalone IoT
sensor might be able to self-configure. However, it might be
unable to self-organize (due to the lack of connectivity). Self-
configuration occurs in every self-organizing system, while the
opposite is not true [51].

III. ENABLING TECHNOLOGIES FOR ENABLING

AUTONOMY IN IOT

Autonomic computing will transform IoT into an intelli-
gent network that dynamically provisions and orchestrates the
networking, computing, sensing, and communication resources
required for a particular scenario. Autonomic computing in
IoT necessitates a paradigm shift from traditional centralized
architecture, where the network merely adapts its functions
in response to specific environment states, to a distributed
and decentralized architecture that can maintain its QoS under
highly dynamic and complex environments. This section dis-
cusses the technologies that will enable the development of
autonomic behavior in IoT systems. The development of the
autonomic system will be made possible by combining these
technologies. Moving control from a centralized entity to the
edge to achieve greater autonomy is a critical consideration
for these technologies. Since IoT uses distributed networks,
such systems cannot be managed with human intervention at
the runtime, making them challenging to manage and trou-
bleshoot. These technologies will allow the IoT network to
adapt its functions and maintain optimal resource usage and
management when appropriately integrated.

A. Cloud Computing

IoT networks are complicated due to heterogeneity and the
sheer volume of connected devices and services. Furthermore,
due to limited computational capabilities, most IoT devices
suffer runtime execution and processing delays. The devel-
opers are integrating IoT with the cloud to build intelligent
IoT solutions that can function more effectively and effi-
ciently by utilizing the scalability, flexibility, and affordability
of cloud computing. The cloud assists the IoT networks
by offloading the computational and storage requirements
boosting execution speed and response time. With the help
of cloud-based systems, administrators can regulate device
behavior, update firmware, and carry out maintenance tasks



14734 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 16, 15 AUGUST 2023

from a single location. The cloud can also provide a cen-
tralized interface for managing and monitoring IoT devices.
Additionally, utilizing autonomic computing principles with a
centralized view of data, the cloud can act as a centralized
autonomic manager. The aggregated view of data allows for
appropriate corrective actions to be taken before any network
issue arises to minimize downtime and optimize the oper-
ation of the entire network using analytics tools and ML
algorithms.

To manage the unpredictable behavior of IoT devices in the
case of potential DDoS attacks or device failure, autonomic
computing and the cloud computing paradigm are proposed
in [53]. In order to guarantee the availability of the affected
service during anomaly, the proposed protocol transparently
relocates the offered services of the vulnerable/failed devices
to either another contextual agent or the cloud-platform-based
IoT during runtime. This approach guarantees the availabil-
ity of the services without interruptions and downtime and
is suitable for real-time execution. The suggested technique
integrates self-management abilities, including self-discovery,
to create a contextual perspective and self-healing by selecting
contextual agents which can carry out the necessary action as
a contextual recovery plan.

Al-Shara et al. [54] proposed a generic solution for the
autonomous runtime management of heterogeneous cloud
systems to balance cost and revenue while meeting the
constraints established by the SLAs. The optimal working
configuration is chosen using a generic autonomic manager
based on a constraint solver and evaluated on the OpenStack
cloud platform. An autonomic resource provisioning approach
based on the MAPE loop for cloud-based services to optimize
cost and resource utilization is proposed in [55]. The hybrid
resource provisioning service integrates reinforcement learning
and autonomic computing principles. Real workload traces are
used to evaluate the efficacy of the proposed method resulting
in an overall cost reduction and increased resource utilization.
A detailed review of autonomic approaches in the cloud is
provided in [23].

B. Fog Computing

The traditional IoT designs have focused on connecting
sensors and devices and sending data to some centralized
or semi-centralized environment for decision making and
processing. With fog computing [56], instead of taking a
centralized decision, the processing and analytics power are
brought closer to, or within, the devices themselves, thus
reducing latency. Fog computing helps make an autonomous
decision regarding where and when to deploy computational
resources, storage, and control functions by creating awareness
about objectives for a given context [57]. The awareness por-
tion of fog computing changes the IoT devices from passive
devices to smart active devices that can operate and respond
to changes in the demands without waiting for instructions
from a distant cloud. For example, sensors deployed in outdoor
environments often require updates to resolve security-related
issues. However, due to various factors, such as battery life,

bandwidth, and signal strength, the centralized server may face
several challenges in delivering the updates on time. This pro-
cess increases the risk of a security attack. Whereas, in the
case of fog computing, the backend can distribute the task of
updating the nodes to selected fog nodes to deliver the updates
to the nodes in the field swiftly.

Recently, researchers have experimented with autonomic
computing and its application in fog computing. For exam-
ple, autonomic controllers dynamically change the processing
between fog and centralized servers to improve response
time [58] has been proposed. In addition to network and
computing, researchers have also attempted to use the auto-
nomic management approach [59] to make buildings energy
efficient by proactively adjusting duty cycles based on con-
textual data. An autonomic approach for a fully distributed
service placement for fog computing was considered in [60]
to avoid central coordination for virtual machine (VM)
placement usually deployed in the cloud environment. This
method improves system performance and optimizes network
and system parameters comparable to a centralized solu-
tion. An autonomous resource provisioning system based on
the MAPE loop and employing Bayesian learning is pro-
vided in [61] to control the workload fluctuations over time
for IoT services. The suggested autonomic method man-
ages the fog resources to take into account variations in
workload for IoT services, preventing over/under provision-
ing issues while simultaneously satisfying QoS requirements.
Compared to existing solutions, the autonomous resource pro-
visioning framework reduces total cost and latency violation
while enhancing fog node usage in a generic fog environment
three-tier architecture. Ghobaei-Arani and Shahidinejad [62],
and Jazayeri et al. [63] addressed a similar problem as
in [61] for autonomous service placement framework in IoT
network using metaheuristic technique and deep reinforcement
learning, respectively. The proposed approaches result in effi-
cient resource usage, increased service acceptance ratio, and
reduced service delay and energy consumption.

C. Edge Computing and Edge Intelligence

Edge computing [64] is increasingly being used in the IoT
for data processing, analytics, and decision making at the edge.
It enables devices to analyze data locally and make decisions
on the spot, reducing the amount of data that needs to be
transmitted to the cloud. This not only reduces the latency
in decision making but also saves on bandwidth costs and
network resources. Edge computing allows full use of embed-
ded computing capabilities to enable autonomy via distributed
information processing [65]. Edge computing allows for the
rapid configuration of IoT devices to accommodate the particu-
lar demands of users and changes in environmental conditions.
Furthermore, the edge computing framework cooperates with
the remote data center to enable intelligence in IoT devices
(also referred to as edge intelligence) for any given application,
e.g., smart factory and smart home.

Edge intelligence implements AI and ML technologies at
the edge of a network closer to the source of data. It enables
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systems to manage themselves autonomously and make deci-
sions without human intervention. Edge intelligence represents
a major shift in how autonomic computing systems are
designed and deployed, enabling real-time, data-driven deci-
sion making in a wide range of applications. Edge Intelligence
is crucial to achieving the goal of a trillion connected devices
by enabling IoT sensor nodes to function independently and
sustainably in a setting where energy is limited and the supply
is intermittent [66].

Bajaj et al. [67] presented offloading criteria where an IoT
smart gateway acts as a mediator at the edge for autonomic
decision making. They also highlight the approach taken to
meet the performance requirements of IoT-enabled services.
Edge computing is highly relevant in the modern energy util-
ity industry [68] since the system can be made more efficient
through distributed generation, storage, and consumption. An
autonomic approach to Smart Grid demand management has
also been previously studied in [69]. Data mining is crucial for
the IoT, where billions of smart devices will produce rich data
for creating new applications. However, traditional data min-
ing approaches are inadequate for resource-constrained IoT
applications. In order to overcome this issue, new data mining
approaches designed for IoT and edge computing is addressed
in [70], where centralized and distributed approximations of
the K-Means clustering algorithm are implemented and eval-
uated on a real system. Using the EdgeCloudSimsimulator,
the authors demonstrated that distributed clustering reduces
computation, communication, and energy usage while retain-
ing high levels of accuracy. Elgendy et al. [71] considered
multiuser scenarios to address joint computation offloading
and radio resources allocation to guarantee efficient utiliza-
tion of shared resources for mobile users and IoT devices
with limited computation power and energy. An offloading
algorithm is developed to determine the optimal computa-
tion offloading decision for mobile users with an integrated
security layer using the AES cryptographic technique to pro-
tect sensitive information from cyberattack. The proposed
model can minimize the total overhead of time and energy,
which can be further improved using a compression layer.
Regarding resources and evaluation metrics, the requirements
vary across cloud, fog, and edge computing. Researchers have
presented a comprehensive review [72] on the differences and
various optimization techniques relevant to edge computing.
They also highlighted the need to utilize metrics to evalu-
ate system performance based on individual applications and
use cases.

D. Blockchain and Smart Contracts

The majority of IoT implementations use a centralized
client–server architecture to connect to the cloud. Rapid IoT
device growth will not work well for such an implementa-
tion. For example, the communication between IoT devices
will have to go through the cloud, even in the vicinity. Such
a model is prone to bottlenecks, downtime, and coordinated
attacks that might affect the operation of the entire network.
One solution is to use decentralized architecture for IoT

to reduce infrastructure and maintenance costs and increase
robustness by removing single points of failure. This intro-
duces the need to include a decentralized mechanism that
manages communication among devices implemented using
technology like Blockchain. Blockchain is a shared, distributed
database that many parties share. After receiving the approval
from the participating nodes in the Blockchain network, the
information is added in the form of blocks. The next evolu-
tion of Blockchain, which incorporates the concept of smart
contracts, provides exciting IoT opportunities. For example,
several important processes, such as updates, maintenance,
and information sharing, can be automated using smart con-
tracts according to the established and recorded rules in the
Blockchain.

However, the benefits provided by Blockchain are not
straightforward to be realized in IoT due to several limita-
tions, such as scalability, processing power and time, battery,
and storage. Therefore, the current Blockchain implementation
must be adapted to the IoT ecosystem. Also, there is a need
to develop an IoT architecture with Blockchain as an integral
part. For example, The autonomous decentralized peer-to-peer
telemetry (ADEPT) [73] presents a decentralized architec-
ture to enable autonomic IoT systems. ADEPT integrates
Telehash for peer-to-peer messaging, BitTorrent for distributed
file sharing, and Ethereum Blockchain for autonomous device
coordination. This architecture results in self-maintaining,
self-servicing devices that can verify the trustworthiness of
their peers and handle automatic and secure updates without
needing a central broker.

IoT faces significant challenges in security due to the
exponential growth in connected devices. Developing secu-
rity mechanisms, such as authentication and authorization
strongly relies on digital identity. Due to single point of
failure and privacy concerns arising from current centralized
identity management solutions based on external identity sup-
pliers. IoT requires scalable device identity and authentication
management to reduce the attack surface and offer protec-
tion against security threats like identity theft. To address this
issue, an autonomic identity framework based on Blockchain
is presented in [74]. The proposed framework uniquely iden-
tifies devices by autonomously extracting unique signatures
based on their intrinsic digital qualities and relationship to
their human owner (using a private key) that can operate in dis-
tributed and trustless situations. A Blockchain-based scalable
identity management solution for IoT device authentication
using a lightweight consensus-based identity authentication
system is presented in [75].

IoT encompasses a large number of devices and services
offered. The majority of IoT solutions only offer limited sup-
port for sharing IoT devices and costs incurred. In order to use
IoT solutions, the users are required to set up and maintain the
sensor that will gather the necessary data. In order to facilitate
device and service discovery, an autonomic, global discovery
and integration of IoT devices and services is proposed in [76].
The suggested framework enables pay-as-you-go cost sharing
for IoT device costs while enabling IoT applications to find,
integrate, and use IoT devices owned and managed by any
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IoT provider. An IoT device metadata-focused Blockchain is
created to store and manage all the data required for IoT device
description, inquiry, integration, and payment.

E. Software Defined Radio and Network Function
Virtualization

SDN is an architecture created to increase the flexibility
and manageability of the network by decoupling the control
plane from the data forwarding operation of the networking
device. Whereas NFV enables service providers to increase
service innovation and deployment agility by operating virtual
network functions (VNFs) in VMs distributed over data-center
infrastructures and swapping out specialized hardware appli-
ances with network functions. SDN and NFV provide greater
flexibility in the orchestration of networks and services due to
dynamic instantiation and configuration of network functions
and services in virtualized (fog/cloud) computing environ-
ments suitable for IoT applications. In order to deliver the
right Quality of Experience (QoE) to end users, a relatively
large number of unique stand-alone software modules and
networking devices must be controlled for a diverse range of
IoT applications. As a result, managing the IoT ecosystems
operated by SDN and NFV will make it possible to implement
autonomic management techniques. Since the human opera-
tor cannot manually manage a wide range of interconnected
systems, this enormous and dynamic number of heteroge-
neous components creates a management issue for SDN and
NFV that needs to be handled autonomously. Furthermore,
securing IoT solely on human intervention makes it impos-
sible to defend against an attack on sophisticated network
structures quickly. Distributed auto-defence systems in auto-
nomic communications (e.g., NFV security chains) constantly
monitor system characteristics for attacks and identify the
best course of action without significantly affecting over-
all performance, whereas the preset security configurations
manage authentication, authorization, and access control.

An online heuristic algorithm called topology-aware place-
ment of VNFs (TAP-VNFs) as a low-complexity solution for
dynamic infrastructures to successfully determine the place-
ment of VNF is proposed in [77]. The proposed work assesses
the applicability of various VNF placement strategies for static
(offline) and dynamic (online) scenarios. It offers a general
formulation of network function placement based on the ser-
vice function chaining concept. In terms of consolidation and
aggregation ratios, the suggested approach outperforms the
best available options, demonstrating a better fit for dynamic
cloud-based environments. The outcomes demonstrate that
TAP-VNF performs better than current methods based on
conventional bin-packing schemes. Existing network and mid-
dleware infrastructure often fails to adapt dynamically and
meet the requirements of evolving IoT applications, degrading
QoS while being used. To address this issue, a self-adaptive
communication infrastructure prototype at the middleware
level of IoT systems to handle and manage floating QoS in
dynamic and demanding contexts using edge computing, SDN,
and NFV is presented in [78].

In order to enhance network management in 6LoWPAN IoT
networks, a solution based on VNFs that can be deployed at
the edge of IoT networks due to lightweight virtualization was
presented in [79]. NFV allows VNFs to be scaled up or down
at the network edge depending on the state of the network
and system. In [35], a security management architecture was
proposed, outlining the different planes of the architecture and
the primary architectural flows to address security and privacy
in NFV/SDN-enabled IoT scenarios. Along with the main IoT
threads and attacks, potential NFV-SDN-based mechanisms for
detection and defence were also presented. The suggested solu-
tion can automatically monitor, detect, and mitigate IoT attacks
by enforcing appropriate security policies on time, considering
the latency and delays experienced by IoT networks.

F. Artificial Intelligence

For widespread IoT adoption, the devices must be able to
make decisions autonomically, requiring adding some intelli-
gence across the entire IoT network. IoT devices can achieve
this by deriving context through the implementation of AI
techniques. Because autonomic computing is a component of
AI, autonomic computing techniques have become integral
to any AI-based development. AI can be used in autonomic
systems planning and analysis phases, frequently set up as
MAPE cycles. Once this is accomplished, human involvement
will be restricted to setting up the system and creating policies
and rules. The IoT system with AI capabilities will be able to
learn and adapt to changes effectively and efficiently using the
data generated by the devices. As a result, IoT networks can
detect tampering, self-heal, identify impending failures, reduce
downtime, and optimize process efficiency. For instance, ML
techniques can be used to identify patterns in the workload
and then use those patterns to improve resource management.
Additionally, the autonomic manager could use ML models for
predictions to achieve self-learning and reduce model uncer-
tainty. Furthermore, AI brings a human element to IoT by
applying data and context awareness to problem-solving [80].
For example, automatic software updates will be broadcast
to all interconnected IoT devices before problems occur. For
this to happen, context awareness is also critical, allowing
machines and devices to infer meaning from data streams from
disparate systems. Recently, autonomic computing has been
increasingly applied in computer and networking paradigms
like cloud, fog, edge and communication networks with the
help of AI and ML. The application of autonomic computing
approaches is significant when a system has a large num-
ber of configurable parameters that can be adjusted to keep
the system running optimally. Cooperation and interaction
between various components result in dynamic, complex, and
heterogeneous networks. AI and ML techniques will be useful
in managing such large-scale heterogeneous IoT networks by
analyzing data and making decisions for the self-management
IoT network with the desired level of QoS.

For the autonomic management of a large number of
offloading requests in mobile edge/fog for IoT applica-
tions, a deep Q-learning-based compute offloading approach
was proposed in [81]. The proposed scheme considers the
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resource demand, availability and network status mobility, and
heterogeneity to make the optimal decision. The problem is
modeled as a Markov decision process (MDP) and solved
using reinforcement learning due to the randomness in
resource availability and the wide range of possibilities for
assigning those resources for offloading computation. Based
on the experimental results, the proposed offloading mech-
anism performs better in terms of execution time, latency,
and energy usage. With the recent advances and optimizations
in deep neural networks (DNNs), applications like computer
vision can be run on simple devices without requiring special-
ized hardware. However, limited device memory, computing
power, and battery life make DNN implementation and satisfy-
ing QoS requirements difficult. Therefore, offloading of tasks
is required in such scenarios. Therefore, a novel optimization
method for parallel offloading large-scale DNN models in
a local-edge-cloud collaborative environment with limited
resources is presented in [82] to minimize the offloading fail-
ures due to intermittent wireless connectivity during DNN data
transmission. A thorough discussion on using AI/ML with the
autonomic principle is presented in [24] for next-generation
computing.

G. Ubiquitous and Reliable Communication

The necessity of information exchange is vital to achiev-
ing autonomic behavior in the IoT because it enables the
components of an autonomic system to communicate crit-
ical information and take the appropriate action based on
contextual data. To realize this, ubiquitous and reliable com-
munication technology is essential for all autonomic systems
to integrate and cooperate effectively. In this regard, new
features are being added to cellular networks to enable ubiqui-
tous and pervasive communication supporting millions of IoT.
Traditionally, the main focus of such networks was to pro-
vide higher data rates without considering the lower data rate
requirements of IoT devices. To address this issue, the cur-
rent and future generations of cellular networks, such as 5G
and beyond 5G, are being designed to accommodate massive
machine-type communication (mMTC). Furthermore, several
other networks, classified as low-power wide-area networks
(LPWANs), are being deployed to support the connectivity
demands of the exponentially growing IoT devices.

Furthermore, communication networks should increase their
ability to deal with unexpected changes, such as changes in
topology, load, task, and the physical and logical properties of
the networks that can be accessed. This gives rise to the con-
cept of Autonomic Communications, which applies autonomic
computing principles to communication systems and networks
to provide end-to-end QoS using self-management [83]. In
this regard, cognitive radio [84] is a term used to describe
intelligent radios that can make decisions autonomously based
on information gathered about the radio environment and
learn/plan based on experience. Cognitive radios can commu-
nicate efficiently, avoid interference with (un)licensed radio
spectrum, and modify their radio broadcast or reception char-
acteristics. The cognition cycle is similar to the MAPE loop
and is based on Observe-Orient-Plan-Decide-Act-Learn, which

means that the cognitive radio system constantly examines its
surroundings, makes plans, decides, and then acts. Autonomic
communications are crucial in scenarios like smart city and
smart transportation applications, where there are varying
radio conditions and high dynamic numbers of interconnected
sensors and actuators (due to node failures and duty cycling).
For instance, smart objects can organize in ad-hoc networks
to exchange information and coordinate tasks even when
the topology is dynamic. Any intelligent communication
device should support autonomic communication and self-
management capabilities, which can optimize any network
decision and task, such as packet scheduling.

Riker et al. [85] discussed the challenges and solution for
self-adaptive communication in Dense IoT (DIoT) environ-
ments. The proposed solution is implemented as a software
layer which uses a fuzzy logic controller to autonomously
detect and react to low-performance situations to provide an
energy-efficient and reliable group-oriented communication
mechanism called Autonomic management of Group com-
munication for IoT applications (AGREEN). The proposed
solution results in an improvement in terms of the notifica-
tions interval, message loss, and energy consumption when
compared to the standard version of the CoAP protocol. This
is achieved by adapting the communication settings of a group
of nodes based on group indicators, such as the amount and
criticality of collected data, traffic loss rate, type of energy
source, and rate of energy harvesting.

IV. AUTONOMY AT VARIOUS IOT LAYERS

IoT is typically divided into three functional layers: 1) the
device layer (also referred to as the M2M layer); 2) the
network layer; and 3) the cloud layer [8]. Each layer offers
a different set of features and services, as well as different
limitations and challenges for IoT autonomy. The interfacing
requirements, mobility requirements, sensing, and processing
power in the components of each layer are used to define the
capabilities of every layer. Devices with sensing and actua-
tion capabilities are included in the device layer. Databases,
analytics, and human–machine interfaces are included in the
cloud layer, while middleware and data transport resources
are included in the network layer. The term “interfacing”
describes how easily different devices can communicate within
the same layer. Mobility, on the other hand, is the dynamic
nature of the devices, the flexibility to move, and the abil-
ity to switch network attachments. Due to heterogeneous
devices, technologies and protocols, the lower layer interfaces
are subject to more restrictions. On the other hand, the
widespread use of TCP/IP and other similar protocols stan-
dardizes interfacing and makes its implementation at higher
layers easier. Additionally, in the higher layers, devices are less
mobile. Based on this finding, autonomic software can exist:
1) in the device layer as agents residing in the end devices;
2) in the network layer as a part of middleware; and 3) in
the cloud layer with application protocols as cloud agents.
Based on the autonomic IoT requirement discussed in terms
of self-* paradigm and MAPE loop, supporting technology,



14738 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 16, 15 AUGUST 2023

TABLE IV
SUMMARY OF RECENT WORK RELATED TO AUTONOMIC COMPUTING AND THEIR APPLICATION IN IOT

autonomic capabilities can be enabled at various layers of the
IoT network.

Table IV is an illustrative example summarizing the discus-
sion in the previous sections considering recent literature. The
table groups the work based on the layer of the IoT network
where autonomic computing capabilities were implemented,
enabling technology used to implement self-* properties and
the decision control implemented to achieve defined goals.
From Table IV, it can be seen that there have been efforts to
enable autonomic capabilities in the IoT ecosystem, focusing
on various layers and using different technologies. However,
several issues/challenges need to be addressed to achieve end-
to-end autonomic capabilities due to the inherent complexity
of the IoT ecosystem. To achieve full autonomy, IoT systems
require cooperation across various layers, using multiple
enabling technologies and cooperative decision-making capa-
bility (combination of both centralized and decentralized) to
implement a complete set of Self-* paradigms.

V. EVALUATION FRAMEWORK

This section presents a set of criteria that can be used
to evaluate the state of autonomic design employed within
a system or a subsystem. To achieve self-* properties, the
proposed criteria can serve as a guideline to classify the
decision making of any system/scheme/approach in IoT as
autonomic. The proposed criteria described in the subsequent
section were chosen from the literature that defines the proper-
ties of autonomic systems [4], [26], [31], [36], [95], [96]. For
example, the two criteria of “status monitoring” and “obser-
vation” may appear to be the same, and both do fulfil the
“Monitor” function of the autonomic control loop. However,
the objective and context of the monitored condition are differ-
ent. Status monitoring is the process of monitoring the current
state of its (internal) resources to ensure efficient operation.
In contrast, observation is the process by which the system

obtains input from the (external) environment to make a col-
lective decision at the autonomic manager. For instance, an
IoT device may constantly check its battery level but not know
how long the network will last (which may be observed only
by a gateway like the autonomic manager).

These evaluation criteria are qualitative parameters to deter-
mine the autonomic capability of the system. However,
depending on the context of the system being evaluated, each
evaluation criterion may have a unique subset of performance
metrics. For the proposed integration criteria, for instance, a
system must dynamically adapt to and comprehend the needs
of other similar systems. Therefore, the autonomic systems
may have to renegotiate configuration parameters to work
together as a single entity to accomplish the specified goal.
In a networking context, suitable QoS parameters (e.g., delay,
throughput, packet loss, jitter, etc.) are examples of specific
parameters for the integration criterion. For example, a system
may tolerate higher delay but not low throughput, whereas
another system may tolerate low QoS metrics for both. QoS
are application specific and need to be negotiated during the
runtime as an adaptation process that may require integration
(or negotiation) with various components and assessed using
accepted methods.

Furthermore, the presented criteria are for the overall eval-
uation of the IoT system, supporting the definition presented
in [26], which states that an autonomic computing system
should provide significantly more automation than the sum
of its individually self-managed parts. An overall evaluation
of IoT autonomy is more important than individual component
evaluation. As a result, the evaluation criteria will be consistent
across all layers.

A. Criteria of Evaluation

1) Negotiation: One of the important tasks in autonomic
computing is to use the data gathered by continuous
monitoring for making decisions. The gathered data can
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be treated as a requirement and is used to negotiate and
communicate requests to the devices. Negotiation is a
process where two parties mutually agree to perform
certain tasks within their capabilities. Negotiation may
be performed directly by the devices or by an intelli-
gent entity at a higher level in the system. Negotiation
minimizes user intervention by making optimization
decisions instead of waiting for input from the human.
An IoT system capable of negotiation can dynamically
change its state based on the gathered data without
human intervention and can claim partial autonomy.

2) Observation: Autonomic elements must monitor the
environment and determine the likelihood of various
services because managed elements may not be capable
of performing such observations. However, the man-
aged elements can provide input for a collective decision
by the autonomic manager. The observation parameter
refers to the process by which the system gathers data
from the environment to make decisions at the auto-
nomic manager. The shared objective of autonomic IoT,
which is to generate data and collect it from the system
and the environment, is immediately met by this proce-
dure. Observation parameters directly fulfil the goal of
an autonomic IoT system by providing the capability to
monitor. Furthermore, in certain scenarios, the environ-
ment may not be fully observable, and IoT devices must
collaborate to share the observations to take optimal
actions.

3) Deliberation: Deliberation ensures that all the observ-
able events and actions are considered in the decision-
making process. Interfaces do not interact with the
environment directly. Instead, they help respond to
failure by using predefined actions or compromising
certain functionalities. Hence, deliberation allows for
self-optimization and system-level adaptability. The suc-
cess of a decision made depends on the quality and
quantity of inputs. Fewer factors considered in deci-
sion making usually result in a suboptimal solution.
Therefore, the list of factors considered in decision
making should be exhaustive for autonomic decision
making.

4) Failure Recovery: Every autonomic system needs to
have a recovery mechanism that helps keep the system
functional in case of anomaly or misuse detection.
Failure recovery refers to the autonomic system’s action
to ensure system availability. It is comparatively easier
to detect failure for failure recovery than to perform the
exact recovery approach to restore the functionality. The
scope of this evaluation criteria is more toward decision
making in case of unusual events. Furthermore, failure
recovery results in reduced user intervention contributing
toward autonomy. An IoT system implementing a fail-
ure recovery mechanism also exhibits partial autonomy
in security features.

5) Execution: The managed resources take certain actions
in a given situation after mutual agreement between vari-
ous entities involved. The autonomic manager supervises
the action, which ensures that all the negotiated tasks and

parameters are honored. One of the goals of autonomic
computing is to use technology (or technologies) that
can manage other technologies. To achieve this goal, the
execution of the control process forms a core element
of the autonomic MAPE loop.

6) Prioritization: This evaluation criterion uses policies in
decision making. The prioritization may occur either in
determining the data flow or how routing takes place in
a particular scenario. For example, in [97], a method
is proposed to maximize the lifespan of the node to
make the network more efficient. This is achieved by
temporarily disabling the nodes to save power using
the interpolation algorithm. Prioritization can also allow
the device management to take precedence over other
actions if the resources are limited and availability is
more critical than privacy. In such cases, access and
identity management decisions can be overridden.

7) Status Monitoring: Status monitoring is an important
feature in every autonomic system contributing to self-
awareness. The autonomic system continuously monitors
its elements and controls the resources to guarantee effi-
cient operation. In the IoT context, this function can be
regarded as a subset of self-configuration. The status
monitoring and observation criteria for evaluating the
autonomic scheme may look similar as both are con-
fined to the scope of monitoring. However, “observation”
refers to collecting data from the environment, whereas
“status monitoring” is limited to the current state of
internal resources to improve efficiency. Both criteria
handle monitoring and gathering data for autonomic
analysis.

8) Arbitration: Arbitration is the process of selecting a
particular service, configuration, or function from the
available set of alternatives. This directly relates to
the goal of autonomic decision making in IoT. The
main challenge in implementing arbitration capability
in IoT systems is the heterogeneity of IoT devices.
An IoT system with an arbitration feature can be self-
sufficient in management, and human intervention can be
minimized in selecting functions, services, or features.

9) Integration: Integration is important due to the het-
erogeneity in the protocols and devices. Integration
is defined as a process through which the auto-
nomic system can adapt itself to the requirement of
another system without affecting its current opera-
tion. Integration achieves the high-level goal of the
self-adaptation of functionality, optimization, and man-
agement of other technology. This function may be
implemented in the autonomic manager as the managed
resources may be unable to provide such functionality
due to resource constraints. This functionality is usu-
ally implemented at the gateway or IoT middleware to
allow seamless operation among heterogeneous devices
and protocols.

10) Filtration: Filtration refers to using specific knowledge
and understanding based on the available data for a given
context. Filtration involves feature extraction, cluster-
ing, and classification that utilizes user-defined policies
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TABLE V
PROPOSED EVALUATION CRITERIA AND ITS

RELATION TO MAPE CONTROL LOOP

and filters unnecessary components to make unbiased
decisions that may affect the operation of the network.

11) Reasoning and Learning: Context-based policies and
decisions are a significant part of autonomic IoT. Based
on available information, reasoning and learning can
help an autonomic system to become self-sufficient to
deal with heterogeneity and make decisions. ML tech-
niques have reduced the need for manual searching
and policy setting. An autonomic system using the
learned model can find the best action for a given
scenario. The advantages include application indepen-
dence, strong validation, and improved decision making.
An IoT system capable of reasoning and learning will
guide the functions of the rest of the system and enable
autonomy.

B. Evaluation of the MAPE Control Loop

The proposed evaluation criteria for an autonomic system
must be compatible with the MAPE control discussed in
Section II. Table V compares the four processes in the MAPE
control loop with the proposed evaluation criteria. The monitor
process in the MAPE loop represents the status observation,
negotiation and filtration. Therefore, the monitor process is
present at all layers of autonomic IoT. Likewise, the planning
process represents arbitration, deliberation, negotiation, and
filtration. The analyze process is more complex and represents
arbitration, deliberation, negotiation, failure detection, reason-
ing, and prioritization. Finally, the execution process combines
the criteria of prioritization, failure recovery, execution, and
integration.

C. Evaluation of the Self-* Paradigm

The proposed scheme can also be used to evaluate
the self-* paradigm to determine which autonomic compo-
nents are manifested in individual self-* properties. Table VI
assesses self-adaptation, self-configuration, self-organization,
self-optimization, and self-security discussed in Section II to
define autonomy with respect to the proposed evaluation cri-
teria. As the definitions of self-* properties are relative, it is
difficult to compare them with the proposed evaluation criteria.

TABLE VI
PROPOSED EVALUATION CRITERIA AND ITS

RELATION TO SELF-* PARADIGM

For example, self-security can be divided into self-healing and
self-protection, which are evaluated differently. Thus, the eval-
uation criteria yield the best results when applied to a focused
domain with precise requirements and features.

D. Application of Evaluation Criteria

In this section, we present the application of evaluation cri-
teria using two relevant works, one focusing on IoT and the
other being a generic network. We provide an example of self-
organization to show readers how to apply the suggested stan-
dards for evaluating autonomy. A self-organizing network with
optimization capabilities was proposed by Edwards et al. [98],
in which specialized routing information is provided to the end
devices via a gateway. The nodes modify their operation and
other factors, like transmission power, frequency, and band-
width, after receiving the information. Akgül and Canberk [96]
considered a conflicting parameter to determine where the cov-
erage zones of wireless devices overlap. This approach aids in
expanding the coverage area, which improves event observa-
tion and even extends the lifespan of the network. Both studies
under consideration list self-organization as one of their main
objectives. Because the amount of detail is lower than a whole
middleware or cloud-based analytic solution, these examples
were chosen. We first look for a shared scope of work, such as
interface capability, network structure, mobility, or energy effi-
ciency. The focus in [98] research was mainly on networking
technology and changing the configuration of device states.
The research is focused explicitly on the self-organizing rout-
ing behavior of the network. The research in [96] utilizes a
strategy to maximize network longevity, which lowers wire-
less coverage redundancy. The configuration parameter that is
shared by both works is transmission power, which also has
an impact on the wireless coverage area.

The features of deliberation, prioritization, status monitor-
ing, integration filtration, and reasoning can be used as a
starting point, as our focus is on evaluating self-organization-
based works. As prerequisites to self-organization, Akgül and
Canberk [96] discussed self-configuration, self-healing, and
self-optimization. Both filtration and the negotiating criterion
are not obvious. Because the working scheme does not nego-
tiate any requirements with the environment, it does not filter
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any data for further decision making. However, the require-
ments of observation and status monitoring are met since the
location and status information of devices is used as input
to the self-configuration algorithm. The approach optimizes
the network after specific occurrences. Therefore, the failure
recovery criteria are also satisfied. One such occurrence is
when the battery of the device is exhausted, and it discon-
nects from the network. The scheme excludes a semantic or
context-based policy system due to its scope of work. There
is no decision-making procedure in the work that considers all
conceivable observable events and variables that could impact
the radio model and the device coverage. In choosing sleep
states, one can observe an arbitration requirement (sleep, pas-
sive, active). However, it cannot be inferred that the work can
arbitrate disputes. To some extent, few options are reached
after decision making. But the options are very limited, and
the system is judged to lack the property of arbitration. In
addition, the work lacks the property of integrating heteroge-
neous parts. This work assumes that all devices cover an equal
area, which is not necessarily true. So, the performance of the
algorithm will be severely impacted by every device with a
varied coverage area. Because the configuration of selected
preferred elements is altered, this task reviews execution and
prioritization.

Similar to [96], the authors in [98] also covered the self-
configuration, self-healing, and self-organization properties.
This research primarily aims to reduce the number of hops
and delays in retransmitted packets across an ad-hoc network.
Also, the system keeps track of the number of hops, which
means it keeps tabs on the condition of its components. The
decision engine in this work, unlike earlier ad-hoc networks, is
not wholly built within ad-hoc components. The application of
the autonomic management and resource architecture, where
decision-making functionality is distributed across the compo-
nents, is suggested by delegating some of the functionality to
centrally placed elements. We can consider this work to satisfy
the execution and arbitration requirements of the configuration
since the proposed approach can change transmitting power,
frequency, and bandwidth operations. The ability of users and
constituent elements to collaborate over an ad-hoc network,
solving various infrastructure-based challenges, can be viewed
as satisfying the criteria of negotiation and integration. The
work also fails to meet the filtering requirements since no
data has been filtered for subsequent decision making. Similar
to [96], the evaluation criteria for filtering, arbitrating, and
semantic reasoning are not fulfilled. The observation criteria is
not fulfilled since the system does not gather information from
the outside world to inform a group decision. Only internal sta-
tus data is gathered, meeting the need for status monitoring.
Since all observable (specified) occurrences are considered,
the deliberation condition is satisfied. The requirement for fail-
ure recovery is also satisfied because reconfiguring the ad-hoc
network makes it simple to fix a problem with one node.

The discussion presented in this section is summarized in
Table VII, highlighting the characteristics of the proposed
evaluation criteria implemented in the compared literature.
In a similar manner, we can evaluate existing autonomic
schemes/protocols against the proposed evaluation criteria to

TABLE VII
APPLICATION OF THE PROPOSED EVALUATION CRITERIA

determine which self-* property is implemented at any given
layer.

VI. CHALLENGES AND FUTURE DIRECTIONS

Autonomic principles have been successfully applied to con-
ventional computing and communication scenarios. Applying
the autonomic principles in IoT will have a significant advan-
tage in device, security, and network management. Direct
migration and implementation are not possible due to the
different size and functionality requirements of IoT and its
constituent elements. Fortunately, the growing need and popu-
larity of ubiquitous computing and the increasing IoT adoption
assure a promising future for autonomic IoT. However, there
are several issues and challenges that need to be addressed
to apply autonomic computing principles from traditional
computing to the IoT paradigm. This section presents the chal-
lenges that need to be addressed and suggests possible research
directions.

A. Implementing Autonomic Complexity

Implementing autonomic principles on resource-constrained
devices is a research challenge, especially trying to avoid
complex protocols and maintain a simple modular design.
The proper design combines many techniques and schemes
with other common research ideas in IoT, such as energy
conservation, interoperability, and AI. At the same time, the
amalgamation and description of security requirements for
cross-layer designs could be an exciting field of upcom-
ing research. Self-adaption and autonomic design will bring
an extra layer of complexity to the system implementations.
Currently, designs are made simpler, lighter, and portable to
meet the IoT device constraints. Such techniques must be
more robust considering the computing and energy resources
level. As an example, certificateless public-key algorithms are
being applied to IoT. However, initial attempts at the design of
certificateless mechanisms may not be suitable for IoT [99].
Autonomic-enabled IoT comprises resource-constrained, sim-
ple end devices. However, autonomic computing features and
processes can result in overall complex behavior. Complex
behavior and autonomic negotiation can also exist in sensors
gathering data. The system decides on the characteristics of
the environment based on the gathered data. Furthermore, each
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device or node in an intelligent IoT system should be network-
aware by combining M2M communication with the transparent
flow of data and avoiding complex protocols as much as pos-
sible. This simplicity is essential to maintaining and managing
intelligent IoT.

Furthermore, issues of interoperability, common standards
of management, and automation rise significantly in auto-
nomic IoT, given the wide variety of hardware and software
technologies. When choosing autonomic decision makers, the
existence of devices from different manufacturers following
the same standard might cause interoperability issues due to
the presence of additional proprietary features. The traditional
autonomic architecture follows a centralized pattern approach,
with two major components: 1) the managed resource and
2) the autonomic manager. The autonomic features in the
manager should be left untouched to protect the generality
because the device constraints do not exist at the platform or
server level. However, the managed resource requires several
updated observations, negotiations, failure recovery, and delib-
eration. This is mainly due to the constrained nature of the
end devices, and implementing full-fledged autonomic agents
is not optimal. Therefore, choosing the position of the deci-
sion engine in an autonomic setup is challenging as it depends
on several criteria and use cases. For example, we can posi-
tion the decision making in the higher layers in a separate
geographical location from the network itself. It is also pos-
sible to keep the decision making entirely in the device layer
and fully assign it to the end devices. A third option can be
locating the decision-making midway in the network layer as
middleware (edge or fog). Another alternative is to distribute
the decision engine across the layers. Each alternative has its
set of advantages and disadvantages.

B. Failure Detection and Recovery

The physical deployment of end devices in wireless sensor
networks and IoT varies from standard indoor and outdoor
environments to rough military deployments. Devices may
be exposed to harsh environmental conditions compared to
traditional standard computing equipment. Therefore, failure
detection becomes challenging in complex autonomic IoT
systems with many possible states and actions. For example,
sensors in smart grid transmission are subjected to extreme
electromagnetic interference and weather conditions, which
can lead to accidental damage and frequent failure. In multihop
networks, losing individual nodes means losing parts of the
network due to loss of functionality by routing, actuating,
and sensing issues. To realize self-*, an autonomic-enabled
IoT system must adapt to such changes, automatically recover
from losses and, thus, be self-protected and capable of fail-
ure recovery. In the lower layers, especially at the end device
level, failure recovery would refer to the system coping with
damaged and malfunctioned sensors. For the complete IoT
system, self-adaptation and failure recovery may mean select-
ing the optimal active response for deploying countermeasures
while maintaining system functions. An example of this has
been demonstrated in [100]. Failure recovery can be achieved
by constantly monitoring the network routes and the status

of individual devices. Designing autonomic systems with a
built-in mechanism for failure recovery is challenging. The
designers have to focus on the actual functionality and restore
the functionality upon detection of a failure. Also, remedial
actions may include self-recovery in the network by detecting
partial failures other than when the system stops working.

C. Self-Healing for Reliability

Autonomic IoT systems may operate in extreme and
remote environments requiring multihop communication tech-
nology to transmit and receive data. Consequently, studying
self-healing and reliability requirements is essential, leading
to higher availability despite adverse environmental condi-
tions [101]. Self-healing makes the necessary adjustments
to recover from faults so the system can function normally.
Regardless of their seriousness, software, network, and hard-
ware defects must not degrade the performance. However,
such advanced functions may cost vital memory, process-
ing power and energy resources in constrained devices. Thus,
optimization and backward compatibility problems exist since
the life cycle for such devices tends to be between 5-10 years.
Additionally, developing an ecosystem with autonomic com-
puting principles involves a change in the design philosophy
to incorporate the MAPE look principle at the component,
device, software frameworks, and system level.

D. Autonomic Intelligence and AI Integration

The use of AI/ML to enable the autonomic and self-
management features in IoT systems is an important upcoming
research area. Computing areas, such as Web services and
data center management software increasingly feature self-
managing AI and ML capabilities that let these systems
automatically adjust to changing workloads. To manifest intel-
ligent, autonomic behavior in an IoT system, it is essential
for individual components, processes, networks, and devices
to possess a level of autonomic behavior. Furthermore, cross-
layer requirements should have a certain level of dynamism
for successful management and decision making. For higher
layers, an essential requirement for an intelligent autonomic
IoT to exhibit self-* behavior is facilitating local interaction
between the components. On the other hand, in the lower lay-
ers, software should allow modular handling of various com-
munication modules. The communication layer (or network
layer) requires additional features, such as security, multihop
routing, and automatic power management. AI-based auto-
nomic systems can use various data sources, including sensor
data, to create fault models and make fault detection and
maintenance predictive rather than reactive. Due to its flexi-
bility and simplicity of adaptation to a changing environment,
AI/ML-based adaptive scheduling is suitable for data-intensive
applications. Additionally, it is possible to measure automati-
cally how different QoS attributes affect system performance
and adapt to meet the SLA. Reinforcement learning can be
used to discover and rectify faults and configure and optimize
the system in an unknown environment. This is particularly
important as it is challenging to train the ML model on every
possible scenario of a dynamic large-scale complex network
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of IoT. This can increase reliability, but it can also increase
system complexity by increasing data processing, resulting in
increased computational requirements.

Since the AI algorithms depend on the data, the qual-
ity of data may degrade decision making, for example, data
being corrupted due to random fluctuations. To prevent this,
no outside feedback or interaction should be allowed except
for valid environmental interaction. Unfortunately, for a dis-
tributed system with control and services spread across all
layers and components, this requirement poses a significant
challenge. Distributed AI, such as federated learning algo-
rithms, are becoming popular in addressing the data privacy
issue and building prediction models with reduced computing
requirements for edge devices. Designing and implementing
an AI-enabled application is a considerable feat, and adding
an extra overhead of autonomic computing is a research chal-
lenge that requires coordination and integration across IoT
layers. Accuracy and outcome are the most important met-
rics to determine the success of AI in imparting autonomic
computing. In supervised learning, for instance, the accu-
racy is highly dependent on the training data set. Without
proper data, a biased/flawed AI will produce inaccurate or
skewed results affecting the operation of the participating
autonomic components. Furthermore, in edge computing, the
implementation of AI functionality is open and is not consid-
ered a built-in capability which results in edge intelligence.
Therefore, it is still unclear how and where AI capabilities
should be built into edge systems to enable edge intelligence.
In order to achieve this, specifications primarily for standard-
ized APIs, software constructs, interoperability mechanisms,
and supporting infrastructures need to be developed [102].

E. Security and Privacy

Wireless technologies are particularly vulnerable to security
attacks, and security remains a severe challenge in autonomic
IoT. In terms of confidentiality and integrity, safeguarding
data across all layers is challenging, and developing resource-
efficient security schemes in communication and data privacy
is essential. A wide variety of attacks exist to target IoT
networks and applications. The best defence is for IoT compo-
nents to self-protect and even self-heal. With the introduction
of Blockchain and smart contracts, security and privacy can
be decentralized and autonomous. However, Blockchains are
not straightforward to be realized in IoT due to several lim-
itations and constitute an interesting research problem. In
addition to the smart application and an autonomic structure,
designing a secure architecture around the exact requirements
is a big challenge. Providing privacy and authentication are
two crucial requirements for the IoT. While privacy imposes
strong regulations prohibiting any identification or disclosure
of personal data, autonomous authentication requires an end
device to reveal its identity to some extent. Although they
are not opposites, authenticity and privacy security objec-
tives frequently clash. Their relationship is more complicated
because a system’s authentication may be compromised more
easily with private data that is made public. To develop an
autonomic authentication system for the IoT, decisions about

what constitutes a device identifier must be made to meet
the fundamental authentication requirement. The privacy con-
sequences of these choices must be considered and ensure
that device identifiers cannot be connected to a specific user
or any physical object throughout the entire IoT ecosystem.
Security challenges remain a hot area for research, and pro-
tecting autonomic IoT will pose a significant challenge for
researchers.

F. Trust Issues in IoT

In IoT, the devices need to exchange data to enable them
to make decisions in a decentralized manner to implement
self-* properties. However, in an IoT network where arbitrary
nodes can join and leave the network at any time, some partic-
ipant nodes may act maliciously and try to exploit the system.
Therefore, the concept of trust is of prime importance in real-
izing full autonomy in IoT. The practical approaches toward
trust computing work well when the system is predictable and
static. Since modern IoT systems are very dynamic and display
unpredictable behaviors, past experiences cannot be utilized to
assess the trustworthiness of the system at any given instance.
The performance of the overall network may be negatively
impacted by trust management if the system changes too fre-
quently while it is in use, such as when new nodes are added.
Due to these restrictions, trust management systems (TMSs)
find it challenging to adapt to the heterogeneous, autonomous
IoT architectures that are prevalent today. Therefore, work is
needed to combat various threats in the open distributed envi-
ronments and new ways of computing trust to enable self-*
properties in IoT.

G. Interoperability and Integration of Devices

To communicate with one another, heterogeneous systems,
networks, and devices can exchange information with each
other. This information is used to participate toward a com-
mon system goal or function. The IoT-aided autonomic system
typically comprises a heterogeneous, large number of differ-
ent types of IoT devices and gateways. These components in
an autonomic setup vary in resources and operational tech-
niques, such as memory characteristics, computational power,
energy, and time sensitivity. On top of the hardware differ-
ences, various implemented software stacks follow various
standardized communication stacks and protocols (for IP and
non-IP-based devices). The lack of device interoperability
leads to integration issues due to development constraints and
proprietary technology stack. One common technique is con-
verting proprietary technology stub networks into IP-based
networks using standardized hardware I/O modules or protocol
converters. Furthermore, at the physical level, the availabil-
ity of a wide variety of wireless protocols (long-range and
short-range) creates additional integration issues. On a system
level, heterogeneous architectures also lead to interoperability
issues. Thus, interoperability issues exist at different levels,
from the communication to the physical and application layers.
A universal and open approach to services-oriented commu-
nication, open architecture devices and semantics are needed
to solve the interoperability issue in autonomic IoT systems.
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For example, Jaleel et al. [103] proposed an autonomic inter-
operable manager (AIM) to address the interoperability issue
among heterogeneous devices by implementing several self-*
to ensure efficient data exchange in time-varying and hetero-
geneous IoT. AIM uses a service-oriented architecture (SOA)
implemented at the fog node. The SOA facilitates the discov-
ery and registration of IoT devices, validates incoming requests
for protection against network attacks, manages active device
groups, tracks resource utilization, and optimizes it using the
MAPE loop.

Furthermore, multiple cross-domain interoperability layers
exist, which are intradomain, interdomain, and extra-domain.
To fully exploit the benefit of recent IoT developments,
interdomain, cross-domain interoperability is required between
various vertical IoT applications, e.g., the interoperability of
autonomic IoT with smart-cities or smart homes technology
stack. For cross-domain interoperability, integration with exter-
nal IT and enterprise solutions is a significant challenge in
interoperability, especially in the business rules domain.

H. Device Management

Platform-based solutions are now widespread for rapid
deployment and software development in IoT system develop-
ment. Sensor and application data in IoT are stored, processed,
and transported through these platforms. Another advantage of
using platforms is that they enable high levels of interoperabil-
ity. Access to configuration management and service delivery
poses a challenge to achieving self-sufficiency since platforms
act as autonomic managers for lower level devices and man-
aged elements for higher application software. Moreover, due
to the decentralized and distributed nature of IoT networks,
centralized management is not efficient and secure. Therefore,
efficient solutions based on fog computing, AI, and Blockchain
can be explored for device management.

I. Device Constraints

IoT devices are severely constrained when it comes to
resources, such as battery and computational power. To
optimize the two, the end devices are tasked with sensing,
filtering and forwarding the sensor data to the higher layers,
such as an IoT platform. It is necessary to lower the constraints
and increase device complexity to allow autonomic self-
configuration and actuation of these devices. With the higher
computational ability and energy resources, future devices will
support self-maintenance, fulfilling another autonomic system
goal.

J. Energy Optimisation

The new generation of batteries claims up to over ten
years of life [104] at reasonable usage, especially if wire-
less technologies, such as LORA, SIGFOX, and NB-IoT are
used for long-range communication. The scope of optimization
exists since there are still restrictions and physical constraints
on power usage at the device level. Since most IoT end
devices in the stub network operate on batteries, the impact
of energy optimization is enormous. Therefore, new energy

optimization techniques must be explored along with the tech-
nologies, such as efficient energy storage, energy generation,
and energy harvesting techniques, that can be used in IoT
networks. Furthermore, energy utilization can be reduced by
performing local data analysis using edge intelligence rather
than sending raw data to the cloud for analysis. For example,
edge Intelligence in IoT devices can function with scavenged
energy temporarily stored at the IoT device enabled by a new
class of electronic device known as FerroElectronics [66].

K. External Factors

In addition to protecting the devices from cybersecurity
attacks, it is also essential to protect the devices and sensors
from environmental factors. For example, applying autonomic
concepts in the smart grid requires sensors to be protected
from severe electromagnetic interference (caused by power
generation and transmission) via appropriate electromagnetic
shielding. Therefore, methods for protection against environ-
mental factors and extreme events can be explored to keep the
IoT network functional.

L. Standardisation Requirement

To achieve cross-domain communication, interoperability
standardisation is important. Industry and academic players
have conducted various standardisation activities in IoT and
wireless compatibility [105], [106]. However, there is no stan-
dardisation activity specifically for autonomic IoT systems.
Therefore, work related to the standardisation of implementing
autonomic computing in IoT is required.

VII. OUTLOOK

The future Internet hosting a trillion heterogeneous nodes
must be sufficiently smart to handle data flow from all devices
and appropriately identify and address the problems. This calls
for incorporating autonomic abilities in IoT to enable seam-
less interoperability and data exchange among heterogeneous
devices and systems that can reduce the technical complexity
requiring the involvement of the user while providing sophis-
ticated services and applications. As shown in Fig. 5, building
an end-to-end autonomic IoT system is a challenging and com-
plex task that requires the implementation of several enabling
technologies at each layer of the IoT network and the integra-
tion of those technologies across the IoT layers. Furthermore,
each layer and the components therein should be able to make
decisions independently to a certain extent with the help of the
MAPE loop. Implementing the MAPE loop will help realize
specific features of the self-* paradigm that will, in turn, result
in the implementation of a complete self-* paradigm for an IoT
application. This will improve the scalability, security, and reli-
ability of IoT systems while also lowering the operational costs
and complexity of managing large-scale IoT deployments by
enabling IoT devices and systems to learn from their surround-
ings, predict future occurrences, and take proactive steps. With
autonomic IoT, the role of the user would be limited to setting
operational policies and required QoS. Although much effort
has been made to implement autonomic features, it has been
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Fig. 5. Overview of envisioned implementation of autonomic capability in IoT using enabling technologies at each layer of IoT ecosystem along with their
role and key research challenges.

mostly limited to enabling partial autonomy allowing for cer-
tain self-* features owing to several challenges and limitations
that exist due to the nature of IoT devices.

Therefore, future research should attempt to achieve the
goal of complete yet robust autonomic systems that looks
at the integration of all the discussed enabling technologies
systematically. Achieving full autonomy is the ultimate goal
where a system would need to be able to complete all com-
plex decisions without human intervention. The inclusion of
an autonomic paradigm provides additional value through
the development of self-managing, self-configuring, and self-
optimizing networks. Autonomic computing is not restricted
to traditional client–server architectures, managing computing
resources and application software. It can also assist in device,
network and resource management in a highly dynamic and
distributed networked system comprising many smart devices.
Therefore, the pursuit to include self-management and auto-
nomic capabilities is expected to become a key driver in
developing future IoT solutions.

VIII. CONCLUSION

To make the IoT system implement self-* properties, it is
essential to introduce autonomic behavior in individual com-
ponents in IoT. A system can be deemed intelligent if it has
the power of reasoning and decision making after consider-
ing a multitude of parameters. Subsequently, an intelligent,

autonomic IoT will be able to make decisions to maximize its
operational efficiency by being aware of the operating environ-
ment. Intelligence will come from autonomic implementations
in each layer of the IoT network. In light of the above observa-
tions, the major challenge is to combine traditional concepts of
autonomic computing with the distributed, heterogeneous and
constrained nature of IoT. To achieve this, self-* properties
proposed by IBM can be expanded to more properties, such as
self-organization and self-adaptation. This granular treatment
of self-* properties allows the designing of the system to be
more modular, where each self-* property can be developed
independently (e.g., just like in the case of the OSI layer
model) and integrated into the IoT network.

In this article, we have taken the first step to compile and
specify high-level autonomic requirements and evaluation cri-
teria to achieve autonomic intelligence. It is not required for all
autonomic features to exist in a single system or component,
such as an end device. Instead, the components of autonomic
computing will work together to achieve autonomy in a partic-
ular functionality of any component. Furthermore, future IoT
will support a wide range of devices and diverse applications
requiring varying QoS. To manage the entire operation of the
network, the IoT ecosystem as a whole, from the device layer
to the application layer and all components in between, must
be sufficiently intelligent to handle and act according to the
situation. Therefore, IoT must incorporate autonomic capabil-
ities to address device heterogeneity and network complexity
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in a dynamic environment. To that end, we explored enabling
technologies that would aid in realizing the vision of auto-
nomic computing IoT. Finally, challenges and future research
directions were discussed that need to be explored in order to
realize and enable the vision of autonomic computing in IoT.
We believe this work will help to guide and influence future
research in autonomic IoT by opening doors to the foundation
of self-sufficiency.
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