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Abstract—With the rapid development of the Internet of
Things (IoT), there are a dramatically increasing number of
devices, leading to the fact that only using terrestrial infrastruc-
ture can hardly provide high-quality services to all devices. Due to
their flexibility, maneuverability, and economy, unmanned aerial
vehicles (UAVs) are widely used to improve the performance
of IoT networks. UAVs can not only provide wireless access
to IoT devices in the absence of a terrestrial network but can
also perform rich IoT services and applications, such as video
surveillance, cargo transportation, pesticide spraying, and so
forth. However, due to the high complexity, dynamics, and het-
erogeneity of the UAV-assisted IoT networks, growing attention
has focused on using artificial intelligence (AI)-based methods to
optimize, schedule, and orchestrate UAV-assisted IoT networks.
In this article, we comprehensively analyze the impact of apply-
ing advanced AI architectures, models, and methods to different
aspects of UAV-assisted IoT networks, including key IoT tech-
nologies, tasks, and applications. In addition, this article also
explores challenges and discusses potential research directions of
AI-enabled UAV-assisted IoT networks.

Index Terms—Artificial intelligence (AI), Internet of Things
(IoT), reinforcement learning (RL), UAV applications, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

THE Internet of Things (IoT) is a network of various sen-
sors and terminal devices connected by the Internet,

dedicated to interconnecting everything and driving the
industry. IoT is now widely used in various applications,
such as environmental monitoring, industrial manufacturing,
telemedicine, and more, which promote and improve people’s
lives [1], [2], [3]. By 2050, it is estimated that there will
be more than one billion devices connected to the Internet
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worldwide [4]. These hundreds of millions of devices will
generate huge amounts of data that needs to be exchanged
through wireless networks, putting enormous pressure on exist-
ing networks. Furthermore, the lack of timely transmission and
processing of the data generated by sensors and IoT devices
seriously limits the devices’ benefit from the data and the
development of IoT.

Thanks to their flexibility, unmanned aerial vehicles (UAVs)
can be rapidly deployed to provide additional network
resources in areas with high communication congestion or
limited connectivity. UAVs can act as flying base stations or
relay nodes to form self-organizing networks and thus provide
network services, making them easily integrated into wireless
communication networks [5]. Equipped with various sensors,
UAVs can accomplish numerous tasks, such as video surveil-
lance, data collection, and cargo transportation. Furthermore,
their ability to fly in the air makes them immune to most dis-
asters, making them adaptable to a wide range of scenarios.
UAVs have high mobility and flexibility, allowing them to be
quickly deployed according to service demand. As a result,
UAVs have been widely used in IoT scenarios, such as smart
agriculture, disasters, and smart cities [6], [7]. Especially in
some natural disaster situations that may threaten the safety
of people, UAVs can replace workers to perform related tasks
and can also provide communication and information support.
Moreover, UAVs can extend the life of IoT devices with lim-
ited battery capacity by powering them with wireless power
transmission technology [8], [9]. It can be said that UAVs pro-
vide support for the applications of IoT and direct promising
research for future IoT. However, issues, such as inefficient
UAV communication resource management, energy manage-
ment, and flight control, can limit the use of UAVs in IoT,
leading to short working times and poor mission performance.

Artificial intelligence (AI) has become a widely used tool
for system optimization and decision making, surpassing tradi-
tional optimization algorithms in some areas due to its ability
to handle complex and dynamic environments. AI has emerged
as an important method to enhance the use of UAVs in IoT [10],
[11]. Since its inception, AI has been the subject of intense dis-
cussion. Its powerful data processing and analysis capabilities
endow devices with intelligence and drive change across count-
less industries [12], [13]. By integrating AI into UAVs, their
communication and networking capabilities can be improved,
as well as their flight safety, thereby enhancing the quality of
service they provide in IoT application scenarios [14].
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Fig. 1. AI algorithms and classification.

Fig. 1 depicts the main categories of AI algorithms and
their classifications. AI can be divided into two categories:
1) machine learning (ML) and 2) nonmachine learning
(non-ML) [15]. ML involves training models using data
analysis to make predictions about unknown data. This cat-
egory includes deep learning (DL) algorithms based on neural
networks (NNs), clustering algorithms, such as K-means, deci-
sion trees, support vector machine, and linear regression and
logistic regression algorithms for prediction. DL algorithms,
in particular, incorporate models of deep NNs (DNNs) like
convolutional NNs (CNNs), recurrent NNs (RNNs), and gen-
erative adversarial networks (GANs), as well as reinforcement
learning (RL) and deep RL (DRL) algorithms that enable
adaptation to dynamic environments and real-time decision
making, such as Q-learning, deep Q-learning (DQN), deep
deterministic policy gradient (DDPG), etc. [16]. Non-ML algo-
rithms include early algorithms and expert systems based on
semiotics and inference systems as well as heuristic algo-
rithms, such as genetic algorithms (GAs), greedy algorithms,
ant colony optimization (ACO) algorithms, etc. However,
the application of AI requires adequate computing resources,
which are lacking in UAVs.

Developed from cloud computing, mobile-edge computing
(MEC) brings computing and storage resources to the edge
of the network, enabling IoT data to be processed at the
edge of the network. MEC not only effectively relieves the
pressure on the core network but also meets the needs of
computing-intensive and delay-sensitive IoT devices, bring-
ing support for computing resources for the development of
IoT [17]. However, in remote areas with incomplete network
construction and post-disaster areas with damaged terrestrial

network facilities, IoT services still face the huge challenge of
not having access to networks. One possible solution is to com-
bine MEC and UAV technology. By leveraging the computing
resources provided by MEC servers, UAVs can execute AI
algorithms that enhance their performance and increase their
ability to provide services. With their flexibility, UAVs can also
bring MEC services to areas lacking terrestrial networks [18].
The potential of UAV technology in conjunction with MEC
architectures has been explored in recent research [19]. In par-
ticular, two approaches have been investigated: UAV-assisted
and UAV-enabled MEC architectures. The UAV-assisted MEC
architecture involves the offloading of data to remote MEC
servers for processing, thus mitigating the limited computing
resources of the UAV. On the other hand, the UAV-enabled
MEC architecture is equipped with a MEC server, allowing
tasks to be executed on the UAV itself. While both approaches
effectively address the issue of limited computing resources,
the UAV-enabled MEC architecture incurs an additional energy
burden due to the energy consumption of the MEC server.

UAV-assisted and UAV-enabled MEC architectures repre-
sent a promising solution to address IoT service stagnation
in areas lacking terrestrial networks and network congestion.
By enabling the execution of AI algorithms on both types of
architectures, UAVs can become more intelligent, ultimately
improving the efficiency and quality of the services they pro-
vide. The joint use of UAVs, AI, and MEC for IoT is an area of
great potential. However, the practical implementation of this
approach is not without challenges. The energy consumption
limitations of UAVs, the dynamic environments in which they
operate, and the complexity of converging AI technologies all
pose significant obstacles. To fully leverage the potential of
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TABLE I
COMPARISON OF REVIEWS ON UAV, IOT, AND AI

Fig. 2. Organization of this review.

UAVs in MEC architectures, careful attention must be paid
to optimizing energy consumption, designing effective control
mechanisms, and developing new approaches based on AI that
are suitable for the unique challenges of UAV-based systems.

There have been numerous reviews on UAVs, IoT, and
AI, which are summarized in Table I. Literature [20] pro-
vided a comprehensive survey of UAV communication and
related issues and investigated the potential of UAVs to pro-
vide IoT services. In addition to the application of UAVs
in the 5G and IoT domains, literature [21] also focused on
security issues and promising solutions associated with the
inclusion of UAVs in the IoT system. Similarly, literature [22]
summarized the main technologies of UAVs and the appli-
cations and challenges of UAV-assisted IoT. However, the
three aforementioned literature paid no attention to the use
of AI in UAV-assisted IoT, instead solely concentrating on
the application scenarios and associated issues of UAVs in
IoT. Literature [23] investigated the challenges faced when
using nonterrestrial networks to provide services for IoT and
analyzed the benefits of enabling AI techniques. Nonetheless,
it did not provide a comprehensive overview of the applica-
tion scenarios for UAV-assisted IoT. Literature [24] detailed
the application of ML techniques for physical layer, resource
management, and network management in UAV-based com-
munication. Literature [25] investigated the application of AI

to UAV network localization, dynamic trajectory design, and
resource allocation. Literature [14] deeply analyzed the ML,
RL, and federated learning (FL) for UAV network enhance-
ment and future research directions. However, none of the
three literature mentioned above examined the UAV and AI
applications in IoT. In [26], the application of AI in UAV
communication was discussed in depth, with a focus on UAV
communication protocols, technologies, and architectures, as
well as UAV-assisted IoT application scenarios. However, the
literature did not analyze the tasks involved in UAV-assisted
IoT, nor did it explore the corresponding AI solutions. In con-
trast, literature [19] offered insight into the use of UAV-enabled
MEC in IoT and the application of ML to address various con-
straints, such as latency, task offloading, energy requirements,
and security. Nevertheless, this literature neglected the role of
AI in UAV. Our investigation differs from the aforementioned
literature in that we conduct a comprehensive examination
of the application of AI in both UAV and UAV-assisted IoT
scenarios, including the associated problems and solutions.

The structure of this review is presented in Fig. 2. Section II
delves into the research challenges and key AI technologies
for UAV-assisted IoT. In Section III, we explore the issues that
arise in UAV communication networks and the use of AI in
both UAVs and UAV communication networks. Section IV
outlines the various application scenarios for UAV-assisted
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IoT, and we examine the application of AI in this domain.
In Section V, we summarize the significant challenges related
to UAV-assisted IoT, along with the AI-based solutions that
address them. Section VI analyzes the challenges and poten-
tial solutions when applying AI to UAV and UAV-assisted IoT.
Finally, in Section VII, we conclude this review.

II. CHALLENGES OF APPLYING AI TO UAV-ASSISTED IOT

Despite the widespread use of UAVs in providing services
for IoT, there remain numerous challenges in their appli-
cation [27]. For instance, the limited energy consumption
of UAVs significantly restricts their employment in IoT.
Furthermore, the expansion of IoT devices, their heterogene-
ity, and the rise in service demand all present new difficulties
for UAV communication networks. UAVs must enhance their
communication capabilities, network management capabilities,
scheduling strategies, automation, and intelligence to effec-
tively deal with massive machine communication services,
improve coverage, and complete tasks efficiently. Additionally,
interference and network security issues resulting from com-
munication between UAVs and massive IoT devices cannot be
ignored. In the following sections, we will analyze the chal-
lenges faced by UAVs and summarize the existing solutions.

1) UAV Collision Avoidance: Due to the uncertain nature
of the flight environment, UAVs are at risk of colliding
with various physical entities during flight. Therefore, it
is necessary to ensure UAV collision avoidance to ensure
successful mission performance. UAV obstacle avoid-
ance involves two main steps: sensing obstacles through
sensors and using the sensed environmental information
to avoid obstacles. Additionally, UAV swarms can avoid
internal collisions by planning their flight trajectories.
Therefore, addressing the challenges of efficient envi-
ronment perception, obstacle avoidance algorithms, and
cluster flight trajectory planning is critical to ensuring
UAV obstacle avoidance. Improving environment per-
ception relies on the selection and performance of sen-
sors, such as cameras, infrared, radar, LIDAR, and sonar.
Results from experiments conducted in [28] on the appli-
cation of different sensors in UAV collision avoidance
showed that the selection of sensors should be based
on the complexity of the scene and the computational
power of the UAV. Blindly increasing the number of sen-
sors will add unnecessary computational overhead to the
UAV. Passive collision avoidance strategies require accu-
rate and timely identification of dynamic obstacles with
high complexity, which presents a challenge for UAV
dynamic obstacle avoidance, while planned collision
avoidance strategies can plan collision-free paths with
low algorithmic complexity through advance trajectory
planning. Literature [29] proposed a low-time complex-
ity method that employs sampling to identify potential
collisions and select the shortest collision-free path using
a closed-loop simulation system for UAVs. The proposed
path planning method generates collision-free paths by
adding collision-free trajectories to optional paths and
then selecting the shortest path as the generated path,

which is a typical method of collision-free path planning.
Furthermore, in [30], a collision-free trajectory planning
method in multi-UAV 3-D space was proposed, which
solved the problem by iterative optimization. However,
the trajectory optimization efficiency of this method was
low for large UAV swarms.

2) UAV Network and Energy Control: Efficient control is
essential to providing good service and improving the
efficiency of UAV swarms. Inefficient control can lead
to decreased network coverage, communication rates,
service duration, and even network outages. Solving
the network and energy control problems of UAV clus-
ters is challenging due to the large search space and
low search efficiency, which often requires mathemati-
cal optimization. For instance, literature [31] proposed
an optimization algorithm based on linear state-space
approximation and sequential convex optimization tech-
niques to maximize the energy efficiency of UAVs by
optimizing their flight trajectory. Literature [32] maxi-
mized the minimum throughput of all ground users in
downlink communication by optimizing multiuser com-
munication scheduling and association, as well as UAV
trajectory and power control, and solved the formu-
lated mixed-integer nonconvex optimization problem by
alternating user scheduling and association, UAV trajec-
tory, and transmitting power in each iteration. However,
these algorithms are only applicable to simple sce-
narios and cannot adapt to the dynamic environment
during UAV flight. Therefore, developing more robust
and adaptive control schemes is still a challenge for UAV
swarms to operate efficiently in complex and dynamic
environments.

3) UAV Security and Privacy: Security and privacy are
also important issues for UAVs. Since the UAV is
exposed to the air and controlled by wireless com-
munication, it needs to face not only the risk of
loss of control and damage caused by communication
attacks and interference but also the risk of data theft
caused by insecure communication protocols such as
Wi-Fi. The main challenge in solving these problems
is the additional communication overhead associated
with the use of more secure protocols. Attacks on
GPS sensors are the more common means of attacking
UAVs, and vision-based navigation methods can be used
instead of GPS, such as visual simulated localization
and mapping (SLAM) and visual odometry (VO) [33].
Using blockchain technology to store data in a pub-
lic blockchain based on Ethernet is also an important
way to ensure the security and privacy of UAV network
data [34].

The complexity and dynamics of the UAV working envi-
ronment in reality, however, are frequently ignored in the
above works, and the traditional optimization algorithms used
can only make decisions and schedule instructions for a
given environment, which cannot handle the dynamic envi-
ronment nor meet the various service demands of the IoT.
Since AI can effectively extract features and dynamics of
the environment, this enables AI-based network optimization
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algorithms to make decisions quickly and logically with high
performance. As a result, compared to traditional optimization
algorithms, AI-based algorithms are better suited for UAVs.
In the following, we will discuss key AI technologies for
UAV-assisted IoT.

1) Deep Neural Networks for UAV: DL mimics the human
mind’s thought processes and utilizes multilayer NNs
to process and learn features from data. Through the
use of backpropagation algorithms to update the internal
parameters of the NNs and learn the complex struc-
tures within the data, DL has been widely used in fields,
such as speech recognition, computer vision, and natural
language processing [35]. For instance, CNNs special-
ize in image, video, and audio processing. DL’s robust
image analysis capabilities can enhance UAVs’ ability
to handle tasks related to image data, such as colli-
sion avoidance and target detection [36]. Literature [37]
used CNNs to analyze the number of crops in pho-
tographs captured by UAVs, achieving state-of-the-art
performance in counting and geolocating plants in UAV
images of multiple crop types. Literature [38] employed
CNN models to detect obstacles during UAV flight and
generated optimal collision avoidance paths based on
the detection results. In addition, DL is also utilized
for UAV network optimization and anomaly detec-
tion. For example, Literature [39] proposed a recursive
NN UAV position prediction method based on long
short-term memory (LSTM). Based on the predicted
position, the predicted angle between the UAV and the
base station can be determined to improve the UAV-to-
base station communication rate in the next time slot.
Furthermore, literature [40] employed a multilayer per-
ceptron and LSTM method to improve the localization
accuracy of the UAV, thus maximizing the overall system
performance and user throughput.

2) Reinforcement Learning for UAV: RL is a type of ML
that enables agents to learn the optimal actions to take in
an environment by trial and error and continuous explo-
ration. RL algorithms, such as Q-learning and SARSA,
are widely used in various applications, such as UAV
path planning and anomaly detection. Unlike DL, RL
offers powerful real-time decision-making capabilities.
Literature [41] utilized object detection (OD) and DRL
to enable collision-free autonomous UAV navigation
supported by simple sensors. Specifically, OD provides
accurate environmental observations for DQN to make
optimal flight decisions. Literature [42] applied RL to
detect UAV motor anomalies, which can prevent motor
failures in UAVs. Furthermore, literature [43] employed
RL to select the data portion, transmit power, channel,
and time to be offloaded, as well as the edge nodes
to connect, to enhance the offloading quality, such as
bit error rate (BER) and anti-interference performance,
while also ensuring system security and user privacy.
Simulation results demonstrated the effectiveness of RL-
based security solutions in protecting MEC systems
from various types of intelligent attacks with low over-
head. Additionally, literature [44] proposed a DRL-based

control algorithm that jointly considered communication
coverage, fairness, energy consumption, and connec-
tivity of UAV cluster networks. This algorithm aimed
to enhance the coverage and reduce the energy con-
sumption of UAV cluster networks. Literature [45]
proposed a distributed online decision algorithm based
on multiagent DRL to solve the joint optimization
problem of task offloading, resource allocation, and UAV
maneuvering for multiple UAVs. This study demon-
strated the feasibility of decentralized DRL technology
for designing self-organized IoT networks.

3) Federated Learning for UAV: FL trains ML models in
a decentralized manner. The FL training process shares
the training model instead of the original data, which
protects the privacy and security of users while also
reducing training complexity. This makes it suitable for
UAV networks with limited computational resources.
Additionally, the FL model-sharing approach overcomes
the issue of data imbalance and allows the algorithm
to be trained in the absence of data. FL provides a
promising solution that not only safeguards the secu-
rity and privacy of UAV data but also overcomes the
problem of limited UAV computational resources, mak-
ing it widely applicable. In [46], FL was used to train the
image classification capability of UAVs, which reduced
the communication cost between UAVs and data centers
and achieved higher classification accuracy with lower
communication costs without relying on perfect chan-
nel state information (CSI). Literature [47] proposed
an FL-based content cache location algorithm that uti-
lized an asynchronous weight update method to avoid
redundant learning migration in federation learning. This
algorithm no longer requires explicit sharing of users’
reports and content preferences, protecting user privacy.
To secure the flying ad-hoc network (FANET), litera-
ture [48] proposed a defense strategy for interference
attacks based on FL and RL. The proposed strategy not
only overcame the problem of data imbalance among
different nodes, but the experimental results also demon-
strated that the defense architecture, combining RL
and FL in the absence of a model, outperformed the
distributed approach.

Notably, integrating AI into UAV-assisted IoT introduces
additional challenges. First, the disparity between the con-
strained computational and energy capabilities of UAVs and
the computational resources required by AI significantly limits
the application of AI to UAVs. Second, the reliability of AI
algorithms can be compromised in extreme cases, particularly
with respect to security, privacy, and robustness, thus hindering
their real-world application and development. In Section VI,
we will conduct a detailed analysis of potential solutions and
future trends aimed at addressing these challenges.

III. AI-ENABLED KEY TECHNOLOGY FOR UAV

There are some essential technologies to achieve high
performance in UAV-assisted networks, such as communica-
tion technologies, networking and routing technologies, and
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TABLE II
COMPARISON OF COMMON COMMUNICATION TECHNOLOGIES FOR UAV

UAV collision avoidance technologies. Communication tech-
nologies ensure the channel quality of directly linked devices,
such as the UAV-to-UAV link and the UAV-to-infrastructure
link. Networking and routing technologies are used to decrease
the delay caused by the multihop relay. Collision avoidance
technology enables UAVs to fly without colliding, thus reduc-
ing the failure caused by UAV damage. The basic functions
of AI are data analysis and data prediction. With continu-
ous development, AI has been widely used in target detection,
image recognition, speech recognition, natural language pro-
cessing, intelligent control, and autonomous driving and has
achieved great success in industrial, medical, and robotics
fields. Applying AI to UAVs can improve UAV communi-
cation quality through data analysis and prediction capability,
perceive the environment through graphics processing capa-
bility, and make UAVs intelligent and autonomous through
intelligent control capability.

A. AI for UAV Communication Technologies

UAVs offer high levels of flexibility, ease of deployment,
top-down coverage, and immunity to natural disasters. These
benefits make UAVs an attractive complement to ground
networks for providing additional communication resources.
UAVs are also considered to be an essential component of 6G
networks [49]. Based on the size, flight altitude, and distance,
UAVs can be classified as small, medium, or large. In UAV
communication, two critical metrics are battery capacity and
communication distance. Large UAVs generally have a larger
battery capacity, which allows them to fly longer distances and
perform more tasks. Moreover, large UAVs are often designed
for specific scenarios, such as military UAVs or the Facebook
Aquila UAV, which provides communication services. On the
other hand, small UAVs have smaller battery capacities that
must be carefully considered during use.

In UAV communication networks, two types of wireless
communication links are typically employed: air-to-ground
(A2G) and air-to-air (A2A) links. The A2G link refers to the
communication link from the UAV to the ground equipment,
which includes both UAV-to-ground base station links and
UAV-to-ground user links. The A2A link, on the other hand,
refers to the communication links between UAVs themselves.
The UAV communication channel model takes into account
both the large-scale fading caused by path loss and the small-
scale fading caused by multipath interference. Compared to
the A2A channel, the A2G channel tends to experience larger

shadow fading and small-scale fading [50]. Additionally, given
the high mobility of UAVs, attention must be paid to Doppler
spread as well as the effects of aircraft shadowing [51].
Equipped with communication protocols, UAVs can commu-
nicate with both ground users and other UAVs. Currently,
commonly used communication protocols in UAVs include
Bluetooth, ZigBee, LoRaWAN, WiMAX, Wi-Fi, 4G, 5G, and
6G. Each of these protocols possesses unique performance
characteristics in terms of data rate, delay, energy consump-
tion, transmission distance, and so on. Low-power wireless
communication technologies, such as Bluetooth, ZigBee, and
LoRaWAN, offer distinct advantages. Bluetooth offers the
highest data rate and lowest latency, making it suitable for
applications that require real-time communication. ZigBee, on
the other hand, boasts the lowest energy consumption, which
is ideal for battery-operated devices. Finally, LoRaWAN offers
the longest communication distance, making it suitable for
use in remote and hard-to-reach locations. Wi-Fi is a widely
used wireless technology based on the IEEE 802.11 standard,
which encompasses two distinct modes of operation: 1) the
infrastructure mode and 2) the ad-hoc mode [52]. As such,
Wi-Fi can be employed for both A2A and A2G communica-
tion. While typical Wi-Fi coverage is limited to 100 m, it is
possible to extend the range up to 500 m by using a directional
enhanced antenna and an automatic tracking communication
platform [53]. As the most widely used mobile technology,
4G offers high speed and low latency with a guaranteed long
range of service. However, as the signal frequency increases,
5G loses the ability to propagate signals over long distances
while gaining improved performance in terms of data rate,
bandwidth, and latency, and further increases the energy con-
sumption of devices. 6G aims to provide a globally ubiquitous
network service, which is not only an iteration of commu-
nication technologies but also a heterogeneous convergence
of multiple networks and intelligent control of all networks.
Specific information about these communication technologies
can be found in Table II. Considering the engineering require-
ments for data rate, delay, and energy consumption, as well
as the energy-constrained characteristics of UAVs, the appro-
priate A2A and A2G communication technologies should be
selected by combining the engineering requirements and the
characteristics of each communication technology.

In practical applications, there are often multiple signals in
the air, with varying degrees of interference between them.
Besides, issues, such as energy constraints, network parame-
ter selection, and network attacks, can also have an impact on
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Fig. 3. Application of AI in wireless communication technology.

UAV communication quality. There has been a lot of research
on AI to improve network performance. AI can solve the signal
interference problem well and also reduce network energy con-
sumption, guarantee network security, and improve network
performance. The application of AI in wireless communication
technology is shown in Fig. 3. In the following, we will intro-
duce in detail the application cases of AI in communication
technologies to promote UAV communication.

Bluetooth and ZigBee are low-power, low-cost, short-range
wireless communication technologies based on IEEE 802.15.1
and 802.15.4, respectively. Both technologies can provide low-
to-medium data rate services for A2A and A2G links for
ranges between 10 and 100 m [54]. The shared frequency
bands between Bluetooth, ZigBee, Wi-Fi, and other signals
cause unavoidable interference. To mitigate interference, a
supervised learning-based channel quality evaluation algo-
rithm had been proposed in [55] to predict channel qual-
ity. Gated recursive units were used to extract interference
information on each channel and identify the top 20 chan-
nels for data transmission based on the past received signal
strength metrics of the channel. Additionally, a novel loss
function combining classification loss and ranking loss has
been proposed to improve NN performance. Experimental
results demonstrated that the proposed network is lightweight
and resource-friendly, and the proposed method outperformed
channel selection schemes such as Mask 19. The length of the
connection interval (CI) and the number of packets transmit-
ted per CI affect the energy efficiency and QoS of Bluetooth.
A larger CI corresponds to a longer network lifetime but may
negatively affect the QoS specified as packet delay. A higher
number of packets transmitted per CI corresponds to a higher
QoS, but it consumes more energy, reducing the network life-
time. To extend the network lifetime with guaranteed QoS,
a Q-learning-based Bluetooth scheduling algorithm has been
proposed in [56] to dynamically adjust the length of Bluetooth
CI and the number of packets transmitted per CI. The reward

function was designed so that the scheduling algorithm learns
to satisfy both energy efficiency and quality of service require-
ments. Numerical results showed that the method greatly
outperformed random and fixed action schemes in terms of
network lifetime while also ensuring QoS and stability. For
ZigBee, it is also important to achieve similar interference
cancellation as Bluetooth to ensure that ZigBee is protected
from interference attacks. To decode ZigBee signals in the
presence of interference, literature [57] proposed the use of
an NN as a linear spatial filter to suppress interference. The
NN training is accelerated using the inherent relationship of its
weights, guaranteeing ZigBee communication even when the
interference signal is 20 dB stronger than the ZigBee signal.

LoRaWAN is another low-power, low-data rate, and long-
range communication technology that can transmit signals
over several kilometers [58]. It is suitable for both A2A and
A2G communications. As a low-power wide-area network
(LPWAN), low power consumption and high connectivity are
essential for LoRaWAN. The choice of transmission parame-
ters is decisive for network energy consumption. In order to
reduce energy consumption and improve the performance of
LoRa networks, transmission power values need to be auto-
matically adjusted according to network requirements and link
conditions. According to [59], an EXP3-based transmission
parameter selection algorithm was proposed to choose the
optimal propagation factor and transmission power, which can
significantly reduce the energy consumption of the network.
Packet conflicts arising from a large number of devices
accessing the network can deteriorate network communication
performance. To address this issue, literature [60] proposed
a LoRaWAN channel selection method based on lightweight
decentralized RL. This method selects the appropriate channel
based on acknowledgment information, which can effectively
avoid conflicts between LoRa devices with low computational
complexity. Similarly, literature [61] proposes and evaluates a
LoRaWAN physical-layer transmission parameter assignment
algorithm based on double DQN to select the spreading fac-
tor and power, which can ensure fewer conflicts and better
performance.

The optimal parameters for Wi-Fi link configuration depend
on several factors, including the perceived channel qual-
ity, channel noise, and external interference. To maximize
link layer performance, literature [62] proposed using a
DNN-based Gaussian process regression to predict link layer
throughput and a model-predictive control-based approach to
find the link configuration parameters that optimize overall
link layer performance. Compared to high-throughput adap-
tation mechanisms, DNN-based methods can significantly
enhance link-layer performance. In addition, DNNs were
also utilized to control the contention window of the WiFi
6 system in [63], where DNNs were trained with data gen-
erated from the WiFi 6 simulation system. By using loss
functions, the model’s accuracy in predicting the system’s
throughput, latency, and retransmission rate was improved, and
the model was then employed to determine the optimal con-
figuration of CW under various network conditions based on
the prediction results. This DNN-based Wi-Fi control strat-
egy achieves noteworthy improvements in system throughput,
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average transmission delay, and packet retransmission rate.
To improve the efficiency of downlink MU-MIMO-OFDMA
transmission in 802.11ax networks, literature [64] proposed a
DL-based channel detection (DLCS) and DL-based resource
allocation (DLRA) approach. DLCS employs the compression
capability of DNN to compress the frequency-domain CSI dur-
ing the feedback process. Then, based on the limited CSI, the
AP infers CSI over all frequencies using well-trained DNNs,
reducing the channel sounding overhead of the 802.11 pro-
tocol. Furthermore, the AP uses the uplink channel to train
the DNN for the downlink channel, which makes the training
process easy to implement. DLRA uses DNNs to solve the
mixed-integer power allocation problem to improve system
throughput and enable APs to obtain near-optimal solutions
in polynomial time. The coexistence of long-term evolution
(LTE) and Wi-Fi can severely degrade Wi-Fi performance. To
protect Wi-Fi communication, literature [65] proposed a CNN-
based distributed spectrum management framework. In this
approach, CNN is used to identify the signatures of each tech-
nology and report the spectrum occupation of each channel,
and then avoid them by changing the Wi-Fi operating center
frequency based on the detected harmful wireless networks,
which can improve Wi-Fi performance. Utilizing the abil-
ity to cope with large-scale data, DL is shown to improve
the performance of intrusion detection systems (IDSs) [66].
In [67], a fully unsupervised intrusion detection method based
on K-means was proposed to detect attacks without a pri-
ori information about the data labels. In this method, a
stacked autoencoder is used to capture complex information in
lower dimensional features than the original features, thereby
enhancing the clustering effect of the K-means algorithm. The
clustering results of K-means have only two classes that rep-
resent benign and malicious data. The method was capable
of classifying simulated attacks in Wi-Fi networks with a
detection rate of 92%.

LTE provides secure, reliable, and wide coverage for A2G
communications relying on cellular networks [68]. With LTE
advanced (LTE-A), the average throughput of both uplink and
downlink is further increased [69]. However, the overlap of
frequency bands between LTE, Wi-Fi, and NB-IoT can cre-
ate interference between them, reducing the communication
capability of LTE. To eliminate narrowband interference, an
iterative sparse learning algorithm called sparse cross-entropy
minimization (SCEM) was proposed in [70], which outper-
formed sparse Bayesian learning-based methods. Nevertheless,
handover can impact network quality and must be consid-
ered due to the dependence on the cellular network. In [71],
a supervised learning approach based on NN was employed
to predict the optimal cell handover and improve the Quality
of Experience (QoE). Predicting the data rate of LTE links is
crucial for network management and resource allocation, but
long-term observation of wireless links can result in energy
waste. To address this issue, an artificial NN (ANN)-based
algorithm was proposed in [72] to predict the data rate of
LTE links and avoid congestion while saving energy.

WiMAX is a cost-effective broadband wireless access tech-
nology based on the IEEE 802.16 standard, which covers
longer distances than Wi-Fi [73]. WiMAX can provide A2G

communications, capable of handling high-quality voice and
video streams and providing a high user experience [74]. The
research on AI in WiMAX is mainly focused on two aspects:
1) channel prediction and 2) bandwidth allocation. Accurate
prediction of wireless channel quality is important to improve
network performance. Literature [75] proposed an encoder–
decoder-based sequence-to-sequence DL model that predicts
the future channel quality based on the past channel quality.
Experimental results demonstrated that the RL-based model
outperformed the auto-regression model and the linear regres-
sion model in terms of prediction accuracy. Fair bandwidth
allocation for different types of traffic with limited bandwidth
is important to ensure the quality of service for applications
in WiMAX networks. In [76], an RL-based algorithm was
proposed to learn the traffic demand in the network and make
an efficient bandwidth allocation to meet the QoS requirements
of the application.

5G is committed to providing ubiquitous connectivity and
meeting the increased demand for services, such as data
rate, bandwidth, latency, and other metrics [77]. UAVs,
due to their highly flexible and easy-to-deploy nature, as
well as their robust line-of-sight connectivity links, can
be used as a complement to ground networks to extend
coverage or as relays to collaborate with ground network
communications. Therefore, UAVs are expected to play a
key role in achieving ubiquitous connectivity in 5G [78].
Unlike other communication technologies, 5G can serve a
wider range of applications when used with UAVs. However,
the complexity of the network architecture and the diver-
sity of service requirements make it difficult to optimize
the 5G network with traditional approaches. As a solution,
AI, with its powerful processing capacity and the abil-
ity to interact with the environment, is expected to be an
important method to improve 5G performance [79]. AI has
been widely used in the physical-layer optimization of 5G
networks to improve network performance. Key technolo-
gies, such as nonorthogonal multiple access (NOMA), massive
multiple-input–multiple-output (MIMO), and millimeter wave
(mmWave), can significantly improve 5G performance, and
the feasibility of using DL to enhance these technologies has
been discussed in [80] and [81]. Good performance can be
obtained in scenarios, such as channel estimation, coding and
decoding, and massive MIMO. In [82], ANN was used for
CSI estimation, which improves network throughput and saves
uplink energy by making accurate CSI predictions. Similarly,
literature [83] integrated CNN and LSTM networks to predict
CSI with high accuracy using historical data. Specifically,
the raw data are first preprocessed and converted into CSI
information images. Then, the CSI information images were
fed into the CNN network to extract representative frequency
vectors. Finally, the state representative vectors were fed into
the LSTM network, and the predicted state vectors were
output. The integration of AI into radio resource allocation
techniques is an important area of research for optimizing
the physical layer of 5G networks. To meet the diverse ser-
vice requirements, literature [84] used NNs to jointly optimize
the power and bandwidth resource allocation and thus mini-
mize the total power consumption of the base station, where
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Fig. 4. UAV communication network architectures.

a cascading structure of NN was proposed to meet the QoS
requirements that the fully connected NN cannot guarantee.
The first NN layer is used for optimal bandwidth alloca-
tion, and the second NN layer outputs the transmit power
required to meet the QoS requirements for a given bandwidth
allocation. Simulation results demonstrated that cascaded NN
outperformed fully connected NN in terms of QoS guar-
antees. A Q-learning-based power and resource allocation
algorithm was proposed in [85], which aims to improve the
latency and reliability of URLLC users and the throughput
of eMBB users when considering heterogeneous traffic with
different QoS requirements. This algorithm achieves a sig-
nificant improvement in throughput for eMBB users and a
slight decrease in latency for URLLC users. To deal with
congestion in ultradense networks, Zhou et al. [86] used
deep LSTM learning techniques to locally predict the traf-
fic load of UDN base stations and execute appropriate action
policies based on the prediction results to mitigate conges-
tion intelligently. Simulation results showed that the scheme
outperformed the conventional approach in terms of packet
loss rate and throughput. In response to the increasing traffic
load, Alawe et al. [87] proposed request prediction methods
based on DNN and LSTM, respectively, trained on mobile
network traffic data sets to predict the rate of additional user
requests, reducing the delay in deploying virtual network func-
tions (VNFs). Simulation results confirmed that both DNN
and LSTM-based solutions are more effective than threshold-
based solutions in terms of latency when responding to traffic
variations. Moreover, the growing number of IoT devices has
increased the pressure on cyber-security. To counter network
attacks, Lam and Abbas [88] used CNN to detect anomalous
network traffic and create a more proactive, end-to-end defense
for 5G networks. Network traffic is converted into images that
can be analyzed by CNN for training, and the method identifies

benign traffic with 100% accuracy and anomalous traffic with
a 96.4% detection rate.

B. AI for UAV Swarm Networking and Routing

A UAV swarm comprises multiple UAVs that expand
network coverage and improve network stability compared
to single UAV systems. Current wireless network architec-
tures for UAV swarms can be classified into two types:
1) infrastructure-based networks (IBNs) and 2) ad-hoc-
based FANET networks [89]. These two UAV communi-
cation network architectures are illustrated in Fig. 4. The
infrastructure-based UAV network architecture relies on
ground infrastructure to provide relay services between UAVs
and cannot provide direct communication between UAVs [26].
In contrast, the FANET architecture allows UAVs to communi-
cate with each other directly or indirectly without the need for
ground infrastructure. The topology of a FANET has a signifi-
cant impact on communication efficiency. Common topologies
include star, mesh, and multilayer networks. In a star network,
all UAVs communicate with ground nodes or other UAVs
through a specific UAV, which may lead to network conges-
tion. Mesh networks, where nodes are interconnected, have
greater flexibility and reliability compared to star networks.
However, due to the presence of multiple routes, an effi-
cient routing protocol is necessary to select the best path and
adapt to changes in the network structure [90]. Considering
the variable topology of UAV networks caused by the mobil-
ity of UAVs, signal interference among UAVs, and network
management issues resulting from the energy limitations and
resource differences of UAVs, real-time dynamic and effi-
cient routing protocols and network management solutions
are required to ensure the QoS in UAV networks. Traditional
static routing protocols and network management solutions
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are not adequate. Conventional routing protocols for wireless
networks include static routing protocols, proactive routing
protocols, reactive routing protocols, hybrid routing protocols,
location-based routing protocols, hierarchical routing proto-
cols, and probabilistic routing protocols [91]. However, most
of these traditional routing protocols are not suitable for UAV
networks with high mobility because they were designed
primarily for low-speed self-organizing networks with slow
topology changes. In contrast, AI algorithms, especially ML
algorithms, can make optimal decisions by learning about
the environment, such as network topology, channel state,
and other relevant information. AI-based routing protocols
for UAV networks mainly include topology prediction-based
routing protocols and adaptive learning-based routing proto-
cols, which can address the dynamic nature of the network.
Topology prediction-based routing protocols forecast the link
and network topology states using ML techniques to pro-
duce better routing policies and increase the stability and
throughput of the network. In addition to continuously learning
about the environment, adaptive learning-based routing proto-
cols learn to maximize key network performance parameters,
including network congestion, throughput, energy consump-
tion, network longevity, and fairness, to generate a routing
policy that is suitable for the network’s needs. Q-learning
algorithm is frequently used in adaptive learning-based rout-
ing protocols. Examples include QoS-aware Q-routing, which
can outperform ad-hoc routing algorithms while meeting QoS
requirements, and Q-learning-based multiobjective optimized
routing protocols, which can achieve higher packet arrival rates
than the Q-learning-based routing algorithm while reducing
energy consumption and communication delay [92], [93].

Indeed, efficient allocation of network resources is essential
to optimizing the performance of UAV swarms. In addition
to the dynamic nature of the network topology, it is neces-
sary to consider the allocation of network resources based
on the specific requirements of the scenario. For example, in
order to maximize the spectrum resources available to the UAV
swarm and prevent interference, literature [94] focused on the
resource allocation problem of UAV swarm networks by iden-
tifying the ideal frequency band for each UAV. However, this
approach did not consider the energy management issue of
UAVs and did not dynamically arrange the spectrum resources
according to demand, leading to a shorter operation cycle for
the UAV swarm network. Therefore, in order to maximize
energy efficiency and prolong the network lifetime, it is cru-
cial to dynamically allocate spectrum resources based on the
application requirements of the UAV swarm network, which
can ensure that spectrum resources are used efficiently and
effectively while also meeting the needs of the application.
In addition, due to the high dynamic and complexity of UAV
swarm service scenarios, using traditional algorithms to solve
UAV swarm network problems takes a lot of time and can-
not achieve real-time processing and decision making. The
use of AI algorithms, especially ML algorithms, to solve
network problems is a current research hotspot. AI algo-
rithms are able to adapt to the dynamics and complexity of
the UAV swarm environment and make real-time decisions.
Digital twin and ML have become very popular topics in

recent years. The effectiveness of the suggested approach is
demonstrated by the intelligent network reconfiguration of
UAV swarms in time-varying environments. In [95], a dig-
ital twin-based intelligent collaboration framework for UAV
swarms was suggested to better learn the optimal decisions
from the network environment by fusing digital twin tech-
niques with RL techniques. Experiments demonstrated that the
algorithm can select the optimal network model in different
scenarios. In order to provide broadband wireless communi-
cation, mmWaves are introduced to UAV swarms, but this
also creates issues with millimeter beam misalignment due
to UAV movement and interference among UAV swarms.
To manage spectrum resources and UAV energy consump-
tion with improved flexibility and efficiency, a new resource
management architecture was developed as a solution to this
challenge in [96]. The effectiveness of the proposed spec-
trum management architecture was validated in five potential
scenarios.

C. AI for UAV Collision Avoidance

Collision avoidance technology is a crucial issue that
requires careful consideration during the flight of UAVs. UAVs
must be able to avoid collisions not only with other UAVs
but also with various obstacles, such as buildings, birds, and
trees. Generally, UAV collision avoidance techniques involve
two steps: 1) obstacle sensing and 2) collision avoidance [97].
The process of a UAV gathering information about obstacles
is known as obstacle sensing. By using cooperative obstacle-
sensing techniques, UAVs can share information about their
own conditions as well as information about the surround-
ing obstacles. However, current methods are only suitable for
UAVs that use the same protocol and are unable to acquire
information about obstacles in the surrounding environment.
To obtain information about obstacles in the surrounding
environment, sensors can be used to sense the environment,
and imaging and positioning techniques can be utilized to
determine the location of obstacles.

For a swarm of UAVs, position information can be shared,
and internal collisions can be avoided by planning the flight
paths of each UAV within the swarm. For example, in [98], a
formation flight control algorithm based on DRL was proposed
for the navigation of a UAV swarm, which effectively reduced
the collision probability. The collision rate of successfully
formed UAVs was reduced to 3.4% without colliding with
other UAVs. However, for UAVs outside of the swarm, since
the flight trajectory of other UAVs cannot be known, the flight
trajectory must be adjusted based on the real-time dynamic
environment to avoid collisions. After obtaining information
about the UAV trajectory and surrounding obstacles, it is pos-
sible to predict whether a collision will occur by using a
collision prediction method. The collision avoidance algorithm
then performs a collision avoidance operation, typically by
devising a brand-new collision-free path. Numerous academic
works have studied the collision avoidance and prediction of
UAVs. In [97], collision prediction algorithms were classi-
fied into two main categories: 1) trajectory fitting methods
and 2) ML-based methods. The trajectory fitting function
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Fig. 5. UAV-assisted IoT application scenarios.

often cannot achieve accurate prediction because the environ-
ment is too complex during UAV movement. Fortunately, ML
algorithms can make more accurate trajectory predictions by
extracting features. Among the ML algorithms, CNN excels
at extracting features, while RNN and RL are capable of
acquiring knowledge from past experiences, allowing for more
accurate trajectory prediction. In [99], LSTM was employed
to predict the motion of obstacles, and an uncertainty-aware
multiagent dynamic collision avoidance algorithm based on
nonlinear probabilistic velocity obstacles was proposed, which
can avoid obstacles that the optimal reciprocal collision avoid-
ance algorithm cannot avoid. In [41], OD and DRL were
utilized to solve the problem of collision-free autonomous
UAV navigation supported by simple sensors. OD is used to
provide accurate environmental observations for DQN, and
DQN is used to make optimal flying decisions. Compared
to the algorithm using DRL alone, the integration of OD
with DQN not only enables collision-free UAV flight but
also reduces the flight distance. Literature [100] proposed
a two-stage RL strategy to solve the UAV collision avoid-
ance problem under imperfect perception. The first stage
uses a supervised training method with a loss function to
optimize the collision avoidance strategy, and the second stage
uses a policy gradient to refine the collision avoidance strat-
egy. This two-stage RL approach has increased performance
in terms of success rate and trajectory length compared to
conventional RL. In [101], UAVs were used to collect data

from ground devices, and Q-learning was used to help UAVs
avoid collisions without knowing the trajectories of other
UAVs. This scheme allows the UAV to avoid collisions and
can reduce the path length of the UAV when collecting data.

IV. UAV-ASSISTED IOT APPLICATION SCENARIOS

Fig. 5 showcases a wide range of application scenarios
where UAV-assisted IoT can be utilized. One such scenario
involves UAVs being deployed for monitoring crop growth,
spraying pesticides, and automating farms for smart agricul-
ture. In times of natural disasters or emergencies, UAVs can
provide emergency communication services, deliver supplies,
and monitor the environment. UAVs can also play a crucial
role in empowering smart cities by supporting video surveil-
lance, smart transportation systems, and healthcare. On the
modern battlefield, UAVs are of significant tactical importance,
serving to provide communication services and reconnaissance
in addition to specific military UAVs that are designed to
perform military missions. By incorporating AI, UAVs can
enhance the efficiency of various IoT tasks, making them more
effective and reliable.

A. Agriculture

Food is an essential component of people’s lives, and
according to a recent survey by Van Dijk et al., the global
demand for food is expected to increase by 35%–56% by 2050
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compared to 2010 [102]. To meet this rising demand, there is a
need to develop agricultural technology to drive an increase in
food production. Furthermore, the use of IoT can enable real-
time monitoring and management of arable land, ushering in
a new paradigm for agricultural development [103]. By using
sensors to obtain environmental information, such as images
and temperatures, and then analyzing this data and making
immediate decisions through big data or AI methods, applying
IoT and AI to agriculture can increase productivity and yields
while also reducing costs. This provides support for smart
and precision farming. However, the high cost of constructing
terrestrial networks and the limited network services due to
fixed terrestrial network equipment severely limit the applica-
tion and development of IoT in agriculture. In contrast, UAVs
offer a more economical and flexible means of deployment,
data collection, and providing high-quality network services
on demand compared to expensive terrestrial and satellite
networks. UAVs are typically used in agriculture for crop
monitoring, drug spraying, and other tasks. Specifically, they
perform data collection, network provisioning, and special-
ized agricultural tasks. To perform data collection, the UAV
first collects information from ground sensors or through sen-
sors equipped on the UAV. The data is then transferred to
a computing center or processed on the UAV and analyzed
by algorithms to help make informed decisions. AI algo-
rithms can be leveraged for flight control, data processing,
and decision-making processes in UAVs, resulting in accel-
erated data processing and instantaneous decision-making.
DL techniques, particularly CNN, possess exceptional image
processing capabilities. The combination of DL and UAVs
can effectively enhance their utilization in smart agriculture,
enabling them to perform tasks, such as vegetation identifica-
tion, classification, and segmentation, crop counting and yield
prediction, crop mapping, weed detection, and the detection
of crop diseases and nutrient deficiencies [104]. Furthermore,
UAVs can be utilized for spraying pesticides, leading to
reduced labor costs and the realization of agricultural automa-
tion. AI can also aid in devising UAV operation strategies to
enhance their efficiency. To enable UAVs to gather farm data
in a cost-effective and efficient manner for further analysis and
decision making, Ardakani and Cheshmehzangi [105] utilized
Q-learning to plan UAV trajectories in intelligent farm remote
sensing. This approach ensures that data is collected with the
least amount of energy consumption and time delay. However,
in future research, more practical models will need to be
explored.

B. Disaster and Emergency

Natural disasters, such as earthquakes, often lead to infras-
tructure damage, including houses and roads. The unavail-
ability of communication facilities can create significant
inconvenience for rescue operations. However, unlike ground-
based networks, UAVs are resilient to most natural disas-
ters and can be easily deployed to provide communication
services in disaster-stricken areas. Furthermore, UAVs can be
equipped with sensors to gather site conditions and environ-
mental information, aiding in disaster situation analysis and

facilitating rescue missions. Despite their advantages, UAVs
have limited energy and need to ensure energy efficiency
to extend their service time while providing communication
services and performing special tasks. Additionally, UAVs
operate in a dynamic environment that traditional algorithms
may struggle to handle. Utilizing AI to optimize resource allo-
cation for UAVs can adapt well to the dynamic environment,
provide autonomy to UAVs, and enhance UAV automation,
improving their efficiency in performing tasks and energy effi-
ciency. To improve UAV efficiency and energy efficiency while
performing tasks, literature [106] explored a scenario where
a multimission UAV performs various tasks, such as material
transportation and communication services in a post-disaster
area. The study employed greedy and insertion algorithms to
plan the mission. Both heuristic algorithms effectively reduced
the planning time for the UAV compared to the optimal algo-
rithm while maintaining high performance, enabling quick
responses to unexpected situations. Furthermore, UAVs can
also be utilized for airdrops of supplies in disaster areas and
forest fire fighting. It is crucial to note that ground communi-
cation facilities may suffer damage due to disasters, making
communication services essential for post-disaster reconstruc-
tion efforts. UAVs can serve as flying base stations to provide
communication services in disaster areas. For instance, lit-
erature [107] explored an emergency communication system
that used UAVs as flying base stations to assist ultradense
networks. They proposed a DQN-based resource allocation
scheme to maximize the system’s energy efficiency while
ensuring user communication quality to handle system emer-
gencies when communication resources are insufficient. To
expand network coverage, multiple UAVs often form UAV
swarms to provide communication services to disaster areas.
However, ground users, such as escapees and rescuers, are typ-
ically mobile, necessitating the UAV swarm network to adapt
its network structure to the ground personnel’s activities to
provide as many services as possible. In [108], a mobility
model was proposed for simulating the movement of victims in
disaster situations. The study then combined Jaccard distance
and simulated annealing algorithms to deploy UAV swarm
networks that avoid network disconnections while increasing
the number of users served.

C. Smart City

Although there is no precise definition of “smart city,” it
can be considered an urban optimization solution that uti-
lizes advanced information and communication technologies,
IoT technologies, big data, and AI to empower cities, thereby
facilitating city management and providing convenience to cit-
izens [109], [110]. Typical smart city application scenarios
include smart transportation systems, smart city monitoring,
smart healthcare, smart grid, smart education, and others [111].
The implementation of smart cities is crucial for achieving
energy savings, reducing emissions, protecting the environ-
ment, and promoting sustainable urban development. UAVs
have many applications in smart cities, including collecting
sensor information, transporting goods, and monitoring the
city. The following are three scenarios that demonstrate the use
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of UAVs in smart cities: 1) urban surveillance; 2) intelligent
transportation systems (ITSs); and 3) healthcare.

1) Surveillance: As urban populations continue to grow,
cities must invest more resources in enhancing urban security
to protect the living standards of their citizens. In addi-
tion to placing security personnel on guard, major cities
have deployed advanced video surveillance systems to moni-
tor abnormal situations [112]. However, security personnel is
unable to provide real-time monitoring, and the labor cost is
relatively high. Although video surveillance systems can offer
real-time monitoring, effectively identifying various hazardous
situations from a fixed perspective remains challenging. UAVs
are highly flexible and capable of tracking and monitoring tar-
gets in an automated manner. UAVs can be deployed quickly
and can effectively respond to unexpected situations, as well
as compensate for the blind spots of the video surveillance
system. Combining UAVs with video surveillance systems can
further enhance urban security.

Accurately identifying and tracking anomalies requires
UAVs to have image recognition technology, which is often
implemented using AI algorithms. CNN and OpenCV are
widely used models in the field of image recognition and have
demonstrated good performance. AI can also preprocess image
data to reduce redundant data for transmission and enable UAV
path planning and resource management, improving surveil-
lance and energy efficiency. However, computationally inten-
sive tasks, such as data processing, can impose a significant
energy and computational burden on UAVs. The combination
of UAVs and MEC offers a solution to this dilemma. Data
processing tasks can be performed by either transmitting data
from the UAV to a remote server or performing the processing
on a UAV equipped with a MEC server. Literature [113] inves-
tigated whether image processing should be performed locally
or offloaded to the MEC server when using a cluster of UAVs
for crowd monitoring and facial recognition. Experimental
results showed that offloading image processing tasks to the
MEC server can reduce energy consumption and processing
time by more than 100 times. Most surveillance systems rely
on a single data source for target localization, and the use
of multi-UAV sensor networks is uncommon but has enor-
mous potential. Literature [114] presented a novel multi-UAV
surveillance system for multitarget identification and tracking
that includes a video image-based moving target identification
algorithm, a group intelligence optimization-based collabora-
tive UAV task assignment algorithm, and an ML and data
fusion-based localization model. The ML algorithm is used
to extract the topology of the data based on the multisource
data collected by UAVs and sensors to establish a mapping
between the data and the environment. The target’s location is
estimated using mapping based on the target’s relevant data.
Finally, pigeon-inspired optimization is used to coordinate
multiple UAVs, taking energy constraints into account to deter-
mine which UAV is assigned to perform the localization and
tracking tasks. The system has been proven to have high posi-
tioning and tracking accuracy. In [115], UAVs were employed
for crime prediction. These UAVs are divided into three cate-
gories: 1) sensing UAVs; 2) computational analysis UAVs; and
3) deterrence UAVs. Sensing UAVs gather information from

sensors, such as images and sounds, and transmit it to com-
putational UAVs. Subsequently, well-trained ML models are
utilized by computational UAVs to predict potential crimes.
Finally, depending on the prediction results, deterrence UAVs
are dispatched to the relevant areas for surveillance. The exper-
iments demonstrated that when the deterrence range is set at
1280 m, a total of 20 UAVs can effectively prevent almost
all crimes. In [116], a UAV swarm was utilized to develop
a dependable surveillance system. The researchers proposed
a collaborative, model-free, multiagent DRL-based path plan-
ning algorithm to optimize energy consumption and maximize
the number of users that could be monitored. The algorithm
achieved this objective by determining the optimal trajec-
tory within the surveillance area, reducing overlapping and
shadowed regions, and expanding UAV coverage. Simulation
experiments confirmed that the proposed algorithm surpassed
existing algorithms in terms of surveillance coverage, user
support capacity, and computational cost.

2) Intelligent Transportation Systems: ITSs constitute a
crucial aspect of smart cities. As information and com-
munication technology, autonomous driving technology, and
connected vehicle technology advance, ITSs are also pro-
gressing and moving toward the automation of transportation
systems [117]. Despite technological advancements in traf-
fic systems, human resources, such as traffic police, are still
required to be present on site, resulting in lengthy response
times. However, UAVs can be rapidly and flexibly deployed
to assist with various ITS automation scenarios. For instance,
UAVs can collect road data for ITS decision making and
scheduling, offer immediate responses to emergency situa-
tions, such as traffic accidents, deliver on-site information, and
act as flying base stations to provide communication services
for vehicles and roadside units [118].

When examining UAV-assisted vehicular networking,
throughput and latency are typically utilized as key
performance metrics. However, these traditional metrics are
inadequate for reflecting the freshness of information, which
is crucial for enabling services, such as autonomous driv-
ing and accident prevention. To enhance the timeliness of
UAV-assisted road information collection for telematics, lit-
erature [119] introduced the concept of Age of Information
(AoI) to ensure the information’s freshness and use the DDPG
algorithm to plan the UAV trajectory, ensuring freshness with
minimal throughput constraints. Simulation results showed
that the DDPG-based UAVs’ trajectory and scheduling pol-
icy achieved the lowest expected weighted AoI and average
age compared to fixed and random trajectory approaches and
static UAV placement methods. Routing protocols are essen-
tial for high-speed data transmission. To ensure secure and
efficient routing for UAV-assisted vehicular ad-hoc networks,
literature [120] used an ACO algorithm to improve the routing
algorithm of FANET to supplement disconnected FANET links
with UAVs, thereby reducing the end-to-end delay and rout-
ing overhead. However, the protocol is vulnerable to attacks
by malicious UAVs and still requires appropriate security pro-
tocols to ensure route security. To improve energy efficiency
when UAVs are used as flying base stations, literature [121]
employed heuristic algorithms to determine the location and
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altitude of UAVs to avoid overlapping coverage of multiple
UAVs and equalization of coverage and transmit power of
a single UAV. However, the network switching problem due
to vehicle movement was not considered. UAVs can serve as
flying base stations and provide content services to vehicles
on roadways where communication infrastructure is lacking.
However, their limited storage and battery capacity necessi-
tate rational trajectory planning and content caching to serve
as many vehicles as possible while minimizing energy con-
sumption. In a recent study [122], the PPO-Clip algorithm
was utilized to control the UAV’s trajectory and maximize its
energy efficiency by maintaining as many downlinks as possi-
ble with minimal energy consumption. The UAV can acquire
content from and provide content to the vehicle. Nonetheless,
the study’s scenario assumptions only considered the one-way
driving process of a road section and did not account for the
continuity of UAV services. Therefore, further advancements
in scenario assumptions are necessary.

3) Healthcare: UAVs have various applications in
the healthcare field, such as gathering human health
information and transporting medical supplies. In a study by
Ullah et al. [123], UAVs were proposed to monitor the body
area network (BAN). The study also considered a specific
scenario in which a link was established with the driver
through a vehicle network to monitor their physical condition
and prevent accidents. Furthermore, with the emergence
of the COVID-19 pandemic, UAVs have been employed
to collect samples and deliver medical supplies, which not
only conserves human resources but also mitigates the risk
of infection [124]. When UAVs are utilized in healthcare
services to share medical data, there is a significant risk
of data leakage [125]. However, the emerging blockchain
technology provides a promising solution to this challenge
of data security and privacy [126], [127]. The utilization
of cryptographic techniques, including hash functions and
public-key encryption, enables blockchain to secure shared
data, guarantee the authenticity of stored information, and
enhance the security and transparency of UAVs. This could
potentially address several issues faced by UAVs in health-
care, including coordination, security, collision avoidance,
privacy, decision making, and signal interference [128].

D. Military

UAVs have become an integral component of modern war-
fare, offering a wide range of capabilities that make them
essential to military technology. These capabilities include the
ability to establish temporary communication networks, detect
the battlefield through sensors, employ advanced AI algo-
rithms for target identification, and even function as weapons
to execute military missions [129], [130]. The battlefield is a
highly dynamic and hazardous environment, and UAVs must
continually adjust their trajectories to ensure their safety. To
achieve fast path planning, literature [131] proposed utilizing
a GA implemented in parallel on a graphics processing unit
to generate a trajectory by moving the UAV’s trajectory points
in 3-D space, which minimizes fuel consumption while sig-
nificantly reducing path planning time. Another critical issue

to consider is how to protect UAVs during military conflicts.
During missions, UAVs continuously send encrypted location
information to ground-based stations. If this information is
leaked, it can pose a severe threat to the UAVs. Literature [132]
proposed the use of UAVs to collect encrypted messages sent
by enemy UAVs within line of sight and their fuzzy location
information, and then utilized NNs to learn the correspondence
between plaintexts and ciphertexts to crack the plaintexts.
When the number of opposing UAVs is higher, the amount
of data that can be collected is larger, which allows for train-
ing a more accurate NN model. Therefore, it is advisable to
avoid deploying military UAVs in large numbers in small areas
to minimize the risks.

V. TASKS AND METHODS IN AI-ENABLED

UAV-ASSISTED IOT

In the preceding section, we provided a thorough explana-
tion of the scenarios for IoT applications and specific examples
of their usage. In these scenarios, UAVs are primarily respon-
sible for data collection and network service provision. In
the subsequent sections, we will delineate the challenges that
UAVs may encounter while performing these tasks, the cru-
cial metrics that must be addressed, and the associated AI
solutions, all in the context of relevant literature.

A. Data Collection

One important application scenario for UAVs is to collect
sensor data and transmit it back to the data center for process-
ing. The process of data collection has extremely stringent
requirements for data timeliness, requiring close attention to
the processes involved in generating, transmitting, and pro-
cessing information to ensure the quality of service and the
performance of the real-time network system [133]. Due to
the requirements for time delay and the limitation of UAV
energy, it is important to rationally plan the path and trans-
mission scheduling of UAV [134]. During data collection, the
UAV’s flight path needs to be reasonably planned, taking into
consideration factors, such as the age of the information, data
collection efficiency, energy consumption, and other require-
ments. Compared to traditional optimization algorithms, AI
algorithms, such as group intelligence-based algorithms and
RL algorithms, can effectively handle dynamic environments
and provide near-optimal solutions in real time for dynamically
planning UAV paths. In the following article, we will review
the literature on UAV data collection in terms of three metrics:
1) data collection timeliness; 2) data collection efficiency; and
3) energy consumption. Table III presents a summary of the
optimization targets, performance metrics, and AI solutions for
UAVs performing data collection.

The AoI is a metric that characterizes the freshness of
information and can also be used to indicate the timeliness
of information transmission. To reduce the weighted sum of
the AoI of sensor information collected by UAV, a data col-
lection algorithm based on DQN was proposed in [135]. The
algorithm aimed to find the optimal flight trajectory of the
UAV and the transmission scheduling of the sensor node
(SN) while considering the energy constraint of the UAV
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TABLE III
OPTIMIZATION TARGETS, PERFORMANCE METRICS, AND AI SOLUTIONS DURING UAV IN PERFORMING DATA COLLECTION

during the optimization process. Simulation results demon-
strated that the weighted sum of AoI decreases monotonically
with the coverage radius of the SN and increases monoton-
ically with the number of SNs. In [136], a more complex
scenario was considered where the ground nodes have lim-
ited energy and the UAVs have to decide between charging
the ground nodes and collecting data. The optimization of
information and energy transfers is jointly considered in the
trajectory planning process to minimize the average AoI of
the system. To address this problem, a trajectory planning
and scheduling scheme based on DQN was proposed. The
DQN-based scheme was demonstrated to find the optimal solu-
tion in simulation experiments and achieved a significantly
smaller average AoI compared to the energy-based and greedy
schemes. A higher flight speed can reduce the flight time of
UAVs and lower AoI at the cost of increased energy con-
sumption. Additionally, the location where the UAV hovers
plays a crucial role in determining the uplink transmission
time and power consumption of data transmission. As a result,
joint optimization of energy consumption, hovering location,
and AoI is necessary to enhance the efficiency and quality of
UAV-assisted data acquisition. To minimize the weighted sum
of the average AoI, propulsion energy of the UAV, and trans-
mission energy of the IoT devices, literature [137] proposed a
TD3-based AoI-energy-aware UAV trajectory planning algo-
rithm (TD3-AUTP) to jointly optimize the UAV’s flight, hover
position, and data collection bandwidth allocation. Simulation
results demonstrated that the TD3-AUTP algorithm outper-
forms the DQN and actor–critic (AC) algorithms in terms of
achievable AoI and energy efficiency. The process of sampling
and queuing SNs has a significant impact on the age-optimal
trajectory of UAVs, which has not been thoroughly inves-
tigated. Literature [138] investigated the age-optimal data
collection problem for UAV-assisted IoT systems while con-
sidering the data sampling, queuing, and UAV-assisted relaying
processes for SNs. To replace the updated packets in each SN
buffer with newly sampled packets, a sampling replacement
strategy was employed. Furthermore, a DQN-based trajec-
tory planning algorithm was proposed to design age-optimal

trajectories for UAVs by minimizing the weighted sum of AoI,
packet loss rate, and UAV energy consumption. The experi-
mental results demonstrated that this scheme can effectively
reduce the AoI and packet loss rates compared to the greedy
algorithm. The information gathered by UAVs through surveil-
lance and remote sensing is highly time sensitive, and delays
beyond acceptable limits for data collection and transmission
can lead to mission failure. Therefore, it is crucial for UAVs
to collect data promptly and deliver sensing data on time.
Literature [139] considered a realistic data transfer scenario,
encompassing the entire UAV mission from data collection
to data offloading, and used a GA-based approach to deter-
mine UAV flight paths that satisfy time, energy, storage, and
communication constraints. The proposed GA-based approach
provides near-optimal solutions and has a significantly faster
execution time than the brute-force approach. To ensure the
timely delivery of data and prevent packet expiration or loss,
literature [140] utilized Q-learning to plan the trajectory of the
UAV to guarantee the AoI and deadline of the data, result-
ing in a reduction of expired data packets. In comparison
to GA, Q-learning performed better in terms of time con-
sumption. Moreover, in [141], the issue of collision avoidance
during UAV data collection was taken into account, and a
SARSA-based learning algorithm was proposed to minimize
the average AoI of the sensor while accounting for the con-
straints of UAV energy and collision avoidance. The proposed
algorithm was able to approximate the optimal policy under
certain conditions.

The efficiency of data collection by UAVs is determined
by both the amount of data collected and the duration of the
collection. Specifically, the greater the amount of data col-
lected per unit time, the higher the data collection efficiency.
Optimizing UAV communication scheduling and trajectories
is an important way to improve the data collection efficiency
of wireless sensor networks (WSNs) [153]. To improve the
efficiency of UAV data collection, literature [142] proposed
a trajectory planning algorithm based on TD3 that mini-
mizes the data collection time while satisfying throughput and
motion constraints. Notably, the proposed algorithm accounts
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for realistic 3-D urban environments with imperfect CSI and
achieves a shorter data acquisition time than the ACO-based
approach. WSNs that use backscatter communication tech-
nology can be used to monitor the environment in remote
areas without the need for maintenance or battery replacement.
However, the transmission range of backscatter communica-
tion is limited. To address this issue, literature [143] proposed
the use of multiple UAVs to assist in data collection and
reduce UAV flight time under the constraint of UAV charg-
ing. First, a Gaussian mixture model clustering method was
proposed to divide the backscatter SNs into clusters. Then,
an option-based hierarchical DRL method was proposed to
optimize multi-UAV trajectory, charging, and data collection.
Single-agent deep option learning (SADOL) and multiagent
deep option learning (MADOL) algorithms were proposed for
deterministic and fuzzy boundary scenarios, respectively. The
MADOL and SADOL algorithms’ effectiveness was deter-
mined by comparing them to the MADDPG, DDPG, and
DQN algorithms. Given the constraints of onboard power and
flight time for UAVs, maximizing data collection from wireless
network devices through the shortest flight path is essential to
improving data collection efficiency. In [144], a DQN-based
algorithm was proposed for finding the optimal trajectory
and data collection in a specific coverage area while balanc-
ing data collection, trajectory, and convergence time. Dueling
DQL was also employed to enhance the system’s performance
and convergence speed. The DRL-based algorithm achieves a
performance level that is comparable to the optimal genie solu-
tion associated with perfect knowledge of the environment.
The success rate of data collection is an important indica-
tor in the process of collecting data. To address the problem
of UAV data acquisition under dynamic scenarios, such as
moving nodes, node additions, and deletions, a two-stage DRL
framework was proposed in [145]. This framework plans UAV
trajectories online using a DNN to model the dynamically
changing environment in the first layer and a DQN to plan
trajectories in the second layer. Experimental results demon-
strated that this two-stage DRL framework can improve the
data acquisition success rate. Determining collision-free trajec-
tories in a scenario with multiple UAVs collecting data from
distributed IoT nodes is a challenging task. Literature [152]
addressed the collision avoidance problem in this scenario and
proposed a dueling double-depth Q-network (D3QN)-based
algorithm to learn decision strategies without prior knowledge
of the environment. This algorithm can avoid collisions while
maximizing the amount of collected data.

The transmission of large amounts of redundant data, inef-
ficient data collection, and unreasonable allocation of UAV
transmission power can result in excessive energy consump-
tion. To address this issue, a matrix completion-based scheme
for selecting sampling points and optimizing the trajectory
of intelligent unmanned aerial vehicles (IUTO) was proposed
in [146]. This scheme, called sampling points selection joint
IUTO (SPS-IUTO), employed a matrix-based approach to
select sampling points and an optimized ACO algorithm
to optimize the UAV’s trajectory. The SPS-IUTO solution
achieved lower data redundancy and energy consumption.
By using the proposed scheme, redundant data transmission

is minimized, resulting in a more efficient data collection
process and optimized energy consumption. In scenarios where
IoT devices are deployed for continuous operation with lim-
ited memory and energy capacity, it is crucial to collect data
in an energy-efficient manner at the right time. UAVs can
enhance the energy efficiency of deployed IoT devices by
targeting their trajectories at IoT devices that are far away
from ground-based stations. To minimize the overall energy
consumption of all devices during UAV data collection, litera-
ture [147] employed the SARSA algorithm to obtain the UAV
trajectory, which solved the joint problems of UAV trajectory,
device association, and transmit power allocation while also
ensuring that each device meets a given data rate constraint.
Compared to the particle swarm optimization (PSO) algorithm,
the SARSA algorithm reduces the total energy consumption
of the devices. To collect data in a massive machine-to-
machine communications (mMTCs) scenario, it is essential
to identify the optimal hovering position and flight strategy
for UAVs within the cluster to minimize energy consump-
tion. Literature [148] proposed a novel modeling technique
based on the idea of an artificial energy map (AEM) to
determine the UAV’s hovering position by using a greedy
learning clustering (GLC) approach to optimize the cluster-
ing of machine-type communication devices and the UAV’s
hovering strategies to minimize both transmission and hover-
ing energy, and utilizing GAs to identify the flight strategy
with the lowest energy consumption. Compared to the K-
means principle, this scheme reduces the UAV’s flight distance
by 11% and its energy consumption by 25%. Overall, this
approach presents a promising solution for minimizing energy
consumption in mMTC data collection through efficient UAV
placement optimization. Due to the energy constraints of UAVs
and SNs, frequent communication with UAVs can quickly
deplete the SNs’ energy. Therefore, it is important to study
energy conservation in UAV-assisted WSNs. Literature [149]
utilized UAVs to access cluster heads in a specific order to
address the data collection challenge in clustered WSNs and
proposed a pointer network-A* (Ptr-A*)-based algorithm for
planning UAV paths, which reduces the energy consumption
of UAVs during the data collection process. Ptr-A* is a novel
DRL technique that is similar in architecture to sequence-to-
sequence network models, but it uses an attention mechanism
as a pointer to select the items of its input sequence as outputs.
The proposed path planning algorithm can not only acceler-
ate the training of small-scale clusters but can also be used
to solve larger scale cluster problems. In agricultural moni-
toring, a vast amount of information from SNs needs to be
collected. In [150], a hierarchical data collection scheme was
proposed that integrates exact and greedy methods for UAV-
assisted agricultural sensor information collection. By dividing
the nodes into different layers, the exact and greedy meth-
ods can be intelligently matched. The UAV paths were then
planned using an ACO algorithm. ACO is a heuristic algo-
rithm that simulates the behavior of ants in searching for
food and finds the optimal solution or near-optimal solution to
the problem by simulating the information exchange and the
release and update of pheromones during the search process.
It has better performance in path planning compared to the
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Fig. 6. UAV-assisted and UAV-enabled MEC architectures.

TABLE IV
OPTIMIZATION TARGETS, PERFORMANCE METRICS, AND AI SOLUTIONS DURING UAV IN PROVIDING NETWORK SERVICES

simulated annealing algorithm and is closest to the optimal
solution. Simulation results demonstrated that the proposed
method can collect data more efficiently and plan paths for
UAVs with a lower energy cost. Literature [151] also investi-
gated the data collection problem for large-scale WSN nodes,
but with multi-UAVs. The sensors are first clustered and sub-
clustered using K-means, and then the UAV trajectories and
numbers are planned using GA so that the data can be col-
lected in the shortest time and at the lowest cost. This scheme
is able to obtain optimized UAV numbers and trajectories and
demonstrates the impact of clustering of SNs, the number and
selection of cluster heads, and UAV trajectories and altitudes
on data collection times.

B. Network Service Provision

By offloading computing tasks to MEC servers, end devices
can get high-quality services and reduce energy consump-
tion [154]. UAVs can provide low-latency and dependable

computing and processing capabilities to devices with limited
resources by carrying MEC servers or connecting to MEC
servers. UAV-assisted and UAV-enabled MEC architecture has
been widely discussed and has attracted a lot of research in
academia, and the architecture can be seen in Fig. 6 [19].
However, considering the limited energy of UAVs, computa-
tional offloading, data offloading, trajectory optimization, and
resource allocation issues need to be addressed during service
provision to improve energy efficiency and service quality. RL
is widely used to enhance network performance by making
real-time decisions based on the environment, which provides
a solution to the challenges faced under the dynamic UAV-
assisted and enabled MEC architecture and further improves
network performance. Table IV summarizes the optimization
objectives, performance metrics, and AI methods for UAVs in
providing network services.

When providing network services, UAV must consider how
to improve the quality of its network services. The main
metrics for evaluating UAV network services are QoS and
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service delay. The typical practice is to expand the service
range of the UAV network, improve the QoS of users, and
reduce the service latency of users through UAV trajectory
planning, resource allocation, and computation offloading.
Besides, it is necessary to pay attention to the fairness and
throughput of the UAV communication system in the process
of optimizing network services to avoid wasting resources.
In [155], UAVs were equipped with computing resources to
act as edge servers and collaborate with the ground base
station to process the tasks of the ground devices. And a
multiagent RL (MARL) algorithm was proposed for solv-
ing the joint optimization problem of computational allocation
and resource allocation, thus reducing the task response time
under the energy constraint of UAVs, where task allocation
and bandwidth allocation are handled by two separate agents.
Experimental results demonstrated that MARL can signifi-
cantly reduce the response time of complex tasks and outper-
form single-agent RL. The MEC and UAV-assisted vehicular
networks were considered in [156], where UAVs and base sta-
tions are equipped with MEC servers to provide services to
ground vehicles. And an MADDPG-based scheme for man-
aging multidimensional resources was proposed to cope with
highly dynamic vehicle scenarios with latency-sensitive and
computationally intensive applications. This scheme can sup-
port as many offload tasks as possible while meeting QoS
and latency requirements. Literature [157] considered a UAV-
assisted MEC system where the UAV was equipped with MEC
server and could provide offloading services to nearby user
equipment (UE). The UE offloaded some of its computing
tasks to the UAV, while the remaining tasks were executed
locally. A DDPG-based algorithm was used to provide compu-
tational offloading decisions for single UAV-assisted multiuser
scenarios. Experimental results demonstrated that the DDPG
algorithm is easier to converge on and can achieve lower
latency compared to the DQN algorithm. Literature [158]
considered a computational offload scenario for a multi-UAV
edge computing network, where tasks can be executed locally
in the UAV or sent to the MEC server via the UAV. An
intelligent task offloading algorithm (iTOA) based on deep
Monte Carlo tree search (MCTS) is proposed to solve the
computational offloading and computational and communica-
tion resource allocation problems, where MCTS decides the
offloading action by simulating a decision trajectory and a
split-depth NN is proposed to provide a priori probabilities for
MCTS and thus accelerate the search convergence of MCTS.
The iTOA algorithm improves the latency performance of the
system compared to greedy search and game theory-based task
offloading methods. When UAVs are utilized as flying base
stations, they offer a flexible and adaptable means of service
coverage through trajectory planning. In [159], a three-tiered
edge computing system was employed. The first tier con-
sists of sensors that generated data, the second tier involves
UAVs carrying MEC servers for initial data processing, and
the third tier includes an operations center responsible for the
final processing of the data. By utilizing a combined scheme
that plans the UAV path through DQN and then schedules the
network through Lyapunov optimization, the data latency is
significantly reduced.

Energy efficiency is an important concern for UAVs that
provide network services. The UAVs’ energy efficiency is
positively correlated with their effective service time. In
order to enhance their energy efficiency, we can reduce their
energy consumption, improve their service efficiency, and
extend their service time through trajectory planning, compu-
tational offloading, and power control techniques. Designing
an efficient computational offload method for SAGIN is a chal-
lenging task, considering the dynamic channel conditions and
coverage due to the high mobility of the airborne network,
as well as the complex and dynamic network conditions
and resources of the different network segments in SAGIN.
In [160], a SAG-IoT network architecture was proposed
where UAVs carry MEC servers, satellites are connected to
cloud servers through a backbone network, and tasks gen-
erated by IoT devices can be executed locally or offloaded
to UAVs and satellites. To address the joint edge server
virtual machine computational resource allocation and task
scheduling problem, the problem was formulated as a mixed-
integer planning problem, and an efficient heuristic algorithm
was proposed to solve it. Additionally, they proposed an
AC-based RL approach to learn the best offloading scheme
from dynamic SAGIN environments. The proposed heuris-
tic algorithm achieves a performance very close to that of
the brute-force approach. Moreover, compared with random
and greedy algorithms, the AC-based task offloading scheme
can achieve both low latency and low energy consump-
tion. UAVs that employ a UAV-assisted MEC architecture
need to consider the communication link issues from the
UAV to the MEC server, which requires additional considera-
tion for the allocation of communication resources. In [161],
UAV is utilized to assist the user in completing computa-
tional tasks and establishing stable wireless communication
between the user and the MEC server. This collaboration
between the UAV and the MEC server enables the process-
ing of tasks provided by the user. To address offload decisions
and resource allocation in UAV-assisted MEC environments
with multiple users and servers, a soft AC (SAC) algorithm
was proposed to determine superior computational offloading
policies in terms of latency, energy consumption, and task dis-
cards, effectively reducing the delay, energy consumption, and
size of discarded tasks for the UAV-assisted MEC system.
Literature [162] considered the economic issues in UAV-
assisted MEC systems and model UE, UAV cost, and UAV
revenue. An MARL algorithm was proposed to jointly control
power and resource allocation and make offloading decisions
for users, which reduces the system’s energy consumption
while guaranteeing system performance, thus improving UAV
revenue. Literature [163] considered a scenario where a lone
UAV serves mobile ground users and is equipped with a
MEC server and proposed a double deep Q-network (DDQN)-
based algorithm to optimize the UAV’s trajectory, maximizing
the system throughput while ensuring UAV energy and user
QoS constraints. The performance of the DDQN algorithm is
superior to that of the DQN algorithm. Similar to [163], liter-
ature [164] considered the use of a single UAV equipped with
a MEC server to serve ground users and used an AC-based
algorithm for controlling trajectories. The difference is that
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the goal of [164] was to minimize the energy consumption of
all users.

In addition, the challenges of algorithm convergence and
learning efficiency in large-scale scenarios must also be con-
sidered. Although the service capability of a single UAV is
limited and cannot meet the needs of users in such scenarios,
the use of multiple UAVs will lead to an exponential increase
in the system state space and actions, also known as a “dimen-
sional disaster.” To meet the challenge of efficient scheduling
of large-scale UAV-assisted MEC in dynamic environments,
a hierarchical trajectory optimization and offload optimization
(HT3O) algorithm was designed in [165] to reduce the com-
plexity of the problem and improve the learning efficiency
through alternate optimization, where the DDPG algorithm
and the DQN algorithm were used for trajectory and offload
optimization, respectively, and low problem complexity by
alternating the execution of DDPG and DQN. The HT3O is
capable of fast convergence and is effective in reducing the
average task latency compared to ordinary RL algorithms.
In [166], multiple UAVs were used to assist in the compu-
tation as well as to offload the tasks further to the edge cloud.
To solve the dimensionality problem, a multiagent TD3 algo-
rithm was proposed to jointly optimize the UAV trajectory,
computational offloading, and communication resource allo-
cation in dynamic MEC environments, thus reducing latency
and energy consumption.

VI. OPEN ISSUE

AI not only enhances UAV network performance but also
brings intelligence and decision-making capabilities to UAVs,
which can give UAVs the autonomy to respond flexibly to real-
time changes in the environment. Although there is a large
literature on the use of AI to enhance UAV services, there are
still some issues to consider when applying AI to UAVs and
UAV-assisted IoT.

A. AI Training and Convergence Problems

The application of AI algorithms, especially RL algorithms
in communication networks, has been heavily researched but
requires a large amount of data for training to achieve good
results. Unfortunately, training data is often difficult to obtain.
Moreover, these collected data may also suffer from redun-
dancy, label errors, and class imbalance, which severely affect
the AI training results [24]. Data augmentation, which can gen-
erate new data based on existing data and avoid the problem
of overfitting, is an important way to solve the problems of
lack of training data and algorithm convergence. FL executes
ML algorithms in a decentralized manner and updates model
parameters through the interaction of local and global mod-
els. The distributed joint training method of FL can solve the
problem of imbalanced training data. For example, a UAV
with less training data can update the local model through the
training results of other UAVs to ensure the effectiveness of
training.

Additionally, in large-scale scenarios, AI algorithms are
difficult to converge. Alternating iterative learning meth-
ods can be used to reduce the problem complexity and

thus solve the convergence problem of AI algorithms in
large-scale scenarios [165]. However, related research still
needs to be improved to flexibly respond to various situa-
tions. The emerging graph NN (GNN) in recent years has
made good progress in dealing with large-scale scenarios. By
adopting a message-passing mechanism similar to distributed
optimization algorithms, GNNs utilize graph architectures that
significantly enhance data analysis while lowering the number
of network parameters and reducing computational complex-
ity [167]. In [168], a GNN-based method was proposed to
solve the joint optimization problem of UAV location and
relay path selection under large-scale networks, which is able
to achieve the same performance in small-scale network sce-
narios with twice the time complexity of the violent search.
Moreover, the method is scalable to adapt to dynamic envi-
ronments and still converges quickly to the best performance
in large-scale scenarios. In the future, GNN will be an impor-
tant way to solve the convergence problem of AI algorithms
in large-scale scenarios.

B. Resource and Energy-Constrained Issues for UAV

Since UAVs are energy constrained, the issue of energy
conservation becomes more important when applying AI
and MEC servers, which are energy-intensive algorithms and
devices, to UAVs. In addition to using algorithms to perform
other energy-saving operations, such as trajectory planning
for UAVs, to improve the energy efficiency of UAVs. For
example, in [147], energy consumption was reduced by opti-
mizing the UAV trajectory and transmit power to improve
the UAV data collection efficiency. In [160], resource allo-
cation and task scheduling were jointly optimized to reduce
energy consumption. We can also investigate lightweight AI
algorithms, such as GNN or distributed learning algorithms
that run on resource-constrained devices, to provide solu-
tions for resource-constrained networks [23]. Literature [169]
also proposed a dynamic NN (DyNN) that uses a knowledge
base to select the network width, i.e., dynamically adjusts
the model complexity according to the service demand, thus
achieving a reasonable match between demand, resources,
and performance. Some AI algorithms can also use DyNN
to dynamically adjust the network width according to task
demand, thus achieving energy savings. In addition, hardware
performance improvements and software and hardware adap-
tations are important ways to allow AI algorithms to run on
UAVs with limited resources and energy.

C. Security and Privacy Issues for AI and UAV

UAVs may be attacked by malicious devices during flight,
such as hijacking and sabotage of UAVs, jamming UAV com-
munications by faking identities, and eavesdropping on UAV
communications. This not only affects the security of UAV
communication but also interferes with UAV flight, leading
to UAV collisions. In addition to the communication security
issues regarding UAVs that have been discussed in Section II,
data security and privacy issues are also important when train-
ing AI models. When training AI models, data needs to be
collected from various nodes, which may lead to data leakage.
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FL builds global models by exchanging model parameters,
which reduces the transmission of network data traffic and
protects users’ data privacy and security. FL has been used
for UAV trajectory control, and network security, and is a
good method to protect the safety of AI training [48], [170].
However, due to the existence of model data transfer dur-
ing training, FL is still subject to attacks, e.g., by injecting
anomalous data and thus affecting the training process of
the model. Moreover, for FL, this attack also penetrates the
entire network through the training process. The authentication
mechanism of blockchain can be used to protect the privacy
and security of data, which makes the integration of blockchain
technology with FL’s data privacy and security protecting
scheme recently receive increasingly more attention [171].
Literature [172] introduced a blockchain-based FL architec-
ture for UAVs that ensures privacy protection in FL. However,
the convergence problem of FL is not guaranteed, and the
data differences of different nodes and model update speed
differences will have an impact on the convergence speed of
FL. Although blockchain brings additional computation and
storage overhead, it is still an important research direction
for protecting AI and UAV data privacy and security in the
future [173].

VII. CONCLUSION

The use of UAVs for communication services has become
increasingly popular due to their low cost and quick reac-
tion time, which has given rise to UAV-assisted IoT, a new
development path for IoT that leverages communication tech-
nology. With the support of the powerful computing and
storage capabilities of MEC and the processing and analy-
sis capabilities of AI, UAVs are becoming more intelligent,
autonomous, and capable of providing more services, thereby
injecting new energy into the development of UAV-assisted
IoT. This article provides a detailed introduction to UAV com-
munication technology, IoT technology, and AI technology.
We analyze the potential challenges, applications, and devel-
opment directions of using AI to empower UAV-assisted IoT
and comprehensively review UAV communication technology,
networking technology, collision avoidance technology, and
application scenarios of UAV-assisted IoT. It also summarizes
the existing problems and their corresponding AI solutions.
Finally, we explore the challenges and potential solutions when
applying AI to UAVs and UAV-assisted IoT, including the
constrained energy and computational resources of UAVs and
the security and privacy issues of UAVs and AI. We analyze
solutions to the resource-constrained problems of edge com-
puting, including distributed AI that has been validated and
applied, the integration of blockchain technology with FL that
can solve the security and privacy issues of UAVs and AI,
and lightweight AI as an important approach to solving the
constrained resource problem in the future.
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