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On the Quasi-Orthogonality of LoRa Modulation
Jae-Mo Kang , Member, IEEE, and Dong-Woo Lim

Abstract—Long Range (LoRa), a low power and wide-area
modulation scheme based on chirp spread spectrum, is the most
popular and widely adopted Internet of Things (IoT) technique
in industry. A notable and interesting property of LoRa mod-
ulation is the quasi-orthogonality of signals modulated under
different spreading factors (SFs). Unfortunately, in the literature,
there has been no analytical effort to establish the theoretical
validity of such quasi-orthogonality. This article, for the first
time, theoretically tackles the quasi-orthogonality of the LoRa
modulation. First, we derive in both continuous- and discrete-
time domains the cross-correlation between two nonsynchronized
LoRa signals with different SFs, based on which we analyze the
quasi-orthogonality of the LoRa modulation and draw some use-
ful engineering insights. Particularly, we analytically show that
in the continuous-time domain, the quasi-orthogonality is guar-
anteed if one of the SFs of the two LoRa signals is large enough;
while, in the discrete-time domain, the quasi-orthogonality is
ensured if the maximum of the SFs is large enough. Furthermore,
for practical values of the SF, the maximum squared magni-
tudes of the cross-correlation in the continuous- and discrete-time
domains are shown to be 1.14% and 1.08%, respectively, com-
pared to their peak values. We demonstrate the validity and
accuracy of our analysis through extensive numerical simulations.

Index Terms—Cross-correlation, Internet of Things (IoT),
long-range (LoRa), performance analysis, quasi-orthogonality.

I. INTRODUCTION

INTERNET of Things (IoT) is a key enabling technol-
ogy to realize anywhere and anytime connectivity for

anyone and anything with a variety of applicability [1]. Low-
power wide-area network (LPWAN) technologies are very
promising and appealing for IoT as they offer long-range
communications (e.g., over several kilometers) with extended
battery lives [2]. Long Range (LoRa) is one of the most
popular and widely adopted LPWAN technologies in indus-
try, which adopts a chirp spread spectrum as its modulation
scheme [3], [4], [5], [6]. LoRa is also promising for supporting
vehicular communications such as vehicle-to-vehicle (V2V),
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vehicle-to-everything (V2X), and unmanned-aerial-vehicle-to-
everything (U2X) communications [7].

A notable and intriguing feature of the LoRa modulation is
that signals modulated under different spreading factors (SFs)
are quasi-orthogonal (i.e., nearly orthogonal) [8], [9], [10].
Theoretically analyzing such quasi-orthogonality is very
important in many practical/industrial applications with LoRa
modulation to understand the fundamental performance limit
and behavior of the system. Also, the quasi-orthogonality
property is particularly useful and crucial for designs and
performance analysis of LoRa networks [8], [9], [10].
However, in the literature, there has been no analytical effort
to establish theoretical validity of the quasi-orthogonality of
the LoRa modulation.

Recently, several efforts have been made to identify the
cross-correlation of the LoRa signals modulated under the
same SF [6], [11]; and the cross-correlation between up and
down chirps modulated under the same SF [12]. However,
the results obtained in [6], [11], and [12] are not applica-
ble for theoretically establishing the quasi-orthogonality of
the LoRa signals modulated under different SFs. Meanwhile,
in [13] and [14], the impact of the quasi-orthogonality of
the LoRa modulation has been investigated experimentally
through numerical simulations, from which, however, it is
not easy to obtain any theoretical insights. Moreover, none
of the works in [13] and [14] give an (explicit) answer to the
following important and fundamental question: under which
conditions, the quasi-orthogonality of the LoRa modulation
is established? and what is the analytical expression of the
cross-correlation between the LoRa modulated signals with
different SFs? To the best of our knowledge, this question
still remains unanswered in the literature. This motivated our
work.

In this article, we for the first time theoretically tackle
the quasi-orthogonality of the LoRa modulation in both
continuous- and discrete-time domains. Particularly, our thor-
ough analysis identifies important conditions, under which two
nonsynchronized LoRa signals modulated with different SFs
are quasi-orthogonal. The main contributions of this article are
summarized as follows.

1) We derive an analytical expression of the cross-
correlation between two nonsynchronized continuous-
time LoRa signals with different SFs in terms of Fresnel
functions. It is also analytically shown that the quasi-
orthogonality of the LoRa modulation is guaranteed in
the continuous-time domain when one of the SFs of
the two LoRa signals is large enough; and that for the
practical values of the SF, the squared magnitude of the
cross-correlation in the continuous-time domain ranges
between 0.04% and 1.14% of the peak value.
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TABLE I
COMPARISONS OF OUR WORK AND RELATED WORKS

2) We also derive an analytical expression of the cross-
correlation between two nonsynchronized discrete-time
LoRa signals in an exponential form and show that the
quasi-orthogonality of the LoRa modulation is ensured
in the discrete-time domain when the maximum of the
SFs of the two LoRa signals is large enough. It also turns
out that for the practical values of the SF, the squared
magnitude of the cross-correlation in the discrete-time
domain ranges between 0.04% and 1.08% of the peak
value.

3) For some important special and asymptotic scenar-
ios in both the continuous- and discrete-time domains,
we further simplify the analytical expression of the
cross-correlation and gain more insights.

4) In both the continuous- and discrete-time domains, we
derive an asymptotically tight and analytically tractable
upper bound of the cross-correlation. Also, we present
the maximum strength of the cross-correlation for vari-
ous practical values of the SF.

5) We present extensive numerical results that demonstrate
the validity and accuracy of our analysis.

In Table I, our work and the related works in [6], [11],
and [12] are compared in various aspects.

This article is organized as follows. In Section II, the
LoRa signal model is described. In Sections III and IV,
the quasi-orthogonality of the LoRa modulation is analyzed
in the continuous- and discrete-time domains, respectively.
Section V makes overall discussions and Section VI presents
the numerical results. Finally, Section VII concludes this
article.

Notations: The imaginary unit is denoted by j �
√−1.

Real and imaginary parts of a complex number z are denoted
by Re{z} and Im{z}, respectively. C(z) �

∫ z
0 cos(πy2/2)dy

and S(z) �
∫ z

0 sin(πy2/2)dy are Fresnel functions [15]. Also,
O(f (z)) and o(f (z)) denote big-O and little-o notations, respec-
tively, which mean that lim

z→∞[O(f (z))/f (z)] = c for some

nonzero constant c and lim
z→∞[o(f (z))/f (z)] = 0. We use (z)mod y

to denote the remainder of the Euclidean division of z by y,
i.e., the modulo operation.

Also, all mathematical symbols used in this article are listed
in Table II.

II. LORA SIGNAL MODEL

Let SF denote the SF (or the number of bits) that is a
positive integer (which takes one value from {7, 8, . . . , 12}
in practice [10]) and M = 2SF be the number of symbols.
Then, the continuous-time LoRa signal modulated with symbol

TABLE II
LIST OF MATHEMATICAL SYMBOLS USED IN THIS ARTICLE

s ∈ {0, 1, . . . , M − 1} can be written as [3], [4], [5], and [6]

x(t) =
⎧
⎨

⎩

exp
(

j2π
[(

s
M − 1

2

)
Bt + B

2T t2
])

, 0 ≤ t < tf

exp
(

j2π
[(

s
M − 3

2

)
Bt + B

2T t2
])

, tf ≤ t < T
(1)

where B denotes the bandwidth. Also, T = (M/B) is the sym-
bol (or chirp) duration and tf = (M − s/B) is the folding
time.

The discrete-time representation of the LoRa modulated
signal can be obtained by sampling the continuous-time wave-
form x(t) at a sampling frequency fs (or equivalently, sampling
interval 1/fs) as follows [3]:

x[n] � x

(
n

fs

)

=

⎧
⎪⎪⎨

⎪⎪⎩

exp

(

j2π

[(
s
M − 1

2

)
B
fs

n + 1
2M

(
B
fs

)2
n2
])

, n ∈ N1

exp

(

j2π

[(
s
M − 3

2

)
B
fs

n + 1
2M

(
B
fs

)2
n2
])

, n ∈ N2
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where N1 = {0, 1, . . . , nf − 1} and N2 = {nf , nf + 1, . . . ,

Tfs − 1}. Also, nf = tf fs. By setting fs = B, it follows that [3],
[4], [5], [6]:

x[n] = e
j2π
[(

s
M − 1

2

)
n+ n2

2M

]

, n = 0, 1, . . . , M − 1. (2)

III. ANALYSIS ON QUASI-ORTHOGONALITY OF LORA

MODULATION IN CONTINUOUS-TIME DOMAIN

Consider two continuous-time LoRa signals, namely, x1(t)
and x2(t), with different SFs, but occupying the same band-
width B. Let SF1 and SF2 denote the SFs of x1(t) and
x2(t), respectively. Without loss of generality, suppose that
SF1 > SF2, and thus, M1 = 2SF1 > M2 = 2SF2 and
T1 = (M1/B) > T2 = (M2/B). Also, x2(t) is assumed to
involve an arbitrary time delay τ satisfying 0 ≤ τ ≤ T1 −T2.1

Consequently, we have

x1(t) =
⎧
⎨

⎩
e

j2π
[(

s1
M1

− 1
2

)
Bt+ B

2T1
t2
]

, 0 ≤ t < t1

e
j2π
[(

s1
M1

− 3
2

)
Bt+ B

2T1
t2
]

, t1 ≤ t < T1

(3)

x2(t − τ) =

⎧
⎪⎪⎨

⎪⎪⎩

Ae
j2π
[(

s2
M2

− 1
2

)
Bt+ B

2T2
t2
]

, τ ≤ t < t2 + τ

Ae
j2π
[(

s2
M2

− 3
2

)
Bt+ B

2T2
t2
]

, t2 + τ ≤ t < T2 + τ

0, otherwise
(4)

where si is the modulation symbol of xi(t) and ti =
([Mi − si]/B) for i = 1, 2. Also

A = exp

(

j2π

[
B

2T2
τ 2 −

(
s2

M2
− 1

2

)

Bτ

])

(5)

A = exp

(

j2π

[
B

2T2
τ 2 −

(
s2

M2
− 3

2

)

Bτ

])

. (6)

1In this article, we focus on the analysis with 0 ≤ τ ≤ T1 − T2, even
though our analysis and derived results can be readily extended to the case
with τ > T1 − T2, because we are interested in identifying the maximum
strength of the cross-correlation. For the same reason, in the discrete-time
domain, we focus on the analysis with a time lag m ∈ {0, 1, . . . , M1 − M2}.

Note that the parameter A in (5) [resp. A in (6)] represents a
phase shift involved in x2(t − τ) for τ ≤ t < t2 + τ (resp. for
t2 + τ ≤ t < T2 + τ), which is induced by the time delay τ .
Interestingly, such as a phase shift is given in the form of a
continuous-time up chirp with respect to τ .

The cross-correlation between x1(t) and x2(t − τ) (normal-
ized to have the peak magnitude of unity) is defined as

ρ(τ ; s1, s2) �
∫ T1

0 x∗
1(t)x2(t − τ)dt

√∫ T1
0 |x1(t)|2dt ·

√∫ T1
0 |x2(t − τ)|2dt

=
√

1

T1T2

∫ τ+T2

τ

x∗
1(t)x2(t − τ)dt. (7)

To analyze the quasi-orthogonality of the LoRa modulation in
the continuous-time domain, the cross-correlation ρ(τ ; s1, s2)

in (7) should be investigated. For this purpose, in the fol-
lowing, we derive a closed-form expression of ρ(τ ; s1, s2) in
terms of the Fresnel functions.

Theorem 1: For 0 ≤ τ ≤ T1 − T2, the cross-correlation
between x1(t) and x2(t − τ) is given by (8) (shown at the
bottom of the page), where2

F(z, y) �
(
C(z + y) − C(z)

)+ j
(
S(z + y) − S(z)

)
(9)

2Note that F(z, y) defined in (9) denotes a complex exponential function
involving the variants of Fresnel integrals in its real and imaginary parts such
that

Re{F(z, y)} = C(z + y) − C(z) =
∫ y

z
cos

(
πx2

2

)

dx

Im{F(z, y)} = S(z + y) − S(z) =
∫ y

z
sin

(
πx2

2

)

dx.

Also, the other parameters in Theorem 1 are defined as follows. First, ω, ϕ,
and ξ in (10)–(12) contribute to the phase of ρ(τ ; s1, s2) in (8) for 0 ≤ τ ≤
T1 − T2, 0 ≤ τ ≤ t1 − t2, and t1 − t2 < τ ≤ T1 − T2, respectively. Second,
α, β, and γ in (13)–(15), respectively, contribute to the value of ρ(τ ; s1, s2)

in (8) by being used as the arguments of the function F. Third, μ = τB
contributes to the values of ω, ϕ, ξ , α, and β.

ρ(τ ; s1, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1

2(M1−M2)

[

Ae−jωF
(
α,

√
2(M1−M2)

M1
− γ
)

+Ae−jϕF
(
α −
√

2M1M2
M1−M2

+
√

2(M1−M2)
M1

− γ, γ
)]

, for 0 ≤ τ ≤ t1 − T2

√
1

2(M1−M2)

[

Ae−jωF
(
α,

√
2(M1−M2)

M1
− γ
)

+Ae−jϕF
(
α −
√

2M1M2
M1−M2

+
√

2(M1−M2)
M1

− γ, β + γ −
√

2(M1−M2)
M1

)

+Ae−jωF
(
β, α +

√
2(M1−M2)

M1
− β
)]

, for t1 − T2 < τ ≤ t1 − t2
√

1
2(M1−M2)

[

Ae−jωF(α, β − α) + Ae−jξ F
(
β +
√

2M1M2
M1−M2

, α +
√

2(M1−M2)
M1

− β − γ
)

+Ae−jωF
(
α +
√

2(M1−M2)
M1

− γ, γ
)]

, for t1 − t2 < τ ≤ t1
√

1
2(M1−M2)

[

Ae−jξ F
(
α +
√

2M1M2
M1−M2

,

√
2(M1−M2)

M1
− γ
)

+Ae−jωF
(
α +
√

2(M1−M2)
M1

− γ, γ
)]

, for t1 < τ ≤ T1 − T2.

(8)
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ω = πM1M2

M1 − M2

(
s2 − μ

M2
− s1

M1

)2

(10)

ϕ = πM1M2

M1 − M2

(
s2 − μ

M2
− s1

M1
− 1

)2

(11)

ξ = πM1M2

M1 − M2

(
s2 − μ

M2
− s1

M1
+ 1

)2

(12)

α =
√

2(M1 − M2)

M1M2
μ +
√

2M1M2

M1 − M2

(
s2−μ

M2
− s1

M1

)

(13)

β =
√

2(M1 − M2)

M1M2
(M1 − s1)

+
√

2M1M2

M1 − M2

(
s2−μ

M2
− s1

M1

)

(14)

γ =
√

2(M1 − M2)

M1M2
s2. (15)

In (10)–(14), μ = τB.
Proof: See Appendix A-A.

From Theorem 1, it turns out that the cross-correlation
between x1(t) and x2(t − τ) is inversely proportional to the
difference between the amounts of symbols of the two LoRa
signals (i.e., M1 − M2). Also, the cross-correlation relies on
the time delay τ as well as the symbols and SFs of the two
LoRa signals (i.e., the set of parameters {τ, s1, s2, SF1, SF2});
but, it is irrelevant of the bandwidth B.3

In the following, we further investigate some important
special and asymptotic cases where the expression of the
cross-correlation becomes much simplified.

1) Cross-Correlation for Special Case: First, for a special
case when τ = s1 = s2 = 0,4 the cross-correlation is presented
in the following.

Corollary 1: The cross-correlation between x1(t) and x2(t)
with s1 = s2 = 0 is given by

ρ(0; 0, 0) =
√

1

2(M1 − M2)

[

C

(√
2M2(M1 − M2)

M1

)

+ jS

(√
2M2(M1 − M2)

M1

)]

. (16)

Proof: When τ = s1 = s2 = 0, we have ω = ϕ = ξ =
α = γ = μ = 0, and ti = Ti, i = 1, 2. By substituting these
into (8) and using the fact that C(0) = S(0) = 0 [15], the
result of (16) can be obtained.

2) Cross-Correlation for Asymptotic Cases: For asymptotic
analysis, we again consider the case of τ = s1 = s2 = 0.
In what follows, we derive the cross-correlation for two
asymptotic cases.

Corollary 2: For fixed (M1/M2) < ∞, when M2 → ∞,
the cross-correlation between x1(t) and x2(t) with s1 = s2 = 0
approaches

3Note, however, that as shown in (37), the unnormalized cross-correlation
(i.e., inner product) between x1(t) and x2(t) depends on the bandwidth B.

4In practice, this case corresponds to the transmission of two synchronized
preamble signals (i.e., basic up chirps) modulated under different SFs.

ρ(0; 0, 0) →
√

1

2(M1 − M2)

{[
1

2
+ 1

π

√
M1

2M2(M1 − M2)
sin

(
πM2(M1 − M2)

M1

)]

+ j

[
1

2
− 1

π

√
M1

2M2(M1 − M2)
cos

(
πM2(M1 − M2)

M1

)]}

.

(17)

Proof: By using the Taylor expansion, it can be shown
that C(z) ≈ (1/2) + (1/πz) sin(πz2/2) and S(z) ≈ (1/2) −
(1/πz) cos(πz2/2) for z 	 1. By applying these expansions
to (16), the result of (17) can be obtained.

The result of Corollary 2 implies that for the case when
M1 is asymptotically large with fixed (M1/M2), the value of
ρ(0; 0, 0) can be computed very efficiently because the inte-
gration involved in the Fresnel functions does not need to be
computed.

The results of Corollaries 1 and 2 still show that the cross-
correlation is inversely proportional to M1 − M2 even when
τ = s1 = s2 = 0. On the other hand, interestingly, there is
an exceptional case where the cross-correlation is inversely
proportional only to M1, which is shown in the following.

Corollary 3: For fixed M2 < ∞, when M1 → ∞, the
cross-correlation between x1(t) and x2(t) with s1 = s2 = 0
approaches

ρ(0; 0, 0) →
√

1

2M1

[
C
(√

2M2

)
+ jS
(√

2M2

)]
. (18)

Proof: When M1 → ∞ with fixed M2 < ∞, it follows
that M1 − M2 → M1. Substituting this into (16), the result
of (18) can be obtained.

The remaining important question is whether the LoRa
modulation is indeed quasi-orthogonal in the continuous-time
domain. The answer turns out to be affirmative if one of the
SFs of the two LoRa signals is large enough. For more detailed
analysis and discussions, in the following, we derive a tight
upper bound of the strength of the cross-correlation between
x1(t) and x2(t − τ).

Theorem 2: |ρ(τ ; s1, s2)|2 is upper bounded by

∣
∣ρ(τ ; s1, s2)

∣
∣2 � 1.677

M1−M2
. (19)

Proof: See Appendix A-B.
From Theorem 2, it turns out that the squared magnitude

(or power) of the cross-correlation between x1(t) and x2(t−τ)

is of the order of

∣
∣ρ(τ ; s1, s2)

∣
∣2 = O

(
1

M1 − M2

)

(20)

which is inversely proportional to M1 −M2. That is, the larger
the value of M1 − M2 is, the smaller the strength of the
cross-correlation is in the continuous-time domain. This is the
case when either SF1 or SF2 is large since M1 − M2 is large
when M1 is large for fixed M2 or when M2 is large for fixed
(M1/M2). Therefore, the results of (19) and (20) imply that the
two nonsynchronized LoRa signals modulated under different
SFs are quasi-orthogonal in the continuous-time domain when
one of the SFs of the two LoRa signals is large enough.
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IV. ANALYSIS ON QUASI-ORTHOGONALITY OF LORA

MODULATION IN DISCRETE-TIME DOMAIN

For analysis, let us consider two discrete-time LoRa sig-
nals, namely, x1[n] and x2[n], with different SFs, i.e., SF1 and
SF2, respectively. Also, x2[n] involves an arbitrary time lag m
satisfying m ∈ {0, 1, . . . , M1 − M2}. Thus, we have

x1[n] = e
j2π
[(

s1
M1

− 1
2

)
n+ n2

2M1

]

, n = 0, 1, . . . , M1 − 1, (21)

x2[n − m]

=
{

�e
j2π
[(

s2−m
M2

− 1
2

)
n+ n2

2M2

]

, n = m, . . . , M2 + m − 1
0, otherwise

(22)

where

� = exp

(

j2π

[
m2

2M2
−
(

s2

M2
− 1

2

)

m

])

(23)

which represents a phase shift involved in x2[n − m], being
induced by the time lag m.

The cross-correlation between x1[n] and x2[n − m] is
defined as

�[m; s1, s2] �
∑M1−1

n=0 x∗
1[n]x2[n − m]

√∑M1−1
n=0 |x1[n]|2 ·

√∑M1−1
n=0 |x2[n − m]|2

=
√

1

M1M2

M2+m−1∑

n=m

x∗
1[n]x2[n − m]. (24)

In the following, we derive a useful expression of �[m; s1, s2]
in an exponential form.

Theorem 3: For m ∈ {0, 1, . . . , M1 − M2}, the cross-
correlation between x1[n] and x2[n − m] takes the following
form:

�[m; s1, s2] =
√

1

M1M2
�r exp(jθ) (25)

where

r =
√√
√
√M2 + 2

M2−1∑

n=0

n−1∑

l=0

cos
(
2π(l − n)[a(l + n + 2m) + b]

)

(26)

θ = tan−1

(∑M2−1
n=0 sin

(
2π
[
a(n + m)2 + b(n + m)

])

∑M2−1
n=0 cos

(
2π
[
a(n + m)2 + b(n + m)

])

)

. (27)

In (26) and (27), a = (1/2)([1/M2] − [1/M2]) and b =
([s2 − m]/M2) − (s1/M1).

Proof: See Appendix A-C.
In what follows, several special and asymptotic cases are

investigated, in which the expression of the cross-correlation
becomes further simplified and useful insights are obtained.

1) Cross-Correlation for Some Special Cases: First, we have
the following result.

Theorem 4: For M1 = 2M2, when M1s2−M2s1 is a multiple
of M1 and m is an even number, the cross-correlation between
x1[n] and x2[n − m] is given by (28) (shown at the bottom
of this page), where i = (s2 − m − [M2/M1]s1)modM2 and
k = i + (m/2)modM2 .

Proof: See Appendix A-D.
Note that when s1 = s2 = 0, M1s2 − M2s1 is always a

multiple of M1. The cross-correlation in this case with m = 0
is presented in the following.

Corollary 4: When M1 = 2M2, the cross-correlation
between x1[n] and x2[n] with m = s1 = s2 = 0 is given by

�[0; 0, 0] =
√

1

2M1
exp
(

j
π

4

)
(29)

Proof: When m = s1 = s2 = 0, we have i = k = 0
in (28). By substituting this into (28), the result of (29) can
be obtained.

Intriguingly, from Corollary 4, it turns out that when m =
s1 = s2 = 0, the cross-correlation between the two discrete-
time LoRa signals is inversely proportional to the maximum
number of symbols between the two LoRa signals (i.e., M1),
or equivalently, the maximum of the SFs of the two LoRa
signals (i.e., SF1), with a constant phase of (π/4).

2) Cross-Correlation for Asymptotic Cases: For asymptotic
cases, we have the following results.

Theorem 5: For fixed M2 < ∞, when M1 → ∞ and
M1s2−M2s1 is a multiple of M1, the cross-correlation between
x1[n] and x2[n − m] with m = o(M1) approaches

�[m; s1, s2] →
√

1

M1
exp

[

jπ

(
1

4
− k2

M2

)]

(30)

where k = (s2 − m − [M2/M1]s1)modM2 .
Proof: See Appendix A-E.

When m = s1 = s2 = 0, the result of Theorem 5 is
simplified as follows:

Corollary 5: For fixed M2 < ∞, when M1 → ∞, the
cross-correlation between x1[n] and x2[n] with s1 = s2 = 0
approaches

�[0; 0, 0] →
√

1

M1
exp
(

j
π

4

)
. (31)

Proof: When m = s1 = s2 = 0, we have k = 0 in (30).
From this, the result of (31) can be obtained.

From Theorem 5 and Corollary 5, it turns out that even for
the case of the asymptotically large M1 with fixed M2, the
cross-correlation is again inversely proportional to M1.

�[m; s1, s2] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
1

2M1
� exp

[
jπ
(

1
4 + 2m(i+m/4)

M2

)]
, k = 0

√
1

2M1
�

{

exp

[

jπ

(
1
4 − 2

[
k2−m(i+m/4)

]

M2

)]

−2
√

2
M1M2

exp
(
−jπ 2k2−m(2i+m/2)−1/2

M2

)∑k−1
l=0 exp

(
j2π

l(l+1)
M2

)}

, otherwise.

(28)
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An important observation from the above results is that
the LoRa modulation is quasi-orthogonal in the discrete-time
domain if the maximum of the SFs of the two LoRa signals
is large enough. For more detailed analysis and discussions,
we present the following result.

Theorem 6: |�[m; s1, s2]|2 is upper bounded by
∣
∣�[m; s1, s2]

∣
∣2 ≤ 1 + 2ε

M1
(32)

where

ε = max
s1,s2,m,n

n−1∑

l=0

cos
(
2π(l − n)[a(l + n + 2m) + b]

)
. (33)

Proof: See Appendix A-F.
From Theorem 6, it turns out that the squared magnitude

of the cross-correlation between x1[n] and x2[n − m] is of the
order of

∣
∣�[m; s1, s2]

∣
∣2 = O

(
1

M1

)

(34)

which is inversely proportional to M1, or equivalently, SF1
(i.e., the maximum of the SFs of the two LoRa signals). This
implies that the two nonsynchronized LoRa signals modulated
under different SFs are quasi-orthogonal in the discrete-time
domain when the maximum SF value is large enough.

V. OVERALL DISCUSSIONS

In this section, we make overall discussions on the quasi-
orthogonality of the LoRa modulation, and we provide prac-
tically useful and theoretically unified insights. For this
purpose, in the following, we first present the asymptotic
quasi-orthogonality of the LoRa modulation.

Theorem 7: When M1 → ∞ with fixed M2 < ∞ or when
M2 → ∞ with fixed (M1/M2) < ∞, it follows that:

∣
∣ρ(τ ; s1, s2)

∣
∣2 → 0 and

∣
∣�[m; s1, s2]

∣
∣2 → 0. (35)

Proof: See Appendix A-G.
Based on Theorem 7 along with the theoretical results

derived in the previous sections, we can make the following
conclusions.

1) The quasi-orthogonality of the LoRa modulation is
guaranteed in both the continuous- and discrete-time
domains for large M1 and/or M2 (and thus, when either
SF1 or SF2 is large). Quite surprisingly, this also means
that if the SF values are small, the quasi-orthogonality
may not be ensured, possibly resulting in unwanted
crosstalk between the LoRa signals in practice. To
address this issue, one should carefully select the SFs
of the LoRa signals according to the required crosstalk
levels. An intuitive way is to choose the value of SF1 as
large as possible by selecting the value of SF2 as small
as possible or keeping the value of SF2 constant.

2) From Theorem 7, it can be also inferred that the two
nonsynchronized LoRa signals are quasi-orthogonal in
both the continuous- and discrete-time domains if they
are quasi-orthogonal in at least one of the two domains.

Next, we further investigate the unnormalized cross-
correlation (i.e., inner product) of the LoRa modulation,

additionally taking the amplification gains of the LoRa signals
into account. Specifically, let

x̃i(t) = √Pixi(t) and x̃i[n] = √Pixi[n], i = 1, 2 (36)

where
√

Pi denotes the amplification gain, which accounts for
the amplifier effects, transmit power, fading channel gain, dis-
tortion, etc. Then the inner product between x̃1(t) and x̃2(t−τ)

and that between x̃1[n] and x̃2[n−m] are, respectively, given by

ρ̃(τ ; s1, s2) =
∫ τ+T2

τ

x̃∗
1(t)x̃2(t − τ)dt

∝
√

P1P2

B
ρ(τ ; s1, s2) (37)

�̃[m; s1, s2] =
M2+m−1∑

n=m

x̃∗
1[n] x̃2[n − m]

= √P1P2�[m; s1, s2]. (38)

From (37) and (38), it turns out that in both continuous-
and discrete-time domains, the inner product is proportional to
the amplification gains of the LoRa signals. In the continuous-
time domain, it is also inversely proportional to the bandwidth.
Therefore, in practice, there are several additional situa-
tions where the quasi-orthogonality may not be guaranteed.
Specifically, if the amplification gain of the crosstalk sig-
nal is large and/or the bandwidth of the system is small,
the quasi-orthogonality of the LoRa modulation might not
be established. Thus, to achieve the quasi-orthogonality, one
should maximize the bandwidth and at the same time minimize
the amplification gain of the crosstalk signal as well.

Finally, we provide more discussions on how the analytical
results derived in this article can be used for the practical LoRa
system designs. First of all, for the cases of the LoRa system
designs dealing only with the crosstalk (or interference) issue,
our analysis gives us the following fundamental, yet important
and valuable, insights.

1) If the LoRa systems operate in the continuous-time
domain, the SF values should be maximized as much as
possible to minimize the impact of the crosstalk between
the continuous-time LoRa signals with different SFs.5

2) On the other hand, if the LoRa systems operate in the
discrete-time domain, the maximum SF value should be
maximized as much as possible to minimize the impact
of the crosstalk between the discrete-time LoRa signals
with different SFs.

In addition, the derived analytical results can be used for the
practical LoRa system designs in terms of resource allocation
(e.g., SF allocation or power allocation) by performing opti-
mizations with various design criteria (such as bit error rate
(BER), data rate, coverage, etc.) under the constraint on the
crosstalk as follows.

1) For example, suppose that one is interested in the
LoRa system designs for the SF allocation with
BER minimization (or coverage maximization). Let

5However, a large SF value results in increasing the symbol duration, thus,
increasing the probability of collision. In practice, therefore, one should judi-
ciously select the SF value according to the required collision tolerance as
well.
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E(SF1, SF2) denote a performance measure (such as
average BER, maximum BER, etc.) for the BERs of
the two LoRa signals with different SFs (i.e., x1(t) and
x2(t) in the continuous-time domain or x1[n] and x2[n]
in the discrete-time domain), which is a function of SF1
and SF2. Also, let S denote a set of SF values satisfying
the crosstalk constraint, which is defined as6

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(SF1, SF2) : max

τ,s1,s2

∣
∣ρ(τ ; s1, s2)

∣
∣ ≤ ρth

}

in the continuous-time domain{
(SF1, SF2) : max

m,s1,s2

∣
∣�[m; s1, s2]

∣
∣ ≤ �th

}

in the discrete -time domain
(39)

where ρth or �th denotes a threshold for the maximum
cross-correlation strength. Then, the SF allocation for
the BER minimization can be done via

minimize
(SF1,SF2)∈S

E(SF1, SF2). (40)

2) Similarly, for the LoRa system designs with the aim
of data rate maximization, the SF allocation can be
conducted by

maximize
(SF1,SF2)∈S

R(SF1, SF2) (41)

where R(SF1, SF2) denotes a performance measure
(such as sum rate, minimum rate, etc.) for the data rates
of the two LoRa signals with different SFs as a function
of SF1 and SF2.

VI. NUMERICAL RESULTS

In this section, numerical results are presented to validate
our analysis in the previous sections. Since LoRa supports
six different values for the SF (from 7 to 12) in practice, we
set SFi ∈ {7, 8, . . . , 12}, i = 1, 2, in the simulations (unless
specified otherwise).

In Fig. 1, the cross-correlation between x1(t) and x2(t −
τ) is shown versus the time delay τ when s1 = s2 = 0,
SF1 = 12, and SF2 ∈ {8, 11}. It can be observed from Fig. 1
that the strength of the cross-correlation tends to decrease as
τ increases, while its phase is arbitrarily and almost uniformly
distributed across [−π, π). Fig. 2 depicts the cross-correlation
between x1(t) and x2(t) versus the symbol s1 of x1(t) when
s2 = 0, SF1 = 12, and SF2 = 11. From Fig. 2, it can be
inferred that there exist certain fairs of the LoRa symbols that
make the strength of the cross-correlation large or small.

In Figs. 3 and 4, the cross-correlation between x1(t) and
x2(t) is plotted versus SF2 when SF1 = 12 and SF1 when
SF2 = 7, respectively, where s1 = s2 = 0. From Figs. 3 and 4,
we can observe that the strength of the cross-correlation
decreases as SF2 decreases for fixed SF1 or SF1 increases for
fixed SF2, as expected from our analysis in Section III. Also,

6Note that in (39), the expression of ρ(τ ; s1, s2) in the continuous-time
domain (resp. �[m; s1, s2] in the discrete-time domain) can take one of those
in (8) and (16)–(19) [resp. (25) and (28)–(32)] depending on the operating
condition of the LoRa system.

Fig. 1. ρ(τ ; 0, 0) versus τ when SF1 = 12 and SF2 ∈ {8, 11}.

Fig. 2. ρ(0; s1, 0) versus s1 when SF1 = 12 and SF2 = 11.

the asymptotic analysis presented in Section III-2) agrees well
for large SF1 or SF2.

In Table III, the maximum value of |ρ(τ ; s1, s2)|2 obtained
based on (8) is presented for various practical values of the
SF (i.e., 7, 8, . . . , 12) together with the corresponding upper
bound given by (19), of which value is shown in bracket. From
Table III, it can be observed that for the practical values of
the SF, the squared magnitude of the cross-correlation ranges
between 0.04% and 1.14% of the peak value (i.e., unity). It
is small when SF1 or SF2 is large, which accords with our
analysis. Also, given SF1 (resp. SF2), the strength of the cross-
correlation tends to be smaller when SF2 becomes smaller
(resp. when SF1 becomes larger), because M1−M2 gets larger.

Fig. 5 shows the cross-correlation between x1[n] and
x2[n − m] as a function of the time lag m when s1 = (M1/M2),
s2 = M2−1, SF1 = 10, and SF2 = 9, where m is set to be even
numbers. From Fig. 5, it can be seen that the strength of the
cross-correlation is not monotonic over m, unlike the case in
the continuous-time domain. The cross-correlation is observed
to be strong when m is very small or very large. In Fig. 6, we
plot the cross-correlation between x1[n] and x2[n − m] as a
function of the symbol s2 of x2[n − m] when m = s1 = 0,
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Fig. 3. ρ(0; 0, 0) versus SF2 when SF1 = 12.

Fig. 4. ρ(0; 0, 0) versus SF1 when SF2 = 7.

TABLE III
MAXIMUM VALUE AND UPPER BOUND OF SQUARED MAGNITUDE OF

CROSS-CORRELATION BETWEEN CONTINUOUS-TIME LORA SIGNALS

SF1 = 12, and SF2 = 7. Also, in Figs. 7 and 8, the cross-
correlation between x1[n] and x2[n] is shown versus SF2 when
SF1 = 2SF2 and versus SF1 when SF2 = 7, respectively. We
set m = s1 = s2 = 0 in Fig. 7 and m = 0, s1 = (M1/M2),
and s2 = M2 − 1 in Fig. 8. From Figs. 6 and 8, one can see
the results expected from Theorem 5 and Corollary 5, respec-
tively. Also, from Fig. 7, one can see that as SF1 increases,
the cross-correlation tends to have a monotonically decreas-
ing strength over SF1 with the constant phase of (π/4), which
accords with the result of Corollary 4.

Fig. 5. �[m; (M1/M2), M2 −1] versus even m when SF1 = 10 and SF2 = 9.

Fig. 6. �[0; 0, s2] versus s2 when SF1 = 12 and SF2 = 7.

Fig. 7. �[0; 0, 0] versus SF2 when SF1 = 2SF2.

Table IV lists the maximum value of |�[m; s1, s2]|2 obtained
based on (25) for the practical values of the SF along with the
corresponding upper bound in (19), of which value is shown
in the bracket. From Table IV, it can be observed that for
the practical values of the SF, the squared magnitude of the
cross-correlation in the discrete-time domain ranges between
0.04% and 1.08% of the peak value (i.e., unity). It is small
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Fig. 8. �[0; (M1/M2), M2 − 1] versus SF1 when SF2 = 7.

TABLE IV
MAXIMUM VALUE AND UPPER BOUND OF SQUARED MAGNITUDE OF

CROSS-CORRELATION BETWEEN DISCRETE-TIME LORA SIGNALS

when SF1 is large, which accords with our analysis. Also,
given the same SF1, the strength of the cross-correlation tends
to be smaller when SF2 gets smaller. Thus, a large SF gap
is even beneficial for ensuring the quasi-orthogonality in the
discrete-time domain.

Finally, from the results in Figs. 1–4 and Table III, it can
be concluded that the upper bound derived in (19) is highly
accurate when the magnitude of the cross-correlation is large
(even otherwise, it still results in a sufficiently small error). In
this sense, therefore, the upper bound in (19) can be considered
to be (almost) tight. A similar conclusion can be made for the
upper bound derived in (32) based on the results in Figs. 5–8
and Table III. Thus, the upper bound in (32) can be considered
to be (almost) tight as well.

VII. CONCLUSION

In this article, we investigated and analyzed the quasi-
orthogonality of the LoRa modulation by deriving the cross-
correlation between the two nonsynchronized LoRa signals
with different SFs in both continuous- and discrete-time
domains. It was analytically shown that in the continuous-
time domain, the quasi-orthogonality is guaranteed when one
of SFs of the two LoRa signals is large enough; while, in the
discrete-time domain, the quasi-orthogonality is ensured when
the maximum of the SFs is large enough. From the derived
results, we also provided the useful engineering insights and

(a) (b)

(c) (d)

Fig. 9. Illustrative example for the four difference cases analyzed in
Theorem 1, which are differ in how x1(t) and x2(t − τ) are cross-correlated
depending on the duration of their folding times t1 and t2 + τ as well as the
time delay τ . (a) When 0 ≤ τ ≤ t1 − T2. (b) When t1 − T2 < τ ≤ t1 − t2.
(c) When t1 − t2 < τ ≤ t1. (d) When t1 < τ ≤ T1 − T2.

further discussed on the quasi-orthogonality of the LoRa mod-
ulation in depth. The validity and accuracy of our analysis
were demonstrated via the numerical results.

As an intriguing and important focus of future research,
it is deserved to study performance analysis, SF allocation,
superposition coding, frequency/time synchronization, and so
on when multiple LoRa users employing different SFs coexist
and interfere with each other, based on the results presented
in this article.

APPENDIX A
PROOF OF THEOREMS

In this section, we provide mathematical proofs of the
theorems.

A. Proof of Theorem 1

Let η1 = 2πB([s1/M1] − [1/2]), η′
1 = 2πB([s1/M1] −

[3/2]), η2 = 2πB([s2/M2] − [1/2] − [τ/T2]), η′
2 =

2πB([s1/M1] − [3/2] − [τ/T2]), and νi = (2πB/Ti), i = 1, 2.
Then x1(t) and x2(t − τ) can be written as

x1(t) =
{

ej
(
η1t+ ν1

2 t2
)
, 0 ≤ t < t1

ej
(
η′

1t+ ν1
2 t2
)
, t1 ≤ t < T1

(42)

x2(t − τ) =

⎧
⎪⎨

⎪⎩

Aej
(
η2t+ ν2

2 t2
)
, τ ≤ t < t2 + τ

Aej
(
η′

2t+ ν2
2 t2
)
, t2 + τ ≤ t < T2 + τ

0, otherwise.

(43)

From (42) and (43), the cross-correlation between x1(t) and
x2(t−τ) can be calculated case by case for the following four
cases (an illustrative example for these four cases is shown in
Fig. 9).

1) When 0 ≤ τ ≤ t1 −T2: In this case, x1(t) for 0 ≤ t < t1
is first cross-correlated with x2(t − τ) for τ ≤ t < t2 + τ over
the range τ ≤ t < t2 + τ , and then, is cross-correlated with
x2(t − τ) for t2 + τ ≤ t < T2 + τ over the range t2 + τ ≤ t <

T2 + τ . Thus, it follows that:

ρ(τ ; s1, s2) =
√

1

T1T2

[

A
∫ τ+t2

τ

e
j
(
(η2−η1)t+ ν2−ν1

2 t2
)

dt

+ A
∫ τ+T2

τ+t2
e

j
(
(η′

2−η1)t+ ν2−ν1
2 t2

)

dt

]

.

(44)
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From Lemma 1 in Appendix B, it can be shown that the above
integration is equivalent to the result of (8) for 0 ≤ τ ≤ t1−T2.

2) When t1 − T2 < τ ≤ t1 − t2: In this case, x1(t) for
0 ≤ t < t1 is first cross-correlated with x2(t − τ) for τ ≤
t < t2 + τ over the range τ ≤ t < t2 + τ , and then, is cross-
correlated with x2(t − τ) for t2 + τ ≤ t < T2 + τ over the
range t2 + τ ≤ t < t1. Thereafter, x1(t) for t1 ≤ t < T1 is
cross-correlated with x2(t − τ) for t2 + τ ≤ t < T2 + τ over
the range t1 ≤ t < T2 + τ . Thus, it follows that:

ρ(τ ; s1, s2) =
√

1

T1T2

[

A
∫ τ+t2

τ

e
j
(
(η2−η1)t+ ν2−ν1

2 t2
)

dt

+ A
∫ t1

τ+t2
e

j
(
(η′

2−η1)t+ ν2−ν1
2 t2

)

dt

+ A
∫ τ+T2

t1
e

j
(
(η′

2−η′
1)t+ ν2−ν1

2 t2
)

dt

]

. (45)

From Lemma 1 in Appendix B, it can be shown that the above
integration is equivalent to the result of (8) for t1 − T2 < τ ≤
t1 − t2.

3) When t1 − t2 < τ ≤ t1: In this case, x1(t) for 0 ≤ t < t1
is first cross-correlated with x2(t − τ) for τ ≤ t < t2 + τ over
the range τ ≤ t < t1. Then x1(t) for t1 ≤ t < T1 is cross-
correlated with x2(t−τ) for τ ≤ t < t2 +τ over the range t1 ≤
t < t2 + τ , followed by being cross-correlated with x2(t − τ)

for t2 + τ ≤ t < T2 + τ over the range t2 + τ ≤ t < T2 + τ .
Thus, it follows that:

ρ(τ ; s1, s2) =
√

1

T1T2

[

A
∫ t1

τ

e
j
(
(η2−η1)t+ ν2−ν1

2 t2
)

dt

+ A
∫ τ+t2

t1
e

j
(
(η2−η′

1)t+ ν2−ν1
2 t2

)

dt

+ A
∫ τ+T2

τ+t2
e

j
(
(η′

2−η′
1)t+ ν2−ν1

2 t2
)

dt

]

.

(46)

From Lemma 1 in Appendix B, it can be shown that the above
integration is equivalent to the result of (8) for t1−t2 < τ ≤ t1.

4) When t1 < τ ≤ T1 − T2: In this case, x1(t) for t1 ≤ t <

T1 is first cross-correlated with x2(t − τ) for τ ≤ t < t2 + τ

over the range τ ≤ t < t2 + τ , and then, is cross-correlated
with x2(t − τ) for t2 + τ ≤ t < T2 + τ over the range t2 + τ ≤
t < T2 + τ . Thus, it follows that:

ρ(τ ; s1, s2) =
√

1

T1T2

[

A
∫ τ+t2

τ

e
j
(
(η2−η′

1)t+ ν2−ν1
2 t2

)

dt

+ A
∫ τ+T2

τ+t2
e

j
(
(η′

2−η′
1)t+ ν2−ν1

2 t2
)

dt

]

.

(47)

From Lemma 1 in Appendix B, it can be shown that the above
integration is equivalent to the result of (8) for t1 < τ ≤
T1 − T2.

B. Proof of Theorem 2

For y ≥ 0, it follows that |F(z, y)|2 ≤ (maxw C(w))2 +
(maxw S(w))2. Using this and applying the triangle inequality

to the result of (8) for t1 −T2 < τ ≤ t1 − t2 or t1 − t2 < τ ≤ t1,
we get

|ρ(τ ; s1, s2)|2 ≤
3
[(

maxw C(w)
)2 + (maxw S(w)

)2]

2(M1 − M2)

≈ 1.677

M1 − M2
(48)

where the last line follows since maxw C(w) ≈ 0.78 and
maxw S(w) ≈ 0.714 [15].

C. Proof of Theorem 3

Note that (24) is equivalent to

�[m; s1, s2] =
√

1

M1M2
�

M2+m−1∑

n=m

ej2π
(
an2+bn

)

=
√

1

M1M2
�

M2−1∑

n=0

ej2π
(
a(n+m)2+b(n+m)

)
(49)

where a = (1/2)([1/M2] − [1/M2]) and b = ([s2 − m]/M2)−
(s1/M1). By applying Lemma 2 in Appendix B to (49)
with qn = 1 and φn = 2π(a(n + m)2 + b(n + m)) for
n = 0, 1, . . . , M2 − 1, it can be shown that �[m; s1, s2] can be
expressed as in (25).

D. Proof of Theorem 4

When M1 − 2M2, it follows that:

�[m; s1, s2] =
√

1

M1M2

M2+m−1∑

n=m

e
jπ
(

1
M2

− 1
M1

)

e
j2π
(

s2−m
M2

− s1
M1

)

=
√

1

M1M2

M2−1∑

n=0

e
j π(n+m)2

2M2 e
j 2π i(n+m)

M2

=
√

1

M1M2
e

j πm2
2M2 e

j 2π im
M2

M2−1∑

n=0

e
j πn2

2M2 e
j 2πkn

M2 (50)

where i = (s2−m−[M2/M1]s1)modM2 and k = i+(m/2)modM2 .
On the other hand, we have

M2−1∑

n=0

e
j πn2

2M2 e
j 2πkn

M2

=
M2/2−1∑

n=0

[

e
j π(2n)2

2M2 e
j 2πk(2n)

M2 + e
j π(2n+1)2

2M2 e
j 2πk(2n+1)

M2

]

=
M2/2−1∑

n=0

e
j πn2

M2/2 e
j 2πkn

M2/2

︸ ︷︷ ︸

=
√

M2
2 ej π4 e

−j 2πk2
M2

+ e
j π(2k+1/2)n

M2

M2/2−1∑

n=0

e
j πn(n+1)

M2/2 e
j 2πkn

M2/2

︸ ︷︷ ︸

=−2e
−j 2πk(k+1)

M2
∑k−1

l=0 e
j 2π l(l+1)

M2

(51)

where the last line follows from Lemmas 5 and 6 in
Appendix B. By substituting (51) into (52), the result of (28)
can be obtained.
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E. Proof of Theorem 5

For fixed M2 < ∞ and m = o(M1), when M1 → ∞ and
M1s2 − M2s1 is a multiple of M1, we have

�[m; s1, s2] =
√

1

M1M2

M2+m−1∑

n=m

e
jπ
(

1
M2

− 1
M1

)

e
j2π
(

s2−m
M2

− s1
M1

)

→
√

1

M1M2

M2+m−1∑

n=m

e
j πn2

M2 e
j 2πkn

M2

=
√

1

M1M2

M2−1∑

n=0

e
j πn2

M2 e
j 2πkn

M2

︸ ︷︷ ︸

=√
M2ej π4 e

−j πk2
M2

(52)

where k = (s2 − m − [M2/M1]s1)modM2 . Also, the last line
follows from Lemma 5 in Appendix B and the fact that both
ej(πn2/M2) and ej(2πkn/M2) are periodic with period M2. Thus,
the result of (30) follows.

F. Proof of Theorem 6

The result of (32) follows from the fact that |�|2 =
| exp(jθ)|2 = 1 and r2 ≤ M2(1 + 2ε).

G. Proof of Theorem 7

The results of (35) follow since the upper bound of
|ρ(τ ; s1, s2)|2 in (19) and that of |�[m; s1, s2]|2 in (32)
approach zero as M1 → ∞ with fixed M2 < ∞ or as
M2 → ∞ with fixed (M1/M2) < ∞.

APPENDIX B
LIST OF LEMMAS

In this Appendix, we list some lemmas that are useful for
proving the theorems in this article.

Lemma 1 (Integration of a Continuous-Time Chirp Signal
Over a Finite Interval): Suppose that ν > 0. Then, it follows
that:
∫ v

u
ej
(
ηt+ ν

2 t2
)
dt

=
√

π

ν
e−j η2

2ν

[(
C(V) − C(U)

)+ j
(
S(V) − S(U)

)]
(53)

where U = √
(ν/π)(u + [η/ν]) and V = √

(ν/π)(v + [η/ν]).
Proof: By completing the square of the bracketed term,

we have
∫ v

u
ej
(
ηt+ ν

2 t2
)
dt = e−j η2

2ν

∫ v

u
ej ν

2 (t+ η
ν )dt

=
√

π

ν
e−j η2

2ν

∫ V

U
ej πz2

2 dt

=
√

π

ν
e−j η2

2ν

(∫ V

0
ej πz2

2 dt −
∫ U

0
ej πz2

2 dt

)

=
√

π

ν
e−j η2

2ν
[
C(V) + jS(V) − (C(U) + jS(U)

)]

=
√

π

ν
e−j η2

2ν
[(

C(V) − C(U)
)+ j
(
S(V) − S(U)

)]
(54)

where in (54), we have changed the integration variable by
letting

√
ν(t + [η/ν]) = √

πz.
Lemma 2 (Sum of N Complex Exponentials): Suppose that

there are N complex exponentials with magnitudes rn, n =
0, . . . , N−1, and phases φn, n = 0, . . . , N−1. Then, it follows
that:

N−1∑

n=0

qnejφn = qejφ (55)

where

q =
√√
√
√

N−1∑

n=0

q2
n + 2

N−1∑

n=0

n−1∑

l=0

qnqm cos(φm − φn) (56)

φ = tan−1

(∑N−1
n=0 rn cos φn
∑N−1

n=0 rn sin φn

)

. (57)

Proof: The summation can be equivalently written as

N−1∑

n=0

qnejφn =∑N−1
n=0 qn cos φn + j

∑N−1
n=0 qn sin φn. (58)

From (58), the phase of the summation can be determined as

φ = tan−1
(∑N−1

n=0 rn cos φn
∑N−1

n=0 rn sin φn

)

. (59)

Also, the squared magnitude of the summation can be deter-
mined as

q2 =
(

N−1∑

n=0

qn cos φn

)2

+
(

N−1∑

n=0

qn sin φn

)2

=
N−1∑

n=0

(

q2
n cos2 φn + 2

n−1∑

l=0

qnqm cos φn cos φm

)

+
N−1∑

n=0

(

q2
n sin2 φn + 2

n−1∑

l=0

qnqm sin φn sin φm

)

=
N−1∑

n=0

q2
n + 2

N−1∑

n=0

n−1∑

l=0

qnqm cos(φm − φn). (60)

Lemma 3 (Sum of a Discrete-Time Chirp Signal of
Length N): Suppose that N is a positive even number. Then,
it follows that:

N−1∑

n=0

ej πn2
N = √

Nej π
4 . (61)

Proof: When N ≤ 4, we have

N = 2 :
1∑

n=0

ej πn2
2 = 1 + ej π

2 = √
2ej π

2

N = 4 :
3∑

n=0

ej πn2
4 = 1 + ej π

2 + ejπ
︸︷︷︸
=−1

+ ej 9π
2

︸︷︷︸
=ej π

2

= 2ej π
2 .
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On the other hand, when N ≥ 8, we have the following
relationship:

N−1∑

n=0

ej πn2
N =

N/2−1∑

n=0

(

ej πn2
N + ej π(n+N/2)2

N

)

=
N/2−1∑

n=0

⎛

⎝ej πn2
N + ej πn2

N ejπn ej πN
4

︸︷︷︸
=1

⎞

⎠

=
N/2−1∑

n=0

ej πn2
N

⎛

⎝1 + ejπn
︸︷︷︸

=(−1)n

⎞

⎠

= 2
N/4−1∑

n=0

ej π(2n)2
N = 2

N/4−1∑

n=0

ej πn2
N/4 . (62)

Through recursive computations, we get

N = 8 :
7∑

n=0

ej πn2
8 = 2

1∑

n=0

ej πn2
2 = 23/2ej π

2

N = 16 :
15∑

n=0

ej πn2
16 = 2

3∑

n=0

ej πn2
4 = 24/2ej π

2

...

Thus, it follows that:

N−1∑

n=0

ej πn2
N = 2

log2 N
2 ej π

4 = √
Nej π

4 . (63)

Lemma 4 (Sum of a Discrete-Time Chirp Signal of Length
N With Phase Shifts): Suppose that N is a positive even
number. Then, it follows that:

N−1∑

n=0

ej πn(n+1)
N = 0. (64)

Proof: The result can be proved as follows:

N−1∑

n=0

ej πn(n+1)
N =

N/2−1∑

n=0

(
ej πn(n+1)

N + ej π(N−(n+1))(N−n)
N

)

=
N/2−1∑

n=0

⎛

⎝ej πn(n+1)
N + ej πn(n+1)

N ejπN
︸︷︷︸
=1

e−j(2n+1)π
︸ ︷︷ ︸

=−1

⎞

⎠

=
N/2−1∑

n=0

ej πn(n+1)
N (1 − 1) = 0. (65)

Lemma 5 (Discrete Fourier Transform of a Discrete-Time
Chirp Signal of Length N): Suppose that N is a positive even
number. Then, for an arbitrary integer κ , it follows that:

N−1∑

n=0

ej πn2
N ej 2πκn

N = √
Nej π

4 e−j πk2
N (66)

where k � κmodN .

Proof: The result can be proved as follows:

N−1∑

n=0

ej πn2
N ej 2πκn

N =
N−1∑

n=0

ej πn2
N ej 2πkn

N

= e−j πk2
N

N−1∑

n=0

ej π(n+k)2
N

= e−j πk2
N

N−1∑

n=0

ej πn2
N (67)

= √
Nej π

4 e−j πk2
N (68)

where (67) follows since ej(πn2/N) = ej([π(n+N)2]/N) for an even
N and (68) follows from Lemma 3.

Lemma 6 (Discrete Fourier Transform of a Discrete-Time
Chirp Signal of Length N With Phase Shifts): Suppose that N
is a positive even number. Then, for an arbitrary integer κ , it
follows that:

N−1∑

n=0

ej πn(n+1)
N ej 2πκn

N

=
{

0, k = 0

−2e−j πk(k+1)
N
∑k−1

l=0 ej π l(l+1)2
N , otherwise

(69)

where k � κmodN .
Proof: The result when κ = 0 follows directly from

Lemma 5. So, we focus on the proof when κ = 0

N−1∑

n=0

ej πn(n+1)
N ej 2πκn

N =
N−1∑

n=0

ej πn(n+1)
N ej 2πkn

N

= e−j πk(k+1)
N

N+k−1∑

l=k

ej π l(l+1)
N

= e−j πk(k+1)
N

[
N−1∑

l=k

ej π l(l+1)
N −

k−1∑

l=0

ej π l(l+1)
N

]

(70)

= −2e−j πk(k+1)
N

k−1∑

l=0

ej π l(l+1)2
N (71)

where (70) follows since ej([π(l+N)(l+N+1)]/N) =
−ej([π l(l+1)]/N), and thus,

∑N+k−1
l=N ej([π l(l+1)]/N) =

−∑k−1
l=0 ej([π l(l+1)]/N). Also, (71) follows by Lemma 4 as

N−1∑

l=k

ej π l(l+1)
N =

N−1∑

l=0

ej π l(l+1)
N

︸ ︷︷ ︸
=0

−
k−1∑

l=0

ej π l(l+1)
N

= −
k−1∑

l=0

ej π l(l+1)
N . (72)
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