
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 13, 1 JULY 2023 11825

Automatic Map Update Using Dashcam Videos
Aziza Zhanabatyrova , Clayton Frederick Souza Leite , and Yu Xiao

Abstract—Autonomous driving requires 3-D maps that provide
accurate and up-to-date information about semantic landmarks.
Since cameras present wider availability and lower cost compared
with laser scanners, vision-based mapping solutions, especially,
the ones using crowdsourced visual data, have attracted much
attention from academia and industry. However, previous works
have mainly focused on creating 3-D point clouds, leaving auto-
matic change detection as open issue. We propose a pipeline for
initiating and updating 3-D maps with dashcam videos, with
a focus on automatic change detection based on comparison
of metadata (e.g., the types and locations of traffic signs). To
improve the performance of metadata generation, which depends
on the accuracy of 3-D object detection and localization, we
introduce a novel deep learning-based pixelwise 3-D localization
algorithm. The algorithm, trained directly with Structure from
Motion (SfM) point cloud data, accurately locates objects in 3-D
space by estimating not only depth from monocular images but
also lateral and height distances. In addition, we also propose
a point clustering and thresholding algorithm to improve the
robustness of the system to errors. We have performed exper-
iments with different types of cameras, lighting, and weather
conditions. The changes were detected with an average accuracy
above 90%. The errors in the campus area were mainly due to
traffic signs seen from a far distance to the vehicle and intended
for pedestrians and cyclists only. We also conducted cause analy-
sis of the detection and localization errors to measure the impact
from the performance of the background technology in use.

Index Terms—Autonomous driving, change detection, localiza-
tion, mapping, Structure from Motion (SfM).

I. INTRODUCTION

H IGH-DEFINITION (HD) 3-D maps are an important
component in current autonomous driving solutions as

they provide essential information for safe maneuvering in
complex urban environments. Several mapping companies—
such as HERE and TOMTOM—have already allocated diverse
efforts to build, maintain, and distribute HD maps. The
creation of HD maps involves vehicles equipped with high-
precision LiDAR sensors driving through different areas to
collect point cloud data of the environment. Due to the high
costs of LiDAR sensors, the vehicle fleet in charge of this
task is limited to a few units and, therefore, considerably out-
numbered by the number of roads. In addition, roads that
were previously mapped need to be maintained, i.e., con-
stantly monitored for changes and updated when necessary.
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Hence, the efficiency of building and maintaining HD maps is
a bottleneck for autonomous driving. Compared with LiDAR
sensors, visual sensors, such as dashcams, have a consider-
ably lower cost; they are also widely available in the market
and are easy to be utilized. Previous works [1], [2] have also
shown the feasibility of creating accurate 3-D point clouds
from unordered images using Structure from Motion (SfM)
techniques, which allows the input to be collected through
crowdsourcing. However, due to the high computational com-
plexity of SfM-based point cloud generation, it is too costly to
frequently reconstruct point clouds from crowdsourced visual
data. Therefore, it becomes essential to effectively detect and
localize changes in the environment, and remap only the
regions where the changes occurred. Currently, this is an
under-explored topic and still remains an open issue.

We propose a pipeline based on SfM techniques for ini-
tiating and updating a semantic 3-D map, with a focus
on automatically detecting changes based on a comparison
of the metadata (i.e., types and locations of traffic signs).
Our pipeline generates a sparse point cloud that, combined
with image-based semantic segmentation and object detection,
enables the automatic generation of semantic map data—
termed as metadata and consisted of types and 3-D locations
of traffic signs—assisted with a clustering algorithm that we
devise. Our system supports lightweight change detection by
comparing the semantic map data with a thresholding algo-
rithm to induce robustness to errors. With the multilayer
design, the dynamic map data representing temporary changes
are stored on separate layers. The contributions of our work
are summarized as follows.

1) Our pipeline provides a novel method for utilizing SfM-
based point clouds to train a deep-learning model for
online pixelwise 3-D localization from monocular RGB
data. This method allows localizing traffic signs online
with respect to the camera poses with high accuracy.
Compared with our method, previous works [3], [4] pro-
vide only depth information, neglecting the lateral and
height information necessary for 3-D localization, and
require LiDAR solutions to serve as annotations (ground
truth). By utilizing data extracted from SfM-based point
clouds to serve as ground truth, we discard the need for
LiDAR annotations and additionally provide lateral and
height distances.

2) Compared with other solutions that utilize a multitude
of sensors, such as LiDAR, inertial measurement unit
(IMU), real-time kinematics (RTKs) positioning, and
complex sensor fusion algorithms, our pipeline offers a
simple solution—i.e., only single-view RGB images and
GPS coordinates—for change detection while achiev-
ing similar performance. Moreover, even though our
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proposal can benefit from multiple camera views, a sole
camera view is enough to obtain high change detection
accuracy.

3) Our pipeline reduces manual effort by eliminating the
need for labels of changes and their locations since it
does not utilize an end-to-end neural network trained
on a data set specifically designed for change detec-
tion [5], [6], [7].

We collected dashcam videos from two urban areas—
campus and residential—in February and December 2019, and
used the data to evaluate system performance and conduct
cause analysis of detection and localization errors. The change
detection results in the residential area showed that our method
was able to hit 100% accuracy. In the campus area, the change
detection accuracy was 85%, where the errors were mainly due
to traffic signs seen from a far distance from the vehicle and
intended for pedestrians and cyclists only. We also provided an
analysis of the errors of each component of the pipeline and
how they can be improved to enable more accurate change
detection and localization. Also, our proposal has been eval-
uated under complex urban scenarios with different weather,
lighting conditions, and camera types.

The remainder of this article is organized as follows.
Section II reviews the background technology used for build-
ing our solution. In Section III, we provide an overview of the
system architecture, followed by the detailed designs described
in Sections IV and V. The evaluation of these designs using the
data sets presented in Section VI is discussed in Sections VII
and VIII. The related studies and future work are summa-
rized in Sections IX and X before concluding this article in
Section XI.

II. BACKGROUND

This section introduces the technical background and prior
works on SfM, semantic segmentation, and object detection.

A. Structure From Motion

SfM has been used in our system to create 3-D point clouds
from 2-D images. A typical SfM pipeline consists of three steps:
1) feature extraction; 2) feature matching; and 3) bundle adjust-
ment. The first step extracts highly distinctive and invariant
features from the images, whereas the second step tries to match
these features between image pairs. The matches are input for
the last step that jointly produces optimal estimates of camera
poses and locations of 3-D points. Such a pipeline has been
implemented in several SfM software, such as COLMAP [2] and
VisualSfM [8]. We implement our system based on COLMAP
since it offers improved robustness, accuracy, completeness,
scalability, and has been released as open-source software.
Our system allows crowdsourced visual data as input, without
camera calibration and motion information.

Regarding feature matching, several methods include differ-
ent options, such as exhaustive, sequential, spatial, vocabulary-
tree-based [9], and custom feature matching. In the case of
exhaustive feature matching, each image is matched against all
others. Since it can result in an excessive processing duration, it
is only indicated for small data sets of unordered images [10].

Exhaustive matching is, for this reason, not utilized in this
work. When the images are ordered in a sequence (such as
when they are extracted from a video), sequential matching is
recommended [10]. In this matching method, the images are
matched only against their closest ones. Hence, the benefit is a
shorter processing duration. The spatial matching method uti-
lizes spatial data—e.g., the GPS coordinates of all images—as
additional input for faster processing. However, it can often
lead to model fragmentation possibly due to inaccurate location
information. Hence, it is discarded in this work. In vocabulary-
tree-based matching, each image is matched against its visually
nearest neighbors using a vocabulary-tree with spatial rerank-
ing, which is recommended for large image collections [9].
Finally, custom matching is a method where the user defines
a list of pairs of images to be matched. It is recommended for
unordered data sets and requires manual labor [10].

For the present work, we discard the use of exhaustive
and spatial matching due to the aforementioned reasons. The
remaining choices consist of vocabulary-tree-based, sequen-
tial, and custom matching methods. As it will be described
in Section VIII-A, custom matching is, especially, useful for
performing camera pose estimation due to its flexibility. The
choice between vocabulary-tree-based and sequential match-
ing for mapping is not straightforward. In Section VII-A, we
test both matching methods and provide a conclusion on which
method is more appropriate for our case.

The SfM pipeline outputs a 3-D point cloud with random
scale and orientation. Therefore, geo-registration (or geo-
referencing)—which consists of a similarity transformation—
is typically performed afterward to rescale and align the model
with respect to the real world. The geo-registration function
provided by COLMAP requires the real-world Cartesian coor-
dinates of at least three distinct images uniformly spaced
across the map. The simplest way to do this is by utilizing
positioning services—e.g., GPS or RTK positioning—during
the visual data collection to obtain geodetic coordinates for
each image and then transform these coordinates into Cartesian
ones. In case positioning services are not available during the
data collection, a solution is to manually select three loca-
tions in the map and obtain their GPS coordinates with the
help of tools, such as Google Maps, and transform their GPS
coordinates into Cartesian ones.

COLMAP does not provide methods for change detection or
automatic point cloud update. However, it provides functions
for deleting images and their related 3-D information from a
point cloud, as well as registering new images into an existing
point cloud. When a change in the scene has been detected and
localized, it is possible to utilize these functions to delete the
corresponding 3-D points from the existing point cloud, and
then register the images capturing the new scene into the point
cloud. Therefore, the focus of this article is placed on change
detection and localization rather than the implementation of
the point cloud update.

B. Semantic Segmentation and Object Detection

Semantic segmentation and object detection are computer
vision tasks employed to detect objects in an image and
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Fig. 1. Architecture of a multilayer map and the pipeline of creating and updating the map based on crowdsourced visual data. Blocks in red demonstrate
the generation of the initial map, whereas those in green show the update of the map using newly collected data.

assign to them an appropriate class label. In the case of
semantic segmentation, a class label is assigned to each pixel
in an image. However, multiple objects of the same class
are not recognized as separate objects unless a more com-
plex form of semantic segmentation—i.e., instance semantic
segmentation—is performed. Different from semantic segmen-
tation, object detection provides an individual bounding box
around each detected object. In case the boundaries of objects
are not precisely defined, it may reduce the accuracy of the
following object localization step. For example, if a segment
that represents a traffic sign by accident covers part of a build-
ing from the background, the location of the traffic sign may
be set to the location of the building, which is away from the
ground truth.

Our system combines both approaches as object detection
spots different instances of the same object individually while
semantic segmentation gives a more precise boundary around
the detected object. The algorithms are later used to detect
traffic signs in images on a pixel-wised level and localize
them in the 3-D map with the other methods discussed in
Section III. By projecting the points of the point cloud back
to the images that generated the SfM model—thus, transform-
ing the points back into pixels—and running the objection
detection and semantic segmentation neural networks on these
images, we can classify each individual pixel and consequently
its corresponding 3-D point from the point cloud. In this work,
we use the deep learning-based semantic segmentation solu-
tion, Seamseg, proposed by Porzi et al. [11]. As for the object
detection, we use the method proposed by Lu et al. [12],
(SSDResNet), available in the TensorFlow Object Detection
API. The details of both methods are given in Sections IV
and VII.

III. SYSTEM OVERVIEW

HD maps commonly have multiple layers, where each layer
serves a specific purpose and has a distinct structure [13].
We propose a pipeline for creating and updating a four-layer
3-D map from crowdsourced dashcam videos—as illustrated
in Fig. 1. The four map layers consist of: 1) a geometric
map layer which stores the raw point cloud generated by the
SfM; 2) a semantic map layer which stores the metadata with

object semantics; 3) a real-time layer for recurrent change
detection; and 4) a temporary layer that processes tempo-
rary changes. The layers are described in more detail in the
following sections.

The pipeline consists of two stages, the generation of the ini-
tial map and the update of the map using newly collected data.
The initial stage creates static information for the geomet-
ric and semantic map layers, while the update stage extracts
dynamic map information from visual data in real time in order
to detect changes in the environment by comparing its current
state to the state stored in the semantic map layer.

A. Geometric Map Layer

The pipeline starts from step A.1 which reconstructs a 3-D
point cloud from 2-D images using SfM. The output of the
SfM pipeline, as described in Section II, includes the 3-D
points, the camera pose of each image registered into the point
cloud, as well as its camera extrinsic matrix T and camera
intrinsic matrix (also called calibration matrix) K. Assuming
an ideal pinhole camera model, the camera projection matrix
P is given as P = KT. All this information is stored in the
Geometric Map Layer as simple text files. The geometric map
data remains unchanged unless there is a significant change
in the road infrastructure. The creation of the 3-D point cloud
with the SfM pipeline is part of the process of understanding
the initial state of the environment. This process is detailed in
Algorithm 1, defined in Section IV.

B. Semantic Map Layer

The images used for creating the point cloud are also uti-
lized for detecting objects in the environment by the use of
deep learning-based semantic segmentation (at step A.2.1)
and object detection (at step A.2.2) neural networks. The
output of step A.2.1 includes pixelwise semantic segmenta-
tion predictions, while that of step A.2.2 includes bounding
boxes of detected objects (e.g., traffic signs) along with their
corresponding classes. These outputs are used as input for
step A.3 by segmenting the point cloud, where each segment
of the point cloud represents a class of objects. The semantic
information of static objects is stored as metadata of the point
cloud at the Semantic Map Layer in the following text-based
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Algorithm 1: Our Algorithm for Initial Metadata
Generation. The Functions GeoRegistration,
GetImagesWherePointIsSeen, GetPixelsFromPoint,
and GetGPSOfPoint Are Available in COLMAP.
GetImagesWherePointIsSeen Finds All the Images
Where a Given Point Is Seen. GetPixelsFromPoint Finds
the Pixel Coordinates in a Given Image Corresponding to
a Given Point. GetGPSOfPoint Returns the GPS Location
of a Given Point

Input: Images of the region I, GPS_coordinates, distance
threshold for clustering traffic signs TD

metadata = List() # create an empty list of items
point_cloud = COLMAP(images) # (Step A.1)
point_cloud = GeoRegistration(GPS_coordinates) #
(Step A.1)
for each image in I do

SSimage = SemanticSegmentation(image) #
(Step A.2.1)

ODimage = ObjectDetection(image) # (Step A.2.2)
for each point p in point_cloud do

p_images = GetImagesWherePointIsSeen(p)

probabilities = zeros
for each image in p_images do

px, py = GetPixelsFromPoint(p, image)
probabilities += SSimage[px, py]

point_class = argmax(probabilities)
if point_class is traffic sign

tf_probabilities = zeros
for each image in p_images do

px, py = GetPixelsFromPoint(p, image)
tf_probabilities += ODimage[px, py]

tf_class = argmax(tf_probabilities)
GPS_p = GetGPSOfPoint(p)
metadata.append([GPS_p, tf_class])

metadata = K-Means(metadata, num_clusters) #
num_clusters to satisfy Eq. 1
Save metadata
Return True # if code was run successfully

format: (latitude, longitude, class name, object color, and date
detected). The GPS coordinates of each object are obtained by
geo-registering the point cloud. In our case, since we are only
focusing on traffic signs, the class name of the static object
includes information concerning the type of traffic sign. A
copy of the 3-D metadata generated at step A.3 is saved also
at the Temporary Layer. Algorithm 1 details this task of further
understanding the initial state of the environment.

C. Temporary Layer

Initially, the Temporary Layer stores an exact copy of the
metadata generated at step A.3. When changes in the environ-
ment are detected, they are stored in the Temporary Layer by
modifying the metadata to represent the current state of the
environment. The metadata of the Semantic Map Layer is only
updated (refer to step C.2) when a change becomes permanent.
We deem that a change is permanent if it has been observed

by a certain number of vehicles of the crowdsourcing appli-
cation throughout a certain number of days. There does not
exist standard criteria for identifying permanent changes. In
practice, our pipeline could allow users/applications to define
customized rules for classifying changes into permanent ones.
Such rules can employ a simple threshold of time for which
the change has to be observed to be deemed as permanent
or a minimum amount of observations by different vehicles.
In this article, you focus on detecting changes, leaving the
classification of permanent changes for future work.

D. Real-Time Layer

The real-time layer takes care of change detection in three
steps. After the data have been collected in real time, they
are passed for the latter processing which—depending on the
available computing resources—may not be performed in real-
time. The first step is to run three different algorithms on input
images: 1) the pixelwise 3-D localization (step B.1.1); 2) the
object detection (step B.1.2); and 3) the camera pose esti-
mation (step B.1.3). These algorithms can be run in parallel
since they do not depend on each other. Step B.1.1 calculates
the relative 3-D position to the camera for each pixel of the
image. Step B.1.2 outputs the bounding boxes and classes of
objects detected from each image. Step B.1.3 estimates the
camera pose using the SfM model created in step A.1. Since
the point cloud is geo-referenced, the camera poses are con-
verted automatically into coordinates in the world coordinate
system (WCS). The second step (i.e., step B.2) is to calcu-
late the 3-D locations of the detected objects in the WCS and
to generate new 3-D metadata for the point cloud accordingly.
The third step (i.e., step B.3) is to compare the newly generated
metadata with the latest version stored at the temporary layer.
If there exists any difference, a change is detected. The copy
of metadata at the temporary layer will be updated accordingly
(refer to step C.1).

In our system, deep learning has been applied to implement
the semantic segmentation algorithm of step A.2.1, as well as
the object detection algorithm present in steps A.2.2 and B.1.2.
These deep-learning models are trained independently before
the initial stage. They do not need to be retrained unless the
application or domain has changed. For example, if a model
has been trained to classify traffic signs in one country, to
work in another country—i.e., a new domain—it may need to
be fine-tuned on a data set, including specific traffic signs of
that country.

IV. INITIAL 3-D METADATA GENERATION

This section describes the process of the initial 3-D metadata
generation (step A.2) as illustrated in Fig. 2(a). The images
from the initial state of the environment used for the sparse
point cloud generation (step A.1) are segmented using the
semantic segmentation (step A.2.1) neural network proposed
by Porzi et al. [11]—whose architecture consists of 50 layers
built on the ResNet convolutional neural network (CNN) [14].
The output of the neural network represents a pixelwise seman-
tic prediction, visualized in Fig. 3(b), with 65 urban street
output classes. It consists of a text-based file that stores the



ZHANABATYROVA et al.: AUTOMATIC MAP UPDATE USING DASHCAM VIDEOS 11829

Fig. 2. (a) Workflow of the initial 3-D metadata generation (step A.3 in Fig. 1). (b) Network architecture of pixelwise 3-D localization based on BTS [4].

Fig. 3. (a) Example image and keypoints extracted from the image. The pink keypoints represent the ones utilized for 3-D point generation, while the red
ones have not been registered in the point cloud. Note that the image has been cropped from the original one to highlight the keypoints. (b) Visualization of
the results of the semantic segmentation by generating an image where each pixel takes the color that represents its class of maximum probability. The input
image is also overlaid to facilitate the visualization. (c) Results of the point cloud segmentation. The camera poses predicted by the SfM pipeline are shown
in red color in Fig. 3(c).

probability of the 65 classes for each pixel in the input image,
thus, being similar to the input image itself with the exception
that there are 65 channels instead of the three RGB channels.

For each 3-D point in the sparse point cloud, COLMAP
provides a list of k images that observe it as well as the pixel
coordinates—named image keypoints and shown as pink dots
in Fig. 3(a)—where it is observed. Hence, given a 3-D point,
we obtain k semantic segmentation predictions corresponding
to the images that observe the point. The predictions consist of
a probability—or confidence level—for each class considered
in the semantic segmentation network. The 3-D point is then
assigned the class of the highest average probability value. The
files that store the point cloud are then modified to include the
segmentation by colors. Fig. 3(c) shows the semantically seg-
mented point cloud with different colors for points of distinct
classes.

The results of the semantic segmentation do not include
the type of traffic sign. Therefore, we utilize the object detec-
tion neural network (step A.2.2) to obtain this information
and include it in the point cloud. The reasons for combining
semantic segmentation with object detection are two-folded.
First, combining the class predictions of the two methods
improves the generalization—this is known as ensemble learn-
ing [15]. Second, the bounding boxes surrounding the detected
objects often contain lots of space and may cover some objects
that belong to different classes. Since semantic segmentation
provides pixelwise prediction, by calculating the intersection

of each bounding box and the corresponding segment, more
precise boundaries of objects can be obtained. Section VII-B2
discusses the choice of the objection detection algorithm
as well as its training. Additional details on the semantic
segmentation are given in Section VII-B1.

After the information on the type of each traffic sign is
stored in the point cloud, all points that represent traffic signs
are extracted from the point cloud into a text-based file that,
for each point—stores its GPS location and its traffic sign type.
Since a traffic sign can consist of a multitude of points, a clus-
tering algorithm is executed to group all points that pertain to
the same traffic sign into a single point located in the cen-
ter of the cluster. The clustering is performed with the use of
K-means clustering and K-means++ initialization. The sensi-
tivity of K-means++ on the initialization of the cluster centers
is in our case negligible. This is because the distance between
clusters is appreciably larger than the size of the clusters and
outliers are extremely rare. This also signifies that K-harmonic
means clustering [16]—which is designed to be robust to the
sensitivity of the cluster initialization—is unlikely to provide
any advantage.

We denote as c the number of clusters given as input to the
K-means clustering algorithm, Di as the distance from the cen-
ter of the cluster i to the furthest point pertaining to the cluster
(note that Di is a function of c), and TD as the maximum
allowed distance Di. We propose to set the number of clusters
equal to the minimum integer value above zero that does not



11830 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 13, 1 JULY 2023

Algorithm 2: Our Change Detection Algorithm Based
on the Utilization of the Camera Pose Estimation, Object
Detection, and Modified BTS Neural Network

Input: image, GPS_coordinates, range of distance U
from camera to traffic signs, radius RT to search for
matching traffic signs in the metadata
pose = PoseEstimation(image) # (Step B.1.1)
OD = ObjectDetection(image) # (Step B.1.2)
D = ModifiedBTS(image) # (Step B.1.3)
for each detected traffic sign Ts in OD do

px, py = GetCenterOfBoundingBox(Ts)

if D[px, py] ≤ U
GPS_Ts = GetGPSForPoint(p) # (Eq. 3)
T ′

s = closest traffic to Ts and of same type in the
metadata # (Step B.3)

if T ′
s does not exist or distance from Ts to T ′

s ≥ RT

# (Step B.3)
Report change on the Temporary Map Layer #

(Step B.3)
Return True# if code was run successfully

violate the following constraint (1). The output of the cluster-
ing algorithm is the metadata—i.e., a set of points representing
each of the traffic signs, including their GPS location and type.
The choice of TD is discussed in Section VII. Algorithm 1
summarizes the process of generating the metadata

maxiDi < TD. (1)

V. CHANGE DETECTION

The newly collected video/images are processed in three
steps (i.e., step B.1.x, step B.2, and step B.3) online to detect
potential changes in the environment based on a compari-
son with the metadata. step B.1.1 consists of obtaining the
camera pose with respect to the WCS. The same method for
object detection as utilized in step A.2.2 is also used, here, in
step B.1.2 to produce bounding boxes of traffic signs and to
identify their type. Step B.1.3 applies monocular depth, lateral,
and height distance estimation to gather the relative positions
with respect to the camera of all pixels in the image. Since
these steps are independent of each other, they can be executed
in parallel.

Step B.2 utilizes the estimated camera poses, the bounding
boxes with the types of detected traffic signs, and the relative
pixel positions to the camera. These three inputs are processed
to obtain the 3-D locations of the detected traffic signs in the
WCS. With this, for each traffic sign, we search for matching
traffic signs of the same type within a specified radius in the
copy of metadata stored in the temporary layer. If there is a
mismatch (e.g., there did not exist such a traffic sign earlier), a
change is reported and the copy of metadata at the temporary
layer can be updated accordingly. Algorithm 2 summarizes the
change detection procedure.

In this section, we explain in detail how to estimate camera
poses (step B.1.1), how to calculate pixelwise relative location
with respect to the camera (step B.1.1), and how to convert

it into 3-D object locations (step B.2) in WCS (e.g., GPS
locations of traffic signs).

A. Camera Pose Estimation

In our pipeline, the camera pose estimation (i.e., estimation
of camera position and orientation in the WCS) is performed
in two distinct manners depending on the presence of traffic
signs. In the first method, given an image It at a time instant
t, if a traffic sign is detected in it, the position and orienta-
tion of its camera (with respect to the WCS) are obtained by
registering it into the point cloud using SfM with the custom
feature matching [2]. In custom feature matching, the image
pairs to be matched can be defined in a custom manner. In
our case, we opt to match the image It with the nearest image
(in terms of Euclidean distance calculated with GPS coordi-
nates) that was utilized to build the point cloud—I′

t . Using the
described custom feature matching significantly reduces the
possibility of matching failure in places where the amount of
visual features is insignificant.

In the second method, the camera position of It is obtained
directly from its GPS coordinates, whereas the orientation of
It is calculated by assuming that its orientation with respect
to I′

t equals that of It−1 with respect to I′
t−1. In practice, this

assumption means that the camera pose is always fixed with
respect to the car,—i.e., there is no relative movement between
the car and the camera—and the car follows the exact orien-
tation of the road reconstructed in the point cloud. Since in
general this assumption holds, this represents a good approx-
imation for finding the camera pose. Mathematically, this can
be expressed with the following equation:

Rt = Rt−1 · R′T
t−1 · R′

t (2)

where Rt is the rotation matrix of the image It with respect
to the absolute reference frame—which represents its cam-
era orientation—and similarly for Rt−1, R′T

t−1, and R′
t. The

subscript T denotes the transpose operation.
The first method is utilized when the orientation of It−1 is

not known or periodically to avoid the accumulation of errors
of the second method. The second method is a significantly
computationally cheaper alternative to the first method with
lower but still good accuracy. Compared with deep-learning-
based camera pose estimation, such as PoseNet [17], obtaining
camera poses from the SfM pipeline typically requires smaller
computational costs and excludes the need for an extensive
training data set. The evaluation of the camera pose estimation
is given in Section VIII-A.

B. 3-D Object Localization

For each image, we first apply object detection to cre-
ate a bounding box that covers the traffic sign in question
(step B.1.2). After that, we select the pixel at the center of
the bounding box to represent the location of the object, and
calculate its 3-D coordinates relative to the camera following a
process called pixelwise 3-D localization (step B.1.1). The pro-
cess is implemented using CNN, as described in Fig. 2(b). We
use the state-of-the-art monocular depth estimation network,
BTS [4] because its architecture is designed to predict depth
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Fig. 4. Illustrative examples of the output of the BTS network. (a) RGB image. (b) Depth prediction. (c) Lateral prediction. (d) Height prediction.

from images which is a similar application to our method. BTS
can be replaced in the future with a better CNN architecture
designed for depth estimation, if available.

Originally, the BTS network produces a single channel,
which is the pixelwise depth prediction. We have modified
the output layer to produce pixelwise output with three chan-
nels representing x, y, and z coordinates in a 3-D space. To
train the network, we create a labeled image set, including
all the images used for creating the point cloud at step A.1.
The three channels of the labels in this case represent the x, y,
and z coordinates of a 3-D point (in the SfM point cloud) with
respect to the camera. Note that since the point cloud is sparse,
the images are also sparsely labeled—i.e., some pixels may not
have annotations. During the training, these nonlabeled pixels
are masked to not to influence in the minimization of the loss
function. For each input image, the SfM pipeline outputs an
estimated camera pose, the coordinates of the 3-D points, and
the 2-D keypoints that have been used to generate those 3-D
points. Also due to the nature of the sparsity in the data set,
we opted to fine-tune the model instead of training it from
scratch. In the fine-tuning, the encoder and the early layers of
the decoder had their weights frozen.

An example is given in Fig. 4 to illustrate the outputs of
the network. In Fig. 4(b)–(d), the color of each pixel repre-
sents the distance (either depth, lateral, or height) between the
point depicted by the pixel and the camera. The whiter pixels
indicate closeness to the camera. Note that the pixels which
do not belong to any keypoint are ignored in the loss during
the training. The output of the BTS network is projected into
the WCS according to (3). Since the radius of the Earth in
meters was utilized during geo-registration, all the calculated
distances are also presented in meters

P = RT · B + C (3)

where P is the 3-D position of a certain pixel in the image in
the WCS, R is the rotation matrix from the image reference
frame to the WCS, C is the position of the image in the WCS,
and B is the vector representing the lateral, height, and depth
distances of the point with respect to the image.

We may detect the same traffic sign from several images,
which means we may get multiple predicted locations for a
single traffic sign. To obtain a more accurate location of the
traffic sign, we first filter out some noisy predictions by lim-
iting the minimum and maximum distances from the camera
to the detected traffic sign. The reason for setting the range

of distance comes from the fact that the pixelwise 3-D local-
ization algorithm tends to perform better when the traffic sign
is within a certain range of distance to the camera. Therefore,
the minimum and maximum distance thresholds are decided
based on the performance of the modified BTS neural network
on the test set (Section VII-B3). After that, we calculate the
center of the predicted locations within a specified radius and
set it as the location of the detected traffic sign.

VI. DATA SETS

The data for the training and evaluation of the performance
of the different system building blocks in Sections VII and VIII
were collected from two different sites: 1) in a residential
area and 2) around a university campus. All the collected data
sets have extremely different appearances due to differences
in weather or lighting conditions, camera models utilized, and
camera placements. The distinction in weather and lighting
conditions is a result of a data collection that took place on
different days and even different seasons of the year. Notice
that the purpose of having this variability across the data sets is
to simulate a potential crowdsourcing use. The length of roads
present in the residential area summed up to 2.4 km, whereas
on the campus, this number was 4 km. In all the recordings,
the vehicles were driving mostly at a speed within the range of
20–30 km/h. The main reason is due to the fact that the vehicle
transited urban areas with pedestrians passing through. Also,
the speed of the vehicle surpassed 40 km/h at times. Hence,
all components of the system work at a higher driving speed.
However, from the SfM mapping perspective, it is expected
to collect visual data with a lower moving speed when the
vehicle is making a sharp turn (i.e., over 90◦ rotation), since
quick scene changes can cause reconstruction errors.

Table I summarizes the seven data sets, which in total
included 23 057 images. As summarized in Table I, seven
data sets, including in total 23 057 images, were generated. A
Garmin 55 dashcam was utilized on Day 1, an Intel RealSense
D435 on Day 2, and an iPhone 12 Pro Max on Day 3. The
camera setups are visualized in Fig. 5(d)–(f). All the cameras
were placed to face roughly the same direction, which results
in an overlap in the views for data sets with more than one
view. The video resolution was set to 1920x1080, while the
frame rate to 30 FPS, which was later downsampled by deci-
mation to 10 FPS as a higher frame rate is not required given
that the vehicle speed is relatively low.
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TABLE I
DATA SET DESCRIPTION INCLUDING TRAJECTORIES FOR DATA COLLECTION, CAMERA SETUP,

AND THE NUMBER OF IMAGES COLLECTED FROM EACH TRAJECTORY

Fig. 5. Data collection trajectories and camera placements. Fig. 5 (a) illustrates the trajectories A, B, C, and D in a residential area. Fig. 5 (b) and (c) depict
trajectories E, F, and G on a university campus. Fig. 5 (d)–(f): the different configurations of camera placements: single view versus double view versus triple
view.

The camera recordings took place on February 22 2019
(Day 1), December 2 2019 (Day 2), and February 2021
(Day 3). During data collection, the vehicle went through four
trajectories in the residential area [Fig. 5(a)] and four trajec-
tories on the campus [Fig. 5(b) and (c)]. For the residential
area, only trajectory A (Data Sets III and IV) suffered changes
from February 2019 to December 2019, hence, they will be
utilized for evaluating the change detection. In the campus
area, changes have not been captured. However, our change
detection algorithm will still be utilized in trajectory G (Data
Sets VI and VII) to confirm the absence of changes. Fig. 6
illustrates an example of a change in the environment. The
remaining data are assigned to the training of the pixelwise
3-D localization system component (step B.1.1).

VII. PERFORMANCE OF THE INITIAL

3-D METADATA GENERATION

Our system generates the initial 3-D metadata of SfM point
clouds at step A.3. The accuracy of the generated metadata
depends on the accuracy of the SfM point cloud built at
step A.1 as well as the accuracy of semantic segmentation
(step A.2.1) and object detection (step A.2.2). In this sec-
tion, we evaluate the accuracy of each building block of the
Geometric Map and Semantic Map layers and analyze how
it affects the overall accuracy of the generated 3-D metadata.
We conducted all the experiments on a system running Ubuntu
18.04 and powered by four NVIDIA GTX 1080 Ti with 11 GB
of RAM each and two Intel Xeon Gold 6134 CPUs.

A. SfM-Based 3-D Reconstruction

As discussed in Section II, we implement 3-D reconstruction
based on COLMAP [2], and employ the vocabulary-tree-based
method and sequential method for feature matching [9]. We
create a sparse point cloud for data set III and data set
IV—described in Section VI—and perform geo-registration
on it. Data set III was built with vocabulary-tree-matching,

Fig. 6. Example of scenario change in the residential area. The image on
the left is taken from data set IV, whereas the one on the right is from data
set III. Notice that the traffic signs inside the red rectangles are only present
in one state of the environment.

whereas sequential matching was employed to data set IV.
The quality of the generated point cloud can be reflected in
the accuracy of the estimated camera positions (step B.1.3) and
pixelwise localization (step B.1.1), which in general affects the
accuracy of 3-D object localization (step B.2) in the process
of change detection. In addition, point cloud quality affects
the localization accuracy of the metadata in step A.3.

We take data set III as an example to evaluate the accuracy
of the camera pose estimations produced at step A.1. Data
set III includes video collected from two dashboard cameras
at 30 fps and RTK-based positioning data at 1 Hz (i.e., the
maximum sampling rate of the RTK device in use). Since RTK
provides centimeter-level positioning accuracy, the positions
derived from RTK samples are considered ground truth in this
case. The estimated camera positions are compared with RTK
measurements in Fig. 7(a). Since the sampling rate of RTK
positioning data is lower than the frame rate of the video,
we calculate the distance error of each estimated camera pose
as the distance from its closest RTK position. The median
distance error is 7.09 m, with a standard deviation of 4.96 m.
Concerning the bias caused by inconsistent sampling rates, the
actual errors may be lower than the ones we calculated.

As highlighted using a red box in Fig. 7(a), an accumulated
drift appears at the upper end of the trajectory. Such a drift
can be significantly reduced if: 1) the SfM reconstruction is
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TABLE II
TRAFFIC SIGNS INSTALLED ALONG TRAJECTORY A (LEFT) AND TRAJECTORY G (RIGHT). THE TRAFFIC SIGN NAMES PRESENTED WITH AN ASTERISK

* ARE THOSE INCLUDED IN OUR EXPANSION OF THE MAPILLARY DATA SET

Fig. 7. (a) Estimated by SfM camera positions of each image in data set III
(camera 1 in blue and camera 2 in yellow) versus the ground truth obtained
with RTK technology (in red). (b) Camera poses of data set VI estimated by
SfM (green) versus the path extracted from Google Maps for comparison (red
solid line), the red numbers specify the locations of example images in Fig. 8.

performed with the data that has a loop closure; 2) the area of
reconstruction is not too large, for example, one building block
with a loop closure making up around 600 m [see region C and
D in Fig. 5(a)]; and 3) the general recommendations for the
SfM reconstruction are met—such as good visibility, scenery
rich with features, and sufficient overlap between the camera
views. Except for the drift inside the red box, the estimated
camera positions align well with the ground truth. However,
we report that the alignment depends on the selected GPS
coordinates for the geo-registration. In this case, those were
selected in order to align properly the road outside the red box
in Fig. 7(a).

Fig. 7(b) compares the camera poses estimated by the SfM
reconstruction (data set IV) with the GPS path extracted
from Google Maps. In a similar way to reconstruction in
Fig. 7(a), the geo-registration of the region has been inten-
tionally selected to align more precisely with the upper side of
the region. That side has a greater number of visual features,
contrary to the rest of the path, which presents an environ-
ment with significantly fewer features due to large numbers of
trees and snowy roads. Notice that the quality of reconstruc-
tion with sequential matching (data set IV) is on the same level
as that with vocabulary-tree matching (data set III). However,
this does not mean both methods are equally good. In fact,
we were unable to generate a point cloud for data set IV with
vocabulary-tree matching.

To understand the reasons that caused vocabulary-tree-based
matching to completely fail, we refer to Fig. 8. Fig. 8(a)
exhibits distinguishable visual features due to the presence of

buildings, which helps in a more accurate SfM reconstruction
(the location of the camera pose is identified by the number
1 in Fig. 7(b). However, Fig. 8(b) and (c) have very similar
appearances characterized by densely located trees and snowy
roads, even though they are from different locations [see their
locations identified by the numbers 2 and 3 in Fig. 7(b)]. The
similarity in visual appearance present in different regions
is the cause of the failure in vocabulary-tree matching. In
this type of matching, images with similar appearances are
matched to each other and, when the images are from very
distinct regions, the matching process is unsuccessful and fails
to produce a point cloud. Sequential matching avoids this issue
by matching images in a manner that preserves their spatial
positioning. Therefore, we conclude that sequential matching
is the most appropriate method for our case.

B. Traffic Sign Detection and Localization

1) Semantic Segmentation on 2-D Images: We implement
the semantic segmentation component (step A.2.1), described
in Section II-B, based on the Seamseg architecture proposed
by Mapillary [11]. We utilize the model trained and tested
by the authors on the Mapillary data set [18], which achieves
50.4% Intersection over Union (IoU) [11]. A visual example
of the model performance can be seen in Fig. 3(b).

2) Object Detection: TensorFlow Object Detection API is
utilized for the traffic sign detection component, as was men-
tioned in Section II-B. As for the neural network architecture,
the SSD Resnet-50 FPN pretrained on COCO data set was
selected [12] due to a good tradeoff between the accuracy
and speed. The training set is composed of approximately
16 000 annotated images of traffic signs from the Mapillary
data set [18]. However, since certain traffic signs present in
our test regions differ significantly from those available in
Mapillary (see Table II), we expanded the data set by includ-
ing additional 4000 annotated images focused on the traffic
signs exclusive to our test regions. Half of these additional
annotated images consist of real images collected in different
regions, but in the same country. The other half is composed
of images where the traffic signs of interest were artificially
overlaid on generic background images. The 24 traffic sign
classes present in the test regions are illustrated in Table II.
Overall, 20 000 annotated images formed the data set, where
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Fig. 8. Examples of images with a sufficient and insufficient number of recognizable features. While (a) has enough recognizable features due to the presence
of buildings, (b) and (c) suffer from the lack of features since they are mostly covered with trees.

Fig. 9. Examples of mistakes in the objection detection algorithm. On the first row, informative traffic signs of pedestrians crossing are mistaken as being
of another type. On the second row, a few more examples of misclassification including an instance where tree branches are mistaken as a traffic sign.

Fig. 10. In region G, the “no parking” traffic sign was not able to be localized. Notice its absence in (a) as compared with the ground truth in (b). (c) Shows
the traffic sign in question with unmatched features across images in red circles on it. Due to these unmatched features, the triangulation of the traffic sign
was not able to be performed, thus, resulting in its absence in the metadata. (a) Prediction. (b) Ground truth. (c) Unmatched features.

500 of them were utilized for validation with the rest being
assigned to training. The training consisted of 30 epochs.

As a test set, we manually labeled the traffic signs in 97
images of region G on Day 3 (i.e., data set VI). Note that we
purposely test the object detection on images recorded from
a different camera than the images that formed the training
set. This allows for a more realistic measurement since it is
expected that crowdsourced data are taken from distinct cam-
eras. The object detection algorithm demonstrated an mean
average precision (mAP) of 0.518 at IoU threshold of 0.4,
which is a fairly good result given the circumstances of differ-
ent weather, lighting, and camera conditions. Fig. 9 illustrates
examples of mistakes by the object detection algorithm. It is
observed that when the“pedestrians crossing” traffic sign is
located at a far distance from the car or in case it is at a tilted
angle with respect to the direction of movement of the car,
the algorithm mistakes it for another traffic sign. Other exam-
ples included in Fig. 9 indicate that the algorithm can confuse
traffic signs of similar appearances—which is the case of the
roadworks and perpendicular road junction traffic signs. Since
the confidence score of these misclassifications happens to be
below 0.4, we opted to discard any detection whose score is
below this threshold value.

3) 3-D Object Localization: To evaluate the accuracy of the
object localization of our initial metadata generation method
(Section IV, step A.3), we utilize 25 traffic signs (see Table II)
installed along the trajectories A and G as examples. The
locations of these traffic signs provided by the geo-referenced
and semantically segmented SfM point cloud are compared to
their ground truth. We have selected empirically TD = 12 m
(Algorithm 1). Lower values of TD may result in the same
traffic sign being erroneously identified as two or more dis-
tinct traffic signs, whereas higher values of TD may cluster
distinct traffic signs together.

At first, it has to be noted that the system is unable to
locate the traffic signs when there are insufficient 2-D image
keypoints in the intersection between a semantic segment and
the corresponding bounding box of the object in question. In
the example shown in Fig. 10 of region G, the “no parking”
traffic sign has not been localized due to the quality of the
SfM reconstruction [see the prediction in Fig. 10(a) versus
the ground truth in Fig. 10(b)]. In Fig. 10(c), unmatched fea-
tures are shown in red color, whereas the matched ones are
illustrated in purple. Even though features for the traffic sign
in question have been extracted, these are not matched with the
features seen in other images. Thus, being unable to triangulate
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Fig. 11. Traffic sign localization using the initial metadata generation
method. Due to its length, the campus area is divided into two sections. Note
that the road on Section 2 is exactly the continuation of that on Section 1.
(a) Estimated locations of detected traffic signs (in blue) versus the ground
truth (in green) for the campus area. Top: Section 1, bottom: section 2.
(b) Estimated locations of detected traffic signs (in red color) versus the ground
truth (in green color) for the residential area.

the position of the traffic sign and, as a consequence, resulting
in the absence of the “no parking” traffic sign in the metadata.
An explanation for this is that the images utilized in the SfM
reconstruction have been collected in a sequential manner in
only one driving direction which might not provide a sufficient
overlap between the views. Still, this demonstrates a realistic
scenario.

In region A [inside rectangle 1 of Fig. 11(b)], it can be
observed that the absence of one traffic sign (note the presence
of two green circles compared to one sole red circle). The
traffic sign that was unable to be localized is of type pedestrian
walk [Fig. 12(d)]. Its absence is explained by the fact that there
are two traffic signs of the same type located very near to each
other. Our system mistakes these two instances as only one.
It is an effect of the distance threshold for clustering TD. To
compensate for the localization errors of the SfM point cloud,
this threshold imposes that instances of the same type are
clustered as one sole instance. A more accurate localization by
the SfM method is one solution for this issue. However, a more
ingenious approach would consist of tracking each traffic sign
across multiple images to identify which points in the point
cloud belong to the same traffic sign and, thus, differentiate
between such closely located objects of the same class.

In rectangle 2 of Fig. 11(b), one traffic sign was localized
twice (notice the presence of two red circles compared to only
one green circle). This traffic sign was located once in an accu-
rate location, but also far from the ground truth due to the
inaccuracy of the SfM reconstruction. One possible solution
is to increase the number of viewing angles and the image
quality of the data set used for the SfM reconstruction. Some
traffic signs have not been localized due to object detection
confidence for specific classes being lower than the threshold.
An example of this is the “junction with a side road” traffic

sign as shown in Fig. 9. Reducing the threshold is not a solu-
tion as it would result in a multitude of erroneous predictions.
In future work, training the objection detection model with a
larger data set would help to reduce this error.

Even though the metadata may miss traffic signs, this
can be corrected in the change detection stage (described in
Section V). The detection of an unseen traffic sign in the initial
stage will trigger the correction of the metadata by the change
detection method. In the future, the work can be extended to
include pedestrians or cyclists carrying smartphones and film-
ing the environment to improve the localization of traffic signs
along the pedestrian path, since sometimes these signs might
be quite far from the main road or occluded by trees, street
poles or other objects (see examples in Fig. 12). This specific
case has been the cause of 2 errors out of a total 5.

In quantitative measures, our system locates 8 out of 9 traf-
fic signs along the driving direction in the residential area, and
16 out of 20 traffic signs in the university area. Compared with
the ground truth, in the campus area, the median distance error
is 10.4 m with a standard deviation of 2.9 m. As for the resi-
dential area, the median distance error and standard deviation
were measured to be 3.6 and 1.4 m, respectively. We posit that
this disparity between the campus and residential area is due
to the fact that the former consists of a more featureless region
(i.e., devoid of objects such as a building), which affects nega-
tively the feature extraction and feature matching processes in
the reconstruction of the model. We also look into the causes
of the localization errors in successful cases. These errors have
been mainly caused by the errors in the SfM-based 3-D recon-
struction and geo-registration. In our experiments, the data
was collected from vehicles driving through the trajectories
following one direction rather than two. We used up to three
cameras facing the front for data collection. More cameras
facing different directions would help reduce the error in the
point cloud segmentation by improving the accuracy of depth
prediction for the 3-D points. In addition, the GPS coordinates
used for the geo-registration were selected manually by visu-
ally analyzing the image and approximating its location using
Google Maps and Google Street Maps. This always introduces
a certain degree of human error.

VIII. EVALUATION OF CHANGE DETECTION

A number of changes have been observed in terms of traffic
sign deployment in the test areas between Day 1 and Day 2,
and between Day 3 and Day 4. In this section, we evaluate
the performance of the change detection method using 4 data
sets. Data set III (Day 1) and data set IV (Day 2) are used
to compare the changes in the residential area, while data set
VI (Day 3) and data set VII (Day 4) are for evaluation of the
system in the campus area. Particularly, we will measure the
accuracy of step B.1.1, step B.2, and step B.3, respectively.

A. Camera Pose Estimation

Our camera pose estimation (step B.1.1.) is comprised of
two distinct methods. The first method—corresponding to the
registration of the image into the point cloud—presents an
accuracy of 7.79 m with respect to the camera pose estimation.



11836 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 13, 1 JULY 2023

Fig. 12. Example of traffic signs which are not clearly visible due to a long distance from the camera or occlusion. Fig. 12 (a): original image of Fig. 12
(b) (data set III in Table I); Fig. 12 (b): zoomed-in cropped image of Fig. 12 (a); Fig. 12 (c): an example with Pedestrians and bicycles traffic sign (data set
IV in Table I); Fig. 12 (d): an example of two traffic signs of the same type located closely to each other (data set III in Table I).

TABLE III
DEPTH, LATERAL, AND HEIGHT ERRORS OF THE PIXEL-WISE 3-D LOCALIZATION METHOD FOR DIFFERENT RANGES

OF GROUND-TRUTH DISTANCES. ABBREVIATIONS: D FOR DEPTH, H FOR HEIGHT, AND L FOR LATERAL

This result is the same as the one presented in Section VII-A
since the point cloud itself is also used, here, to estimate the
camera position. As the ground truth for the camera orientation
is not available for any image, it is not possible to measure the
accuracy of COLMAP when estimating the camera orientation
of the images.

The second method of camera pose estimation presented an
average error of 6.22 m with respect to the camera position.
This result was obtained by comparing directly the position of
the car given by the GPS device with that provided by the RTK
system. The data utilized for the measurement of the camera
position error comprised the entire residential area. Again, as
mentioned in Section VII-A, due to the inconsistent sampling
rates of the GPS (30 Hz) and the RTK system (1 Hz), the
actual error may be lower. Regarding the camera orientation
estimation—given by the assumption given in (2)—we have
measured its validity by comparing the results given by it with
those provided by COLMAP during the image registration.
The results showed that the assumption—on which the second
method is based—is able to estimate the camera orientation
with approximately 6.18 degrees of error—which represents a
fairly good result. The measurement of the camera orientation
error utilized the data from the campus area.

B. Pixel-Wise 3-D Localization

As described in Section V, pixelwise 3-D localization
(step B.1.3.) is built on top of the BTS [4] network. The
network is initialized with the weights trained with Kitti depth
data set [19]. After that, we fine-tuned the network with
13 032 samples collected from different regions of the envi-
ronment [A–D and F–G in Fig. 5(a) and (b)] for 30 epochs.
The validation set was comprised of 706 samples from region
A collected on a different day than those samples from the
same region present in the training set. Finally, the test set
consisted of 576 samples collected in region E.

Table III shows the error results on the test set on two dis-
tinct metrics: 1) the absolute error and 2) the relative error.
The absolute error is defined as the mean (calculated on all
pixels of all images) of the absolute error (4), whereas the

relative error is the mean (calculated on all pixels) of the ratio
between absolute error and the ground truth

Absolute error =
ni∑

image

np∑

pixel

|PRED|GT|
ni · np

(4)

Relative error =
ni∑

image

np∑

pixel

|PRED/GT|1|
ni · np

(5)

where PRED and GT stand for the prediction of the neural
network and its ground truth, respectively. Also, np and ni

refer to the number of pixels in an image and the number of
images in the test set, respectively.

It is observed that the absolute errors grow as the ground
truth distance increases, whereas the relative errors decrease.
Compared to the original BTS [4], our relative error in depth
is approximately 2.2–4.5 times larger. This is due to the fol-
lowing reasons. Note that we have applied data augmentation
methods, such as color, gamma, and brightness changes to
reduce over fitting. However, they were not effective in signif-
icantly reducing the error. The potential solutions to improve
the accuracy of the SfM point cloud will be discussed in
Section X.

1) Most of the weights in the neural network are shared
between three tasks of distance estimation: a) depth;
b) height; and c) lateral. This worsens the performance
of the depth estimation since the learned features need
to be more generic for a better estimation of the three
distances together.

2) Our data set is comprised of samples captured with
three different cameras, whereas in the original work of
BTS [4] the authors trained separate neural networks for
the samples of each camera available. It is known that
differences in the camera directly affect the performance
of computer vision algorithms.

3) Our data set is sparse, i.e., most of the pixels in the
images are unlabeled. This is due to the fact that the
point clouds are also sparse.

4) The ground truth is formed by estimations provided
by the SfM reconstruction, thus, containing errors that
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Fig. 13. Estimated traffic sign locations of the real-time layer (in red) versus
the ground truth (in green). The lines linking a green circle to a red one indi-
cate a match between the ground truth and the real-time layer. The encircled
traffic signs represent unmatched cases, each of which with a number as the
identifier.

affect both the training of the neural network and the
accurate evaluation of the trained model on the test set.

C. Traffic Sign Localization

We perform the online traffic sign localization (step B.2.) on
both campus and residential trajectories. Data sets IV and VII
were utilized for the former and the latter trajectories, respec-
tively. Since the accuracy of the 3-D object localization is
dependent on the distance between the camera and the object
(Table III), we propose to utilize a distance threshold (defined
as U in Algorithm 1). This signifies discarding traffic signs
located at a distance greater than the threshold. By carefully
selecting the value of the distance threshold, it is possible to
achieve better results. According to Table III, selecting higher
values of U lead to larger estimations errors. On the other
hand, since some traffic signs may only be seen at a spe-
cific distance range, lowering U excessively may culminate in
missed traffic signs—thus, resulting in incomplete metadata.
We have found empirically that setting U to 25 m provides a
good equilibrium in this tradeoff.

Residential Trajectory: Fig. 13 illustrates the estimated traf-
fic sign locations and their corresponding ground truth for
the residential trajectory. It is observed that our system can
locate 6 out of the 7 traffic signs. The missed traffic sign was
detected with low confidence—below the considered threshold
in the object detection neural network—and, thus, discarded
[Fig. 14(a)]. We hypothesize that the reason for this is due to
the insufficient number of labeled examples of construction
work in the training data set of the object detection neural
network. Reducing the confidence score threshold is not a
solution, since it results in the appearance of multiple erro-
neous detections like the one shown in Fig. 14(a) (bottom
right) where construction barricades are wrongly detected as a
traffic sign of construction-work type. With respect to distance
metrics, the traffic signs were located with a median distance
error of 9.1 and 5.1 m. A detection accuracy of 83.3% is seen
for this trajectory.

Campus Trajectory: Fig. 13 illustrates the estimated traf-
fic sign locations and their corresponding ground truth for

the campus trajectory. Two of the traffic signs present in the
ground truth and without matches from the real-time layer are
of the same type: the shared path between pedestrians and
bicycles (cases 1 and 2). These mismatches are due to the
failure of the object detection network in detecting this spe-
cific type of traffic sign [Fig. 14(a)]. Again, we posit that a
larger training set for the objection detection neural network
could solve this issue. Also, we consider these minor fail-
ures since these traffic signs are not addressed to the driver.
Overall, a median error of 5.27 m and a standard deviation of
2.08 m are observed for the trajectory. The considerable differ-
ence between these values for the campus trajectory compared
with the residential trajectory is caused by the fact that the
images of the campus trajectory are more aligned with those
that composed the training set of the 3-D object localization
neural network.

These are solid results considering that only monocular
images were used to predict the location of the changes
and the labels of the training data set utilized to train
the prediction neural network were automatically generated.
Although submeter-level accuracy was shown to be possible in
change localization [20], it requires the utilization of a set of
additional sensors, such as LiDAR, IMU, vehicle speed sen-
sors, and highly accurate positioning solutions. We envision
that, whenever a change is detected and localized, a cautionary
area of a predetermined radius encompassing it is created. This
signifies that, in real life, changes can be indicated as an area—
instead of a point—to incorporate the inaccuracy of the change
localization algorithm. In the circumstance of an autonomous
vehicle entering this area, an immediate switch from automatic
to manual operation mode is required. Considering this concept,
highly accurate change localization results are not required.

D. Change Detection and Localization

When a traffic sign is detected and localized in the second
stage (real-time layer, step B.2), the system searches around
its location for matching traffic signs in the current copy of the
metadata at the temporary layer (step B.3). Since there exist
localization errors in the metadata and in the online traffic
sign location, we define another distance threshold (denoted
as RT in Algorithm 1) for reducing the false-positive errors
in change detection. The newly detected traffic sign is consid-
ered to match an existing one in the current copy of metadata
if they are of the same type and the distance between them
is below the threshold RT . When a mismatch happens, a
change is detected and reported. To determine this threshold,
we consider that there can be an error of up to 10 m in the
localization of the traffic signs in the metadata as well as in
the real-time layer. Also, taking into consideration a worst case
scenario where the total localization error of a traffic sign in
the metadata compared to the real-time layer is doubled up,
we determine the threshold RT value to be 20 m. Higher val-
ues of RT may result in erroneous matches, whereas lower
values of RT may result in absence of matches and indicate a
nonexistent change in the environment.

Residential Trajectory: Fig. 15 illustrates the arrangement
of the traffic signs (ground truth) in the residential region
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Fig. 14. Analysis of the traffic sign detection in the campus and residential areas. (a) Left: traffic signs of the shared path between the pedestrians and
bicycles that were not detected due to their distance from the camera. (a) Right: The insufficient training data for this traffic sign in the object detection
neural network. (b) left: the sole undetected traffic sign classified with a 25% confidence score—below the confidence score threshold. (b) Right: a case where
barricades are wrongly detected and classified as a roadworks traffic sign with 30% confidence score. This explains why there should exist a threshold of
confidence scores to consider. (a) Campus area—data set IV in Table I. (b) Residential area—data set VII.

before and after the environment has suffered changes. Fig. 16
illustrates the environment as seen by the real-time layer,
whereas Fig. 19 shows the confusion matrix related to the
detection of changes in the environment from the compari-
son with the metadata. It can be observed that the removal
of four traffic signs was correctly detected by our algo-
rithm. Moreover, the permanence of six traffic signs after
the scene change was also accurately identified. Note that
the road-works traffic sign was not detected by the real-time
layer. This is also true for the metadata, hence, no change
with respect to this specific traffic sign is detected—which
is also the case observed in the ground truth before and
after the scene change. The confusion matrix exhibits that
our change detection algorithm reached the maximum possible
performance.

Campus Trajectory: Fig. 17 illustrates the arrangement of
the traffic signs (ground truth) in the campus region. Even
though this area does not suffer any change, our change detec-
tion algorithm is required to identify the absence of changes.
Similar to the residential area, Fig. 18 illustrates the envi-
ronment as seen by the real-time layer, with the confusion
matrix depicted in Fig. 19. The comparison with the meta-
data reports the appearance of two traffic signs—no-parking
and T-junction—and the removal of a yield traffic sign. This
represents three erroneous cases of change in the environ-
ment. However, notice that the appearance in the real-time
layer of traffic signs that were erroneously not included in the
metadata—which is the case of the no-parking and T-junction
traffic signs—signifies that the metadata can be corrected. It
is also observed that 16 out of the 20 traffic signs were cor-
rectly reported as objects of no change. Overall, the change
detection method exhibits an accuracy of 85%.

E. Change Detection and Localization

To measure its latency, we executed the real-time layer
on an Intel i7-11700F processor clocked at 2.50 GHz and
an NVIDIA RTX 3070 8-GB GPU. Among the processes in
the real-time layer, the pixelwise 3-D localization (step B.1.1)
and the object detection (B.1.2) were the most computation-
ally expensive ones by lasting approximately 0.10 and 0.06 s
per image, respectively. The camera pose estimation (B.1.3)
performed by the first method (discussed in Section VIII-A)

Fig. 15. Ground truth of the before (top) and after (bottom) scenario change
in the residential area.

Fig. 16. Detected and localized traffic signs of the real-time layer along the
residential area.

Fig. 17. Ground truth of the campus area. Note that this area does not suffer
any change.

took approximately 0.05 s per image. The second method of
camera pose estimation, since it involves very few opera-
tions of multiplications, was shown to be of negligible cost as
well as the online 3-D object localization (B.2) and metadata
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TABLE IV
COMPARISON OF OUR WORK WITH PREVIOUS STUDIES ON CHANGE DETECTION. ALTHOUGH THE STUDIES OF YEW AND LEE [23] AND PALAZZOLO

AND STACHNISS [24] CAN LOCALIZE CHANGES IN A 3-D SPACE, THE AUTHORS HAVE NOT EVALUATED THE PERFORMANCE OF THIS METRIC IN

QUESTION. THE CAMERA/VEHICLE SPEED IS NOT DISCUSSED OR REPORTED IN PREVIOUS STUDIES. HOWEVER, IT IS EXPECTED TO BE

SIMILAR TO OURS SINCE THE IMAGES WERE COLLECTED IN URBAN AREAS WITH A REGULAR VOLUME OF TRAFFIC. IN BRIEF,
OUR PIPELINE IS ABLE TO ACHIEVE HIGH-QUALITY CHANGE DETECTION WITH ONLY RGB IMAGES AND GPS DATA AS INPUT.

OUR PIPELINE IS ALSO CAPABLE OF LOCALIZING 3-D CHANGES WITH AN ACCURACY LOWER THAN 7 M, WHICH

IS A GOOD RESULT GIVEN THAT LIDAR, RTK, OR IMU DATA ARE NOT UTILIZED

Fig. 18. Detected and localized traffic signs of the real-time layer along the
campus area.

Fig. 19. Confusion matrices detailing the detection results for the campus
area (left) and the residential area (right).

comparison for change detection (B.3). Overall, the real-time
layer was able to process on average 5 FPS. In our tests, steps
B.1.1, B.1.2, and B.1.3 were executed in a sequential manner.
Since they are independent of each other, in future work, it is
possible to implement them in parallel on the GPU for better
resource utilization.

IX. RELATED WORK

In this section, we first review the latest works in the litera-
ture related to change detection while comparing their design

choices with our pipeline—Table IV provides an overview of
the comparisons. Since semantic mapping (metadata gener-
ation and maintenance) and monocular depth estimation are
also part of our pipeline, we also describe the literature on
these topics.

A. Change Detection and Localization

Palazzolo and Stachniss [24] proposed an approach for
detecting changes between a 3-D model representative of the
initial state of a given environment and a small sequence of
images of the current state of the environment. Their approach
requires that the locations of all images with respect to the 3-D
model are precisely known. In addition, it requires dense point
clouds as input, which are challenging to generate from images
captured from vehicle-carried cameras with limited viewing
angles. The authors utilized images from Google Street Maps
that were taken using a complex array of a multitude of
cameras capturing the same scene from numerous perspec-
tives. Such availability of different perspectives of the same
scene is infeasible in crowdsourcing scenarios, where only one
forward-pointing camera is used. Our pipeline differs from the
aforementioned work by not requiring multiple image views,
thus, being more appropriate to crowdsourcing applications.

Alcantarilla et al. [21] developed a change detection system
for urban scenarios. First, their approach consisted in obtain-
ing two dense 3-D reconstructions, each representing states
of the environment at different times. After that, an accurate
geo-registration on both point clouds was performed, which
allowed the alignment of both models. This alignment was
used to obtain pairs of images (each image from a differ-
ent state of the environment) taken at the same location. For
each pair of images, a dense convolution neural network—
trained via supervision—was employed to detect changes.
Their method proved effective in detecting changes under dif-
ferent lighting and seasonal conditions. Again, the limitation
of the method is the requirement for 3-D dense reconstruc-
tions. That is, dense point clouds must be constructed for both
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the initial and current states of the environment. The authors
utilized panoramic image views to obtain dense point clouds.
The major distinction of our pipeline is being able to detect
changes with a sparse point cloud of the initial state of the
environment and only a few images of the current state. Also,
due to the high computational complexity, the execution of
this method in real time may be infeasible for certain hardware
specifications.

Rosen et al. [26] proposed a feature-based model of envi-
ronmental change detection and incorporated it into graphical
SLAM techniques. The method was evaluated with simu-
lated data only. An improvement was proposed in [27] where
the authors modified ORB-SLAM—a state-of-the-art visual
SLAM algorithm—to enable scene change detection by incor-
porating a customized persistence filtering as in [26]. Instead
of detecting scene changes, such as the removal or addi-
tion of objects in the environment, the method is limited
to detecting changes in individual map points. Also, the
authors conducted experiments only in small environments.
The algorithm’s performance in complex urban environments
is unknown. Instead of individual map points, our pipeline
detects changes at a more concrete level—i.e., objects in the
environment such as traffic signs.

We have conducted tests with SceneChangeDet [22]—
a monocular change detection neural network. The method
failed to detect changes in stationary objects as traffic signs
and only worked in cases of short-lasting changes,such as the
presence of certain cars in a parking slot, which is naturally
undesirable for our purposes. Compared to the previously men-
tioned methods on change detection [21], [24], our pipeline
requires only a sparse point cloud of the initial state of
the environment and excludes the need for complex arrange-
ments of cameras as in [24]. Moreover, differently from [26]
and [27], it detects changes related to concrete environmental
structures—such as traffic signs—and is specifically designed
for complex urban environments. Unlike [22], the detected
changes consist solely of modifications of stationary objects
in the environment. Furthermore, SceneChangeDet [22] only
focuses on detecting changes without localizing them.

Zhang et al. [25] proposed the fusion of SLAM-based algo-
rithms with semantic segmentation to generate a semantic
point cloud. To detect changes in the environment, the authors
proposed to denoise, cluster, and vectorize the point cloud
before matching the semantic point clouds from the initial
state with that of the current state. A recursive Bayesian depth
filter combined with a camera pose estimation from motion
sensors (IMU) is also utilized to obtain the 3-D positions of
points in the point cloud. Since the lateral and height distances
are not considered in their work, the estimations of these 3-D
positions can be negatively affected. Moreover, since instance
segmentation is not utilized, it is not possible to detect changes,
such as the modification of the meaning of a traffic sign
present in a certain region. A third distinction of this method,
when compared to ours, is their use of various sensing tech-
nologies, such as steering wheel angle, vehicle speedometer,
and IMU. In crowdsourcing scenarios, such sensor modalities
are impractical.

He et al. [7] introduced an end-to-end deep neural network
solution—named Diff-Net—for change detection from 2-D
images. Their approach works by projecting HD map
elements—i.e., traffic signs—onto the camera pose creating
a rasterized image with such elements. The rasterized and the
original images are utilized as inputs to the neural network to
infer map changes. Similarly, in TransCD [5], Wang et al.
proposed a transformer-based scene detection algorithm to
spot changes in pairs of images. Santos et al. [6] approached
the problem of detecting changes in pairs of images with a
multiscale CNN architecture. Our pipeline distinguishes from
the three previous methods by localizing changes in 3-D space,
instead of only at a 2-D level, and by performing camera
pose estimation, instead of assuming that the camera poses
are known a priori.

Yew and Lee [23] proposed a method for change detec-
tion by comparing point clouds created from SfM. Since
geo-registering the point clouds before comparing their points
would result in large errors due to inaccurate geolocation
information and possible drifts introduced by the SfM, the
authors proposed a deep-learning-based nonrigid registration
that allowed them to compare the point clouds more accu-
rately. As mentioned in the Section I, in a crowdsourced visual
data case, it is too costly to create point clouds for each new
data collection. Therefore, the proposed method by Yew and
Lee [23] is not appropriate for crowdsourcing. Our method,
on the other hand, does not require the reconstruction of the
environment each time it is scanned for changes.

Jo et al. [20] created a change detection and localization
algorithm based on SLAM and utilizing the Dempster–Shafer
evidence theory. The authors reported a detection accuracy
above 90% and submeter localization accuracy. However,
their system requires the utilization of burdensome additional
devices, such as RTK positioning system, LiDAR, IMU, wheel
speed sensor, steering angle sensor, and radar. Therefore,
its use for crowdsourcing is impractical. Our method only
requires the utilization of a camera and a GPS device, which
can often be found included in common commercial dashboard
cameras.

B. Semantic Mapping

McCormac et al. [28] fused semantic information into dense
point clouds of indoor environments created with simultane-
ous localization and mapping (SLAM) algorithms. The authors
employ a deconvolutional semantic segmentation network
architecture that provides pixelwise class predictions. Similar
to our work, these predictions are projected into the point
cloud utilizing the tracked camera poses provided by the
SLAM algorithm. Their approach requires RGB-D image
sequences, whereas in our work RGB images suffice.

Rosinol et al. [29] created Kimera, an open-source C++
library for real-time SLAM with semantic information. Kimera
uses mono, stereo, and inertial data to generate a semantic
and metric dense reconstruction of the environment by incor-
porating off-the-shelf tools for 2-D semantic segmentation
of images. The authors only presented results for simulated
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indoor environments. Therefore, the performance of the system
in large-scale outdoor environments is unclear.

Previous works [30], [31] have tried to combine LIDAR
point clouds with semantic segmentation on 2-D images
for detecting and locating landmarks in a 3-D environment.
In [30], probabilistic methods were used to construct seman-
tic HD multilayer maps. We apply a similar approach to reduce
the manual efforts of map data generation. Instead of combin-
ing LIDAR and RGB images, our system only requires input
from RGB cameras and focuses on an under-explored scenario:
automatic change detection.

Nakajima et al. [32] focused on enabling real-time incre-
mental semantic point cloud creation at the same time as
providing accurate results. Their approach assigns class prob-
abilities to entire portions of the point cloud instead of to each
individual surfel, this notably reduces time complexity. In our
approach, since the metadata creation is executed offline, there
is not a need for real-time semantic segmentation of point
clouds.

C. Monocular Depth Estimation

The Monodepth2 method [3] estimates depth from a
sequence of RGB images. It is a self-supervised training
method that is possible to be fine-tuned without a labeled
data set. The performance of the model trained on the Kitti
data set [19] was unsatisfactory since the boundaries of the
estimated depth were blurred. The performance after training
the model on our data sets has not demonstrated satisfactory
results either.

Lee et al. [4] designed a neural network architecture based
on the encoder–decoder scheme to perform depth estimation
from monocular images. In their architecture, based on the
local planar assumption, the authors proposed a novel layer—
named local planar guidance (LPG)—located in the decoder
block of the network. The experiments have shown that their
method outperforms previous ones by a significant margin in
diverse metrics, providing state-of-the-art results.

The limitation of such monocular depth estimation meth-
ods is that they do not support 3-D localization, including
the height and lateral information. In this article, we propose
an end-to-end 3-D localization network to solve this problem.
Since [4] has shown satisfactory results in depth estimation,
we modified it by extending the neural network architecture
to support lateral and height estimations.

X. DISCUSSION

In this section, we discuss the limitations and potential
improvements for future work organized into four main topics:
1) crowdsourcing and data augmentation; 2) geo-registration;
3) road topology; and 4) real-time performance.

Crowdsourcing and Data Augmentation: Our pipeline is
composed of several individual components that must work
in synergy for accurate change detection results. Each of the
components is prone to errors that accumulate through the
pipeline affecting negatively the final results. At the beginning
of the pipeline, an accurate point cloud generation at step A.1
requires multiple views of the same objects with sufficient

overlap between the views and possibly at different distances
to the objects. This requirement is, especially, difficult to fulfill
when reconstructing large-scale environments since the vehi-
cle is restricted to following the road, thus, generating images
from limited viewpoints and distances. In environments with
the presence of large buildings, the camera on the vehicle—
regardless of its position—is only able to capture part of the
building—most likely a plane wall—which is insufficient for
an accurate visual-based feature matching. In some situations,
even ultrawide cameras may not be able to capture the scene
with sufficient characteristics for satisfactory feature match-
ing. In future work, we plan to include crowdsourced data
from cars, pedestrians, and cyclists to increase the number of
different perspectives, thus, improving the point cloud gener-
ation. In addition, with crowdsourcing, we consider including
voting from different observers of the objects in the scene that
will be weighted to determine if the change at a particular
timestamp is present.

The object detection, semantic segmentation, and pixelwise
object localization methods are powered by deep learning,
which are data-hungry algorithms. Therefore, the lack of rich
data sets available for their training directly impacts their
performance. Both semantic segmentation and object detection
neural networks were trained on Mapillary and, even though it
is undoubtedly the most complete data set for our purposes, its
creators [18] point that it is still insufficient to train an end-to-
end neural network and requires some extra tuning. To improve
on this, large synthetic data sets can be employed together with
domain adaptation [33]. It is possible to use an instance seg-
mentation model instead of the combination of object detection
and semantic segmentation. In fact, instance segmentation was
devised with the purpose of combining semantic segmentation
with object detection in the same neural network. In terms of
performance, there is no clear advantage of instance segmenta-
tion over its counterparts. While instance segmentation allows
for combining two neural networks (one for object detection
and the other for semantic segmentation) and possibly pro-
vides lower resource consumption, it requires large volumes
of training data whose labeling process is more laborious than
semantic segmentation object detection. Training data avail-
ability is a challenging problem in instance segmentation [34]
and optimizing data efficiency is still an open research question,
especially, for our case scenario—i.e., traffic sign categories. In
this tradeoff, we have opted for a higher resource consumption
with separate neural networks for object detection and semantic
segmentation; such an increase in computational resources is
not significant to affect the real-time operation of our pipeline.
As for the case of the pixelwise object localization, since it
is trained with data directly extracted from the point cloud
generated at step A.1, for a better generalization other solu-
tions than increasing the number of views with overlapping
regions include: 1) training monocular neural network observ-
ing a scene from multiple perspectives for better generalization;
2) having an accurate geo-registration since the scale of the SfM
model directly affects the scale of the localization predictions
in meters; and 3) having a larger amount of reconstructed point
cloud data, by mapping larger area of the environment and by
densifying the point cloud.
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Geo-registration: It is also a part of the 3-D reconstruc-
tion and is essential for accurate change detection. It consists
of two steps. First, conversion from geodetic coordinates
to Cartesian ones is performed. This procedure inevitably
introduces errors—especially, when the geodetic height is
unspecified. Then, a similarity transformation is executed
whose parameters are defined, such as to minimize the align-
ment error between the real world and the model’s coordinates.
This alignment error can grow higher in largely reconstructed
areas with limited viewpoints. To alleviate this problem, we
plan to perform multiple geo-registration procedures, each of
which is executed independently of the other for a segment of
the model. Also, the inclusion of the topology of the region
can be utilized to improve the conversion between geodetic
and Cartesian coordinates.

Road Topology: It has been challenging to detect a change
in case a traffic sign has been moved within a short distance to
another location without changing the facing direction. This is
because the current design of step B.3 sets a distance threshold
and assumes that two traffic signs with the same type detected
on different days but close enough to each other (i.e., below
the distance threshold) are considered to be identical. In case
a sign is shifted from one side of a road to the other, adding
the road boundaries and markings to the attributes of metadata
may help solve the problem.

Deployment at the Edge of the Internet: We plan to deploy
the system in a distributed manner in that the initial point
clouds are created in the cloud while the change detection
and map update are conducted at the edge of the Internet,
such as the computing nodes co-located with cellular base
stations or roadside units. By moving computation closer to
vehicles, the amount of traffic going through the core network
would drop, and more importantly, the transmission latency
would decrease, which could help reduce the delay of change
detection.

Automatic Parameter/Threshold Selection: Our pipeline
requires humans to select appropriately the parameters U, TD,
and R (presented in Algorithms 2 and 1) for best results.
Future work could explore ways to eliminate or alleviate this
requirement of parameter tuning, thus, increasing the level of
automation of our pipeline.

Changes in the Environment: Environment changes only
affect one component of our pipeline: the camera pose esti-
mation. As described in Section V-A, this component extracts
features from an image of the current state of the system and
matches with those stored in the generated point cloud. As
long as there exist features in common between image pairs,
the camera pose can be accurately estimated. Hence, it is
unlikely that changes in building facades or slight changes in
road topology can affect the system’s performance. Moreover,
our experiments in different seasons of the year have proved
that our pipeline works well when the environment/scene
changes due to weather conditions. The effect of significant
changes in the road topology is left for future work. In future
work, our pipeline can implement a module that detects large
changes in the road topology by comparing the trajectory
followed by the vehicle in real time with the road topol-
ogy present in the initial state of the environment. If large

differences are seen in such a comparison, the pipeline can
utilize the latest collected video data to generate an updated
version of the point cloud.

XI. CONCLUSION

In this article, we presented a system for creating and updat-
ing a multilayer map for autonomous driving. Our system is
partially built on top of other existing methods, e.g., SfM,
semantic segmentation, and object detection. Nonetheless, the
system brings new functionalities and addresses a number of
challenges to enable crowdsourced-based change detection and
localization in rapidly changing urban environments. Our solu-
tion is able to spot changes in the environment with accuracy
above 85% by analyzing the current state of the environment
with its previous one having traffic signs as the objects of
interest. The results could be further improved in the future by
increasing the performance of background technologies in use.
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