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Abstract—Electrocardiogram (ECG) analysis is widely used in
the diagnosis of cardiovascular diseases. This article proposes
an explainable rule-mining strategy for prioritizing abnormal
class detection in ECG data. The proposed method utilizes a
biased-trained artificial neural network (ANN) with input fea-
tures derived from an ECG beat sequence and formulates a set
of rules at each node of an on-demand tree-like search algorithm.
The rule base at each node is derived from a linear combi-
nation of the most impactful features identified using gradient
analysis in an ANN. The final derived model is an explainable
rule-based system that detects abnormal heartbeats based on
statistical and morphological features from ECG. The model
achieves the target sensitivity, and accuracy with a low run time
complexity through a comprehensive offline rule-mining process
and is trained using the MIT-BIH Arrhythmia Database. The
system achieves an accuracy of 93% with only nine nodes and
a test sensitivity of 90% and 80%, respectively, for VEB and
SVEB beat types, when tested on previously unseen ECG data
from the INCART database. The model performance and com-
plexity can be easily adjusted based on the real-time resource
constraints of a wearable sensor. The model was deployed on an
ARM Cortex M4-based embedded device and is shown to achieve
a > 50% reduction in sensor power consumption when only
abnormal beats are wirelessly transmitted. That is, RF transmis-
sion is gated using the model output and transmission is disabled
when the subject’s ECG is normal. The proposed technique is
highly suited for healthcare applications because of its explain-
ability, lower complexity, and real-time flexibility when deployed
in the Internet of Things (IoT)-enabled wearable edge sensors.

Index Terms—Anomaly detection, artificial neural network
(ANN), electrocardiogram (ECG), explainability, heart rate vari-
ability (HRV), Internet of Things (IoT) edge sensors, rule-based
algorithm.

I. INTRODUCTION

ARRHYTHMIAS, such as respiratory sinus arrhythmia,
are a natural periodic variation in the heart rhythm and

typically do not have negative consequences to the individual’s
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health. However, some other arrhythmia types may indicate a
serious problem that may eventually lead to stroke or sudden
cardiac death [1]. Continuous and autonomous monitoring for
anomalies in electrocardiogram (ECG) signals using an Internet
of Things (IoT)-enabled wearable device could mitigate risks
due to cardiovascular diseases [2]. However, continuous moni-
toring of medical-grade ECG signals is not yet a practical reality
due to poor usability (high-power consumption) of solutions
and interpersonal variability affect the data interpretation qual-
ity. To make the detection system reliable, it is required to
extract robust features from the ECG signals. It is not feasible
to keep individuals under clinical monitoring for prolonged
periods. Even though long-term data can be collected using
Holter devices, due to the large volume of the data involved, it
is difficult for clinicians to manually analyze it effectively. If we
use a wearable device and choose to send all data in real-time
to a cloud server, it will end up consuming significant power
and limit the useful battery life of the sensor. Therefore, a
wearable device that can automatically detect anomalous ECG
beats and classify them into Normal and Abnormal beats using
a low-complexity approach is desirable. This way, only anoma-
lous beats (which occur infrequently in most subjects) need to
be transmitted to a cloud server, which can save resources in
the edge device. A second-stage classifier using more complex
techniques with cardiologist-level accuracy could be imple-
mented in the cloud platform for comprehensive multiclass
classification of the anomalous data.

There are several techniques, including rule-based methods
and machine-learning methods for the detection of abnormal
heartbeats [3], [4], [5], [6]. Many such methods use black-
box AI models and any attempt to increase detection accuracy
typically results in an increased computational complexity [7].
As complexity increases, the power and space footprints of
the wearable platform increases proportionally. Further, the
complex data analysis would require cloud services, and
introduces communication overheads and high-memory usage.
Rule-based algorithms are usually simpler to implement and
by definition explainable. However, we have identified com-
mon unexplored areas in existing rule-based algorithms [8],
[9], [10], [11], [12], [13] as listed follows.

1) Normal and Abnormal ECG beat classes are treated
equally and there is no prioritization to detect the critical
Anomalous beats.

2) Feature selection is manually done and an expert in
the loop is needed to select the perfect combination of
features.
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3) Structure of the rule-based systems is fixed or rigid,
making any real-time improvements or pruning on the
edge node a difficult task.

4) Testing is only conducted over the records from the same
database used for training the model and, therefore, the
performance results are not reliable or reproducible on
new or previously unseen data.

To address the aforementioned research gaps and perform
computations at edge devices, we propose an easy to interpret
rule-based algorithm (Chain of Rules) that can detect abnormal
beats with high sensitivity and accuracy whilst remaining low
in complexity.

A. Chain of Rules Algorithm

The Chain of Rules runtime algorithm, as illustrated in
Fig. 1, is essentially that of navigating a binary tree where, at
each node, a different rule is applied until the end of a branch
is reached where the result of the last rule applied is then taken
as the final result. The length of each possible branch is not
necessarily identical and the set of rules/thresholds applied at
each node are all trained parameters that have been chosen
so as to achieve a target sensitivity and accuracy through a
comprehensive (offline) training process.

For each ECG beat, we compute several features to be used
with this algorithm (the exact subset of features used is a
trained parameter). In the context of this work, we define a
Rule as the comparison of a specific feature index/s against
a computed (trained) threshold to make a tentative Normal or
Abnormal beat classification.

B. Contributions

The main contributions of this work are as follows.
1) The Chain of Rules runtime algorithm is presented.

Given a training population of ECG beats, we define a
systematic procedure to generate an on-demand structure
of the tree (the length of each branch) and the set of rules
to apply at each node. The algorithm seeks to achieve the
desired accuracy and sensitivity (focused approach over
the unbalanced nature of the training data and priority
class detection).

2) Developed a rule-based model for ECG anomaly detec-
tion, whose performance-complexity can change by
adding/deleting nodes to the existing Chain of Rules by
simply following the steps described in Algorithm 3.
The model was tested on a previously unseen INCART
ECG database and performance metrics are reported.

3) Implementation and experimental verification of
the developed model on an ARM Cortex M4
Microcontroller-based Bluetooth SoC, demonstrating
reduction in sensor power consumption.

The remainder of this article is organized as follows.
Section II explains the currently available solutions and algo-
rithms for ECG classification and anomaly detection using rule
mining techniques. Section III reveals the runtime algorithm
obtained through our novel rule-mining algorithm. Section IV
details the proposed methodology for generation of rule-based
algorithm while Section V delineates the obtained final Chain

Fig. 1. Illustration of the Chain of Rules procedure as in Algorithm 2 and
the final derived model.

of Rules runtime algorithm. The performance analysis of the
proposed method is evaluated and presented in Section VI.

Appendixes A and B outline the ECG data set used in this
study, preparation of the data, and definitions of both singleton
and compound features extracted from the data.

II. RELATED WORK

Automatic detection of cardiovascular diseases using con-
tinuous and autonomous systems has been the subject of
extensive research. Recent advancements in machine learning,
the abundance of medical data, and the increase in comput-
ing power have paved the way for the development of highly
accurate artificial neural networks (ANNs) that can surpass
cardiologist-level accuracy in detecting arrhythmia. However,
these systems are heavily reliant on the availability of huge
amounts of data and computational power due to their complex
structures and sometimes even require patient-specific training
even though some have recently managed to produce better
performance with less annotated data [23] or with reduced
complexity for edge implementation [24]. Additionally, these
systems are mainly designed as black boxes, and even though
they achieve high accuracy in the test data, clinicians may
not able to trust the system unless otherwise explained using
eXplainable artificial intelligence (XAI) frameworks such as
local interpretable model-agnostic explanations [25] (LIMEs).
This stops us from being able to guarantee the performance
of these models in a practical environment involving actual
subjects.

Previously, several researchers have built rule-based expert
systems to detect and classify abnormal heartbeat and arrhyth-
mia events from ECG signals. Expert systems is a branch
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TABLE I
SUMMARY OF RULE MINING TECHNIQUES USED IN ECG BEAT CLASSIFICATION

of artificial intelligence that makes extensive use of special-
ized knowledge to solve problems at a level equivalent to a
human expert which can be represented by a set of rules [26].
Rules were inferred and obtained from cardiologists, fuzzy
expert systems, and simple machine-learning approaches such
as decision trees. Most of these decision support systems are
well understood by any novice user. In this section, we will
explore some of the related work in the domain and the tech-
niques used in the development of these rules. A summary of
the respective works is provided in Table I.

Early researchers in the field have generated rules with
expert cardiologist knowledge and other rule mining algo-
rithms, such as classification based on predictive association
rules (CPARs [8]), first-order inductive learner (FOIL [9]),
classification based on associations (CBAs [10]), classification
based on multiple-class association rules (CMARs [11]), and
apriori-total from partial classification (Apriori-TFPC [12]).
However, the comparison and related performance are
not clearly available to us as Tsipouras et al. [14] and
Exarchos et al. [15], the researchers who have implemented
these approaches for ECG analysis have not followed the
standards recommended by association for the advance-
ment of medical instrumentation (AAMI) to evaluate the
algorithms.

Llamedo and Martínez [17] used a floating feature selec-
tion algorithm to obtain the best performing and generalizing
models in the training and validation sets for different search
configurations. The best model found comprehends eight fea-
tures and obtained a small and well-performing model, through
the sequential floating feature selection algorithm (SFFS) [13].
The SFFS is a combination of a sequential forward selection
(SFS) algorithm followed by a sequential backward selection
(SBS) algorithm. Starting from a single feature model, SFFS
iterates for all model sizes while registering the best perfor-
mances found for each model size. Each iteration starts with a
model size greater than two features. After each SFS step, an
SBS step is repeated until the new performance of the model

is not further improved than the registered best model for the
respective size. This way the algorithm floats forward and
backward searching for the path of maximum performance.
The algorithm terminates at the specified model size with the
registered maximum performance achieved through the search.

Recent abundance of data and large compute power has
drawn significant interest toward machine-learning methods.
Therefore, some researchers have revisited the old school tech-
nique of rule mining with transfer learning obtained from
traditional machine-learning approaches. He et al. [18] and
Bidias à Mougoufan et al. [20] have proposed models with
crisp rules that have been obtained using simple machine-
learning techniques, such as SVM and Mixed Ensembles.

He et al. [18] proposed a pyramid-like model. The model
distinguishes the classification of Normal and S beats and takes
advantage of the neighbor-related information to assist identi-
fication of S beats. RR intervals (RRi and RRi+1), higher order
statistics (HOSs) (skewness and kurtosis), and 7 levels of Haar
wavelet decomposition coefficients are used as feature sets.
The algorithm then looks for a patient from a training group,
who has the most similar RRi values distribution and assigns
its threshold value. The function uses the Earth mover’s dis-
tance (EMD) to measure the dissimilarity of two distributions
and the heartbeats are processed by the decision rules in the
first pyramid level [19]. The second level uses SVM and Mix
Ensemble models to refine the classifications.

Bidias à Mougoufan et al. [20] presented a training-free
two-level hierarchical model based on ordinal patterns. The
classification rules include morphological and temporal prop-
erties of the ECG signal that are compared to R-R and
QRS dependent thresholds derived from the beat, conditional
entropy of ordinal patterns (CEOPs), or permutation entropy
(PE) series [21], [22]. The beat length, entropy, skewness, and
other features, such as the beat mean value and the beat stan-
dard deviation of RR intervals have been extracted and used
for defining quantifiers and thresholds that will be used in the
classification process.
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Algorithm 1: Basic Structure of a “Rule”
Result: Normal / Abnormal beat tentative decision

1 if Feature ≥ Threshold then
2 Normal;
3 else
4 Abnormal;
5 end

Algorithm 2: Chain of Rules Runtime Algorithm
Result: Normal / Abnormal beat decision

1 Compute the initial set of features
2 Set current node index to root: n = 1
3 while Node n not a leaf node do
4 Apply node specific Rule and get tentative decision
5 if tentative decision == Normal then
6 n = 2n
7 else
8 n = 2n + 1
9 end

10 end
11 if n is even then
12 Result = Normal
13 else
14 Result = Abnormal
15 end

Although some algorithms perform sufficiently well for the
proposed continuous feature domain, the feature selection to
optimize the classification of a specific class is not proposed as
part of the strategy. The ability to determine the features that
contribute to the formulation of the most efficient rules from
annotated data is extremely painstaking. On the other hand,
these algorithms do not guarantee the detection of difficult beat
classes that need a higher degree of attention. Therefore, we
have proposed a novel feature selective first-order rule mining
methodology to address the problem.

III. CHAIN OF RULES RUNTIME ALGORITHM

The Chain of Rules algorithm is the repeated application
of “Rules” (Algorithm 1) where we evaluate a given fea-
ture with a specific threshold, resulting in a tentative Normal
or Abnormal beat decision. It is the process of navigating a
binary tree (starting from the root node, labeled node 1) and
applying a rule associated with that node until a leaf node
is reached. The result of the final rule in the tree gives the
final classification decision of the ECG beat. Prior to running
the Chain of Rules algorithm the necessary features for each
ECG beat must be extracted. The full set of possible features
is described in Appendix B, and the specific set of features
that an algorithm instance requires is determined during an
off-line training process as defined in Section IV.

The procedure is summarized in Algorithm 2, and as an
example, the final model is illustrated in Fig. 1, where the
nodes are labeled such that the children of the nth node are
2n and 2n + 1 for Normal and Abnormal tentative decisions,
respectively. Accordingly, if a node’s label is even then the
previous tentative decision was Normal, and likewise, odd
nodes were preceded by Abnormal tentative decisions—this

Algorithm 3: Top-Level GenEIC Algorithm for Building
a Chain of Rules

Result: Chain of Rules definition
1 Inputs:
2 F : the set of all annotations and pre-calculated singleton

features for all beats used to train whole network.
3 θAcc: Target Accuracy
4 θSen: Target Sensitivity
5 Initialize:
6 Let L = {1} be the initial set of leaf nodes, i.e. just the the root

node.
7 Let F1 = F be the set of annotated beats and their

pre-calculated singleton features used to train the root node.
8 Let Acc = 0 and Sen = 0
9 Procedure:

10 while (Acc < θAcc or Sen < θSen) do
11 Compute accuracy for all leaf nodes, i.e., ∀ n ∈ L.
12 Let L′ ⊂ L be that subset of leaf nodes where the accuracy

is < θAcc.
13 Let n be the index of the largest of maximum achievable

incremental scores by correct classification of subspace

Fn∗ : n = arg maxn∗
{

Fβ=1(Fn∗) ∀ even n∗ ∈ L′
F1(Fn∗) ∀ odd n∗ ∈ L′

}

14 Remove n from L and add it’s children instead:
L = {L \ n} ∪ {2n, 2n + 1}

15 Generate Rule for node n:
[Rulen,F2n,F2n+1] = GenerateRule(Fn, n)

16 Simulate new Chain of Rules algorithm and compute
accuracy (Acc) and sensitivity (Sen).

17 end

fact is used to determine the final Normal/Abnormal decision
in step 11 of Algorithm 2. The population of nodes along with
its impact on performance scores is presented in Section V.

If we limit the longest path from the root to any leaf
node to have Lmax Rules, then, there is a maximum of
2Lmax+1 − 1 possible nodes (although many of these nodes
do not exist as many branches terminate earlier than Lmax
rules). Accordingly, for each of the possible nodes, we must
enumerate the following.

1) A binary flag indicating if this node is a leaf node or
not.

2) Nonleaf nodes must define a Rule comprising:
a) the feature to use;
b) the comparison threshold.

Any such enumeration defines an instance of the Chain
of Rules algorithm. The following section provides a train-
ing algorithm to create such an enumeration, and a specific
instance is given in Section VI. Despite the perceived com-
plexity of the training algorithm, it is worth noting that the
runtime procedure as embodied in Algorithm 2 is very simple
and can be easily implemented on an embedded device.

IV. GENERATE EVALUATE IDENTIFY AND COMBINE

(GENEIC): NOVEL APPROACH TO GENERATE RULES

The Chain of Rules algorithm is trained in an offline iterative
process, called GenEIC as described in Algorithm 3. Starting
with just one leaf node (the root node labeled as node 1)

we continue to add additional leaf nodes until a top-level
simulation of the current Chain of Rules indicates that the
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Fig. 2. β Strategy.

Algorithm 4: Generate Rules, Evaluate Them, and Identity
the Best One for a Specific Node. [Rule,FN,FA] =
GenerateRule(F , n)

1 Results:
2 Rule: The identified best rule (feature / threshold tuple) for this

node.
3 FN: That part of input database F that the Rule determines to

be Normal.
4 FA = F \ FN
5 Inputs:
6 F : the set of all annotations and pre-calculated singleton

features for all beats used to train this node.
7 n: The current node’s index.
8 Procedure:
9 Compute β (using n), the parameter used to compute the Fβ

according to Fig. 2.
10 Use a Neural Network to determine F, the set of the N most

impactful singleton features.
11 Expand F to include compound features to G.
12 for k = 1 to 2N − 1 do
13 Generate a possible Rule= {Gk, Bk} using eq. (3).
14 Evaluate / simulate this rule over the set F and compute

the Acc: Accuracy and Sen: Sensitivity, and hence the Fβ
score for this Rule.

15 end
16 Identify the best Rule as that Rule having largest Fβ .
17 Apply Rule to F yielding FN and FA subsets for Normal and

Abnormal decisions, respectively.

algorithm achieves the desired target accuracy (θAcc) and sen-
sitivity (θSen). We denote as F the entire ECG database and
their precalculated singleton features. Further, we denote as Fn

as that part of F passing all the rules in the branch leading to
node n, and for completeness, we let F1 = F .

The process of adding new leaf nodes is actually that of
growing the network by changing a leaf into a parent node,
called n, and adding two child nodes, labeled 2n and 2n + 1
representing Normal and Abnormal beat classes, respectively.
The decision regarding which leaf node to grow is taken by
considering those nodes with the largest incremental score1

(w.r.t. the accurate classification of set Fn)—the idea being
that this node has the largest ability to impact the network’s
overall performance. We note that the accuracy of a node n
w.r.t. the set Fn can be computed by observing that if n is
even (or odd) then its decision would be normal (or abnormal)
which, coupled with the ground-truth annotations in Fn. To

1F1 score (5) for normal class/ odd nodes and Fβ score (4) for abnormal
class/ even node.

add a child to a node, n, we must determine the best Rule,
denoted Rulen, for that node and add it to the Chain of Rules.
This is done by a comprehensive off-line subprocess that is
summarized in Algorithm 4. It utilizes a biased training score
called Fβ (4) parameterized by β to select the best rule from
a set of trained candidates’ rules. However, this β parameter
changes depending on the nodes’ position in the Chain of
Rules. Hence, the top-level algorithm passed the node index n
to the lower level subprocess (see step 15 in Algorithm 3).

The acronym GenEIC is derived from the keywords.
1) Generate a set of candidate rules.
2) Evaluate the performance of candidate rules.
3) Identify the best rules.
4) Combine these rules into the chain.

The Combine step is already described in Algorithm 3,
whereas the other steps are illustrated in Algorithm 4 and are
described in the following sections.

A. Generate Set of Candidate Rules

This step involves several smaller substeps.
1) Reduce the full set of possible singleton features down

to N most impactful ones.
2) Expand that set by adding some compound features.
3) Use statistical analysis to generate a candidate rule for

each feature in this expanded set.
1) Identify Most Impactful Singleton Features: There are

many alternative feature selection techniques available, and
we used a feed-forward neural network,2 NN (Fig. 3), with
all possible singleton features used as inputs. Note that the
input features were normalized across the entire training set
such that they all have unity expected values; hereafter we
only considered this normalized features.

Denote Wh ∈ R
N′×N′

and bh ∈ R
1×N′

as the weights and
biases in the fully connected (FC) hidden layer and likewise
Wc ∈ R

2×N and bh ∈ R
1×2 for the classification layer, where

N′ is the total number of possible singleton features defined in
Appendix B-A. Accordingly, the vector of gradients, �, used
during the back-propagation can be calculated as

� = Wh
T × (

Wc
T × (yc · (1 − yc))

) · yh · (1 − yh) (1)

where yc is the softMax output in the classification layer and
yh is the sigmoid output from the hidden layer.

2The NN has two layers of perceptrons and two neurons in the classification
final layer to decide in favor of Normal or Abnormal as depicted in Fig. 3.
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Fig. 3. ANN model used to identify the feature significance.

Fig. 4. Example of gradient calculation for six particular features. When
developing our rules, we rank these gradients in order of their magnitudes
and take the N largest.

Borrowing a technique from the domain of image
Classification [27], we select the N features corresponding to
the gradients with the largest magnitudes as being the most
impactful features. We denote this pruned feature set as F,
and order it such that |�k| > |�k′ | for all k < k′. Typically,
we set N to be eight or half the total number of possible fea-
tures (N′) whichever is the smallest. We call F the set of useful
singleton features as opposed to the compound features that
are a function of multiple features.

By way of a toy example, if the ANN was trained using
just the length N′ = 6 feature vector[

RRi, RRi+1, RRi, RRSDNNi , RRwSDNNi , RRIndexi

]
using the entire MIT-BIH database we would get a ∼ 94%
accuracy and the trained weights and biases would be

Wh =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.22 0.31 0.38 0.18 − 0.18 − 0.17
−1.24 − 0.17 − 0.17 0.12 0.53 1.40
0.37 0.15 0.17 0.03 0.14 − 0.00
1.97 0.25 0.24 0.08 − 1.15 − 1.76

−0.08 0.07 0.08 0.21 − 0.20 0.21
1.91 0.29 0.19 0.07 − 1.48 − 1.57

⎤
⎥⎥⎥⎥⎥⎥⎦

Wc =
[

0.20 − 1.43 0.17 2.17 − 0.16 2.13
0.06 1.80 0.22 − 1.87 0.43 − 1.84

]

bh = [−0.04 0.24 0.06 − 0.72 0.05 − 0.69
]

bc = [−0.3 0.5
]

and the corresponding gradients (1) are shown in Fig. 4.
2) Expand Set to Include Compound Features:

Additionally, we define a size 2N − 1 super set, G,
containing F plus an extra N − 1 features formed by taking
linear combinations of the features in F

Gk �
{

Fk 1 < k ≤ N∑1+k−N
k′=1 sgn(�k′)Fk′ N < k ≤ 2N − 1.

(2)

As this contains newly defined features derived from combina-
tions of the features in F, we refer to G as the set of compound
features.

TABLE II
COMPARISON OF F1 (5) AND Fβ (4) SCORES FOR MODELS THAT CAN BE

CONSIDERED AS BEST UNDER DIFFERENT OBSERVATIONS

3) Generate Candidate Rules: Here, the identified 2N − 1
features in the set G (2) are analyzed using histograms. Fig. 5
shows the distribution of the individual features separately
for Normal and Abnormal (VEB classes) as per the MIT-
BIH database. Accordingly, for the kth feature the means μN,k

and μA,k and standard deviations σN,k and σA,k are estimated
for the Normal and Abnormal (VEB) classes, respectively.
Fig. 5 also superimposes normal probability density function
(PDF) curves generated with those estimated parameters for
illustration purposes.

Given these estimated means and standard deviations, we
define the following decision threshold for the kth feature

Bk = μN,kσA,k + μA,kσN,k

σN,k + σA,k
(3)

which ensures equal-error probability under certain statis-
tical simplifying assumptions.3 Each feature in G together
with its threshold (3) comprise a candidate rule according to
Algorithm 1 and there will be 2N − 1 of such rules.

B. Evaluate the Candidate Rules With Priority Class

As a result of previous steps, we have now generated 2N−1
candidate Rules for the nth leaf node. In this step, we eval-
uate the performance of each through simulation and rank
them according to some measure of goodness. The measure
used here is based on Rijsbergen’s effectiveness measure [28],
called the Fβ score, as it allows us to attach β times more
importance to Sensitivity (Recall) compared to Accuracy.

It is defined as

Fβ � (1 + β)
Accuracy × Recall

β × Accuracy + Recall
(4)

where β ∈ {1, 1.5, 2}. The score is better when dealing with
unbalanced data with priority minority class as positives com-
pared to the commonly used F1 score (5) as can be seen in
the examples presented in Table II

F1 � 2
Precision × Recall

Precision + Recall
. (5)

The choice of β depends on the position of the node within
the tree, specifically the three previous Normal/Abnormal deci-
sions in the branch leading up to node n as shown in Fig. 2.
The Normal/Abnormal status of a node is determined by the
even-/odd-ness of its label n, and a node’s parent’s labels are
determined as �n/2�.

3Statement is true if the PDFs are such that the distance from the mean in
units of standard deviation is proportional to the probability.
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Fig. 5. Generated rules and their distribution in MIT-BIH.

TABLE III
G (2) AT ROOT NODE—SINGLETON AND COMPOUND FEATURE/S

PERFORMANCE ON MIT-BIH ARRHYTHMIA DATABASE

C. Identify the Best Rule

Once the Fβ score has been computed for each candidate
Rule, the largest is selected as Rulen—an example is shown
in Table III where the 6th compound rule in this was chosen
as its Fβ was the highest at 81%. This step also helps to
ensure the prioritised detection of abnormal classes without
compromising accuracy.

Additionally, the supplied database Fn is divided according
to the application of said rule into two subsets F2n and F2n+1
for Normal and Abnormal decisions, respectively.

V. FINAL CHAIN OF RULES MODEL

In our experiments, we trained the Chain of Rules using
ECG signals from MIT-BIH arrhythmia database and set
θAcc = θSen = 90%. Starting from the root node (node 1),
the process of node population to produce the final model is
presented in Fig. 6 along with its performance scores at each
step. The scores are not always guaranteed to improve with the

Fig. 6. Node population with change in performance.

growth of the nodes as the choice of the next node to grow is
based on the achievable incremental F score found using the
accurate classification of the subspace Fn∗ ⊂ F�n∗/2� ⊂ F1.
Our algorithm tries to find the perfect balance with the rules
populated at even nodes pulling up the overall sensitivity while
odd nodes improve the accuracy. The resulting final Chain of
Rules model is presented in Table IV and is shown in Fig. 1.

We can see that out of the thirty-odd possible singleton
features defined in Appendix B only eight are needed to
achieve the desired θAcc and θSen. Therefore, this instance of
the algorithm has low complexity with minimal preprocessing
requirements. Note also that while the eight singleton rules in
effect define another seven compound rules, we only use six
of them as given in Table III.

Another point to note is that simple RR interval-based fea-
tures serve as the highest contributing features, and very often
decisions can be made when only equipped with just these
features. This presents the opportunity for (zero cost) addi-
tional power-saving optimization whereby one could limit the
computation of the more complex features, e.g., the princi-
pal component analysis (PCA) coefficients, to only occasions
where they are actually needed, essentially implementing a
just-in-time feature calculation strategy. All of the test results
presented in this work (in Section VI) are based on this
configuration of the chain of rules.
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TABLE IV
PROPOSED ECG CLASSIFICATION CHAIN OF RULES AS DEVELOPED USING THE GENEIC ALGORITHM

VI. EXPERIMENTAL SETUP

This section describes the evaluation methodology and
performance of the proposed algorithm. The specific chain of
rules model used was trained using the MIT-BIH database as
described in Section V and shown in Fig. 2 and Table IV.
To evaluate its real-world performance, we tested the model
using more than 175 000 previously unseen heartbeats from the
INCART [29] database. This testing approach is in accordance
with the best practice of separating training and testing data
sets which will result in robust and reliable performance mea-
sures and avoids any overfitting to any specific training data
set [4]. Note that, using a different data set for testing necessi-
tated signal resampling (to 250 Hz), as the two data sets were
acquired at different sampling rates. The model development
was done in MATLAB.

A. Evaluation Method

The evaluation of the classification algorithm is based on the
standard performance matrix, including Acc: Accuracy, Sen:
Sensitivity, Spe: Specificity, and Ppr: Positive Predictive and
the Fβ score described in Section IV-B. The correctly classi-
fied abnormal class is considered as true positives (TPs) while
the correctly classified normal class is considered as true neg-
atives (TNs). Incorrect classification of the abnormal class is
represented as false negative (FN) while false positives (FPs)
are the beats that are classified as abnormal by the algorithm
while they are actually normal.

B. Performance

A simplified set of performance summary is presented in
Table V where the records are ranked and clustered (high,
good, average, and poor performance) according to their
accuracy.

Roughly two-thirds of all test records achieved a very high-
average sensitivity of 95% and an average accuracy of 98%.
According to our analysis, record I71 is the worst perform-
ing record among all with only 11% accuracy but with 97%

of sensitivity. It is largely due to the QRS energy concentra-
tion (QRS window) as shown in Figs. 9 and 11. Some other
records (I54, I09) achieved low accuracy due to poor anno-
tation4 in the INCART database even after our window of
correction is applied as seen in Fig. 9.

The overall training and testing performance with MIT-BIH
and INCART databases are shown in Table VII. The accuracy
is affected by the high FP as the algorithm is optimized with
higher sensitivity toward Abnormal beats to reduce the chances
of missing anomalous beats. Also, the higher FP is due to the
possible violation of the concept of a normal ECG rhythm.
For, e.g., in the MIT-BIH database, record 203 which accounts
for a significant portion of FPs, seemingly Abnormal beats
with irregular rhythm are annotated as Normal as illustrated
in Fig. 12.

The INCART database, which is unseen by the model dur-
ing training is used to evaluate the real-world performance
of the technique [30]. The comparison with other state-of-
the-art techniques which have provided sufficient information
on their performance on the INCART database for VEB and
SVEB classes are given in Table VI. A completely unseen
test performance of 93% accuracy and 88% sensitivity was
achieved in Table VII. The fact that we used a never seen
database for testing purposes, affected the results (Table VI).
However, the results reported are more reliable and the model
should achieve similar real-world performance in any other
new databases without any further training. We attempted to
increase the detection sensitivity at the expense of accuracy,
which caused the higher FPs in Table V. However, it is worth
noting that typically an embedded application will behave as
an “ECG recorder” and any episodes containing abnormal
beats will be saved for more complex post-processing else-
where (e.g., in the cloud). In such cases, what is important is
the ability of the algorithm to identify episodes where at least
one abnormal beat resides. We implemented this and found
that if we flag all 5-s duration windows containing at least
one abnormal beat, then the accuracy can be increased to 95%

4By right these records should be removed from our results but we have
elected not to do so to permit fair comparison with other researcher’s works.
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TABLE V
TEST PERFORMANCE ON INCART DATABASE

while achievable maximum accuracy with additional process-
ing of transmitted data is 98.5% making this algorithm now
extremely attractive for use in an embedded application.

TABLE VI
GENERALIZED COMPARISON FOR THE INCART

Fig. 7. Measured Avg current on different records during testing.

The robust performance of the proposed system is not only
evident by the generalized test performance metrics, rather it
is also due to the built-in regularization strategy to reduce
the overfitting. The first-order linear combination mapping of
ANN learning and use of only the subset of data Fn ⊂ F1 for
training similar to bagging (Bootstrap Aggregation learning)
at every node ensure it.

C. Complexity and Power Analysis

The final Chain of Rules model is reimplemented in C lan-
guage and ported to Nordic Semiconductor NRF52 Cortex
ARM M4F microcontroller-based Bluetooth SoC development
kit (NRF52DK). Using a USB to SPI bridge (FTDI4222H),
the test signals are transferred to the embedded board from
a desktop computer (PC) as shown in Fig. 10. Floating-point
operations for feature calculation and rule execution is 964
FLOPs/beat at its max via path (node 1, 3, 7, and 14 in
Table IV).

Randomly selected INCART test records from each
performance group (refer Table V) are fed to the device in
real time. Nordic Semiconductor’s nRF Power Profile Kit is
used to measure the power consumption of the system for each
30-min record and the results are shown in Fig. 7.

Wireless transmission consumes the most power in an IoT
wearable sensor and, therefore, we have gated the wireless
transmission such that the transmission is enabled only when
Abnormal beats are detected [4]. These Abnormal beats could
be further analysed in the cloud or evaluated by clinicians,
while Normal beats could be ignored or stored locally in the
sensor. In the proposed system (Fig. 8), the power consump-
tion depends on the number of times the rule-based algorithm
is triggered and the number of times a wireless transmission
occurs. The triggering of the algorithm is subject to the detec-
tion of beats and, therefore, the records with a higher number
of beats will consume more power. On the other hand, since
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TABLE VII
OVERALL PERFORMANCE

Fig. 8. Implementation flow diagram on embedded environment.

Fig. 9. Highest number of FPs by the proposed rule-based system in records
I71, I54, and I09. (Red annotations are the misclassified and blue are the
correctly classified beats).

Fig. 10. Test setup for experimental verification.

radio transmission is enabled only for Abnormal beats, the
number of such beats influences the power consumption. In
the case of most patients, anomalous beats occur only infre-
quently and, therefore, overall system power is reduced using
this approach.

The implementation of the algorithm using fixed-point arith-
metic will introduce quantization error at each level. However,
unlike in the case of ANNs, these errors will not propagate

Fig. 11. Highest number of FNs by the proposed rule-based system in
records I31, I38, and I36. (Red annotations are the misclassified and blue are
the correctly classified beats.)

exponentially through layers and our experiments show that
the performance of the fixed-point model is stable. It can be
seen from Fig. 7, continuous wireless transmission of ECG
data consumes an average current of 112 μA. By gating wire-
less transmission for Normal beats, the average current can be
reduced to < 50 μA when tested using several ECG records
from INCART database. That is a reduction of > 50% power
in the wireless transmitter.

Compared to complex deep neural networks, our proposed
model relies on an interpretable set of rules, i.e., it falls into
the broad category of explainable AI. These rules are sim-
ple to implement and are generated offline using statistical
knowledge with assistance from an ANN to recognize the
most important signal features. The proposed approach has
an overall unseen test accuracy of 93% and sensitivity is at
88%. Unlike many existing works which train and test a model
using the same database, the performance reported in this work
is reliable and reflects real-world performance and this may
be further improved by adding additional nodes to the binary
tree. The univariate coefficients such as PCA may not serve
as sufficient for the morphological representation of the beat.
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Fig. 12. Example of FPs: abnormal rhythmic activity of beats that annotated
as normal in MIT-BIH arrhythmia database record 203 which achieved very
low accuracy due to its signal quality and abnormal RR intervals.

Considering more coefficients of PCA with respect to lower
eigenvalues and different class representations might introduce
a huge performance impact on the rules mining. The discarded
fiducial point information, such as PR duration, T duration,
and QT duration in the first level of analysis may have a sig-
nificant impact on deeper levels in classification. However, the
effective gain anticipated with such features when compared
to their calculation complexity is estimated to be insignificant.

VII. CONCLUSION

In this study, we have proposed a novel approach for min-
ing a set of rules using gradient analysis of a trained neural
network for ECG beat classification. The mining algorithm
is specifically designed to be highly sensitive to a particular
priority class in an unbalanced data set. The product is an
explainable classification model with low run time complex-
ity and tested in laboratory conditions, simulating real-world
conditions. The proposed model achieves high real-world
detection performance on previously unseen subjects who were
not part of the training set. We have analyzed roughly 30
ECG extracted features (Table III) for developing the model
and most of them are based on ventricular rate (RR intervals).
Features based on the ECG morphology have not been param-
eterized in this work, but may be used for improving the
model accuracy in future works. The proposed model ensures
prolonged battery life for IoT wearable edge devices while
maintaining a very high sensitivity to even difficult beat classes
such as VEB.

APPENDIX A
ECG DATABASE

In this work, we use the ECG beat classification standard
notations as defined by AAMI [31] as in Table VIII. The beat
classes supra ventricular ectopic beats (SVEB—S), ventricular
ectopic beats (VEB—V), Fusion Beat (F), and Unclassified
Beat (Q) are grouped as “Abnormal”—“A” and all other beats
are considered “Normal”—“N” beats.

We used the MIT-BIH arrhythmia database [32] and the
St. Petersburg Institute of Cardiological Technics (INCART)
database [29] for evaluation and testing purposes. These data

TABLE VIII
AAMI STANDARD

sets are freely available on Physionet [33] and the important
details along with the globally accepted testing standards are
summarized as follows.

A. MIT-BIH Arrhythmia Database

The database consists of 360 Hz sampled, 48 two-lead
recordings of approximately 30 min, and more than 100 thou-
sand individual heartbeats obtained from 47 subjects studied
by the BIH Arrhythmia Laboratory between 1975 and 1979.
The first 23 (100–124) recordings were extracted from a
set of 4000, 24-h routine ambulatory ECG recordings col-
lected from a mixed population of both in and outpatients at
Boston’s Beth Israel Hospital, while the remaining 25 (200–
234) were selected because of the presence of less common
but complex and clinically significant ventricular, junctional,
and supraventricular arrhythmias. Both leads are not the same
in all recordings, depending on the arrhythmia and physical
limitation of the subject’s body condition, and mostly modi-
fied lead II (MLII) is present in the first lead. The second lead
varies a lot with V1 and V5 in most records whilst V2, V4,
and MLII lead in very few instances. The annotations pro-
vided with the database were used for evaluation purposes,
following the recommendations and class labeling of AAMI.
The four recordings with paced beats were discarded in this
work in accordance with AAMI recommendations [31]. The
AAMI Q class (unclassified heartbeats) was considered under
arrhythmia class since it will be sent to the cloud for further
study according to the proposed architecture.

B. INCART Database

St. Petersburg Institute of Cardiological Technics (INCART)
database consists of 75 records sampled at 257 Hz with 12
ECG leads and corresponding annotations. Each record is
approximately 30-min long and contains over 175-thousand
individual beats. The original records were collected from
17 males and 15 females, aged between 18–80 years, under-
going tests for coronary artery disease. None of the patients
had pacemakers and most patients had VEBs. Preference was
given to subjects whose ECG readings were consistent with
ischemia, coronary artery disease, conduction abnormalities,
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and arrhythmias while selecting records to be included in
the database. The annotations were produced by an automatic
algorithm that generally places beat annotations in the middle
of the QRS complex (as determined from all 12 leads) and then
corrected manually, following the standard PhysioBank beat
annotation definitions. However, the locations have not been
manually corrected, and consequently, there are occasional
misaligned annotations.

APPENDIX B
FEATURE DEFINITIONS

A. Singleton Features

1) Peak Locations: The location (in time) of the R peak
and the P, QRS, and T waveform onset times are the most
elementary features that are the basis of many other elaborate
features below. A complete implementation would need to esti-
mate these features using existing algorithms [34], [35], [36].
In this work, we assume that R-peak detection is done on-chip
by the data acquisition analog-front-end circuit, as in the case
of commercially available solutions [37]. During the training
process, these features are directly obtained from the database
annotations. Since the annotations in the records are heavily
distorted around the peak, we apply a search window to correct
the peak locations.

2) Corrected QT Intervals: The QT interval, for the ith
beat, QTi, is defined as the time duration between the Q onset
and T offset for that beat. To compensate for QT variability
with respect to heart rate a commonly used measure is the so
called “corrected QT interval” [38] which, for the ith beat, is
defined as

QTci = QTi√
RRi

(6)

where RRi is the RR interval between the ith and (i − 1)th
beats. Despite first impressions, QTci actually has units of
seconds, as explained in [39], and can be understood as that
QT interval we would expect this individual to have if their
heart rate were exactly 60 beats per minute.

3) HRV Metrics: Heart rate variability (HRV) analyzes the
physiological phenomenon is commonly used with the ones
initially considered in this article summarized in Table IX.
Based on our experimentation in Section IV-A, the HRV mea-
sures we found to be of most interest are RRIndex and SD1
and SD2 which are now defined in more detail (for the ith
beat)

RRIndexi = 2
RRi − RRi−1

RRi + RRi−1
(7)

SD1i =
√

1

2

∑(
XRi(1, :) − XRi(1, :)

)2
(8)

SD2i =
√

1

2

∑(
XRi(2, :) − XRi(2, :)

)2
(9)

where XRi is 2 × 3 matrix formed as a 45◦ rotation of three
consecutive points of a Poincaré plot defined as follows:

XRi =
[

sin
(−π

4

)
cos

(−π
4

)
cos

(−π
4

) − sin
(−π

4

)
][

RRi−2 RRi−1 RRi

RRi−1 RRi RRi+1

]

(10)

TABLE IX
SELECTED TIME-DOMAIN MEASURE OF HRV

and XRi(k, :) is the kth row in XRi. The summations and aver-
ages in the definition of SD1i and SD2i are over all three
elements in their respective rows.

We also introduce a new measure called weighted SDNN
(wSDNN) by modifying the SDNN metric with a weighted
vector as follows

RRwSDNNi =

√√√√√ 1

10

+1∑
j=−9

Wj
(
RRi+j − RRi

)2
(11)

where

Wj =
{

10, j = 0
1, otherwise

and RRi is the average of the RR intervals over the same
window.

4) Principal Component Analysis: We computed the prin-
cipal component waveforms based on all the normal beats in
the MIT database (i.e., across all individuals). Subsequently,
each beat can be decomposed into a weighted sum of these
PCA waveforms with PCA coefficients as weights. In this
work, we focus on the first PCA coefficient of each beat which
we denote as PCAi. An example is shown in Fig. 13. Note that
prior to computation of the PCA components, the ECG signal
is normalized so that each beat5 has zero mean and unit stan-
dard deviation. These normalized ECG signals will hereafter
be referred to as x.

We have also introduced a new measure called “σ(PCA)”:
standard deviation of PCA value of ten consecutive beats
defined as

σ(PCA)i =

√√√√√1

9

0∑
j=−9

(
PCAi+j − PCAi

)2
(12)

and PCAi is the average of the PCA values over the same
window.

5At a sampling rate of 250 Hz, a beat is taken as 62 samples before and
112 samples after the R-peak.
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Fig. 13. Principal component (beat) for MIT-BIH and INCART database
derived from MIT-BIH samples at 360 Hz and resampled at 257 Hz.

5) Other Features: In addition to the aforementioned fea-
tures, we have also analysed,

1) Teager energy operator (TEO) defined as:

TEOi =
∑

n

(
x[n]2 − x[n − 1

]
x[n + 1]) (13)

where x[n] is the normalized ECG signal defined in
Section B-A4 and the summation spans a window of
±0.25 s (or equivalently ±62 samples) about the ith
peak;

2) σ(TEO)i;
3) VSi: Difference in peak to peak amplitude between the

window of ±0.056 s (or equivalently ±14 samples)
about the ith peak;

4) σ(VS)i;
5) �QRSi: The sum of amplitudes in a 0.1s window about

the R peak of the ith beat;
6) |�QRSi|: Magnitude of �QRSi;
7) �QRSEnergyi

: Sum of amplitudes squared in a 0.1s
window about the R peak of the ith beat;

8) DTWi Dynamic Time Warping cost with respect to the
principal normal beat (Fig. 13);

9) σ(DTW)i;
10) QRSSigni

which is “1” for a rising QRS peak and “0”
for an inverted QRS peak.

and are used for testing. Refer to Table III for some of the
identified features and their associated rules performance in
the MIT-BIH arrhythmia database.

B. Compound Features

Denoting all the previous features as singleton features, we
define a compound feature as being the weighted sum of these
singleton features where the weights are either 0 (i.e., that
singleton feature is absent from the compound feature) or ±1.
If there are N singleton features, then there are 3N possible
compound features. All compound features are not computed
continually, as during the training phase, the reduced set of
singleton and compound features required to implement the
chain of rules is identified and only these ones are actually
computed at model runtime.
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