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Smartphones Based on Embedded Transducers
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Abstract—Smartphones are a vital technology, they improve
our social interactions, provide us a great deal of information, and
bring forth the means to control various emerging technologies,
like the numerous IoT devices that are controlled via smartphone
apps. In this context, smartphone fingerprinting from sensor
characteristics is a topic of high interest not only due to privacy
implications or potential use in forensics investigations but also
because of various applications in device authentication. In this
work we review existing approaches for smartphone fingerprint-
ing based on internal components, focusing mostly on camera
sensors, microphones, loudspeakers, and accelerometers. Other
sensors, i.e., gyroscopes and magnetometers, are also accounted,
but they correspond to a smaller body of works. The output of
these transducers, which convert one type of energy into another,
e.g., mechanical into electrical, leaks through various channels
such as mobile apps and cloud services, while there is little user
awareness on the privacy risks. Needless to say, miniature phys-
ical imperfections from the manufacturing process make each
such transducer unique. One of the main intentions of our study
is to rank these sensors according to the accuracy they provide
in identifying smartphones and to give a clear overview on the
amount of research that each of these components triggered so
far. We review the features which can be extracted from each
type of data and the classification algorithms that have been used.
Last but not least, we also point out publicly available data sets
which can serve for future investigations.

Index Terms—Accelerometer, data sets, gyroscope, loud-
speaker, magnetometer, microphone, smartphone fingerprinting.

I. INTRODUCTION AND MOTIVATION

SMARTPHONE usage is on a continuously increasing
slope, as proved by many recent industry reports. More

and more people are using smartphones for video calls, dig-
ital health, education services, financial services, agriculture
services, etc. Not least, the Covid-19 crisis from the recent
years, imposing lockdown restrictions and social distancing,
had a severe social and economic impact but seems to have

Manuscript received 21 December 2022; revised 26 March 2023 and 29
April 2023; accepted 15 May 2023. Date of publication 19 May 2023;
date of current version 8 August 2023. This work was supported by the
Project “Network of Excellence in Applied Research and Innovation for
Doctoral and Postdoctoral Programs/InoHubDoc,” Project co-funded by the
European Social Fund Financing under Agreement POCU/993/6/13/153437.
(Corresponding author: Bogdan Groza.)

Adriana Berdich and Bogdan Groza are with the Faculty of Automatics and
Computers, Politehnica University of Timisoara, 300006 Timisoara, Romania
(e-mail: adriana.berdich@aut.upt.ro; bogdan.groza@aut.upt.ro).

René Mayrhofer is with the Institute of Networks and Security and the
LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, 4040
Linz, Austria (e-mail: rm@ins.jku.at).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JIOT.2023.3277883, provided by the authors.

Digital Object Identifier 10.1109/JIOT.2023.3277883

also led to an increase in smartphone usage [1]. The online
market and consumer data platform Statista places the num-
ber of mobile devices in 2022 at 15.96 billion, expecting 18.22
billion by 2025, out of which 20% will have 5G connectiv-
ity [2]. As expected, in this context, smartphone security and
user privacy are continuously gaining importance. Last but not
least, smartphones are a key technology in controlling various
Internet of Things (IoT) devices that improve the quality of
our life and productivity in smart homes or offices.

Nowadays, smartphones have overwhelming computational
power and memory resources, they are equipped with many
sensors, such as camera sensors, microphones, accelerome-
ters, magnetometers, gyroscopes or radio frequency sensors
(e.g., NFC, UWB, GPS, etc.) but also with actuators such as
loudspeakers. Generally speaking, these can be referred to as
transducers, i.e., devices that convert from one type of energy to
another, electrical into mechanical (in the case of loudspeakers)
or the reverse (in the case of microphones), etc. Each trans-
ducer has unique characteristics, caused by imperfections in the
manufacturing process, which can be used for fingerprinting
the mobile device. However, device fingerprinting based on
the unique features of the embedded transducers is not always
straightforward due to various environmental conditions such
as noise, temperature, etc., which can affect the fingerprint. This
makes the deployment of noninteractive device authentication
mechanisms, based on such fingerprints, more challenging.
Consequently, there are a lot papers addressing smartphone
fingerprinting. In this survey we analyze existing works tar-
geting each type of transducer and we outline various features
of the signals that are used, the clustering methodology and
the results, also pointing on the number of devices that were
used and the publicly released data sets.

Brief Depiction of Smartphone Transducers: In Fig. 1, we
show a disassembled Samsung Galaxy J5 which is a com-
monly used mid-range smartphone. We used this device to
illustrate various sensors, i.e., front/back camera, microphone,
and accelerometer and also the loudspeaker, which is techni-
cally an actuator that converts electrical energy into sound. As
mentioned, both sensors or actuators, as devices that convert
one form of energy into another can be referred to as transduc-
ers. The Samsung Galaxy J5 was also used to extract data for
the specific needs of this article in order to give a more accu-
rate depiction on the statistical properties of the fingerprints.
We extracted data from its camera sensors, loudspeakers, and
accelerometers and we were forced to use a Samsung Galaxy
S6 for microphone data since the J5 did not have a replace-
able microphone (the microphone could be replaced only with
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Fig. 1. Disassembled Samsung Galaxy J5: (a) back-case with loudspeaker, (b) display and circuit board, and (c) main circuit board and (d) five main
transducers (accelerometer, front camera, back camera, loudspeakers, microphone).

TABLE I
NUMBER OF THE WORKS BY TOPIC IN THIS SURVEY

the smartphone mainboard). In the following sections, as a
practical example, to determine the distance between finger-
prints collected from identical devices (also referred to as
the intradistance), we use either five identical Samsung J5s
phones or, alternatively, we couple different transducers to the
same device. Further, to determine the distance between fin-
gerprints collected from different devices (also referred o as
the interdistance), we use several smartphones from different
manufacturers.

Distribution of Works by Topic: Generally speaking, there
are two main types of fingerprints: 1) software-based finger-
prints and 2) hardware-based fingerprints. In this work, we
are concerned with the latter, i.e., hardware-based fingerprints.
This is because they use characteristics of the transducers
embedded on the circuit board that are more difficult to
replace—on the one hand, making the fingerprint harder to
forge, but on the other hand also creating higher privacy
risks as such fingerprints can carry over between different
mobile applications, use cases, and even operating system
reinstalls.

There are a lot of papers published in the recent years
addressing mobile device identification based on their sen-
sors characteristics. In this work, we survey more than 130
papers. To give an accurate figure, in Table I, we list all
sensor fingerprints that have been exploited so far and the num-
ber of papers covered by this survey (papers using multiple
sensors are counted once for each sensor). In Fig. 2, we
give an overview of the analyzed papers. Almost half of
them discuss device identification based on the camera sensor,

Fig. 2. Distribution of the works we survey by topic.

20% of them discuss smartphone identification based on their
microphone and only 5% of them discuss smartphone fin-
gerprinting based on their loudspeaker. About 4% of the
works discuss fingerprinting based on accelerometer sensors
and 8% discuss device fingerprinting based on multiple sen-
sors, i.e., accelerometers, magnetometers, and gyroscopes.
Last but not least, 14% of the analyzed papers discuss
device fingerprinting based on other, less commonly used sen-
sors, e.g., magnetometers and gyroscopes, or even battery
consumption, etc.

Several surveys on smartphone fingerprinting have been
already published. A study published in 2015, regarding
mobile phone fingerprinting, discusses the use of the network
layer, i.e., IP and Internet control message protocol (ICMP)
packets, as well as the application layer, i.e., browsers or
mobile apps [3]. The work also mentions some counter-
measures against fingerprinting. A later work, from 2017,
addresses smartphone identification based on physical fin-
gerprints [4]. The authors survey distinct techniques for
fingerprinting starting with techniques based on signals emit-
ted by smartphone components and processed by external
systems, i.e., radio frequency, medium access control (MAC),
display, clock differences, then they pursue techniques based
on sensor identification, i.e., camera sensors, microphones,
magnetometers. Finally, the authors discuss some risks and
countermeasures for smartphone fingerprinting. In the same
year, i.e., 2017, a study regarding fingerprinting algorithms,
e.g., ratio and relational distance, K-nearest neighbor (KNN),
thresholding, Gabor filters, etc., was published in [5]. A short
study from 2019 analyzes research papers which are focusing
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Fig. 3. Smartphone fingerprinting technologies and the structure of our work.

TABLE II
COMPARISON OF EXISTING SURVEYS ON DEVICE FINGERPRINTING

on smartphone identification based on their accelerometers,
cameras, loudspeakers and wireless transmitters [6]. One
year later, in 2020, another study dedicated to smartphone
fingerprinting was published in [7], investigating device iden-
tification based on various fingerprints, i.e., IMEI, MAC,
serial numbers, or based on internal circuits, i.e., sensors
and memory defects. Several techniques used for identifica-
tion, machine learning, physical unclonable function (PUFs)
and sensor calibration are discussed. More recently, in 2021,
a survey of device fingerprinting focusing on IoT devices
was published in [8]. The authors discuss data sources, tech-
niques for device identification, application scenarios, and data
sets. In Table II, we briefly compare the previous surveys.
Compared to these, our work is more focused on smartphones
fingerprinting and also adds the existing data sets into dis-
cussion. We also provide a brief experimental analysis to
outline the differences between the most commonly employed
sensors.

Roadmap to Our Work: In Fig. 3, we provide a graphical
overview of smartphone fingerprinting technologies which can
be regarded as a roadmap for the current survey. Our work

is organized as follows. In Section II, we discuss the opera-
tion principles for smartphone transducers, the most commonly
used features and classification techniques, performance met-
rics, and some application scenarios. In Section III, we briefly
present some concrete experimental data for cameras, micro-
phones, loudspeakers, and accelerometers. These topics can be
retrieved from the subsections on the left side of Fig. 3. Then,
the upper side of Fig. 3 shows the structure of our work with
respect to smartphone transducers: Section IV addresses cam-
eras, Section V addresses microphones, Section VI addresses
loudspeakers, and Section VII addresses accelerometers. Next,
in Section VIII, we survey some papers which propose device
identification based on the mixed use of the previous sensors,
possibly with other sensors as well. In Section IX, we dis-
cuss some countermeasures and the stability of fingerprints in
front of external factors. Finally, in Section X, we conclude
our work.

II. BACKGROUND

In this section, we present the sensor fingerprinting proce-
dure, starting from the operation principles of sensors, then
discuss the most common techniques for feature extraction,
the classification algorithms, and metrics. Last but not least,
we present some application scenarios.

A. Operation Principles for Smartphone Transducers

In what follows, we briefly discuss the operation principle
for the aforementioned smartphone transducers, i.e., camera
sensors, microphones, loudspeakers, and accelerometers.

1) Operation Principle of Camera Sensors: There are two
commonly used types of sensors: 1) charge-coupled device
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Fig. 4. Operation principle of camera sensor.

Fig. 5. Operation principle of MEMS microphone (redrawn based
on https://www.digikey.be/nl/articles/how-mems-microphones-aid-sound-
detection).

Fig. 6. Operation principle of a MEMS loudspeaker (redrawn based on [9]).

(CCD) and 2) complementary metal–oxide–semiconductor
(CMOS) sensors. CCD sensors are used for digital cam-
eras and systems which need to acquire high-quality images.
CMOS sensors are smaller and consume less power, so they
are typically used in small-size devices, e.g., smartphones, lap-
tops, IoT devices, etc. [10]. In Fig. 4, we depict the operation
principle of a CMOS sensor. The light captured by the lens
goes into a Bayer filter array which parses the light into three
components red, green, and blue. Half of the filter elements
are green because the human eye is more sensitive to green,
the other two elements are for red and blue. Finally, the light
is transformed into an electrical signal by the CMOS sensor.

2) Operation Principle of Microphones: Smartphones are
equipped with microelectromechanical systems (MEMSs)
microphones due to their low power consumption, low costs,
and small dimensions. In Fig. 5, we show the components of
a MEMS microphone. The microphone is enclosed in a case
with a small opening that facilitates the reception of sound.
Inside the case, there are two main components: 1) a trans-
ducer used to convert the acoustic signal into an electrical
signal and 2) an application-specific integrated circuit (ASIC)
which amplifies the signal received from the transducer and
implements the analog digital converter (ADC) functionalities.
The transducer is connected to the ASIC with a golden wire.
To improve the quality of the received sound, a special sealing
material is used to hermetically isolate the microphone. The
printed circuit board (PCB) of the phone is depicted on the
back of the sealing material.

3) Operation Principle of Loudspeakers: In Fig. 6, we
depict the main components of a smartphone MEMS loud-
speaker. The loudspeaker is covered by a sieve which protects

Fig. 7. Operation principle of MEMS accelerometer.

the diaphragm. The diaphragm is usually built from plastic
(alternatively, it can be built from paper or aluminium) and
allowed to move by the suspension, which is made from a
flexible material and anchors it to the case (also called bas-
ket). After the diaphragm, a voice coil is present, which is
fixed in the loudspeaker’s case. Behind it, there is a pole and
a magnet which make the voice coil vibrate, driven by the
electromagnetic force, and so the diaphragm generates sound.

4) Operation Principle of Accelerometer Sensors: In
Fig. 7, we depict the operation principle of MEMS accelerom-
eters. The accelerometer contains a moving beam structure
which has a fixed solid plane and a mass on springs. When an
acceleration is applied, the mass is moving and the capacitance
between the fixed plane and the moving beam changes.

B. Frequently Used Features for Device Fingerprinting

We now give a brief summary of the most common
techniques for feature extraction that facilitate smartphone
identification from data produced by the aforementioned trans-
ducers.

1) Time and frequency-domain features can be extracted
for all kinds of sensor data.

a) The most commonly used statistical features of
the time-domain representation are the follow-
ing: mean, standard and average deviation, skew-
ness (asymmetry), kurtosis (tailedness), root mean
square (RMS), maximum and minimum values,
zero-crossing rate (ZCR), nonnegative count, vari-
ance, mode and range, etc.

b) The most commonly used features of the
frequency-domain representation are the spectral
centroid, spread, skewness, kurtosis, entropy, flat-
ness, brightness, roll-off, roughness, irregularity,
RMS, flux, attack time, attack slope, mean, vari-
ance, standard deviation, low energy rate, and dc
component from discrete cosine transform (DCT).

Various time and frequency-domain features are used
in [11], [12], [13], [14], [15], [16], [17], [18], and [19].
An exhaustive list of the features would be out of scope.

2) Features Extracted From Camera-Collected Images:
a) Fixed-pattern noise (FPN) is the noise generated

by the sensor which makes some pixels brighter
than the average intensity. Based on the image type,
there are two types of FPN: i) dark signal nonuni-
formity (DSNU) [20] which appears in the absence
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of light (dark images) and ii) photograph response
nonuniformity (PRNU) [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37] which appears in conditions when
light is present. PRNU is the most used technique
for camera identification [38].

b) DCT is a common technique used to convert an
image from the spatial domain to the frequency
domain. In JPEG compression, DCT is applied on
8×8 image blocks, while for decompression the
inverse DCT (IDCT) is used [39]. This transfor-
mation can be used with both DSNU and PRNU
[40], [41].

c) Local binary pattern (LBP) and local phase quan-
tization (LPQ) are another two features commonly
used for processing images in the scope of camera
identification [42]. LBP is a local texture pattern
descriptor for images. The image is split in 3x3
blocks and the center pixel is considered the thresh-
old for the neighbor pixels [43], [44]. LPQ is a
descriptor based on the blur invariance from the
Fourier phase spectrum extracted from images.

3) Features Extracted From Audio Signals:
a) The power spectrum, i.e., the frequency–amplitude

pair obtained by applying the Fourier transform is
the most basic method used to extract frequencies
of the spectral estimates of the audio signal.
Such features are commonly used for audio sig-
nals, in the scope of loudspeaker and microphone
identification [45].

b) Mel-frequency Cepstral coefficients (MFCCs) are
another commonly used feature for audio sig-
nals. This technique is used in several research
works to extract features from human speech in
the scope of microphone identification since these
coefficients are frequently employed in speech
recognition [46], [47], [48], [49], [50], [51], [52].
They have also been used for loudspeaker iden-
tification [9], [53], [54]. To extract the MFCC
coefficients, the audio signals is split into windows
and for each such window the fast fourier transform
(FFT) is computed. The Mel filter is applied to
the result and the logarithm of each Mel frequency
is computed to which the DCT is finally applied
giving the MFCCs.

c) Linear frequency Cepstral coefficients (LFCCs) is
a technique similar to MFCC, except that a linear
filter is used instead of the Mel filter [48]. Linear
predictive codes coefficients (LPCCs) and percep-
tual linear prediction coefficients (PLPCs) are also
used for human speech analysis [46].

C. Metrics and Classification Techniques

In what follows, we give a brief summary of the most
frequently used classification techniques for fingerprinting
each of the previously mentioned smartphone components.
Starting from some basic metrics up to deep learning, several
approaches have been considered.

1) The Euclidean distance is used in [55] for loudspeaker
identification. It is computed as the square root of
the sum of squared differences between two samples:

dist(a, b) =
√∑n

i=1 (ai − bi)2, where a and b are the
signals from two devices expressed as vectors, i.e., ai is
the ith sample from signal a, and bi is the ith sample
from signal b.

2) The Hamming distance defines the number of indices
at which the corresponding symbols are distinct and it
is given as: d(s, t) = ∑n

i=1 |si − ti|, where s and t are
signals (vectors) from two devices, si is the ith sample
from signal s and ti is the ith sample from signal t.

3) The Mahalanobis distance is the distance between a
distribution and a sampling point. It is given by d =√

(y − μ)cov−1 (y − μ)′, where y is a vector, μ is the
mean value, and cov is the covariance.

4) The intra and interdistances are useful in separating
between devices based on established distance metrics,
e.g., such as the Euclidean or Hamming distance.

a) The intrachip distance is calculated as the arith-
metic mean between fingerprints extracted at dif-
ferent times from the same chip. While this metric
can be computed for any fingerprint, most com-
monly, it is used to evaluate PUFs, such as those
based on CMOS sensor [56], [57], where the
intrachip Hamming distance indicates the aver-
age number of flipped bits among the PUFs from
different images. Also, the bit error rate (BER)
can be calculated by the intrachip Hamming dis-
tances. The reliability can be also calculated based
on intrachip Hamming distances. We define these
according to [58]

distINTRA = 1

m

m∑
j=1

dist
(
Ri, Ri,j

)

n
× 100%

BER = distINTRA, Reliability = 100% − distINTRA

where Ri is the correct PUF calculated from the
average of all PUFs of the evaluated chip and Ri,j

is the PUF of the jth image, n is the number of
bits, and m is the number of images.

b) The interchip distance describes the uniqueness
of a PUF, which is calculated as the Hamming
distance between the PUFs of two distinct chips.
Again, according to [58], it can be defined as

distINTER= 2

m(m − 1)

m−1∑
u=1

m∑
v=u+1

dist(Ru, Rv)

n
× 100%

Uniqueness = distINTER

where Ru is the PUF of the uth chip, Rv is the
PUF of the vth chip, n is the number of bits, and
m is the number of images. The intra and interchip
distance are used in various works, e.g., [20], [59],
[60], and [61].

5) Thresholding is a known approach for image segmen-
tation, i.e., to convert a gray-scale image into a binary
one. It is also used for classification for various sensor
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data. In the case of smartphone sensor fingerprinting,
thresholding is mostly used within the scope of cam-
era identification, both for feature extraction but also as
a stand-alone method for classification [20], [28], [36],
[56], [57], [60], [62]. This approach is also used for
classification when other signals are involved such as
accelerometers [19] or for various device properties [63].

6) Correlation, i.e., corr(x, y), is a function which describes
a statistical relationship between two distinct vari-
ables x and y. It is computed as: corr(x, y) =
[(cov(x, y))/(σx × σy)], where cov(x, y) is the covari-
ance of x and y, σx is the standard deviation of x and σy

is the standard deviation of y. The correlation is used
by many works for fingerprinting smartphones, such
as [21], [22], [23], [24], [25], [26], [27], [62], [64], [65],
[66], [67], [68], [69], and [70].

7) Classical Machine Learning Approaches:
a) Support vector machine (SVM) is a supervised

machine learning algorithm which can be used
to train binary or multiclass models. SVM is a
common classification algorithm and, based on the
literature we surveyed, appears to be more com-
monly used for camera sensor identification [30],
[33], [43], [44], [71], [72], [73], [74], [75], [76],
[77] and microphone identification [47], [48], [51],
[78], [79], [80], [81], [82], [83], [84], [85], [86],
[87], [88]. Occasionally, it was also used for
other transducers, e.g., accelerometers [12], [13]
or loudspeakers [54].

b) KNN is another commonly used supervised clas-
sification algorithm which is employed in the
literature for smartphone identification based on
various components, e.g., microphones [78], [79],
[83], [84], [87], loudspeakers [9], [53], accelerom-
eters [12], [13], etc. KNN usually employs the
Euclidean distance between the training samples
and the test samples.

c) Gaussian mixture model (GMM) is a probability
function defined as a sum of Gaussian compo-
nent densities. GMM is recommended to be used
in speech recognition tasks. For device sensor fin-
gerprinting, GMM was used for microphone [46],
[48], [49], [52] and loudspeaker-based identifica-
tion [9], [53]. It seems to be particularly useful
when the underlying signal is human speech.

d) Gaussian supervector (GSV) is an algorithm based
on GMM which concatenates all the means of
the features from each Gaussian component into
a supervector [89]. GSV was used for micro-
phone identification based on human speech
[82], [85].

e) Random forest (RF) is an ensemble classifier algo-
rithm that can employ different methods for clas-
sification, including AdaBoost learners, Bagged
Trees, Subspace Discriminant, RUSBoost Trees,
Subspace KNN, and GentleBoost. RF was used
for accelerometer identification [12], [13], cam-
era identification [40], [76], [90], loudspeaker

identification [54], and smartphone recognition
based on multiple sensors [16], [17], etc.

f) Decision tree is another supervised machine learn-
ing algorithm, the data is structured as a tree in
which the internal nodes store the features from
the data sets. Branches contain the decision rules
and leaf nodes, which are the end nodes, rep-
resent the outputs. This technique was used for
smartphone identification based on magnetome-
ter [18], gyroscope [91], multiple sensors [14],
[15], [92], etc.

g) Linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) are supervised
machine learning algorithms based on the
Gaussian distribution. LDA uses linear Gaussian
distributions, i.e., it creates linear boundaries
between classes and QDA uses quadratic Gaussian
distributions, i.e., it creates nonlinear boundaries
between classes. LDA was used for microphone
identification [93], smartphone identification based
on wireless charging [14], and for smartphone
identification based on magnetic induction emitted
by the CPU [94]. QDA was used for smartphone
recognition based on accelerometer and gyroscope
data [14], [15].

8) Deep Learning Approaches:
a) Convolutional neural networks (CNNs) are deep

learning algorithms which are commonly used
to extract patterns from images, but they were
also used for audio data and various other time-
domain series. In terms of device identification
based on their sensors, CNNs are mostly used for
camera sensors [33], [34], [37], [42], [77], [95],
[96], [97], [98], [99], [100], [101], [102], [103],
microphones [83], [84], [87], [104], [105], [106],
loudspeakers [45], [54], as well as for other signals
such as peripheral input timestamps [107]. AlexNet
is a CNN proposed in 2012 for image classifica-
tion [108]. AlexNet can be used as a pretrained
neural network which contains five convolutional
layers, max-pooling layers, three fully connected
layers, and a soft max layer. It was used for camera
sensor identification in [95]. GoogLeNet is another
CNN with 22 layers proposed in 2015 [109].
GoogLeNet is used for camera sensor identification
in [37] and [95]. Residual neural network (ResNet)
was introduced in 2016 [110]. Based on the num-
ber of layers there are several types of ResNet,
e.g., ResNet18 which contains 18 layers, ResNet50
with 50 layers, and ResNet101 with 101 layers.
RetNet is a pretrained neural network, but it can
be adapted. It is used for camera sensor identifica-
tion as a pretrained network as well as an adapted
network [35], [100], [111], [112].

b) Long short-term memory (LSTM) and
Bidirectional LSTM (BiLSTM) are recur-
rent neural network layers used for time
series and sequence data. They were used



14652 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 16, 15 AUGUST 2023

for microphone [106] and loudspeaker identifi-
cation [45], [54]. The results in [45] show that
their performance is comparable to the CNN for
loudspeaker identification.

D. Commonly Used Performance Criteria for Classifiers

We now give an overview of common performance metrics
used in the literature. The first metrics are commonly used
and it makes no sense to point to specific papers that use
them. In the next section, we will give some concrete results
corresponding to these metrics.

1) All of the following metrics are expressed based on
the following quantities: the true positives TP, false
negatives FN, true negatives TN, and false positives FP.

2) Accuracy is the ratio between the number of cor-
rectly identified items and the total number of
items: Accuracy = (TP + TN)/(TP + FP + TN + FN).
The validation accuracy can be also computed as:
Accuracy = 1−kfoldLoss, where kfoldLoss is the classi-
fication error using k-fold cross validation.

3) Precision is the ratio of items correctly classified as
positive: Precision = TP/(TP + FP).

4) The recall, or true-positive rate (TPR), is the
ratio of correctly identified items out of all
items that actually belong to the positive class:
Recall = TPR = TP/(TP + FN).

5) True-negative rate (TNR) is the ratio of classified items
that are genuinely negative: TNR = TN/(FP + TN).

6) F1-score, also referred to as the F-measure, is the
harmonic mean between the precision and recall:
F1 = (2 × Precision × Recall)/(Precision + Recall).

7) False acceptance rate (FAR) is the ratio of negative items
classified as positives: FAR = FP/(TN + FP).

8) False rejection rate (FRR) is the ratio of positive items
classified as negatives: FRR = FN/(TP + FN).

Other metrics which are rarely used include the purity [113]
and the adjusted rand index (ARI) [22], [113], [114].

E. Application Scenarios

There are many areas that can benefit from smartphone
fingerprinting technologies, including include device authen-
tication, various day-by-day applications, and even forensics
investigations. We discuss each of them next.

1) Authentication: Device authentication and multifactor
authentication based on a transducer fingerprint can minimize
user interaction and reduce the vulnerabilities caused by weak
security tokens, such as passwords. The unique fingerprint may
act as one factor in user (or device) authentication which is
specifically important for IoT applications where devices may
not have a user interface or cannot be easily accessed (e.g.,
they are placed in an inconvenient location) while fast and
secure authentication mechanisms are needed. There are var-
ious works which use the device fingerprints in the scope of
authentication as we outlined next.

Generic Device Authentication: The PUFs extracted from
camera sensors are proposed for authentication by using

PRNU patterns [23], the DSNU, or FPN [57]. Live stream-
ing surveillance footage is used for authentication in [61].
Microphones and loudspeakers are used in [115] for smart-
phone identification by exploiting the frequency response
of a speaker-microphone pair belonging to two wireless
IoT devices (this offers an acoustic hardware fingerprint).
Audio signals with frequencies between 4 and 20 kHz, hav-
ing an increment of 400 Hz, are emitted by a smartphone
and recorded by another one while authentication relies
on the correlation of the signals. Microphone fingerprints
based on ambient sounds were also proposed for authen-
tication [116]. Accelerometer fingerprints were proposed in
a Web-based multifactor authentication scheme [19]. Some
works have merged between data from multiple sensors, such
as accelerometer, gyroscope, and camera for a robust smart-
phone authentication [92]. Also, acceleration, the magnetic
field, orientation, gyroscope sensors, rotation vector, gravity,
and linear acceleration are used in [16] to extract smartphone
fingerprints for authentication in the context of Web applica-
tions. The hardware fingerprint of IoT sensors has been used
for secret-free authentication in [117]. Authentication schemes
for smartphones and IoT devices were also recently surveyed
in [118].

Specific Environments for Authentication: Some works have
been more specific regarding the exact area of application.
One specific scenario which seems to be more interesting are
the vehicular environments. In [45], smartphone fingerprinting
is performed from data recorded by in-vehicle infotainment
units. The smartphone emits a linear sweep between 20 Hz and
20 kHz while the infotainment unit records the sounds. Also,
Anistoroaei et al. [119] proposed an in-vehicle authentication
protocol between the smartphone and the infotainment unit.
Specific acceleration patterns in various transportation environ-
ments have been also studied in the scope of device-to-device
authentication [120].

2) Specific Applications for Sensor Data: In what follows,
we show some positive use cases of sensor data but we must
emphasize that exposing this data adds privacy risks for users
as well. Some works have considered activity or transporta-
tion mode recognition based on accelerometer patterns [121],
[122], [123]. Besides activity recognition, the accelerometer
and other sensors were used for daily life monitoring and
health recommendations [124]. Driving style recognition and
driver behavior classification [125], [126], [127], [128], [129]
is another application from which car rental services or insur-
ance companies may benefit. The accelerometer data has been
used for road condition monitoring [130], real-time pothole
detection [131], or gait recognition [132]. Data from motion
sensors has been also proposed for theft detection [133].
IoT sensor fingerprints are also commonly used for detecting
attacks, unauthorized firmware modifications or fault diagno-
sis [8]. Another application mentioned in a recent survey is
sensor quality control [4].

Privacy Concerns: Smartphone fingerprints can be exploited
for tracking users which is a serious privacy concern. Motion
sensors, i.e., accelerometers, have been used for tracking
users [11], tracking metro riders [134], and detecting activities
from the metro station [135]. Other works discuss preventing
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privacy risks for distinct data, e.g., cameras [68] or loudspeak-
ers [9], [55]. Smartphone operating systems are increasingly
concerned with the exploitation of sensor data by apps for
device fingerprinting and user tracking purposes. As a conse-
quence, additional restrictions to accessing such (meta) data
are being added.

3) Forensics Investigations: A complementary topic is
forensics investigations. Microphones [86], [106] and cam-
eras [33], [77], [99], [113] have been commonly discussed
in the context of forensics investigations since they can be
used for finding (suspected) criminals by recognizing their
smartphones based on the sounds or images recorded in con-
nection with the respective crime [136], [137]. Anti-forensics
techniques have been discussed to falsify the source of
audio signals by adding specific noise [51]. Another recently
emerged topic is combating the dangerous effects of the AI.
Machine learning techniques are already being employed to
create deepfake audio or video recordings. These applications
use deep learning to create very realistic recordings [138]. This
technology can be used to manipulate the public opinion by
creating fake news or for public persons defamation, which
endangers national security and can be used as a tool by the
organized crime.1 To combat the dangerous effects of deepfake
applications, deepfake detection algorithms are (currently) not
very efficient, but source camera identification can be used to
improve the results [139], [140]. By using unique fingerprints
extracted from cameras or microphones, deep fakes could
potentially mitigated by creating an end-to-end trust chain to
the raw sensor data.

III. BRIEF COMPARATIVE ANALYSIS OF SENSOR DATA

To bring a clearer image on the quality of data retrieved
from smartphone transducers, in this section we briefly present
some concrete results. As an experimental basis, we compare
data from five distinct and five identical smartphones.

A. Brief Experiments With Smartphone Camera Identification

We now evaluate the interdistances for five distinct devices
(Samsung Galaxy S7, Samsung Galaxy A21s, Allview V1
Viper I, LG Optimus P700, and Samsung Galaxy J5) and
the intradistances for five identical devices (Samsung Galaxy
J5). We select only the green channel because it has more
encoding power, i.e., there are two green pixels for every
red and blue pixel, and filter each image using a wiener2
filter. To extract the DSNU from each image, we compute
the difference between the original image and the filtered
image. The noise which results is used to compute the
Euclidean distances between devices. To clarify the compu-
tation, the distance between two distinct images is computed

as
√∑4 458 240

i=1 (ai − bi)2 where ai and bi are the DSNU
coefficients extracted by the DCT transform (see [141] for
details). The 4 458 240 values correspond to the number of
coefficients that can be extracted from a 1920×2322 pixel
matrix.

1https://lionbridge.ai/articles/deepfakes-a-threat-to-individuals-and-
national-security/

Fig. 8. Camera sensor: Mean of the Euclidean distance for distinct devices.

Fig. 9. Camera sensor: Mean of the Euclidean distance for identical devices.

1) Distinct Smartphones: We captured 50 dark images with
each device. Since devices may have different resolutions, we
consider only the top left corner from each image leading to
images of equal sizes, i.e., 1920×2322. In Fig. 8, we show
the results as a heatmap (left) and numeric values (right). The
values form the main diagonal are clearly much lower than
the rest, which means that devices can be easily identified.

2) Identical Smartphones: In the case of identical devices,
we used the data set from [141] which contains 50 dark pic-
tures captured by five identical Galaxy J5 cameras. To compute
the distance for a single smartphone we split the data set into
two distinct data sets, i.e., one with 25 pictures chosen ran-
domly and another one with the rest of 25 pictures. In Fig. 9,
we show the results as a heatmap (left) and numeric values
(right). The values form the main diagonal are lower than the
rest of the values which means again that the devices can be
identified correctly with ease.

B. Brief Experiments With Microphone Identification

Using the public data set from [93], we evaluate the interdis-
tances for five distinct devices (Samsung Galaxy S7, Samsung
Galaxy A21s, Allview V1 Viper I, LG Optimus P700, and
Samsung Galaxy J5) and the intradistances for five identical
devices (Samsung Galaxy S6 smartphones). We use the live
recordings of hazard lights to separate between distinct devices
and the prerecorded vehicle’s horn sound to separate between
identical devices, according to the public data set from [93].
From each recorded sound we extract the power spectrum
which is used to compute the mean of the Euclidean dis-
tances between devices. Each file contains 4096 samples which
correspond to a frequency range between 0 and 22 050 Hz
at a resolution of 5.384615 Hz (which results in 4096 sam-
pling points). Therefore, the distance between two microphone

samples is computed as:
√∑4096

i=1 (ai − bi)2 where ai and bi

are the power spectrum coefficients (amplitudes) for the two
microphones represented as real numbers (floating points).
The values of these coefficients were usually in the range of
0 to 70 db.

1) Distinct Smartphones: The data set in [93] contains
500 measurements with distinct devices of hazard lights sound
for which we compute the mean of the Euclidean distances
(between each pair of smartphones). To compute the distances
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Fig. 10. Microphones: Mean of the Euclidean distance for distinct devices.

Fig. 11. Microphones: Mean of the Euclidean distances for five identical
devices (50 measurements).

for a single smartphone, we split the data set into two distinct
data sets each of 250 measurements selected randomly and
extract the distances between the two. In Fig. 10, we show
the results as a heatmap (left) and numeric values (right). The
values from the main diagonal are lower than the rest of the
values. While the differences are smaller than in the case of
camera sensors, the microphones can still be clearly separated.

2) Identical Smartphones: For this case, the data set in [93]
contains 50 measurements with identical microphones of the
same Samsung Galaxy S6 which records a car honking sound
generated by a Hi-Fi system. To compute the distance for
identical devices, we split the data set in two random sets
of 25 measurements. In Fig. 11, we depict the mean of the
Euclidean distances between each pair of smartphone micro-
phones. Again, the devices separate clearly as the values from
the main diagonal are lower than the rest of the values.

C. Brief Experiments With Loudspeaker Identification

Using the public data set from [45], we compute the inter-
distances for five distinct smartphones and the intradistances
for five identical Samsung Galaxy J5 smartphones. The data
set contains a linear sweep between 20 Hz and 20 KHz played
by the smartphones and recorded by an infotainment head-
unit. The distance between the smartphones and the head-unit
was 1 m. To evaluate the interdistances for distinct devices
(Samsung Galaxy S7, Samsung Galaxy A21s, Allview V1
Viper I, LG Optimus P700, and Samsung Galaxy J5), we per-
formed five additional measurements with each smartphone
in the same circumstances as in the data set from [45]. For
each recorded sound we extract the power spectrum, which is
used to compute the mean of the Euclidean distances between
devices. Each file contains 1914 samples which correspond to
a frequency range between 700 Hz and 11 kHz with a reso-
lution of 5.384615 Hz. The distance between two samples is√∑1914

i=1 (ai − bi)2 where ai and bi are the power spectrum
coefficients (amplitudes) for the two speakers represented as
real numbers (floating points).

1) Distinct Smartphones: We select five measurements in
a random order and compute the mean of the Euclidean dis-
tances between each pair of smartphones. To compute the
distance for a single smartphone we split the data set into
two equal data sets containing random samples. In Fig. 12, we

Fig. 12. Loudspeakers: Mean of the Euclidean distance for distinct devices
(four measurements).

Fig. 13. Loudspeakers: Mean of the Euclidean distances for five identical
devices.

show the results as a heatmap (left) and numeric values (right).
Again, the values from the main diagonal are lower than the
distances between distinct devices. Compared to microphones,
the distances are more variable which suggests that micro-
phones are a better alternative for classification (still, not as
good as camera sensors).

2) Identical Smartphones: The data set contains 100 mea-
surements with identical microphones for the same Samsung
Galaxy J5 smartphone. To compute the distance for the same
device, we randomly split the data set in two equal subsets.
In Fig. 13, we depict the mean of the Euclidean distances
between each pair of smartphone loudspeakers. The distance
between the smartphones A and C is lower than the values
from the main diagonal, which means that the loudspeaker
C was misidentified as A and vice versa. This suggests that
simple inter and intradistances are not enough for separating
between loudspeakers. Indeed, for a better separation between
two loudspeakers, the work in [45] has used two deep neural
networks: 1) a BiLSTM and 2) a CNN.

D. Brief Experiments With Accelerometer Identification

Now, we evaluate the interdistances for distinct devices
(Samsung Galaxy S7, Samsung Galaxy A21s, Allview V1
Viper I, LG Optimus P700, and Samsung Galaxy J5) and
intradistances for five identical devices (Samsung Galaxy J5).
We collected data at a sampling rate of 10 ms in an environ-
ment with constant vibrations. The data is scaled and aligned
to have the same amplitude and also time-aligned to com-
pute the Euclidean distance. The amplitudes on each axis are
squared, summed and the square root extracted to get the over-

all amplitude, i.e., a =
√

a2
X + a2

Y + a2
Z . The distances between

devices are computed on subsets of 5000 elements. To com-
pute the intradistance, we choose several samples, split them in
four subsets of the same size, and we compute the mean of the
Euclidean distances between two subsets randomly selected.

The distance is thus computed as
√∑5000

i=1 (ai − bi)2 where ai

and bi are the amplitudes.
1) Distinct Smartphones: In Fig. 14, we show the results as

a heatmap (left) and numeric values (right). In the case of inter-
distances, the values from the main diagonal are lower than
the rest of the values, allowing some separation, though not
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Fig. 14. Accelerometers: Euclidean distances for five distinct devices.

Fig. 15. Accelerometers: Euclidean distances for five identical devices.

as clear as in case of any of the previous transducers (camera
sensors, microphones, and loudspeakers).

2) Identical Smartphones: In Fig. 15, we show the results
for identical smartphones as a heatmap (left) and numeric
values (right). In the case of intradistances, again the val-
ues from the main diagonal are lower than the rest of
the values, but the intradistances are slightly reduced. This
suggests the same conclusion that accelerometer imper-
fections can be used to separate between devices, but
likely produce a poorer separation compared to other
transducers.

E. Overall Interpretation of Heatmap Data

The previously presented heatmaps with data collected from
all four sensor show significant differences. We now try to
briefly clarify why it is so. Smartphone camera sensors give a
significantly higher amount of information compared to other
sensors, i.e., microphones, loudspeakers, or accelerometers.
Concretely, the resolution of the images was 1920×2322 pix-
els for the cameras that we used (or we cropped the image
to this size in case of higher resolutions), while each pixel
encodes 24 bits of information (1 byte for each color R, G, B).
This leads to a matrix of 1920×2322 bytes for each color
on which we compute the Euclidean distances. That is, the
Euclidean distance is computed as a sum of more than four
million values and unsurprisingly leads to values in the order
of hundreds of thousands, as can be seen in Figs. 8 and 9. In
the case of loudspeakers and microphones, the audio signal
is in the range of 20 Hz–20 kHz and we extract the power
spectrum from it which yields a vector of 1914 coefficients
expressed as 24-bit floats. Therefore, when we compute the
Euclidean distances, this is done over a vector of less than
2000 values and results in a much smaller sum compared to
camera sensors, generally in the order of tens of thousands at
most as can be seen in Figs. 12 and 13. For accelerometers,
the sampled data is on 24 bits (8 bits for each axis) and we
choose a vector of 5000 elements. However, as done in most
previous works and explained previously, we normalized the
data on the three axis in order to avoid orientation issues by
extracting the square root from the sum of squared acceler-
ations, which technically reduces the 24-bit data to at most
9 bits. Therefore, the Euclidean distance is even smaller, less

than 100 as can be seen in Figs. 14 and 15. Clearly, in the
case of all sensors, the value of the Euclidean distances will
depend on the specific inputs and the previous discussion only
tries to clarifies what should be expected in general.

Another observation is that the intradistances may seem
unexpectedly higher in case of the identical speakers from
Fig. 13, but this is easily explainable. Smartphone loudspeak-
ers are electromechanical devices that consist of a coil and a
plastic diaphragm which may be affected over time by vari-
ous environmental factors. The speakers from the data set that
we used come from disassembled smartphones that had sev-
eral years of use in different conditions. Aging is very likely
why the interdistances vary so much between otherwise iden-
tical loudspeakers. Regarding the number of measurements,
in the data set from [45] that we used, in case of differ-
ent smartphone models, only five measurements were made
since the differences were quite obvious and the separation
immediate. In the case of identical speakers, 100 measure-
ments were needed to make the separation clearer since the
results were much closer [45]. This may also contribute to the
variations.

The same information about the statistical distances is also
suggestive about the effectiveness of each fingerprint type.
Clearly, images are the most effective for fingerprinting due
the large amount of information that a sensors captures and
because an image can be taken in an instant. Second to this
are microphone and loudspeaker data, but this may require
seconds or more of collected data. For example, in the exper-
iments from [45], a sweep signal took about 10 s, in the
experiments in [93], a car honking took about 1 s, hazard lights
took about 2 s, wipers took about 3 s, etc. Accelerometers
seem to be the least effective as previous works used 30 s [11]
or 3 s per sample [12], etc. Regarding the efficiency of the fin-
gerprinting process, it is worth mentioning that some scenarios
may call for high efficiency. One such example is the advertise-
ment ecosystem, where users may access the websites only for
brief moments of time and a fast response is needed in order
to create unique user profiles and recognize them. Aspects
related to the advertisement ecosystem are mentioned in var-
ious fingerprinting works like [3], [11], [13], [142], [143],
[144], and [145]. Other apps may not require a fast fingerprint
extraction since they have access to sensor data for prolonged
periods of time, such as various e-health, social media, or
communication apps.

IV. MOBILE DEVICE IDENTIFICATION BASED ON

CAMERA SENSORS

In this section, we survey works on device identification
from camera sensors. In Fig. 16, we show an overview on
the camera identification techniques and the amount of works
that has been done through the years. Almost half of the sur-
veyed papers use machine learning algorithms, including deep
learning techniques. A large number of these works, about
17%, proposes PUFs, while 35% use other techniques, e.g.,
thresholding, correlation, etc. The past three years account for
more than half of the publications we survey. In Table III, we
compare the features, classifiers, results, number of devices,
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TABLE III
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR CAMERA

and data sets used in related works starting from 2006. In
the results column of Table III, we generally refer to the
accuracy reported by the works. However, not all of the works

have reported the accuracy and in this case, we refer to
other metrics as stated in the table or in the accompanying
text.
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Fig. 16. Overview of the camera identification techniques (left) and research
evolution (right).

A. PUF-Based Approaches

PRNU noise is used in [64] to build a PUF from camera
sensors. The authors validate their proposed method using 320
images from nine cameras and use the correlation function
as classifier. In terms of results, they obtain a FRR between
1.36 × 10−1 and 4.41 × 10−14 depending on the applied cor-
rection factor and JPEG compression. PRNU is also used
in [23] for camera identification. The noise is removed from
the images by applying a high-pass filter and then the high
frequencies are used to obtain the camera fingerprints. The
authors use 14 cameras, i.e., one digital single-lens reflex
(DSLR) and 13 smartphones, to validate the approach and the
resulting correlation for full images is between 0.0022 and
0.02. A different approach based on dust spots from images
captured by DSLR cameras is proposed in [146]. Dust spots
are detected using the shape properties and a Gaussian identity
loss model. For the experiments, the authors use four cameras
and, to cluster them, a confidence value based on occurrence,
smoothness, and shift validity metrics for each dust spot is
computed. The identification reaches 99.1% accuracy.

Specific PUFs for distinct technologies for CMOS sen-
sors are proposed in the literature. A PUF for 65-nm CMOS
sensors using hardware changes is proposed in [56]. A thresh-
olding technique is used to validate the method and results
are obtained at temperature fluctuations between 0 ◦C and
100 ◦C with a uniqueness of 50.12% and a reliability of 100%.
Another PUF based on FPN is proposed in [57]. To validate
the results, five chips of 180 nm camera sensors are used and
for clustering the thresholding approach is applied. At temper-
ature variations between 15 ◦C and 115 ◦C, the uniqueness is
49.37% and the reliability 99.80%. Zheng et al. [148] proposed
an event-driven PUF for 1.8-V 180-nm CMOS sensors based
on dynamic vision sensor (DVS). At temperature fluctuations
between –35 ◦C and 115 ◦C the uniqueness is 49.96% and
the reliability in between 96.3% and 99.2%. Another PUF for
180-nm CMOS sensors based on DVS is discussed in [61]. A
reliability greater that 98% is obtained at temperature varia-
tions between –45 ◦C and 95 ◦C. An optical PUF for 65-nm
CMOS sensors based on FPN is proposed in [60]. The experi-
ments are performed on 14 CMOS sensors and to validate the
method thresholding and 1-D autocorrelations are used. The
authors obtain an interchip Hamming distance of 49.81% and
intrachip Hamming distance of 0.251%.

A PUF for smartphone CMOS sensors based on DSNU is
proposed in [20]. The image is denoised after which the DCT
is applied, high-frequencies are extracted and then the IDCT is
applied. Finally, the thresholding method is applied to remove
bright pixels. The approach is validated on five identical sen-
sors from two distinct smartphones and the obtained interchip

Hamming distance is between 46% and 54% while the intra-
chip Hamming distance is lower than 10%. An PUF based on
camera sensor SRAM is proposed in [59]. The average intra-
chip Hamming distance is 0.51% and the average interchip
Hamming distance is 49.95% for 20 devices.

B. Machine Learning Approaches

A significant number of papers addressing identification
with machine learning techniques are using the SVM clas-
sifier. The lens radial distortions are used in [71] as features
for the SVM classifier. For three cameras the SVM classi-
fier reaches an accuracy of 91%. Also, the multiclass SVM is
used in [43], but the features are extracted based on LBP. The
average accuracy reaches 98% for 18 cameras. PRNU and the
wavelet transform are the features used by the SVM classifier
in [30]. The average accuracy reached for 14 cameras models
from 5 manufactures is 87.214%. LPQ and LBP are also used
as input for the SVM classifier in [72]. For 14 camera mod-
els, the accuracy in between 98.13% and 100%. SVM with
radial basis kernel is used in [73]. In the experiments, three
distinct cameras are used, and the overall prediction accuracy
is grater than 99%. Also, in [74], an accuracy of 99.01% is
reached for eight camera models using the SVM classifier. For
the green and red channels of the images, the authors extract
an I-Vector using the LBP. A coupled feature representation is
used as input for the SVM classifier in [75]. For 27 cameras,
the identification accuracy reaches 87.6%. Weber’s and LBP
(WLBP) features are discussed in [44]. The features are trans-
lated in a vector which is used as input for the SVM classifier
again. This method reaches 99.52% accuracy for nine cameras.

Also, deep learning algorithms are used in several research
works. CNN, AlexNet and GoogleNet are used in [95] for
camera identification. The images are first filtered using a
high-pass filter and then deep learning algorithms are applied.
For 33 cameras the accuracy is 91.9% in the case of CNN,
94.5% in the case of AlexNet, and 83.5% in the case of
GoogleNet. A CNN based on features extracted using the
LBP and LPQ is proposed in [42]. For ten camera mod-
els, the accuracy is between 84.1% and 99.5%. In [96], the
images are split into k patches using sliding windows and
the extracted features are used as input for a CNN. With
this approach, the authors reach an average accuracy close
to 100% for 74 cameras. CNNs were also used for source
camera identification in [97]. Yang et al. [98] built a content-
adaptive CNN (CA-CNN). The detection accuracy achieved
is between 89.56% and 97.37% for 74 cameras. A method
for source camera identification using images from Facebook
is proposed in [112]. The authors propose a deep learning
neural network based on an existing ResNet50 network. The
network is tested with photographs from five cameras which
are uploaded to Facebook and then downloaded back. The
maximum classification accuracy was 96%.

A CNN is used in [99] to extract the noise of the images. For
125 cameras, the F1-score is between 0.205 and 0.444 and the
average precision is between 0.144 and 0.399. Transfer learn-
ing and CNN are used in [76] for feature extraction while
for camera identification, machine learning algorithms, i.e.,
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SVM, logic regression (LR), and RF, are used. In the exper-
iments, five cameras are classified with SVM as a final layer
with 98.82% RANK-1 accuracy. With RF 97.16% RANK-1
accuracy was reached, while with LRs, 98.57% RANK-1 accu-
racy was reached. The RANK-5 accuracy was 100% for all
the involved classifiers Ding et al. [100] used a multiscale
high-pass filter (HPF) to remove the noise from the images.
The authors use the multitask learning approach based on
CNN and ResNet for camera clustering. This approach reaches
84.3% accuracy for 125 devices. In [77], a vector which con-
tains features extracted using a statistical descriptor, color filter
array (CFA), and CNN-derived is used as input for multiple
classifiers: Weibull-calibrated SVM (WSVM), decision bound-
ary carving (DBC), specialized SVM (SSVM), SVM with
probability of inclusion (PISVM), and open-set nearest neigh-
bors (OSNNs). The top-left corner of the images are used
as input for a CNN in [101]. For 74 devices, the accuracy
is between 0.943 and 0.961 for the same smartphone model
and between 0.98 and 0.994 for the same brand. The accu-
racy unfortunately drops to 0.475 when a pool of 74 devices
is used.

PRNU features and classification using CNN are discussed
in [34]. In [33], a combination of PRNU and noise-print
extracted by a CNN is used as feature, while for classifi-
cation, the results from three classifiers are used: 1) SVM;
2) likelihood-ratio test (LRT); and 3) fishers linear discrimi-
nant (FLD). A maximum accuracy of 0.952 is reached with
SVM. In [35], PRNU extracted from images is used as input
for a neural network based on ResNet101 and SVM. For 28
devices, this approach reaches an accuracy of 99.58%. A neu-
ral network based on CNN, namely, EfficientNet, is discussed
in [151]. For 23 000 images captured by 27 smartphones cam-
eras, this neural network reaches a 99.1% accuracy. CNN and
RemNet are used in [102]. This approach reaches a 97.59%
accuracy for 18 distinct cameras. The use of the Ensemble
classifier based on the demonsaicing residual features extracted
from the CFA filter is discussed in [152]. The authors reach
an average accuracy of 98.14% for the identification of 68
cameras. Also, in [103], the demosaicing approach for fea-
ture extraction is discussed. For clustering, a CNN is used
which reaches an accuracy greater than 91% on 35 devices
for WhatsApp images and 95% for YouTube scenes. Different
pretrained CNNs, i.e., GoogleNet, SqueezeNet, Densenet201,
and Mobilenetv2 are discussed in [37]. For 4500 images cap-
tured by 18 smartphones, the authors reach an F1-score greater
than 91%. Features extracted using patchwise mean, variance
scoring and K-means clustering are discussed in [111]. For
classification, a Res2Net is used which reaches 92.62% accu-
racy for 74 cameras. A multiscale content-independent feature
fusion network (MCIFFN) is discussed in [153].

In [40], the features are extracted from images using DCT
and then the ensemble classifier is used. To improve the results,
the authors also use principal component analysis (PCA).
For 10 507 images captured by 10 cameras they reach an
accuracy of 99.1%. In [90], features extracted by the dis-
crete wavelet transform (DWT) are used with nine classifiers:
1) Bayes net (BN); 2) Logistic (L); 3) logistic model tree
(LMT); 4) multilayer perceptron (MLP); 5) naive Bayes (NB);

6) NB multinomial (NBM); 7) RF; 8) simple logistic (SL) and
9) SVM. The average accuracy for the identification of four
cameras is 99.25%.

C. Other Approaches

Adaptive thresholding is used in [62] for camera iden-
tification. For 74 cameras, the authors obtain an intercor-
relation between 0.1 and 0.45 and intracorrelation between
0.46 and 0.7. Behare et al. [26] discussed camera identifica-
tion based on PRNU using correlation. The experiments are
done on 800 images from the Dresden database containing 25
distinct cameras.

Sensor pattern noise (SPN) and correction are discussed
in [66] for camera identification. For clustering, the authors
proposed an alternating direction method of multipliers
(ADMMs) and spectral clustering. For 31 cameras, they obtain
an F1-score between 0.90 and 0.97. PRNU and the locally
adaptive DCT (LADCT) are used in [28] for camera identifi-
cation. The authors use two data sets: their own data set with
13 cameras, for which they obtain an FNR between 5.46%
and 21.27% and an FPR between 0.48% and 1.77%, and the
Dresden data set with ten cameras for which they obtain an
FNR between 0.93% and 14.11% and an FPR between 0.10%
and 1.74%. SPN extracted from the green channel using a HPF
is discussed in [147]. For five cameras, an FNR of 53% and an
FPR of 10.75% were obtained. Also, in [36], SPN and PRNU
are used to cluster 34 camera models. The features extracted
from PRNU are used as input for a hierarchical search using
MapReduce in [29]. For 1174, cameras a mean precision of
91% was obtained. The features extracted using the linear
dependencies among SPN are used in [114] for camera identi-
fication using large-scale sparse subspace clustering. For 107
cameras, the precision is 0.92, recall is 0.88, the F1-score is
0.92, and ARI is 0.88. PRNU is also used in [22], [24], [25],
[27], [31], and [32].

Rouhi et al. [113] used the SPN approximation for feature
extraction while for classification, they use Markov clustering
and a newly proposed hybrid clustering algorithm. For a data
set with 35 smartphones, the precision is 0.997, the recall is
0.765, the F1-score is 0.866, the ARI is 0.863, and the purity
is 0.997. A ranking index for the quality of each fingerprint is
used in [149] to cluster cameras. For 10 960 images captured
by 53 cameras, the precision is almost 1, the recall is between
0.65 and 0.85, and the F1-score is between 0.7 and 0.9.

In [41], using DCT, the low frequencies of SPN are removed
from the images and the peaks are suppressed using the
spectrum equalization algorithm high-frequency (SEA-HF).
For 14 594 images from 57 cameras, the TPR is 88.54%.
Spatial-domain averaged (SDA) frames are used in [67]. The
peak-signal-to-noise ratio (PSNR) is used in [65] for camera
identification. PRNU obtained using the maximum likelihood
estimator is used in [21] for feature extraction from images.
For six devices, with a FAR fixed at 10−5, the FRR is between
9.6 ∗ 10−2 and 8.4 ∗ 10−15. In [68], a method based on
Gaussian blurring and removing the least significant bit (LSB)
from images is proposed. The authors obtain a correlation
lower than 0.075 for 11 787 images captured with 48 cameras.
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TABLE IV
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR MICROPHONE

Meng et al. [154] and Gupta et al. [155] surveyed some works
focused on camera source identification.

D. Data Sets for Camera Identification

The most commonly used data sets for camera identification
are enumerated as follows.

1) Dresden [156] contains 14 000 images of various indoor
and outdoor scenes captured by 73 digital cameras.

2) Vision [157] contains 34 427 images and 1914 videos in
their original format and in their social network format,
i.e., Facebook, YouTube, and WhatsApp, captured by 35
devices from 11 brands.

3) Warwick [158] contains more than 58 600 images cap-
tured by 14 cameras.

4) ISA UNICAMP [159] contains 3750 images from 25
cameras, i.e, 150 images per camera.

5) Daxing [150] contains 43 400 images and 1400 videos
captured by 90 smartphones from 22 models and five
brands.

6) SPCUP [160] is the IEEE Signal Processing Cup for
camera model identification involving teams of under-
graduate students, the challenge data set contains ten
cameras and 200 images collected for each of them.

7) Michei [161] contains 3732 images from three smart-
phones.

8) FODB [151] contains 23 000 images of 143 scenes
captured by 27 smartphone cameras.

9) Banna et al. [76] provided 3900 images from three
camera models.

10) Cozzolino et al. [33] provide a data set which contains
21 158 images captured by 625 devices.

11) The work in [90] uses the data sets for ear biometrics
from the following works: IITD-I [162], AMI [163],
WPUT [164], and AWE [165] to test a wavelet-based
camera identification method.

V. SMARTPHONE IDENTIFICATION BASED ON

MICROPHONES

In this section, we survey works addressing mobile device
identification based on their microphones. Table IV compares
the features, classifiers, results, the number of devices and
whether the data sets used in these works are public. We dis-
cuss them in detail in what follows. In the results column from
Table IV, we generally refer to the accuracy reported by the
works. As already stated, some works did not report the accu-
racy of their method and in this case, we refer to other metrics
as presented in the table or in the accompanying text.

A. Microphone Identification Based on Synthetic Sounds

Distinct music genres, i.e., metal, pop, techno and instru-
mental, as well as sine waves and white noise are used in [78].
The Fourier coefficients are extracted from the recorded
sounds and distinct classifiers are applied, i.e., NB, multi class
SVM, decision trees and KNN. This approach was tested with
7 microphones and the highest accuracy was 93.5%. Ambient
noise generated by a fan cooler is used for microphone identi-
fication in [69]. The authors use interclass cross correlation for
clustering eight commercial microphones based on 24 record-
ings and reach a 100% correct classification. Indoor sounds,
outdoor park areas, and street noises are used in [79] for micro-
phone identification. One class classification algorithms, i.e.,
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Gaussian model (GM), GMM, KNN, PCA, and incremen-
tal SVM (ISVM) are used to identify five microphones. In
terms of results for indoor measurements, the recall is between
0.774 and 0.859, for park, noise is between 0.7354 and 0.885,
and for street, noise is between 0.206 and 0.784. This was
improved, using a representative instance classification frame-
work (RICF) proposed by the authors, to get a recall between
0.741 and 0.874. In [81], a method based on FFT features
extracted from ambient noise is discussed. For 21 devices,
the maximum accuracy achieved is 96.72% with the SVM
classifier.

Sine waves at 1 and 2 kHz are used in [83]. For the classi-
fication of 32 smartphones, the authors use SVM, KNN, and
a CNN. They test the proposed approach at distinct signal-
to-noise ratio (SNR) levels. The accuracy for a 20-dB SNR is
96% for the 1-kHz wave and 96.8% for the 2-kHz wave, while
for 10-dB SNR, the accuracy drops at 67.27% for 1 kHz and
82.75% for 2 kHz. Also, the work in [84] uses sine waves at
1 kHz and the SVM, KNN, and CNN classifiers. For 34 smart-
phones, at 10-dB SNR, the accuracy reaches 80% for CNN,
40% for SVM, and 10% for KNN. In [87], in addition to the
1-kHz sine wave, a pneumatic hammer and gunshot sounds
are also used. Hafeez et al. [168] generated 80 sine waves in
the range of 100 Hz–8 kHz and then uses an artificial neural
network with a single layer which achieves 100% accuracy for
six commercial microphones.

Ambient sounds from distinct places, e.g., bus, food court,
kids playing, metro, restaurant, etc., are used in [116]. The
authors extract 15 features from the time and frequency domains,
e.g., RMS, ZCR, low energy rate, spectral centroid, etc., and
apply three binary classifiers in cascade. This approach was
tested on 12 smartphones from two distinct models and the
TPR reached 81% for one model and 98% for the other.

B. Microphone Identification Based on Human Speech

Three classifiers, i.e., radial basis functions neural network
(RBF-NN), MLP, and SVM are used in [80] for smart-
phone microphone identification using the MFCC coefficients
extracted from the human speech of 12 males and 12
females recorded with 21 smartphones. The highest accu-
racy, i.e., 97.6%, was reached with RBF-NN. The work
in [46] uses GMM and the highest accuracy reached is
99.58%. The features they use are the LPCC, PLPC, and
MFCC coefficients extracted from the speech of four speak-
ers recorded with 16 microphones. Also, in [47], the MFCC
coefficients extracted from human speech are used with the
SVM classifier to cluster 26 smartphones. The accuracy
achieved was 90%. The SVM classifier was optimized with
the sequential minimal optimization (SMO) algorithm. In [48],
MFCC and LFCC with GMM and SVM are used to cluster
14 smartphones. The achieved accuracy is 98.39%. In the case
of 16 devices, by using the GMM and the MFCC coefficients
extracted from human speech, the highest reported accuracy is
99.27% in [49]. In [82], GSV and MFCC are used to extract
the features from human speech. For clustering, the SVM clas-
sifier is used and an error rate between 2.08% and 7.08% is
reported for 14 devices.

Audio signal characteristics, such as mean, standard devia-
tion, crest factor, dynamic range, and autocorrelation are used
in [70] to fingerprint two identical microphones. Li et al. [50]
used a neural network and Gaussian SVM for the identification
of 21 smartphones based on their microphones. The features
extracted with MFCC from human speech were used as input
for the classifiers. The reported accuracy reaches 88.1%. A
band energy descriptor is proposed in [167] as classifier. This
approach reaches 96% accuracy for 170 devices which record
human speech. In [104], 40 smartphones are identified with the
highest achieved accuracy of 99% based on human speech using
CNN. The voice from 25 speakers is used in [85]. GSV and the
sparse representation-based classifier (SRC) reaches an accu-
racy between 78.17% and 85.58% for 4 microphones. Human
speech is also used in [51], [52], [86], [105], [106], and [166].

A distinctive approach based on electrical network
frequency (ENF) analysis is proposed in [88]. For seven
devices, the TPR is above 60%.

C. Data Sets Used for Microphone Identification

The following data sets for microphone identification are
publicly available.

1) TIMIT [169] is a speech database for voice recognition
which contains 6300 sentences from 630 speakers, i.e., ten
sentences from each speaker, 439 males, and the rest are
females, recordings from this data set were also replayed
and recorded by various works for smartphone recog-
nition, e.g., [48], [49], and [82]. There are also several
reissues of the TIMIT data set, such as TIMIT-RSD [86]
which recaptured the data set with 24 smartphones.

2) MOBIPHONE [80] is a speech database which contains
recordings did with 21 smartphones. For each smartphone
there are 12 males and 12 females who read ten sentences.
The speakers are selected from the TIMIT database.

3) T-L-PHONE [48], [166] contains speech recorded with
14 mobile phones from six brands.

4) SCUTPHONE [170] contains speech recorded with 15
distinct mobile phones from six brands.

5) Ahumanda [171] contains speech recorded by six
devices from 150 males and 150 females.

6) CRC-SD [86] contains speech recorded by 24 smart-
phones from seven brands (6 males and 6 females).

7) KSU-DB [172] is a speech database which contains
136 speakers (68 males and 68 females) recorded with
four devices in three environments.

8) Live recordings [166] containing 10-min speech from a
single speaker, recorded with 14 smartphones.

9) The microphone fingerprinting data set from [93] con-
tains 19 200 samples with 16 different and 16 identical
devices that record various automotive specific sounds,
e.g., car honk, tiers, wipers, hazard lights, etc.

VI. SMARTPHONE IDENTIFICATION BASED ON

LOUDSPEAKERS

In this section, we survey some works which discuss mobile
device identification based on their loudspeakers. In Table V
we compare the features, classifiers, results, number of devices
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TABLE V
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR LOUDSPEAKER

and data sets that are used for smartphone identification
based on loudspeakers. Compared to camera sensors and
microphones, there are far less papers addressing this topic.

A. Loudspeaker Identification Based on Synthetic and
Natural Sounds

Two types of sounds are used for loudspeaker fingerprint-
ing: 1) synthetic sounds, such as cosine waves [55] and
linear sweeps [45] and 2) natural sound, such as instrumental,
music [9], [53], and human speech [9], [53], [54].

Zhou et al. [55] fingerprint 50 identical smartphones based
on a cosine wave between 14 and 21 kHz, with an increment
step of 100Hz, emitted by each loudspeaker. The smartphones
are identified using the Euclidean distance and an error rate
around 1.55∗10−4% is reached. Berdich et al. [45], fingerprint
28 smartphones loudspeakers, out of which 16 are identi-
cal loudspeakers placed in the same smartphone case, using
a linear sweep signal between 20 Hz and 20 kHz which is
recorded by an in-vehicle head unit. In this work, the roll-off
characteristics of the power spectrum are used. For classifi-
cation, a linear approximation as well as machine learning
algorithms, i.e., KNN, RF, and SVM and deep learning algo-
rithms, i.e., CNN and BiLSTM, are used (the later two deep
neural networks are the main subject of the investigation). An
accuracy between 95% and 100% is achieved for identical
smartphone speakers. In this work, the authors also analyzed
the influence of the volume level and the speaker orientation
angle in the fingerprinting process. For four distinct smart-
phones, the experiments are also done at 50%, 75% and 100%
volume level, and the authors observe that the fingerprints
for each smartphone are clustered around the volume level,
but the smartphones can still be clearly identified. The same
behavior was observed in the case of experiments for distinct
loudspeaker orientation, i.e., 0◦, 90◦, and 180◦.

A total of 15 features in the time and frequency domain
i.e., RMS, ZCR, low energy rate, spectral centroid, spectral
entropy, spectral irregularity, spectral spread, spectral skew-
ness, spectral kurtosis, spectral rolloff, spectral brightness,
spectral flatness, MFCCs, chronogram, and total centroid are
used in [9] and [53]. The features were extracted from three
types of sounds, i.e., instrumental, sound, and human speech.
For classification, the authors use KNN and GMM classi-
fiers. The experiments are done for both distinct and identical
smartphones. In [9], for 15 identical smartphones the authors
reach a 93% accuracy, while for 19 smartphones (identi-
cal and distinct), they achieve a 98.8% accuracy using the
MFCC coefficients extracted from human speech. In [53], for
52 smartphones out of which at most 15 are identical, the

authors achieved a 100% F1-score when they used the MFCC
coefficients from each signal (instrumental, song and human
speech) with the KNN classifier. When GMM on MFCC is
used for instrumental sounds, the F1-score is 100%, while in
the case of human speech and songs, the F1-score is 99.6%.
From the 15 time and frequency-domain features used in both
these papers, MFCC leads to the best results. MFCC and
sketches of spectral features (SSFs) extracted from human
speech are used in [54]. Machine learning algorithms, i.e.,
SVM and RF, as well as deep learning algorithms, i.e., CNN
and BiLSTM are used to cluster 24 smartphones. The authors
achieved a maximum accuracy of 99.29%.

B. Data Sets for Loudspeaker Identification

To the best of our knowledge, there is currently only a single
public data set for smartphone identification based on their
loudspeakers, which corresponds to the work in [45]. The data
set contains linear sweep signals played by 28 smartphones
(16 identical and 12 distinct) recorded by the a vehicle head
unit at 1-m distance. A total of 2900 measurements are made
public.

VII. SMARTPHONE IDENTIFICATION BASED ON

ACCELEROMETERS

In this section, we survey several works which discuss
device identification based on their accelerometer sensors.
Interestingly, while there are a lot of papers which discuss
device pairing based on data collected from accelerometers,
only few works are focused on smartphone fingerprinting
based on accelerometers. In Table VI, we compare the fea-
tures, classifiers, results, and the number of devices that are
used.

A. Time and Frequency-Domain Features for Accelerometer
Fingerprinting

Besides smartphone identification based on their micro-
phone (which was addressed previously), the authors
from [145] also discuss smartphone identification based on
accelerometer sensors. The measurements are collected when
the smartphone is kept at a constant velocity or when it is in a
resting position, and the first sample from each measurement
is considered the smartphone fingerprint. With this approach,
only 15.1% of devices were correctly identified.

Multiple time and frequency-domain features are used
in [11] and [12], while in [19], only time-domain fea-
tures are used. Dey et al. [11] used time-domain features
i.e., mean, standard deviation, average deviation, skewness,
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TABLE VI
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kurtosis, RMS, lowest and highest values, and frequency-
domain features i.e., spectral standard deviation, spectral
centroid, spectral skewness, spectral kurtosis, spectral crest,
irregularity-k and J, smoothness, flatness, and roll off. For
107 accelerometers (25 smartphones, two tablets, and 80 stan-
dalone accelerometers), the mean precision and recall are
above 99%. In [12], ten time and ten frequency-domain
features are used, i.e., mean, min, max, variance, standard
deviation, most frequently occurring value, range, skewness,
kurtosis, RMS, dc, spectral mean, spectral variance, spectral
standard deviation, spectral spread, spectral centroid, spec-
tral entropy, spectral skewness, spectral kurtosis, and spectral
flatness. For classification, six classifiers are used: 1) SVM;
2) KNN; 3) LR; 4) RF; 5) extra tree; and 6) extreme gradient
boosting (XGBoost) and for seven devices, the authors obtain
a precision between 54.5% and 100% and a recall between
88.9% and 94.3%. Only eight time-domain features i.e., min,
max, kurtosis, RMS amplitude, mean deviation, skewness,
standard deviation, and mean were used in [19]. For classi-
fication, the thresholding approach was used, which reached a
0.7444 TPR and a 0.0978 FPR for 15 devices.

B. Data Sets for Accelerometer Fingerprinting

Bojinov et al. [145] reported a public website which
holds accelerometer related data,2 however, the website was
not accessible at the time of writing this article. Also,
Dey et al. [11] reported another data set but the link was again
not functioning at the time of this writing.3

VIII. OTHER SENSORS AND TECHNOLOGIES FOR

FINGERPRINTING

In this section, we briefly present other sensors which
have been used for fingerprinting, as well as some combined
approaches that used multiple sensors.

A. Other Sensors: Magnetometers and Gyroscopes

The time and frequency-domain features extracted from
magnetometer sensors are used in [18] for smartphone fin-
gerprinting. For classification, the SVM, KNN, and Bagged
Tree classifiers were used. This approach reached an F1-score
between 61.3% and 90.7% for nine smartphones. A more
recent work [91] uses the gyroscope resonance for smart-
phone fingerprinting. Ten features based on resonance, e.g.,
resonance peak, position of resonance peak, etc., are extracted

2http://sensor-id.com/
3http: //web.engr.illinois.edu/sdey4/AccelPrintDataSourceCode.html

and used as input for decision trees and regression tree clas-
sifiers to cluster 20 smartphones and five gyroscope sensors.
The highest accuracy reached with this approach was 96.5%.

B. Combined Approaches Based on Multiple Sensors

Rather than using single transducers, several research works
discussed smartphone fingerprinting from multiple sensors. We
address them separately in this section. Most of these works
start from analyzing individual sensor data and then combine
several sensors to improve the identification rate. In Table VII,
we compare the features, classifiers, results, and the number
of devices used in the literature for smartphone identification
based on multiple sensors. We detail each of these works in
what follows.

Amerini et al. [92] used data extracted from accelerometers,
gyroscopes and cameras for smartphone identification. For
accelerometers and gyroscopes they extract ten time-domain
features and 11 frequency-domain features while for cameras
they use the PRNU. In terms of classification, decision trees
are used and 10 smartphones are clustered with an F1-score
greater than 75% for combined data from accelerometer,
gyroscope and camera. Data extracted from accelerometers,
gyroscopes, magnetometers, and microphones are used in [17].
The authors extract for each sensor several features. In the case
of accelerometers and magnetometers, they again extract ten
time-domain and 11 frequency-domain features for the normal-
ized signals, while in the case of gyroscopes, they extract the
same features for each axis. For microphones, they generate
sine waves between 100 and 1300 Hz and for each signal, the
value of the dominant frequency is considered as a feature.
The classification was done using the NB and RF machine
learning algorithms and for ten devices, the authors reach an
F1-score of 90% for the combined data.

Combined accelerometer and gyroscope data is also used
in [13], [14], [15], [173], and [174]. Das et al. [13] and [14]
used 25 time and frequency-domain features, while in [15], they
use 26 features. Several machine learning algorithms are used
in these works which include SVM, NB, KNN, decision tree,
QDA, and bagged decision trees. In [173], the entropy features
are extracted from the collected data and used as input for the
SVM classifier. For three devices, the authors reach an accuracy
greater than 90%. A multidimensional balls-into-bins model is
proposed in [174] to extract the features from the collected data
and then a multi-LSTM network is used to cluster the devices.
For 117 devices from 77 users, this approach reaches an accuracy
higher than 98.8%. Acceleration, magnetic field, orientation,
gyroscope, rotation vector, gravity, and linear acceleration are
used in [16]. Five sensor combinations are discussed: 1) indi-
vidual accelerometers; 2) accelerometers and gyroscopes; 3) all
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sensors; 4) all sensors except accelerometers; and 5) all sen-
sors except accelerometers and gyroscopes. For each sensor,
the time and frequency domain features are extracted and five
machine learning algorithms are evaluated, i.e., KNN, SVM,
bagging tree, RF, and extra tree. The authors reach a maximum
precision of 99.995% when all sensors are involved.

Zhang et al. [144] and [175] proposed a new method, called
factory calibration fingerprinting, that is able to bypass exist-
ing protections for tracking users based on motion sensor data.
They extract data from gyroscopes and magnetometers in [144]
and accelerometers, gyroscopes and magnetometers in [175].
Their work involves distinct Android and iOS devices. The fin-
gerprint is generated based on a gain matrix (squared Euclidean
2-norm function) of the data processed by computing the dif-
ference between two consecutive axes and the estimated value
of the ADC.

C. Other Technologies for Device Fingerprinting

Now, we enumerate additional device fingerprinting tech-
nologies, some of which are based on other components while
others are based on software (which are not part of the main
scope of this work, therefore, the list is not exhaustive). In
Table VIII, we compare the features, classifiers, results, and

the number of devices used in the literature for smartphone
identification using these different approaches.

Chen et al. [182] proposed a technique based on battery
power consumption. Distinct tasks are running on the smart-
phones having different power consumption rates, e.g., heavy
file writing and reading, computations with large numbers,
broadcast transfer, etc. Time and frequency-domain features are
extracted for the recorded power consumption and an unsuper-
vised learning algorithm is applied to cluster the smartphones.
The accuracy in identifying the phone was higher than 86%
for 15 smartphones. Mobile devices are identified based on
wireless charging fingerprints by [183]. The clock oscillator
and the power receiver are used to extract the features which
are then used in the SVM, AdaBoost, decision tree, KNN,
and LDA classifiers. This approach reaches 97.9% accuracy
for 52 devices.

Another interesting approach for device fingerprinting based
on magnetic induction signals radiated by the CPU is discussed
in [94]. The authors measure the CPU magnetic induction
when the CPU load is at 100% as the inductor from the
DC/DC converter of the CPU may produce high magnetic
induction at high currents. They use for the experiments 90
devices (20 smartphones and 70 laptops) and to validate this
approach 10 machine learning algorithms are used, i.e., LR,
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NB, KNN, LDA, QDA, decision tree, SVM, ExtraTrees, RF,
and gradient boosting. The authors report a maximum accu-
racy of 99.9%. The peripheral input timestamps are used
in [107] for device identification. Dhakal et al. [185] and
Palin et al. [186] used two public data sets, the peripherals
include keyboard, mouse connected via USB and collection
was done automatically on a Web based platform which eval-
uate the typing skill. For classification, the FPNET CNN
is used and a maximum accuracy of 97.36% was achieved
for 76 768 mobile devices and 151 483 desktop devices.
Capacitive screen fingerprints are used in [178] for smart-
phone recognition. RMS and MFCC features are computed
from the signature segmentation extracted from the voltage
consumption. For classification, the authors use the KNN
and GMM classifiers and reach an F1-score of 100% for
14 smartphones.

ICMP timestamp requests from which the device clock
skew is extracted are proposed in [176] for smartphone
fingerprinting. 10 min of collected ICMP timestamps are
sufficient to distinguish between five smartphones as their
oscillator skews differ in several parts-per-million (ppm).
The slope of the clock skews is computed as a linear pro-
gramming minimization problem. The network traffic from
popular apps, e.g., Facebook, WhatsApp, Skype, Dropbox,
etc., is used in [177]. Distinct features, e.g., packet size,
packet ratio, number outgoing packets, byte ratio, etc., are
extracted. For classification KNN and SVM are used on 14
devices with an F1-score of 100%. Khodzhaev et al. [180]
discussed an approach based on the performance of the trans-
mission control protocol (TCP). For classification, KNN is
used and for 3 distinct devices this method reaches only
75% accuracy.

The device configuration and parameters are used for smart-
phone fingerprinting in [142]. The authors discuss 29 features
of the Apple iOS platform, e.g., device name, language set-
tings, installed applications, played songs, etc., and extract
them from 8,000 distinct devices. The SVM classifier reaches
an accuracy of 97% for this approach. In [179], 38 features
are used: 1) hardware related, e.g., name, device model, man-
ufacturer, storage capacity, etc.; 2) OS related, e.g., kernel
information, Android version, etc.; and 3) user-setting related,
e.g., time-zone, hour format, data format, ringtone, notifi-
cation, etc. A fingerprint matching algorithm (FMA) and a
fingerprint association algorithm (FAA) are used to select the
relevant features and then the NB classifier is applied to clus-
ter the devices. For 2239 devices, they reach an F1-score of
99.46%. Similar features are also used in [63], but here a
thresholding method is used for clustering and an accuracy of
99.97% is reached for 815 devices.

In [184], a method for smartphone fingerprinting based on
the radio frequency emitted by Bluetooth is discussed. The
authors achieved a test accuracy between 96.9% and 99.2%
using SVM and between 96.5% and 99.6% using a neural
network classifier for 27 smartphones. Device identification
based on remote GPU fingerprinting is proposed in [187]. The
authors use 26 smartphones and 62 desktop/laptops and obtain
a maximum accuracy of 95.8%. Vastel et al. [181] showed
that it is possible to detect countermeasures for browser

fingerprinting by using the inconsistencies that these coun-
termeasures introduce and, besides spotting the altered finger-
prints, the original fingerprint values can be also obtained.

IX. COUNTERMEASURES AND STABILITY IN FRONT OF

EXTERNAL FACTORS

In this section, we discuss countermeasures for fingerprint-
ing and the resilience of fingerprints in front of external factors
that can change them over time.

A. Countermeasures

Smartphone fingerprints can be also used by malicious apps
to infringe on user’s privacy. This is a very serious concern
and we cannot end our survey without mentioning it along
with some countermeasures. Briefly, to combat these attacks,
several countermeasures can be implemented: 1) adding noise
to the sampled data (which is also commonly referred to
as obfuscation); 2) calibrating the sensors so that differences
become negligible; 3) restricting the access to sensors’ data;
or 4) lowering the sampling fidelity. These approaches can be
also combined. We discuss them in what follows.

Adding Noise (Obfuscation): A simple method to modify
the smartphone fingerprints is to add noise. This approach
does not affect the smartphone functionally [4] and it is not
expensive in computations and power consumption. The addi-
tion of noise has been also discussed in [93] within scope of
microphone identification. This work considers various types
of sounds e.g., traffic, train, barrier, etc., and reports that the
accuracy drops below 50% at a SNR below a specific thresh-
old, e.g., –40 db for car horn, –20 db for car tiers, so that
microphone identification no longer works. Also, Baldini and
Amerini [83] analyzed the influence of additive white Gaussian
noise (AWGN) at distinct SNR levels and the accuracy drops
below 50% at a SNR of 0–5 db. The work in [45] also shows
that in the case of loudspeaker identification, the volume can
influence the fingerprints.

Sensor Calibration: Calibration is generally used to increase
the precision of measurements performed by various sen-
sors, but it was also proposed as a countermeasure against
sensor fingerprinting. More commonly, it is proposed for
accelerometers and gyroscopes. For example, the calibration
of accelerometers and gyroscopes is discussed in [15] as a
countermeasures against sensor fingerprinting. Notably, some
works have managed to fingerprint accelerometers and gyro-
scopes even if factory calibrations were performed [144],
[145], [175]. To prevent this and make fingerprinting infea-
sible, the last two of these works propose that one can round
the factory calibrated sensor output to the nearest multiple of
the nominal gain [144], [175].

Restricted Access to Device Peripherals and Data:
Implementing policies that control the access rights of
other applications on sensor data is another countermeasure
proposed in [3] and also discussed in [4]. It may be also
worth recalling here that malicious apps with access to the
microphone can allow the interception of the phone’s PIN
code [188]. This proves how serious are the implications of
giving access to such peripherals. Notably, smartphones also
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leverage the use of various IoT devices that surround our
home, exposing even more data about owners. Having this
in mind, the work in [189] discusses a mobile-cloud frame-
work with fine-grained permission authorization for IoT. A
privacy risk assessment for mobile applications, which con-
siders permissions and information flow leakage, is presented
in [190].

Lowering Sampling Fidelity: Lowering the sampling rate
can also be a countermeasure and it may also increases the bat-
tery life (especially in the case of data collected from motion
sensors). Data filtering and reducing the sampling rate can
hide part of features such that the fingerprinting process will
no longer be possible. The Android platform is already con-
sidering risks related to fingerprinting by sensor sampling and
started to limit the access for applications since Android 12
(API level 31). For a sample rate higher than 200 Hz (or about
50 Hz for direct, raw sensor data), apps need to be granted a
new permission called HIGH_SAMPLING_RATE_SENSORS.
Note that this is declared as a normal level permission and
therefore granted automatically, but can be used for determin-
ing apps that potentially access higher sample rates [191]. As
a further mitigation, motion sensors (including accelerometer)
are always rate limited even for apps holding this permission
if the microphone has been turned off by the user. Finally,
Android 10 introduced an UI element in the form of the
Sensors Off quick tile that can be used to disable app access to
all sensors, including microphone, camera and motion sensors
(with the exception of phone calls still using the microphone).
However, this UI element needs to be enabled through devel-
oper options and is therefore not targeting end-users at the
time of this writing [192]. On Apple iOS, apps seem to be
able to use Core Motion to request sample rates as far as
the hardware supports it [193]. Apple recommends as best
practice to avoid using accelerometers or gyroscopes outside
of active gameplay [194]. To the best of our knowledge, there
seem to be no automatic limitations at the time of this writing.

It is also true that these countermeasures are not always
applicable, or it is highly inconvenient to use them. For exam-
ple, sometimes sampling restrictions cannot be applied, as
in the case of gaming applications that require the maxi-
mum sampling rate from accelerometers for better accuracy.
Reducing the sampling of accelerometers also has impact
on physical activity monitoring apps [195]. Regarding cam-
era sensors, photograph editing software may require access
to the raw image data (that may contain even more phone-
related artifacts) for optimal performance. As expected, all
countermeasures come at a price.

B. Stability in Front of External Factors

Many of the existing works have also considered resilience
in front of external factors. In the case of camera sensors,
various factors have been considered like temperature or volt-
age variations [20], [56], [57], [60], [61], [64], [148]. Post
processing of the images by third parties has been consid-
ered, as well as changes in the brightness level [22], [36],
[74], [112]. For audio recordings, in the case of microphone
and loudspeaker fingerprinting, various kinds of environmental

factors were considered, such as ambient or environment spe-
cific noise [46], [69], [78], [79], [88], [93], [106], [116]
[9], [45], [53], [54], [55], AWGN [45], [83], [84], distance
from the speaker [9], [53], sampling rate, or even changes
in the volume or orientation of the speaker [9], [45], [53].
In the case of accelerometers, temperature has been generally
considered [15], [144], [174], [175], while some works also
mention humidity [174]. These works have also considered the
influence of the same factors on gyroscopes.

One important factor that seems to be omitted by most
works is the stability of the samples over time. To the best of
our knowledge, only the excellent work from [15] evaluates
the stability of the samples by collecting data at one month
distance. Concretely, accelerometer and gyroscope data is col-
lected at an interval of 37 days and the F-score, which was
100% for data collected during the same day, drops between
88% and 92% for different days. Further evaluations may
be needed to asses if samples are stable in the long run.
Zhang et al. [144] also relied on the sensor factory calibration
file, which is stored in the nonvolatile memory and should not
change over time. Other works assess the stability of hardware
fingerprints in the case of different electronic components. For
example, the magnetic signals from the CPU are used in [94]
and the authors prove that they do not change over the course
of two days and in distinct locations. Fingerprinting the GPU
from JavaScript collected data is proposed in [187] and the
fingerprints are shown to be stable during 24 days of exper-
imentation. The stability of clock-based fingerprinting is also
discussed in [196] where measurements are performed two
months apart.

X. CONCLUSION AND FUTURE DIRECTIONS

There is a very largenumber of works that address smart-
phone identification based on the physical fingerprints of their
embedded transducers, mainly cameras, microphones, loud-
speakers, and accelerometers. The most consistent body of
works which we surveyed was concerned with camera finger-
prints. This is somewhat natural as users nowadays commonly
upload photographs on various websites, making them very
easy to collect. Also, a lot of samples and features can be
extracted from images and there are several public data sets
dedicated for research works. A lesser number of works used
microphones and there are only a few works which are using
loudspeakers. Device fingerprinting based on audio signals,
from microphones and loudspeakers, may have attracted less
research because, although this kind of data is easy to ana-
lyze, it may be more difficult to collect. For microphones,
there are several public data sets (the majority of them are
targeting speech recognition and crime related investigations)
which were also used for device identification based on their
microphones while for loudspeaker identification a single pub-
lic data set is available. In the case of accelerometers, the
number of works strictly dedicated to fingerprinting is also
somewhat limited, despite the fact that accelerometers were
so commonly employed for device-to-device authentication.
There are also only isolated attempts in using gyroscopes
and magnetometers for fingerprinting. Regarding accuracy, it
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seems that camera sensors provide the best fingerprint, many
of the works from Table III in our survey reporting an accu-
racy close to 100%. This happens because CMOS sensors
collect high amounts of information due to the over-increasing
resolution of modern cameras. Next to camera sensors, micro-
phones and loudspeakers may be a reliable source, with a
reported accuracy generally between 90%–100% according to
Tables IV and V from our survey. Accelerometers seem to
have a lower accuracy for fingerprinting, which according
to Table VI in our survey is between 58.7% and 95%.

As future research directions, there are several gaps that
need to be covered. As outlined previously, there is only a very
limited number of works that have addressed sample stability
over time and this happened only over a small period of one
month [15]. The use of multiple sensors can be also consid-
ered for improving the reliability of the fingerprinting process
over time, since various sensors may be unevenly affected by
wear and tear. Running the experiments over extended time
periods and using a larger number of devices in the field may
be considered by OEMs or large app developers with a consid-
erable install base (but it is generally out of reach for nonprofit
academic research). Last but not least, incremental learning,
a well-known method of machine learning which requires to
continuously update the existing model as new data becomes
available, may be one way to address this problem by ensur-
ing an up-to-date trained model for the device. Also, almost
all of the existing works have dealt with closed-world mod-
els in which only devices coming from a limited set are to
be identified. There are only a few works [12], [197] which
address open-world scenarios, that are more relevant for prac-
tice since the methodology is also tested against devices that
were not part of the training data set. Related to this, the use of
one-class classification, which requires a single device in the
training data set and later separates it from the rest in the test-
ing data set, is of significant interest. Most of the papers so far
tried to separate between multiple devices that were already
learned, while only a few works explicitly used one-class clas-
sifiers [12], [77], [79], [133]. The selection of specific inputs
that give a more accurate classification for the transducers is
also one possible area of investigation. It is well known that
certain inputs can yield a better response in the case of PUFs,
e.g., the RowHammer PUF [198]. As previously stated, in the
case of CMOS sensors, dark images seem to give a better
response [141], while for loudspeakers, a sweep signal offers
a more complete characterization [45]. Other works have con-
sidered those inputs which are more realistic for practice, such
as human speech in the case of microphones, or music in the
case of loudspeakers. Finding specific inputs for which the
transducer gives the most specific response is one possible
area for future investigations.

There is also a significant number of works that use other
technologies instead of transducers, such as software finger-
printing, ICMP timestamp, OS, TCP, battery consumption,
wireless charging, capacitive touchscreens, CPU magnetic
field, and the input from various peripherals. These works were
only briefly accounted here and do not form the main target
of our survey. We may consider an in-depth analysis of them
as future work.
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