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Sybil Attack Detection in Internet of Flying
Things-IoFT: A Machine Learning Approach

Donpiti Chulerttiyawong and Abbas Jamalipour , Fellow, IEEE

Abstract—Sybil attack refers to the situation when a malicious
node falsely claims to have numerous identities and is known to
be one of the security threats to the Internet of Things (IoT).
Due to recent increase usage of unmanned aerial vehicles (UAVs)
in various applications, Sybil attack has been identified as a
threat to the flying ad hoc network (FANET) paradigm and its
integration with the IoT to form the Internet of Flying Things
(IoFT). In this article, we propose an intelligent Sybil attack
detection approach for FANETs-based IoFT using physical layer
characteristics of the radio signals emitted from the UAVs as
detected by two ground nodes. A supervised machine learning
approach is employed and experimented with several different
classifiers available in the Weka workbench platform. The exper-
iment was carried out based on two features of the radio signals,
namely, the received signal strength difference (RSSD) and the
Time Difference of Arrival (TDoA). Simulation results revealed
that the proposed scheme can achieve a high correct classifica-
tion accuracy of above 91% on average, even for smart malicious
nodes with power control capability operating at power levels not
directly trained. In addition to its high performance, the proposed
scheme is also less susceptible to various attacks commonly car-
ried out on the upper layers, such as data spoofing, due to the use
of only intrinsically generated physical layer data. Furthermore,
no additional communications overheads of the UAV nodes are
required for the functionality of this scheme.

Index Terms—Flying ad hoc network (FANET), Internet of
Flying Things (IoFT), Internet of Things (IoT), machine learn-
ing (ML), received signal strength difference (RSSD), Sybil
attack, Time Difference of Arrival (TDoA), unmanned aerial
vehicle (UAV).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), also known as
drones, refer to pilotless aerial vehicles that are either

autonomously controlled by a computer or remotely controlled
by a pilot on the ground. UAVs deployment in the military
domain dates back several decades, with the primary appli-
cations being strike, reconnaissance, and border surveillance.
However, more recently, UAVs have also gained increasing
usage in civilian applications, including search and rescue
operations, environmental sensing and monitoring, and deliv-
ery of food and other products. In this context, the flying ad
hoc network (FANET) paradigm, which is a subclass of mobile
ad hoc network (MANET) where the nodes possess aviation
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characteristics, is strongly tied to the operation of UAVs due
to the needs for UAV nodes to communicate with each other
or with other node types, such as ground control station and
satellite. Consequently, the FANET paradigm and its integra-
tion with the Internet of Things (IoT) to form the Internet of
Flying Things (IoFT) have been gaining increased attention in
the research community [1], [2], [3].

The arrangement of UAVs to form a swarm has been
increasingly highlighted as an operating model of great poten-
tial for various applications. For example, Gao et al. [4] and
Zhang et al. [5] discussed the use of UAV swarms for search
and rescue operations, while Liu et al. [6] discussed the use of
UAV swarms for air quality index monitoring. Although the
deployment of UAV swarms can bring about immense advan-
tages from the aspects of resource allocation, control, and
cooperation, such a deployment model can also concurrently
introduce additional security risks associated with malicious
use [7]. For instance, there could be a greater potential for
attacks involving identity falsification, one of which is the
Sybil attack.

Sybil attack is well known to be one of the security threats
to the IoT. It refers to the situation when a malicious node
falsely claims to have numerous identities [8], [9]. There are
several incentives for a node to act in such a way; in the
context of FANETs, examples are such as to allow it to illegit-
imately acquire more weight in a voting system and to create
an illusion of traffic congestion in a particular area [10], [11].
Countermeasures for Sybil attack include prevention, detec-
tion, and mitigation. Prevention refers to the inhibition of the
attack from occurring at all. Detection refers to the identifi-
cation of security breach, the identification of attack type, as
well as the initiation of relevant mitigation solutions. Finally,
mitigation refers to the alleviation of resulting outcomes of
the attack [12].

More recently, the use of machine learning (ML) has
increasingly been leveraged to address various challenges,
including IoT security. ML does this by intelligently choos-
ing the actions to be taken in response to a given situation
based on knowledge that the system has learned. Well-
known examples of applications are, such as computer vision,
bio-informatics, fraud/malware detection, authentication, and
speech recognition [13].

As will be discussed further in Section II, there exist
numerous studies in the literature that discuss Sybil attack
detection methods for wireless ad hoc networks, wireless
sensor networks, and vehicular ad hoc networks (VANETs).
However, this is not the case for FANETs, which would have
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had relatively fewer Sybil attack threats due to the lower
expectation of having high node density presented in an area;
but the more recent increase in UAV usage is changing all
that. Adapting one of the numerous existing non-FANET Sybil
attack detection methods is also deemed to require significant
effort, as those schemes were not designed to suit nodes with
complex 3-D mobility. These facts motivated us to develop a
novel approach for Sybil attack detection to fill this gap, which
should be lightweight, highly secure, and able to detect smart
malicious nodes with power control capability. ML has been
identified as a tool with high potential to aid in the delivery
of such identified features.

In this article, we propose a new intelligent Sybil attack
detection approach for FANETs-based IoFT. The proposed
approach employs range-based location verification using
physical layer characteristics of the radio signals emitted from
the UAVs as detected by two ground nodes. This is done by
utilizing a supervised ML approach and experimenting with
several different classifiers available in the Weka [14] work-
bench platform. The learning is carried out on two features
of the radio signals, namely, the received signal strength dif-
ference (RSSD) and the Time Difference of Arrival (TDoA).
To the best of our knowledge, no other similar schemes have
been proposed so far.

The technical contributions of this article are summarized
as follows.

1) To fill a knowledge gap in the literature relating to Sybil
attack detection in FANETs-based IoFT which is still
quite deficient in general.

2) To achieve Sybil attack detection in FANETs-based IoFT
using intrinsically generated physical layer data of radio
signals emitted from the UAVs. Advantages associated
with this are such as less susceptibility to attacks involv-
ing information spoofing and not requiring additional
communications overheads.

3) To achieve Sybil attack detection in FANETs-based
IoFT, where both classic malicious nodes with fixed
power and smart malicious nodes with power control
capability may be presented.

4) To investigate and demonstrate the use of ML in car-
rying out Sybil attack classification determination based
on two attributes, namely, the RSSD and TDoA ratios
of two different radio signals, obtained using only two
monitoring nodes.

The remainder of this article is organized as follows. In
Section II, we review existing related works and deduce the
contributions of this study. We then outline the details of the
proposed scheme in Section III. In Section IV, we describe
the simulation environment, including all the key simula-
tion parameters. The results and evaluation of the simulation
are then discussed in Section V. Finally, we conclude in
Section VI.

II. RELATED WORKS

A. Position Localization Using Physical Layer Data

Many existing positioning systems are known to function
using measurements of physical layer features of the radio

signal. Very commonly used features include received signal
strength (RSS), Angle of Arrival (AoA), Time of Arrival
(ToA), and TDoA. Classical usage of these measurements
involves a two-step process. These steps are briefly described
below; however, interested readers can also refer to more
comprehensive publications, such as Dardari et al. [15] and
Munoz et al. [16] for more details, including mathematical
descriptions.

In the first step, the position-related signal parameters of
interest are measured. Out of the four features, RSS is known
to be the most easily obtainable because it is simply a mea-
surement of the received power, which can easily be done
in any system without the need for time synchronization. On
the other hand, ToA and TDoA require some sort of time
synchronization. In essence, ToA is a measurement of sig-
nal propagation delay; therefore, time synchronization between
the receivers and the transmitter would be required. Similarly,
TDoA is a measurement of signals propagation delay differ-
ence between the receivers; therefore, time synchronization
between the receivers of interest would be required. On the
other hand, AoA is known to perhaps be the least favor-
able feature, as it requires characterization of the direction of
signal propagation; consequently, the use of AoA may dic-
tate the need for costly specialized hardware, such as the
use of antenna arrays. Additionally, AoA position estimation
performance also degrades as the distance between transmitter
and receiver increases [15], [16].

The second step is the application of position estimation
techniques based on the parameters obtained in the first step.
This can be achieved by using techniques, such as lateration
and angulation. The use of multiple types of position-related
parameters can also be combined to form hybrid methods [15].
One constraint of this step is that more than two receiver nodes
are generally required for accurate positioning. For example,
as outlined by Li et al. [17], according to the principles of
trilateration, if ToA or TDoA are used, three receiver nodes
would be required for 2-D position estimation. More relevant
to FANETs is the fact that for 3-D position estimation, four
receivers would be required.

B. Sybil Attack Detection in IoFT

There are quite a number of published articles that outline
different Sybil attack detection methods that are applica-
ble to slightly different IoT domains; several recent sur-
vey papers summarize these into their associated categories.
Recent surveys on Sybil attack detection in wireless ad hoc
networks and wireless sensor networks can be found in
Arshad et al. [12], Vasudeva and Sood [18], and Singh [19].
There are also several recent survey papers on Sybil attack
detection in VANETs, including Shobana and Arockia [20],
Zhang et al. [21], Velayudhan and Anitha [22], and
Hammi et al. [23].

Existing Sybil attack detection approaches found in the liter-
ature include the use of location verification, network behavior
monitoring, resource testing, trust systems, and cryptography.
As mentioned in Section I, the scheme proposed in this article
focuses on the range-based location verification approach. To
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elaborate further, the location verification approach is classi-
fied into range-free and range-based methods. In the range-free
methods, high-accuracy location is calculated based on data
supplied through external means, such as global positioning
system (GPS), radar, or other localization schemes. The range-
based methods, however, generally can work simply by using
data obtainable from the physical layer characteristics of the
radio signals being sent and received [19]. There are several
reasons why methods that use intrinsically generated physical
layer data to detect Sybil attack might be more preferable than
others. For instance, the use of intrinsically generated physical
layer data also brings about a security advantage over methods
that use extrinsic data, in that such use would be less sus-
ceptible to spoofing attacks. Furthermore, unlike many other
methods in other detection approaches, authentication would
not be required; consequently, misidentification due to poten-
tially stolen credentials would be less of a risk. Cryptography,
which is a widely used technique for authentication, also con-
sumes a lot of energy [11]. Accordingly, since UAVs operate
on limited energy, for some applications, it may be desirable
to cut down on their cryptographic usage. Nevertheless, there
may be other advantages associated with the other Sybil attack
detection methods; therefore, in some situations, it may be
desirable to combine the advantages associated with different
schemes by using two or more detection mechanisms on a
complementary basis.

Schemes that use physical layer characteristics of the radio
signals do exist in the literature. These schemes use fea-
tures, such as RSS, AoA, ToA, and TDoA for their location
verification determination. However, to the best of our knowl-
edge, none of these schemes are designed for mobile nodes
that possess aviation characteristics like UAVs in FANETs. In
fact, apart from those designed for VANETs, most schemes
only cater for static nodes. Additionally, most schemes also
do not cater for the situation in which malicious nodes can
adjust their transmit power to fool detectors while carrying out
Sybil attacks. Furthermore, the ways in which some of these
schemes operate impose various other undesirable constraints.
For example, schemes, such as Kabbur and Kumar [24] and
Yuan et al. [25] used RSS indication values obtained through
triangulation, requiring at least three monitoring nodes to
be used [12], [23]. Other examples include schemes like
Lv et al. [26], Abbas et al. [27], and Angappan et al. [28],
which require the use of additional localization information
such as those obtainable through neighbors of the suspi-
cious nodes [12]; consequently, unlike schemes that purely
and directly use intrinsically generated physical layer data,
these schemes may be more susceptible to attacks involving
information spoofing.

When looking more specifically at Sybil attack detection
for FANETs, to the best of our knowledge, there are cur-
rently no survey papers that discuss this topic. Nevertheless,
we did find a limited number of existing research works in
this area, including de Melo et al. [29], Sun et al. [10], and
Walia et al. [30], details of which are summarized in the
following paragraphs. Note that none of these schemes oper-
ate on pure use of physical layer characteristics of the radio
signals.

In de Melo et al. [29], an identity and location valida-
tion scheme called UAVouch is proposed to detect malicious
UAVs that do not follow expected trajectories, including
the potential scenario where a Sybil attack is being carried
out. The idea is for this scheme to supplement the authen-
tication mechanism by requesting position validation from
neighboring nodes inside a cell and by using a position plausi-
bility/classifier model to detect movement inconsistencies. The
scheme is reported to have an average position falsification
attack detection accuracy of above 85%.

In Sun et al. [10], a Bayesian Nash equilibrium game theory-
based intrusion detection scheme is proposed, which can detect
Sybil attacks among other attack types. The game is between
the intrusion detection nodes and the attacking nodes, with
each side strategizing to maximize their profits. The scheme
works by studying the past behavior of UAV nodes and deter-
mining the deployment of intrusion detection nodes to achieve
optimization by minimizing the overhead while achieving a
high detection rate. Specific details on the Sybil attack detec-
tion mechanism and the associated detection accuracy rate are
not provided due to not being the focus of this article.

In Walia et al. [30], a mutual authentication technique to
detect Sybil attack in FANETs is proposed. The scheme works
by having each node checking its neighboring nodes for identi-
fication. If nodes with the same identification but with different
neighbors are found, they are marked as intruder nodes. Each
intruder node is then monitored more closely and if found to
change its identity then it would get identified as malicious. In
terms of performance, this article reports high throughput, low
overhead, and low packet loss; however, it does not mention
the overall Sybil attack detection accuracy rate.

C. Machine Learning for Sybil Attack Detection in IoFT

A typical ML system has three layers: 1) input; 2) fea-
ture extraction and processing; and 3) output. The input layer
takes in preprocessed data, which is then passed onto the
feature extraction and processing layer where the data pat-
terns get extracted; basically, this is where the training of an
ML system takes place. Several classifiers exist in this layer,
each of which defines a different methodology for data pat-
tern extraction; well-known ones are, such as support vector
machines (SVMs), principal component analysis (PCA), and
hidden Markov model (HMM). Finally, the output layer pro-
duces the prediction results of the task, such as classification
for discrete outputs (class labels) and regression for continuous
numeric outputs [13], [31].

ML methods can commonly be grouped into super-
vised, unsupervised, semi-supervised, or reinforcement learn-
ing approaches. Interested readers can refer to survey papers,
such as Jamalipour and Murali [32], Hussain et al. [13],
Al-Garadi et al. [33], and Wang et al. [34] for more
information on these ML approaches and on the use of ML in
IoT security in general. Of most relevant to this article is the
supervised learning approach, where a class label is assigned
to identify each data entry in the training set. Learning then
takes place based on this known identification and the other
input features parameters. Subsequently, the learned system
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can be deployed on other data sets to make predictions
regarding the correct class label associated with each entry.

D. Motivations and Contributions

As can be seen from previous discussions, there is currently
a gap for a Sybil attack detection mechanism that can achieve
highly accurate detection of mobile Sybil nodes in FANETs-
based IoFT. This is especially true if the scheme can detect
Sybil nodes with power control capability. In addition, the use
of physical layer features was identified as potentially being
very useful for Sybil attack detection applications in FANETs.
The pure use of intrinsically generated physical layer data to
carry out detection also minimizes potential problems such as
the risk of data spoofing. A potential approach might be to
try and adapt existing methods developed for wireless ad hoc
networks, wireless sensor networks, or VANETs to cater for
FANETs; however, significant extensions would be required
and there is no guarantee that such solutions will work well.
As an alternative, it is worth investigating a new innovative
scheme, as proposed in this article.

From the perspective of selecting the most appropriate phys-
ical layer features to use, the use of RSS and/or TDoA
features makes the most sense. The use of ToA is undesir-
able because it requires synchronization with the transmitter,
which would be impractical to implement. Similarly, the use
of AoA feature would also be impractical unless antenna
arrays are already required for other reasons. From the amount
of monitoring nodes perspective, it would also be desirable
to minimize these while still maintaining a highly accurate
detection functionality.

It can be seen that ML can potentially be used to aid the
construction of the scheme. More specifically, it is known that
RSS and TDoA features capture some location information.
An ML system can be developed to learn certain characteristics
associated with RSS and TDoA values confirmed as belong-
ing to Sybil attack events, in preparation for it to identify
similar malicious instances in the future. More importantly,
the learning can be performed without the system requiring to
know the exact underlying mechanisms, such as mathematical
operations. Because ML can easily learn from both features
concurrently, a hypothesis can be formed that a minimal num-
ber of two monitoring nodes may already be sufficient for
accurate Sybil attack detection functionality. It is important
to note that the exact formats of attributes to be fed into the
ML system need to be refined to suit the intended application,
which is Sybil attack detection in this case. This process is a bit
of an artwork, and for our study, it resulted in two attributes,
namely, the RSSD and TDoA ratios of two different radio
signals, more details of which can be found in Section III.

As will be demonstrated in later sections, the scheme
proposed in this article, incorporating an artificial intelligence
mechanism, has been designed with the intention of filling the
gap for Sybil attack detection in the FANETs environment. The
proposed scheme addresses all of the above-mentioned design
criteria and does not require any additional communications
overheads. With the use of only two monitoring nodes at fixed
locations while still able to achieve a high detection accuracy
of above 91% on average, it supports our hypothesis that such

a minimal number of nodes may already be sufficient when
assisted by an ML mechanism. To provide further illustration,
Table I summarizes the contribution of our proposed scheme
compared with the existing Sybil attack detection approaches
described by Singh [19].

III. PROPOSED SCHEME

In this section, we discuss the architecture of the proposed
scheme. As depicted in Fig. 1, we look at a situation where a
number of UAVs fly within a given area to carry out certain
operations. While doing so, the UAVs communicate with each
other and/or with ground stations. Some members of the nodes
have malicious purposes and would attempt to carry out Sybil
attacks by falsely identifying themselves as other entities. Two
monitoring nodes are placed on the ground at fixed locations
within the operational area in an attempt to detect Sybil UAV
nodes.

The focus of the architecture is on the use of ML system to
detect Sybil attack instances. The supervised ML approach
was identified as the most suitable approach in this study
due to the nature of the problem being addressed. This is
because there are simply two known distinct outcome classes,
which are whether or not a Sybil attack event is taking place.
Furthermore, the use of supervised learning is also favorable
from the performance assessment perspective, as training and
test data sets with correctly labeled class events can be gen-
erated in a straightforward manner through the simulation of
UAV networks.

As outlined in Section II, a typical ML system has three
layers: 1) input; 2) feature extraction and processing; and
3) output. In this architecture, the focus is mostly on the input
layer, more specifically, the derivation of data attributes to be
fed into the ML system. Feature extraction and processing
activities, which result in the determination of classifica-
tion output, are mostly performed by the ML system based
on specific algorithms. There exist numerous well-researched
supervised ML algorithms which can potentially be used with
the proposed architecture, as long as they support two numeri-
cal attributes (i.e., RSSD and TDoA ratios) and a class attribute
(i.e., Sybil attack instance or not). Some of these algorithms
have been selected for the simulations carried out in this study,
the details of which can be found in Section IV.

Before proceeding further, it is important to note that the
proposed scheme has been designed with the intention of being
flexible for use with a range of UAV mobility patterns, den-
sity levels, transmit power levels, and signal emission rates;
however, the exact limitations are outside the scope of this
study. Another point to note is that this study was conducted
based on the assumption that the free space path-loss propa-
gation model holds true. Furthermore, it is also assumed that
signals from other UAVs and other systems in the surrounding
area are coordinated in such a way that results in negligible
interference effects on the functionality of the system, such as
through the use of orthogonal frequency-division multiplexing.

Regarding how the ML attributes were designed, as dis-
cussed in Section II, our literature review suggests that RSS
and TDoA physical layer features contain location information
most suitable for the application scenario in this study.
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TABLE I
COMPARISON OF THE PROPOSED SCHEME TO EXISTING SYBIL ATTACK DETECTION APPROACHES

However, this is not the end of the process as the exact formats
of ML input attributes that would allow for a high classification
success rate still need to be derived. Based on the assumptions
given in the previous paragraph, the received power level is
assumed to follow the free space path-loss model developed
by Friis [35] as

Pr = PtGtGr

(
λ

4πd

)2

(1)

where Pt is the transmitted signal power, Gt is the transmit
antenna gain, Gr is the receive antenna gain, λ is the wave-
length of the signal, and d is the distance between transmitter
and receiver. As for the signal propagation time taken between
the transmitter and the receiver, such delay can be represented
by the equation

τ = d

c
(2)

where the constant c ≈ 3 × 108 m/s can be used for the speed
of light [15].

The proposition given in this Sybil attack detection problem
is that there are to be only two monitoring nodes, and the
system is to detect if two signals identified as transmitted
from different UAVs in near real-time are actually likely com-
ing from the same location (i.e., the same UAV). Therefore,
it is necessary to ensure that the attributes are designed to
capture maximal information to enable the ML classifier to
recognize such underlying pattern differences. As the use of
ML is an experimental science, the process of determining the
precise formats of the attributes used in this study requires
some creativity and preliminary experiments to verify their
effectiveness. Because of the proposition to use two moni-
toring nodes, the use of TDoA measured at these different
monitoring nodes already makes sense. The next step is to
represent this characteristic as a numeric value that captures
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Fig. 1. Architecture of the proposed scheme.

Algorithm 1: Calculate TDoA and RSSD for a Given
Signal x

Input: ToAx#1: ToA of radio signal x obtained by fixed
ground monitoring station #1,
RSSx#1: RSS of radio signal x obtained by fixed
ground monitoring station #1,

ToAx#2: ToA of radio signal x obtained by fixed
ground monitoring station #2,

RSSx#2: RSS of radio signal x obtained by fixed
ground monitoring station #2

1 begin
2 Calculate TDoAx = ToAx#1 − ToAx#2
3 Calculate RSSDx = RSSx#1 − RSSx#2
4 end

the relationship between the two signals. The numeric value
needs to somehow encompass such a relationship pattern to
make it distinguishable if the value is likely coming from
two signals belonging to the same UAV. Consequently, the
TDoA ratio between the two signals was selected as one of
the attributes. Similarly, the process also resulted in the RSSD
ratio of the two signals as the other attribute, where the RSSD
of any signal of interest is the difference between the RSS
values of the signal measured at the two different monitoring
nodes. The precise details of these two attributes are captured
in Algorithms 1 and 3. Since the differences in RSS and ToA
values received at the two monitoring nodes play important
roles in the characterization of the two attributes, it is worth
noting that the two locations should be sufficiently far apart
to enhance effectiveness.

There are two different phases in this scheme: 1) the training
and 2) operational phases. Detailed descriptions are elaborated
in the following sections.

A. Training Phase

In the training phase, UAVs would be deployed and carry
out radio communications in a controlled manner. A given
number of these UAVs would be programmed to act mali-
ciously and execute Sybil attacks by falsely using multiple
identities. Signals from each UAV would be sampled by the
monitoring nodes every certain interval for a given number of
times until the end of the training period. The two monitor-
ing nodes would detect and collect the RSS and ToA of each
signal being sampled. Subsequently and in accordance with
Algorithm 1, the corresponding RSSD and TDoA of each sig-
nal sampled would be calculated based on the variations in
RSS and ToA received at the two different nodes. This is
followed by the execution of Algorithm 2, which also calls
Algorithm 3, to calculate the RSSD and TDoA ratios between
the signal being sampled and all other latest signals sampled
from every other UAV with a differently declared identity. The
data generated by Algorithm 2 for all collected signals would
then be collectively fed to the ML classifier as training data.

As previously discussed, the Sybil attack characterization
being performed is carried out through the discovering of
patterns within the RSSD and TDoA ratios from two dif-
ferent signals that would have been emitted from somewhat
nearby physical positions during the UAV’s movement in the
air. Consequently, it is also important to note that any sig-
nals that were emitted in the past beyond a certain near
real-time threshold need to be excluded, as the positions of the
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Algorithm 2: Execute Algorithm 3 on a Given Signal x
and All the Latest Signals Collected From Each of the
Other Differently Identified UAVs Within a Given Near
Real-Time Limit tthres

Input: Current time t,
Near real-time threshold tthres,
UAVID: the identity of UAV claimed to have emitted
signal x

1 begin
2 for each collected signal claimed to have emitted

from a UAV other than UAVID
3 if the signal y being checked is the latest emitted

from such claimed UAV identity at current time t
and the signal y was not sampled prior to
t − tthres do

4 Execute Algorithm 3 with signal x and signal
y as the two signal inputs

5 if the real identity of emitters of signal x and
signal y are actually the same UAV do

6 Mark corresponding entry as “Sybil” class
7 else
8 Mark corresponding entry as “Genuine”

class
9 end if

10 end if
11 end for
12 end

UAVs emitting those would potentially have already changed
quite significantly. This threshold is represented by the near
real-time limit tthres in Algorithm 2.

B. Operational Phase

In the operational phase, UAVs would be deployed and carry
out communications using either genuine or fake identities. In
this phase, the two monitoring nodes would collect RSS and
ToA data of radio signals and use Algorithm 1 to calculate
RSSD and TDoA similarly to the training phase; however, the
difference is that the true identity of each signal’s emitter is
not known. To predict whether any two near real-time signals
collected and identified as coming from different UAVs are
actually coming from the same UAV (i.e., a Sybil attack event),
Algorithm 3 is executed and the resulting values of RSSD
and TDoA ratios are passed on to the trained ML classifier
for determination.

There are various ways in which the operational phase
detection mechanism can be deployed. As an example, detec-
tion can be performed on all pairs of signals detected by the
monitoring nodes and the ML classification results are passed
on to the upper layers for appropriate risk-based decisions sub-
jecting to other relevant information available. Alternatively,
perhaps more efficiently, an individual request can be made by
a mechanism in one of the upper layers to perform a check on
any particular signals suspicious of being from a Sybil node.

IV. SIMULATION ENVIRONMENT

A simulation of the proposed scheme was set up on a desk-
top computer with an Intel i7 2.90-GHz processor, 32 GB of

Algorithm 3: Calculate Ratios TDoAx:TDoAy and
RSSDx:RSSDy for Two Given Signals x and y

Input: TDoAx: Latest known near real-time TDoA of
signal x obtained from Algorithm 1,

RSSDx: Latest known near real-time RSSD of
signal x obtained from Algorithm 1,

TDoAy: Latest known near real-time TDoA of
signal y obtained from Algorithm 1,

RSSDy: Latest known near real-time RSSD of
signal y obtained from Algorithm 1

1 begin
2 Calculate TDoAx : TDoAy = TDoAx ÷ TDoAy

3 Calculate RSSDx : RSSDy = RSSDx ÷ RSSDy

4 end

random access memory (RAM), and Windows 10 Enterprise
operating system. The simulation can be divided into three
stages: 1) simulation of a network of flying and communicat-
ing UAVs; 2) data preprocessing prior to ML classification;
and 3) ML classification. We used the network simulator
OMNeT++ [36] (Version 5.7) in conjunction with the INET
framework [37] (Version 4.2.9) for the first stage, the output
of which is a log file containing all communication records.
Subsequently, for the second stage, a Python script was writ-
ten and applied to the log file. This was performed to extract
all relevant data, execute relevant algorithms described in
Section III, and arrange the collated data to a format read-
able by the ML classifier used in the next stage. Finally, in
the third stage, ML classification was carried out using the
previously prepared training and test data. The tool used for
the third stage was the Weka workbench platform (Version
3.8.5). Details of the three stages and further information on
the Weka workbench platform are described in the following
sections.

A. Stage 1: Simulation of UAVs

In this stage, a network of flying and communicating UAVs
was simulated in OMNeT++ using INET’s “MassMobility”
model. The UAVs movement model was based on INET’s
“3D Mobility” showcase [38], in which each UAV node moves
in a 3-D space. To summarize, the UAV nodes moved at a
speed randomly selected from a uniform distribution range
between 10 and 20 m/s. Each node also turns at a random uni-
form distribution angle range between −10◦ and 10◦ around
a random elevation angle of the same uniformly distributed
angle range. The positioning of the UAVs was configured to
update every 1 s. In terms of the UAVs flying space, this was
defined as a square of dimensions 1000 × 1000 m. As for the
elevation, we restricted the range to be between 5–50 m to bet-
ter reflect a more realistic permitted flying height for UAVs.
On the ground, we added three fixed nodes: 1) the ground
communications station at coordinates (250, 400); 2) the first
monitoring node at coordinates (250, 250); and 3) the second
monitoring node at coordinates (750, 750).

On the communications side, we used INET’s
“AckingWirelessInterface” wireless network interface module
together with “ApskScalarRadio” hypothetical radios and
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the “ApskScalarRadioMedium” radio model which uses free
space path loss by default [39]. A transmission frequency
of 2 GHz was specified for use with this radio model. We
did not define any antenna gains, which means that an
isotropic antenna with a gain of 1 (0 dB) was used for each
radio [40].

We simulated ML training data based on a network of 100
UAV nodes, 80 of which were genuine in that they only used
their true identities to identify themselves in communications.
Each genuine node transmitted one UDP packet to the ground
communications station every 1-s period. The initial transmis-
sion time was different for each node, but ranged between
simulation times t = 1 and t = 2 s. The other 20 UAV nodes
were Sybil nodes, each of which used two different identities,
namely, “A” and “B,” to identify itself. Each identity trans-
mitted one UDP packet to the ground communications station
every 1-s period. Similar to genuine nodes, the initial trans-
mission time for Sybil nodes was different for each identity,
but ranged between simulation times t = 1 and t = 2 s. Note
that relating back to the near real-time limit tthres described
in Section III, the limit used here can be considered as not
exceeding 1 s. The transmission period of 1 s can also be
viewed either literally as each UAV identity communicated
once a second, or perhaps more realistically, that each UAV
identity communicated numerous times a second but only one
of those got sampled.

In terms of the transmission power, we assumed that all
UAV nodes are supposed to be operating at a power level
that is not too high, in order to preserve their limited onboard
battery energy. At the same time, the transmit power needs
to be high enough to achieve reliable radio transmission in
various environments and distances. Therefore, we defined all
genuine UAV nodes to transmit at a power level of 100 mW,
which is also assumed to be the maximum transmit power
level. Conversely, Sybil nodes had the ability to adjust their
transmission power down to a smaller level in an attempt to
fool more traditional Sybil attack detectors.

We generated the training data for two scenarios: 1) where
each Sybil node operates at a fixed transmit power level of
100 mW and 2) where each Sybil node operates at a fixed
transmit power level of 100 mW for Identity A but at a range
of power levels from 100 mW down to as low as 0.001 mW
for Identity B. More specifically, power levels assigned to
different Identity B UAV nodes are 100, 75, 50, 25, 10,
0.1, and 0.001 mW. The training data simulation for each
scenario was carried out for a duration of 50 simulated sec-
onds using seed-set value of “0.” Such a timing duration
was chosen to achieve a balance of having sufficient train-
ing data samples while minimizing actual simulation execution
time.

For the generation of test cases, we also used two main dif-
ferent transmit power scenarios similar to what we did for the
training data and also used an execution duration of 50 simu-
lated seconds; however, we generated more diverse cases. For
instance, the tests include some power levels presented in the
training data as well as some power levels not presented in
the training data but still within the 0.001 to 100 mW range.
For each test case, we did the evaluation on more diverse

seed-set values, being from “1” through to “5.” Furthermore,
we generated supplementary test cases for a new UAV network
composition consisting of 98 genuine nodes and two Sybil
nodes, also using various power levels within the same range
and seed-set values of “1” through to “5.” Note that we will
use the designation “Gx80Sx20” to refer to the network com-
position comprising 80 genuine nodes and 20 Sybil nodes.
Similarly, we will use the designation “Gx98Sx2” to refer to
the network composition comprising 98 genuine nodes and
two Sybil nodes.

B. Stage 2: Data Preprocessing Prior to Machine
Learning Classification

In this stage, for both the training and test data, we wrote a
Python script to extract all relevant data from the output log file
generated by OMNeT++ and arrange the data into an “ARFF”
data set format readable by Weka. Each data set had three
attributes: 1) TDoAx:TDoAy ratio; 2) RSSDx:RSSDy ratio; and
3) class label of either Sybil or Genuine. The generation of
these attributes using Algorithm 2 is described in detail in
Section III.

Because the simulated UAV networks consisted of a sub-
stantially higher number of genuine nodes than Sybil nodes,
the generated data sets contained substantially more entries of
the Genuine class. This means that the ML classifier would
learn more characteristics of Genuine class data than Sybil
class data, and thus would be more susceptible to overfitting
the data to the characteristics of the Genuine class nodes.
To mitigate this issue, we decided to also create a trimmed
down version of the training data which randomly skips some
entries of the Genuine class so that there are roughly equal
entries for the Genuine and Sybil classes overall. We per-
formed some quick experiments and confirmed that using the
untrimmed version for training resulted in the classifier having
a much poorer performance in detecting Sybil class entries. As
an example, Table II illustrates the OneR classification results
when using the trimmed and untrimmed training data sets for
Scenario 2 described in the previous section evaluated against
the trimmed and untrimmed versions of one of the Gx80Sx20
test data sets. Note that the details of how this table was popu-
lated can be referred to in the next section. Unsurprisingly, the
use of untrimmed training data led to very high true positive
detection rates of Genuine class entries but very low true pos-
itive detection rates of Sybil class entries. Although such use
led to a very high average overall accuracy percentage when
evaluated with the untrimmed test data set, this was only so
because there were significantly more instances of Genuine
class data. As can be seen, when using such untrimmed train-
ing data evaluated with the trimmed test data set, the average
overall accuracy percentage was very low. Similar results were
also obtained with the use of different test data sets and clas-
sifiers. Consequently, we decided to use the trimmed version
of the data for training. For testing, although it may be more
realistic to use the untrimmed data, we decided to also exper-
iment with the trimmed data for the Gx80Sx20 composition
in order to observe the ML classification performance more
thoroughly.
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TABLE II
ONER CLASSIFICATION RESULTS—TRAINING DATA SET EVALUATED WITH A GX80SX20 TEST DATA SET—TRIMMED VERSUS UNTRIMMED

C. Stage 3: Machine Learning Classification

In this stage, we evaluated the training and test data in
Weka. The Weka platform comes included with a collection of
classifiers of different algorithm types. Furthermore, additional
classifiers are also available as optional downloadable pack-
ages. We carried out preliminary experiments with most, if not
all, of the classifiers that support the problem scenario in this
study and shortlisted a few high-performing ones. This process
then narrowed down to the four chosen algorithms, namely,
J48, Classification via Regression, OneR, and JRip. Note that
these well-researched algorithms are of three different types,
more details of which can be found in the next section for
interested readers. These diverse algorithms were then used in
carrying out the full experiments to test the robustness of the
scheme.

We captured the following output results for evaluation:
1) the accuracy of correctly classified instances overall; 2) the
number of Sybil class entries correctly identified as Sybil
class (i.e., “true positive Sybil” or equivalently “true negative
Genuine”); 3) the number of Sybil class entries incorrectly
identified as Genuine class (i.e., “false negative Sybil” or
equivalently “false positive Genuine”); 4) the number of
Genuine class entries correctly identified as Genuine class
(i.e., “true positive Genuine” or equivalently “true negative
Sybil”); and 5) the number of Genuine class entries incor-
rectly identified as Sybil class (i.e., “false negative Genuine”
or equivalently “false positive Sybil”).

Note that the second and third outputs can be used to cal-
culate the percentage of true positive Sybil entries detection.
Similarly, the fourth and fifth outputs can be used to calcu-
late the percentage of true positive Genuine entries detection.
Another point to note is that, we can add the second and
fourth outputs together to obtain the overall correct classifica-
tion instances. Likewise, we can add the third and fifth outputs
together to obtain the overall incorrect classification instances.

D. Weka Workbench Platform

The Weka workbench platform is a popular open-source
software for ML [41]. Weka comes with a collection of
classifiers, where we focus on the following four: 1) J48;
2) Classification via Regression; 3) OneR; and 4) JRip. These
four classifiers are based on three different algorithm types:
1) decision tree; 2) metalearning; and 3) rules. We briefly
describe these different classifiers below.

The J48 classifier is a decision tree-type algorithm. Decision
trees define the sequences of decisions to be made together
with the resulting recommendation. Each node in a deci-
sion tree evaluates a specific attribute until a leaf node is
reached, which is where the classification decision is made.
The J48 classifier is a derivation of a straightforward divide-
and-conquer algorithm called “C4.5” [42] which needed to be
extended in order to cater for real-world problems [43].

The Classification via Regression classifier is a metalearn-
ing type algorithm. Metalearning algorithms take classifiers
and make them into more powerful learners or change them
for other applications [43]. In the case of the Classification
via Regression classifier, it performs classification on discrete
classes using regression methods which would otherwise only
be suitable for continuous classes. Note that the M5P decision
tree classifier [44], which is the default option, was used in
our experiments.

The OneR and JRip classifiers are rules-type algorithms.
Rules-based classifiers are popular alternatives to decision
trees. Rules can be much more consolidated than decision
trees, especially when it is possible to have a default rule
covering cases not defined by other rules. Another reason for
rules popularity is that new rules can be added to existing ones
without disrupting the other rules already in place [43].

The OneR classifier, which is also called “1R” or “1-rule,” is
Weka’s implementation of Holte [45]. It works based on a set
of rules applied to just one attribute by creating a different set
of rules for each attribute and choosing the best one based on
the resulting error rates. It is described as a simple and efficient
method that can still produce effective rules that can often
achieve surprisingly high accuracy. An explanation for such a
phenomenon is that often the pattern underlying any real-world
data is quite fundamental that even only just one attribute of
the data is adequate for performing accurate predictions [43].

The JRip classifier is Weka’s implementation of the repeated
incremental pruning to produce error reduction (RIPPER) rule
learner [46]. It is based on the idea of using incremental
reduced-error pruning by Fürnkranz and Widmer [47] for
quick and effective rule inference [43].

V. SIMULATION RESULTS AND EVALUATION

In this section, we look at the ML classification
results obtained from the simulation exercises described in
Section IV, where the results for all test data sets were
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Fig. 2. ML classification results—Sybil nodes with fixed transmit power level.

Fig. 3. ML classification results—average results for Sybil nodes with variable transmit power level.

obtained from five simulation runs using the five different
seed-set values. To summarize, a high correct classification
accuracy of above 91% on average was achieved across all four
selected ML algorithms, even in scenarios with smart mali-
cious nodes operating at power levels not directly trained. Such
a high performance reflects the suitability of the design choices
made for the proposed architecture, especially the selection of
the two ML attributes, namely, the RSSD and TDoA ratios
of two different signals. Additionally, the results also reflect
the robustness of the proposed architecture in upholding high
performance when different ML classifiers are used.

The following two sections discuss the results in more
detail. Note that for the evaluation metrics, we use three cri-
teria (refer Section IV): 1) the accuracy of correctly classified
instances overall (“correct classification accuracy”); 2) the per-
centage of true positive Sybil entries detection (“true positive
Sybil rate”); and 3) the percentage of true positive Genuine
entries detection (“true positive Genuine rate”).

A. Sybil Nodes With Fixed Transmit Power Level

In this section, we examine the performance of Scenario 1,
the results of which are shown in Fig. 2. This is a simpler
scenario in which Sybil nodes can only transmit at a fixed
power level of 100 mW. It can be seen that the correct clas-
sification accuracies exceed 96% for all classifiers except for
OneR which performs slightly worse in this scenario but still
exceeds 91%. Similar results can also be observed when look-
ing more specifically at true positive Sybil and true positive
Genuine rates. Another observation about OneR is that it also
performs worst in terms of its equitability in distinguishing

Sybil and Genuine class entries, with the gaps between the
true positive Sybil and true positive Genuine detection rates
being the largest among the three classifiers.

B. Sybil Nodes With Variable Transmit Power Level

Here, we consider Scenario 2, which represents the more
complex cases where Sybil nodes can vary their transmit
power level. For these cases, a training data set containing
Sybil nodes with seven different transmit power levels was
used to train the classifiers. We conducted testing using diverse
data sets with various transmit power levels, some of which
were included in the training data set and some of which were
not.

1) Average Results: To characterize the results more gen-
erally, we examine the average results obtained from the use
of all test data sets for each of the two different node com-
positions, as shown in Fig. 3. When compared with the fixed
power results shown in Fig. 2, it can be seen that the cor-
rect classification accuracies of the four classifiers decrease
by a few percent, but all still exceed 91%. Likewise, the true
positive Sybil and true positive Genuine rates also decrease
slightly, with the results for true positive Sybil appearing to be
slightly higher than that of true positive Genuine for all clas-
sifiers; however, the gaps are smallest for the JRip classifier,
indicating that it is the most equitable one in distinguish-
ing Sybil and Genuine class entries. Interestingly, unlike the
results for the fixed power scenario, the performance of the
OneR classifier is now more similar to that of the other three
classifiers. This is perhaps not too surprising because as out-
lined in Section IV, OneR only uses one attribute to create



12864 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

Fig. 4. ML classification results—Sybil nodes with trained identity B transmit power level (50 mW).

Fig. 5. ML classification results—Sybil nodes with untrained identity B transmit power levels (mixture of 40, 3, 0.6, 0.03, and 0.007 mW).

rules, and so the performance in some situations would be
worse than the other classifiers that use all attributes available.

2) More Detailed Samples of Results: We can now look
more closely at the performance differences between some
sample test cases where the transmit power levels of Sybil
nodes were included in the training data set versus those that
were not.

First, let us look at an example situation where the Sybil
nodes can only transmit at a fixed power level that is already
included in the training data set. Fig. 4 illustrates the classifi-
cation execution results of one such example situation, where
each Sybil node transmits at a power level of 50 mW for
its Identity B. When comparing this with the average results
shown in Fig. 3, it can be seen that the results are fairly con-
sistent with one another. The correct classification accuracies
of all four classifiers exceed 91%. Similarly, the true posi-
tive Sybil rates are only slightly higher than the true positive
Genuine rates for all classifiers.

Next, we consider a situation where the transmit power level
of each Sybil node’s Identity B has not been included in the
training data set. An example situation is illustrated in Fig. 5,
which captures the results of a diversified test case where
there are five different transmit power levels of Identity B
used among the Sybil nodes, namely, 40, 3, 0.6, 0.03, and
0.007 mW. Note that we only created such a situation for the
Gx80Sx20 node composition. We did not create a similar sit-
uation for the Gx98Sx2 node composition because the small
number of Sybil nodes in this case would not be effective
in demonstrating the intended diversification. In terms of the
classification results comparison, it can be seen that the results
are also in line with the average results captured in Fig. 3,

where the correct classification accuracies for all classifiers
exceed 91%.

C. Future Works

The experimental results in this study were obtained from
simulations carried out based on several assumptions which
may not necessarily hold true in all situations. Therefore, more
considerations are required prior to the actual deployment of
the proposed scheme and may necessitate further experiments
and adaptations, as appropriate. In addition, the proposed
scheme may also be extendable to provide improvements and
additional functionalities.

1) Additional Considerations Prior to Deployment:
Examples of issues that may require additional consideration
prior to deployment are as follows. First, this study was
carried out based on the assumption that the free space
path-loss propagation model holds true and that signals from
other systems in the surrounding area are coordinated in
such a way that results in negligible interference effects on
the functionality of the system, such as through the use of
orthogonal frequency-division multiplexing. Consequently,
further assessments would need to be done on the effects
of interference and structural blockages applicable at the
physical location the system is planned to be deployed in.

This study also uses a specific UAV mobility model taken
from an INET framework’s showcase, which defines how dif-
ferent UAVs move around in a range of random speeds and
directions. Simulations were also performed on specific flying
space dimensions and node density levels. Furthermore, the
simulations carried out used only one near real-time thresh-
old value which is tthres = 1 s. In practice, depending on the
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application, it is possible that nodes may be required to fly
in a higher-density environment. They may also be required
to use different mobility patterns or signal emission rates.
Therefore, further studies are needed on these aspects prior
to deployment, as appropriate.

The UAVs transmit power levels used in this study range
from the maximum value of 100 mW down to the minimum
value of 0.001 mW. Although these values led to great sim-
ulation results, further investigations would need to be done
to confirm the performance based on the expected minimum
and maximum UAVs transmit power levels applicable to the
deployment scenario.

2) Use of Alternative Machine Learning Attributes: The
RSSD and TDoA ratios of two different radio signals were
selected as the attributes used for ML in this study fol-
lowing our hypothesis that they capture significant location
information regarding any given UAV node at a particular
point in time when used together. From the simulation results,
the use of these two attributes was found to be quite effec-
tive in detecting Sybil attacks. Nevertheless, more studies
can be carried out in the future to investigate whether the
performance of the scheme can be improved even further if
additional and/or different attributes are used, including those
derived from other physical layer features, especially if such
other features are easily obtainable in the intended deployment
scenario.

3) Extension to Support Unsupervised Machine Learning
and Other Attack Types: In reality, there may be situations in
which data sets for ML training are not easily obtainable. In
such situations, the use of supervised ML may not be ideal.
As a potential solution, unsupervised ML, which uses input
data sets without class labels to independently extract useful
information and patterns [32], may need to be considered as an
extension of the scheme. Likewise, considerations should be
given to extending the scheme to cater for other attack types
in FANETs, a good starting point of which might be those
that also involve location verification.

4) Adaptation to Support Other Application Scenarios:
Notwithstanding the fact that the proposed scheme was
designed for and experimented in the FANETs environment,
the approach may also function well in other application sce-
narios, either as is or with some modifications. As an example,
in the case of VANETs, the mobility patterns where vehicles
of certain height travel on known roads can be considered 2-D,
which is more restrictive than the 3-D mobility in FANETs.
However, there are similarities that may enable the mecha-
nisms underlying the proposed scheme to also function well
in such an environment. Additionally, research on VANETs is
also more mature and thus trusted infrastructures exist, such
as roadside units (RSUs), which may be advantageous for
the adaptation of the proposed scheme (e.g., the RSUs can
potentially be used as ground monitoring nodes).

VI. CONCLUSION

We proposed a supervised ML approach to intelligently
detect Sybil attacks for FANETs-based IoFT. Simulation
results revealed that the proposed scheme can achieve a high

correct classification accuracy of above 91% on average, even
for smart malicious nodes with power control capability oper-
ating at power levels not directly trained. Correspondingly,
this means that the proposed scheme has a low false classifi-
cation rate of less than 9% on average. Additionally, because
of the use of only intrinsically generated physical layer data,
the proposed scheme is also less susceptible to various attacks
commonly carried out on the upper layers, such as data spoof-
ing. Furthermore, no additional communications overheads
of the UAV nodes are required for the functionality of this
scheme. For future works, it may be possible to extend this
scheme beyond Sybil attack detection applications, for exam-
ple, to address other problems in FANETs that involve location
verification. In addition, extensions and adaptations to support
unsupervised ML and other application scenarios can also be
investigated.
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P. Burnap, “A supervised intrusion detection system for smart home
IoT devices,” IEEE Internet Things J., vol. 6, no. 5, pp. 9042–9053,
Oct. 2019.

[42] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1993.

[43] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. Cambridge, MA, USA:
Morgan Kaufmann, 2017.

[44] Y. Wang and I. H. Witten, “Induction of model trees for predicting con-
tinuous classes,” in Proc. 9th Eur. Conf. Mach. Learn., Prague, Czechia,
1997, pp. 128–137.

[45] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learn., vol. 11, pp. 63–90, Apr. 1993.

[46] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.
Mach. Learn., Tahoe City, CA, USA, 1995, pp. 115–123.

[47] J. Fürnkranz and G. Widmer, “Incremental reduced error pruning,” in
Proc. 11th Int. Conf. Rutgers University, New Brunswick, NJ, USA,
1994, pp. 70–77.

Donpiti (Mick) Chulerttiyawong received the
B.Eng. (Hons.) and B.Inf.Tech. degrees from The
Australian National University, Australia, and the
M.Proj.Mgt. degree from The University of New
South Wales, Australia. He is currently pursuing
the Ph.D. degree with the School of Electrical and
Information Engineering, the University of Sydney,
Australia, where his research focus is on improving
security for the Internet of Things.

He has worked as a Professional Engineer in
different industries, including telecommunications,

defense, and transport, in both public and private sectors. He is currently
a Chartered Professional Member of Engineers Australia (MIEAust CPEng).

Abbas Jamalipour (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from Nagoya
University, Nagoya, Japan, in 1996.

He holds the position of Professor of Ubiquitous
Mobile Networking with The University of Sydney,
Camperdown, NSW, Australia. He has authored nine
technical books, 11 book chapters, over 550 techni-
cal papers, and five patents, all in the area of wireless
communications and networking.

Prof. Jamalipour is a recipient of the number of
prestigious awards, such as the 2019 IEEE ComSoc

Distinguished Technical Achievement Award in Green Communications,
the 2016 IEEE ComSoc Distinguished Technical Achievement Award in
Communications Switching and Routing, the 2010 IEEE ComSoc Harold
Sobol Award, the 2006 IEEE ComSoc Best Tutorial Paper Award, as well
as over 15 Best Paper Awards. He was the President of the IEEE Vehicular
Technology Society from 2020 to 2021. Previously, he held the positions of the
Executive Vice-President and the Editor-in-Chief of VTS Mobile World and
has been an Elected Member of the Board of Governors of the IEEE Vehicular
Technology Society since 2014. He was the Editor-in-Chief IEEE WIRELESS

COMMUNICATIONS, the Vice President-Conferences, and a member of Board
of Governors of the IEEE Communications Society. Since January 2022, he
has been the Editor-in-Chief of the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY. He sits on the Editorial Board of the IEEE ACCESS and sev-
eral other journals and is a member of Advisory Board of IEEE INTERNET

OF THINGS JOURNAL. He has been the General Chair or Technical Program
Chair for several prestigious conferences, including IEEE ICC, GLOBECOM,
WCNC, and PIMRC. He is a Fellow of the Institute of Electrical, Information,
and Communication Engineers, and the Institution of Engineers Australia, an
ACM Professional Member, and an IEEE Distinguished Speaker.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


