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Abstract—Histopathology diagnosis is an important standard
for breast tumors identifying. However, histopathology image
analysis is complex, tedious, and error-prone, due to the super-
resolution image. In recent years, deep learning technology has
been successfully applied to histopathology image analysis and
made great progress. The well-known deep neural networks
usually have tens of million parameters, which consume much
memory to deploy the state-of-the-art model. In addition, deep
neural networks rely on high-performance hardware resources,
which impede the deployment of the state-of-the-art model on
portable equipment. In this work, a novel framework which con-
sists of a weight accumulation method and a lightweight fast
neural network (FastNet) was proposed for tumor fast identi-
fication (TFI) in mobile-computer-assisted devices. The weight
accumulation method was designed to obtain the tissue mask
regions of interest and remove the useless background area in
histopathology images, which greatly reduces the redundant com-
putation cost. Furthermore, we proposed the lightweight FastNet
to improve the computational efficiency on mobile devices. A
novel attention loss (AttLoss) function was designed and applied
in FastNet. The AttLoss function pays more attention on the pos-
itive samples and the indistinguishable samples, which greatly
improves the performance. The proposed FastNet was compared
with three state-of-the-art methods commonly used for image
classification and object detection. Experimental results indicated
that FastNet achieves the highest recall of 96.94%, the highest
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Fq score of 97.33%, and the highest accuracy of 97.34%, besides
least trainable parameters of 0.22M and smallest floating point
operations of 210M FLOPs.

Index Terms—Histopathology, Internet of Things (IoT),
lightweight, mobile-computer-assisted devices, tumor detection.

I. INTRODUCTION
A. Background

ANCER is the leading cause of deaths all over the
C world [1], [2]. Breast cancer occurrence rates continue
to rise approximately 0.5% year by year. The breast cancer,
accounting for 30% in female cancers, causes the most deaths
among the female in the United States [3]. Histopathology
diagnosis is the gold standard to confirm carcinoma [4], [5].
Deep learning technology has been successfully applied on
histopathology images diagnosis and surpassed pathologists
in efficiency and accuracy [6], [7], [8], [9]. The histopathol-
ogy image usually contains gigapixel, which make it difficult
training a deep neural network to detect the tumor region on
mobile-edge devices [10], [11], [12].

With the rapid advancement of the Internet of Things (IoT),
lightweight research has become significant for resource-
constrained IoT devices. The application of IoT-based deep
learning in the healthcare service has grown substantially
in recent years, resulting in the advancement of diagnostic
equipment and opening up new avenues for medical treat-
ment [13]. When IoT devices share sensitive information
between patients and centralized cloud servers, privacy secu-
rity is a serious problem. Some lightweight smart health-
care frameworks and lightweight authentication protocol are
proposed to protect the privacy of patient data for mobile-
edge computing [14], [15]. In addition, deep neural networks
rely on high-performance hardware resources, which impede
the deployment of state-of-the-art model on limited memory
mobile devices. Therefore, the lightweight of the model is
particularly crucial for deployment on resource-constrained
devices. Quantization, pruning, and knowledge distillation
are common techniques for lightweight models. Depthwise
separable convolutions [16], group convolution [17], and par-
allel 1-D depthwise convolutions [18] are usually used to
instead of standard convolutions to reduce parameters. Some
lightweight convolutional networks, combining cloud-edge
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computing with Al technology, are proposed to meet the
real-time requirement [19], [20].

The previous research concentrates on the region of interest
(RO]) in the histopathology images [21]. Related algorithm
processed the histopathology image at low resolution and per-
formed more complicated analysis at high magnifications in
the way the pathologists analyze the whole slide image [22].
Concentrating on ROI can avoid many unnecessary regions
from the background area, save much computational time, and
gain more accuracy [23]. However, only using the ROI data,
they lost tremendous amount of organizational structure and
spatial information. Facing the extremely high resolution of
the histopathology images, most researchers first removed the
background region from the histopathology images, and then
extracted small patches from tissue region. Finally, they train
the deep convolutional neural network to classify these patches
as normal or tumor patches [24], [25], [26]. Some researchers
screened more discriminant patches as more effective train-
ing data to improve the accuracy [27]. However, they only
took patches arbitrarily as training data and did not consider
the spatial relationship of patches. Some researchers applied
the vision transformers to medical images [28], but these
vision transformers were often computationally and model
size-demanding due to the exponential complexity of self-
attention, despite stronger variations with better recognition
performance. Some researchers found that texture information
and spatial connections between patches are extremely impor-
tant [29], [30], [31]. Considering the spatial relationship of
adjacent patches, these researchers achieved more accurate
tumor identification. However, it was time consuming to iden-
tify tumor with all the patches and spatial relationship among
adjacent patches in super-resolution images. Their model can-
not produce the diagnosis result in the expected time due
to super-resolution images and complex model. Their models
were not suitable for being transferred to tiny portable equip-
ment. Some researchers focused on the portable device [16],
[32], such as smart phone, unmanned aerial vehicle, and medi-
cal equipment. But their methods achieved a little worse result
than the state-of-the-art methods.

In this article, a tumor fast identification (TFI) framework
was proposed to address these difficulties. In the TFI frame-
work, we removed the unnecessary background regions and
obtained the tissue mask ROIs with weight accumulation
method. The tissue mask was obtained from combining the
result of the RGB color model, the HSV color model and
threshold segmentation, which reduces largely the workload
of neural network without reducing the performance. A novel
attention loss (AttLoss) function was proposed to increase the
weights of positive samples and the indistinguishable samples.
The AttLoss function improved classification performance.
A lightweight fast neural network (FastNet) was proposed
for patch classification in the TFI framework. Compared
with the well-known lightweight neural networks (MobileNet
V2 [33], ShuffleNet V2 [34], and EfficientNet [35]), the
FastNet proposed by us achieved the highest recall and
F1 score with the least trainable parameters and smallest
computational complexity.
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B. Related Work

The early researches concentrated on the ROI in the
histopathology images. A super pixel clustering method based
on segmentation and ROI search was proposed by Li and
Huang [23]. This method combined coarse-to-fine super pixel
clustering and boundary update. A novel method was proposed
to automatically detect the ROIs in histopathology images by
Bejnordi et al. [22]. The proposed method targeted ROIs at
low resolution and then performs further analysis in high res-
olution, which simulates the way that a pathologist analyzes
the histopathology image.

Facing the extremely high resolution of the histopathol-
ogy images, most researchers extracted small patches from
histopathology images and trained deep convolutional neural
network to predict patches. Vang et al. [36] used Inception V3
to classify patches level and predicted the patches by utilizing
logistic regression, gradient elevator (GBM), and majority vot-
ing in image level. Their experiments achieved a 12.5% higher
performance than the state-of-the-art model. Li et al. [27]
proposed a patch filtering approach grounded on convolutional
neural network and clustering method to screen more discrim-
inant patches. Their method got accuracy of 88.89% on the
whole test data and 95% accuracy on the partial test data.

Some researchers found that texture information and spa-
tial connections between patches are extremely important. An
NCRF framework was designed for considering spatial cor-
relation among adjacent patches [30]. Li and Ping connected
the NCRF framework directly to a fully connected conditional
random field to detect cancer metastasis in histopathology
images. Karimi et al. [37] used three different convolutional
neural networks to predict tumor in multiple patch resolution.
Combining the prediction results, their methods extracted more
contextual information in different scales. Ding et al. [38]
proposed a deep residual network to detect the small tar-
get with spatial structure information. Le Trinh et al. [39]
achieved a excellent tumor classification by training deep
neural network on multiscale histopathology images.

A dilated fully convolutional network was applied to pixel-
wise prediction by Dou et al. [40] in biomedical image
segmentation. Chiang et al. [41] proposed an independent
sliding window detector for volumes of interest extraction.
They used candidate aggregation algorithm, 3-D CNN, and
sliding window detector to expedite the tumor detection.
Yuan et al. [42] proposed a novel end-to-end deep learn-
ing method which can extract more significative features
for a small target. Ale et al. [43] proposed a novel edge
computing scheme to proactive cache data, which makes it
practical for the rural people to receive remote histopathol-
ogy analysis. Chen et al. [44] proposed an event-driven attack
method, which exploit users’ behavior to collect their private
information. Inspired by this, remote histopathology analy-
sis must ensure the privacy of users. An outstanding deep
CNN was proposed by Chen et al. [45] to segment medical
images. In their method, the model performance was improved
by using prior knowledge. Yang et al. [11] sampled multiple
scales patches from histopathology image and then fine-tuned
the three pretrained deep convolutional neural network. They
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combined the three fine-tuned models to form an ensemble
model and achieved 91.75 & 2.32% accuracy. Lin et al. [46]
designed a novel approach that can leverage the potency of
the fully convolutional framework to accelerate the prediction
and improve accuracy.

Some researchers focused on the lightweight neural
network. SqueezeNet [32] had 50 x fewer parameters than
AlexNet while maintaining accuracy. Howard et al. built
lightweight neural networks named MobileNet [16] by using
depthwise separable convolutions. They demonstrated that
their MobileNets achieved strong performance compared to
other well-known methods in object detection. ShuffleNet [47]
was designed for mobile devices with limited computation
resource. Group convolution was applied in the ShuffleNet
to reduce parameters while maintaining the performance.
The EfficientNet [35] studied impact on model with dif-
ferent network depth, width, and resolution. Using a com-
pound coefficient, EfficientNet can scale all dimensions of
depth/width/resolution. Kumar et al. [13] presented an effec-
tive and portable CNN model for histopathology image cate-
gorization, and demonstrated its performance on the Raspberry
Pi and three mobile devices. MobileViTs [48] were developed
specifically for mobile devices and combine the advantages
of CNNs with vision transformers. With the same amount
of parameters, MobileViT outperformed MobileNets in image
classification. Chen et al. proposed the Mobile-Former [49],
which enables bidirectional fusion of local and global features
and outperforms MobileNetV3 at low FLOPs. It was a paral-
lel architecture of MobileNet and transformer with a two-way
bridge in between. Pan et al. [50] introduced a novel class
of lightweight ViTs (EdgeViTs) that compared with the best
lightweight CNNs in the tradeoff between accuracy and on-
device efficiency. They directly took into account latency and
energy consumption of various models as opposed to depend-
ing on floating point operations or parameters. Despite stronger
variations with superior recognition performance, these vision
transformers required frequently computation and huge model
size due to the exponential complexity of self-attention.

C. Contributions

To address these key challenges, we propose a TFI frame-
work which consists of a weight accumulation method and
a lightweight FastNet to largely reduce the computation cost
and accelerate tumor prediction. The main contributions of our
work are summarized as follows.

1) A weight accumulation method consisting of ROIs locat-
ing and patch generating from ROIs of histopathology
images is proposed to greatly reduce the redundant com-
putation cost and speeds up the prediction of tumor
regions.

2) A novel AttLoss function is proposed to increase the
weights of positive samples and the indistinguishable
samples. The AttLoss function greatly improves classi-
fication performance.

3) A lightweight FastNet is designed for patch classifica-
tion. Compared with the common deep neural networks
(MobileNet V2, ShuffleNet V2, and EfficientNet-BO0),
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TABLE I
EXPERIMENT DATA SET CLASS COMPOSITION

Instituti Train Train Test
DSUtUlon - Normal — Metastases s
Nijmegen 100 70 80
Utrecht 60 40 50

Total 160 110 130

the FastNet proposed by us achieves the highest recall
and F; score with the least trainable parameters and
smallest computational complexity.

The remainder of this article is organized as follows. The
data sets used in our experiments is describe in detail in
Section II. The histopathology images are visualized in this
section. The proposed TFI framework for tumor detection is
introduced in Section III. In Section IV, we show all experi-
mental implementation details and results. The conclusion of
this article is given in Section V.

II. DATA SETS AND HISTOPATHOLOGY IMAGES

Our experiments were implemented on the data sets from
CAMELYONI16 competition, which consist of two differ-
ent subset data sets from the medical center of Radboud
University and Utrecht in The Netherlands. There were
totally 400 histopathology images obtained from breast cancer
patients. The details are described as follows.

A. Training Data Sets and Test Data Sets

The training data sets contain two subsets. One data
sets, consisting of 170 histopathology images (100 healthy
histopathology images and 70 lesion histopathology images),
was collected by Radboud University Medical Center. The
other data sets, consisting of 100 histopathology images
(including 60 healthy histopathology images and 40 lesion
histopathology images), was collected by the University
Medical Center Utrecht. The test data sets, consisting of
130 histopathology images, were collected from both of med-
ical centers. The data set class compositions are as shown in
Table I.

The data sets were annotated by experienced pathologists.
The ground-truth labels contained the expert’s annotations of
tumor area on histopathology images. There were two kinds
of ground-truth label being provided.

1) The vertex of the annotated outlines of the regions from

tumor metastases is provided in xml format.

2) Histopathology images binary masks of the regions from

the cancer metastasis.

B. Visualization of Histopathology Images

Ordinarily, histopathology images were scanned and saved
as a multilevel pyramid framework. The multilevel pyramid
image files consisted of original image and nine downsam-
pling versions of the original image, which is shown in Fig. 1.
Each downsampling image in the pyramid consisted of lots of
interest of regions. Since the huge size of the histopathol-
ogy images, it was laboursome to train a convolutional neural
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————————— -+level 8 (downsampled image)
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Fig. 1.

Multilevel pyramid structure in histopathology images.

Fig. 2. Visualization of histopathology image and example of a metastatic
region. The tumor region takes up only extremely small part of the histopathol-
ogy image.

network model with gigabyte pixel image. So we extracted
patches from the ROI from downsampling images for training.

Automated slide analysis platform (ASAP) is a famous
and excellent tools to visualize, analyze, and annotate the
histopathology images. We visualized the histopathology
images with the ASAP platform and analyze the annotations.
The visualization result is as shown in Fig. 2.

III. TFI FRAMEWORK FOR TUMORS FAST IDENTIFICATION
A. Overview of the Tumor Fast Identification Framework

To achieve TFI on mobile-computer-assisted devices, we
proposed a TFI framework presented in Fig. 3. Our proposed
TFI framework consists of three main parts: 1) weight accu-
mulation method; 2) AttLoss function; and 3) a lightweight
FastNet. The weight accumulation method has two main steps.
First step is obtaining ROIs in histopathology images, and
the second step is patch generating from ROIs with weight
accumulation formula. The AttLoss function is used to solve
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the problem of extremely imbalanced data distribution. The
FastNet has two main components: 1) the multiscale block and
2) the multibranch block. The multiscale block is designed for
different scales features extraction, and the multibranch block
is applied to extract more details from the previous layer.

As shown in Fig. 3, in the training step, first, we removed
the above 70% background area of histopathology images with
the weight accumulation method, which greatly reduce the
redundant computation cost. Many patches are extracted from
the ROIs as the training data sets. Additionally, an AttLoss
function was also designed to increase the weights of positive
samples and the indistinguishable samples for better classifi-
cation performance in the FastNet. Next, the FastNet model
was trained with the training data sets and AttLoss function.
In the prediction step, the test data sets were removed the
background area with the same weight accumulation method
and split into many patches for tumor probability prediction.
Finally, all the tumor prediction probabilities were embedded
on the histopathology image in the order of patches, which
form a whole tumor probability heatmap. In the probability
heatmap, the red region shows the tumor area with extremely
high probability, and the green region represents the normal
tissue area. In the following section, we introduce the weight
accumulation method, AttLoss function (AttLoss), and FastNet
in detail.

B. Weight Accumulation Method for Image Processing

1) Regions of Interest in Histopathology Images: In
histopathology images, haematoxylin and eosin (H&E) stain-
ing are the most commonly used method of tissue staining.
H&E is the abbreviations of hematoxylin and eosin. The
hematoxylin stains the nucleus dark blue, the eosin stains the
cytoplasm and extracellular matrix pink, and other structures
show different outlines and similar colors. The pathologist can
distinguish between the nucleus and cytoplasm easily in the
histopathology images stained by H&E.

There are large amounts of useless background areas in
histopathology images. Locating the ROIs and removing the
background areas in the image can reduce vast redundant com-
putation cost. Otsu’s method [51] is an efficient algorithm for
image binaryzation, which calculates the threshold to divide
the original image into foreground and background images,
proposed by Japanese scholar OTSU in 1979. Therefore, we
apply the Otsu’s method to obtain the tissue mask ROIs in
histopathology images.

Typically, 70% of histopathology images are background
region, as shown in Fig. 4(a). To obtain the tissue mask ROIs,
Otsu’s method was automatically applied in the RGB color
model shown in Fig. 4(b) and the HSV color model shown in
Fig. 4(c), respectively, to binarize the images, and we adjusted
the threshold of the RGB color value to obtain the threshold
tissue mask, as shown in Fig. 4(d). Finally, we combined the
RGB tissue mask, HSV tissue mask, and threshold tissue mask
to obtain the final Fig. 4(e). More details are described as
follows.

First, Otsu’s method was leveraged in the RGB color model,
in which three mask images were obtained from R channel,
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Overview of our proposed TFI framework, where “Training” displays the procedures of ROIs locating, patch generating from ROIs and model

training, and “Prediction” displays the procedures of model prediction and the output of probability heatmap.
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Fig. 4. (a) Original image. (b) Tissue mask image in the RGB color model.

(c) Tissue mask image in the HSV color model. (d) Tissue mask image
with threshold segmentation (50-240). (e) Tissue mask ROIs combined with
(b)—(d).

G channel and B channel. Then, ANDing the three mask
images, the tissue mask was obtained in the RGB color
model, marked as RGB_MASK and as shown in Fig. 4(b).
According to the previous research, Otsu’s method performs
better in the HSV color model. As a result, we obtained
one more new tissue mask in the HSV color model, marked
as HSV_MASK and as shown in Fig. 4(c). An experimental
analysis was designed to find optimum background segmen-
tation threshold. It was found that, when the RGB value is
between 50-240, the background segmentation works pretty
well. Taking the threshold as 50 and 240, we obtained the
third tissue mask, marked as THRESHOLD_ _MASK and as
shown in Fig. 4(d). Finally, we ANDed the RGB_MASK,
HSV_MASK and THRESHOLD_MASK to obtain the tissue
mask ROIs, as shown in Fig. 4(e). We calculated all the tissue
mask ROIs, the average percentage of ROIs is approximately

30%. Obviously, removing the useless background areas can
reduce an ocean of redundant computation cost.

2) Patch Generating From Regions of Interest With Weight
Accumulation Formula: Removing the numerous invalid
background regions, we had obtained the tissue mask ROIs.
Considering the huge size of the histopathology image, it is
difficult feeding the whole image into the convolutional neu-
ral network for training. We extracted a multitude of patches
from the ROIs weight accumulation method, and trained the
neural network with patches. The main procedure is as shown
in Fig. 5.

Ground Truth: Each histopathology image was annotated
by expert pathologists, and the annotations were stored in.xml
files consisting of vertex in the annotated outlines. We con-
verted the.xml files to.json files for further processing.

Tumor Regions of Interest (TROI): With the vertices of the
annotated contours in.json file, we draw a new polygon gray
scale image, and generate TROI. The tumor regions of interest
(NROYJ) is stored as tumor mask image.

Normal Regions of Interest (NROI): Normal region of
interest come from both normal images and tumor images.
In the normal images, the whole tissue mask is the normal
region of interest. Conversely, in the tumor images, the nor-
mal region of interest is the rest region of removing the TROI
from the whole tissue mask. The NROI is stored as normal
mask image.

Extract Patches From TROI and NROI With Weight
Accumulation Formula: For this part, we describe the method
extracting patch from TROI and NROI. The patches extracted
from TROI and NROI were considered as positive samples and
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Methods of extracting patches from histopathology image. (a) Original image. (b) Original image removed background. (c) Partial region of the

magnifying image (b). (d) Splitting the images into patches. (e) Data set class composition.

negative samples for training, respectively. The mask image
is binary image, in which each pixel value represents true
(1) or false (0). First, we calculated the maximum x coordi-
nate (defined as MAX_X), the maximum y coordinate (defined
as MAX_Y), the minimum x coordinate (defined as MIN_X)
and the minimum y coordinate (defined as MIN_Y) in each
tumor mask image or normal mask image. Combining the four
coordinates in pairs, we obtained four points: 1) PI(MIN_X,
MIN_Y); 2) P2(MIN_X, MAX_Y); 3) P3(MAX_X, MIN_Y);
and 4) PAMAX_X, MAX_Y). The four points formed a rect-
angle that containing the whole TROI or NROI. Second, we
defined the patch’s resolution as 256 pixels x 256 pixels
(WIDTH = 256 pixels). We split the rectangle region into
patches with padding in the original image.

Definition 1: I means there are I rows patches in total,
defined as follows:

MAX_ Y —MIN_Y
I= + 1. (1)
WIDTH

Definition 2: J means there are J columns patches in total,

defined as follows:
MAX X — MIN_X
J= + 1. 2)
WIDTH

Hence, we extracted I x J patches from the rectangle region
in the TROI or NROI. Nevertheless, not all patches meet the
true labels. Each patch’s mask image contained 256 x 256 pixel
values, which is 0 or 1. We proposed a weight accumulation
method, in which each mask image pixel value is accumulated
as a weighted value W.

Definition 3: W of weight accumulation formula is defined

as
255 255

Wij=> Vil 3)
m=0 n=0
where, W;; denotes the weighted value of the ith row, jth
column patch (i, j). V,;/, represents the pixel value at row m
and column 7 in the patch (i, j).
Definition 4: The patch (i, j) is considered as training data
following the rule below:

1
1, Wi,j > E X 256 x 256
PatCh,',j | “4)
0, W< > X 256 x 256.

If W;; > (1/2) x 256 x 256, the patch(i, j) is considered
as the training data. Contrarily, W;; < (1/2) x 256 x 256,
the patch(i, j) is discarded. The main procedure of extracting
patches from the tissue mask ROIs in histopathology images
is shown in Fig. 5.

C. Imbalanced Categories and Loss Function

For extremely imbalanced categories, neural network will
tend to predict negative samples. The prediction probability of
negative samples will be very high, and the gradient of neg-
ative samples will be very large. Usually, the tumor regions
takes up only a extremely small part of the histopathology
image. We just extracted a few positive samples from the
tumor region. In our data, the negative patches was far more
than the positive patches. The cross-entropy loss function is
usually applied in the binary classification. Equation (5) is
the standard formula of cross-entropy loss function for binary
classification

1
CE Loss = —— > (yilogpi + (1 =y log(1 = p)).  (5)
i=1

To solve the problem of extremely imbalanced data distri-
bution, we designed our AttLoss function with reference to the
outstanding focal loss function [52]. We added a hyperparam-
eter o base on cross-entropy loss function to increase weight
from the positive samples. In generally, each sample con-
tributes the same weight loss as others when trained. In order
to further improve the train accuracy, we added a hyperparam-
eter y to pay more attention on the indistinguishable samples
and less attention on the distinguishable samples. Equations (6)
and (7) are the focal loss function and our AttLoss function,
respectively

N
1
FocalLoss = N ;(“%(1 —p))Y logp;
=

+ (1 —a)(1 — ypp! log(1 — py)). (6)

The AttLoss function is as defined as
1 N

AttLoss = -y Z(ayiyi(l —p})logpi
i=1

+&'(1 = y)(1 = (1 = p)¥)log(l —p»). (1)
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TABLE II
(1 — p;)?” Is THE WEIGHTS OF INDISTINGUISHABLE SAMPLES (P = 0.5) AND DISTINGUISHABLE SAMPLES (P = 0.9) UNDER DIFFERENT y;
[(1 = P.5))" /(1 = P.9))Y]1s THE RATIO OF WEIGHTS (P = 0.5) TO WEIGHTS (P = 0.9)

N
(1 —=pi)” 0.1 0.2 05 1 2 3 4 5 6 7 8 9 10
0.5 0.933 0871 0.707 0500 0250 0.125 0.063  0.031 0.016 0.008 0.004 0.002  0.000977
0.6 0912 0.833 0.632 0400 0.160 0064 0026 0010  0.004 0.002 0.001 0.000262  0.000105
P 0.7 0.887 0786 0.548 0300 0.090 0027 0.008 0002 0001  0.000219 6.56E-05 1.97E-05 5.9E-06
0.8 0.851 0725 0447 0200 0.040 0008 0.002 00003 64E-05 1.28E-05 2.56E-06 5.12E-07 1.02E-07
0.9 0.794 0631 0316 0.100 0.010 0001 1E-04 IE-05  1E-06 1E-07 1E-08 1E-09 1E-10
— _ vy
% 1.2 1.4 22 5 25 125 625 3125 15625 78125 390625 1953125 9765625
—F0.9)
TABLE III

1 —p}’ IS THE WEIGHTS OF INDISTINGUISHABLE SAMPLES (P = 0.5) AND DISTINGUISHABLE SAMPLES (P = 0.9) UNDER DIFFERENT y;
[(1 = P.57)/(1 = P.9)”)] Is THE RATIO OF WEIGHTS (P = 0.5) TO WEIGHTS (P = 0.9)

N g
1-p 01 02 05 1 2 3 4 5 6 7 8 9 10
0.5 | 0067 0129 0293 0500 0750 0875 0938 0969 0984 0992 0996 0998 0999
0.6 | 0050 0097 0225 0400 0.640 0784 0870 0922 0953 0972 0983 0990 0994
p 07 | 0035 0069 0163 0300 0510 0657 0760 0832 0882 0918 0942 0960 0972
08 | 0022 0044 0106 0200 0360 0488 059 0672 0738 079 0832 0866 0.893
09 | 0010 0021 0051 0100 0190 0271 0344 0410 0469 0522 0570 0613 0651
— v
Liﬁg:, 639 621 571 5 395 323 273 237 210 190 175 163 153

In (7), p; represents the probability that the ith sample is
predicted as positive class. y; is the labels (0 or 1) of ith
patch. o and y are the hyperparameters. We increased weight
of the positive samples by setting a bigger alpha(e > 1),
and decreased the weight of the positive samples by setting a
smaller alpha (0 < o < 1).

This AttLoss function evolves from the basis of the standard
cross-entropy loss. o' decide the loss weight of the positive
samples and the negative samples. When y; is the label 1, o7 is
equal to «, the positive sample has the o times loss compared
to the original loss. When the y; is the label 0, & is equal to
1, the negative sample loss remain the original loss.

To decrease the weights of the distinguishable samples, we
used a factor l—pl?/ for positive sample and a factor 1 —(1—p;)”
for negative samples, respectively. For positive samples, the
bigger p; is, the smaller the factor 1 — pi-/ is. For the negative
samples, the bigger the 1—p; is, the smaller the factor 1 — (1 —
pi)? is. As a result, the more easily the samples are classified,
the less weights the samples have, which means more weights
on the indistinguishable samples.

Compared with the outstanding focal loss function, we
replaced the factor & and 1 — @ with o, which only increase
the weights of positive samples. We also replaced the factor
(1 —p;)? and p! with 1 —p! and 1 — (1 — p;)?, respectively.
In order to more clearly compare the difference between focal
loss and AttLoss, we made two tables to investigate the impact
of gamma on loss weight.

In the focal loss function, when P = 0.5, the (1 —p;)? repre-
sents the weights of indistinguishable samples; when P = 0.9,
the (1 — p;)? represents the weights of distinguishable sam-
ples. As shown in the Table II, when y = 1, the weights
of indistinguishable samples (P = 0.5) are five times the
weights of distinguishable samples (P = 0.9). When y = 2,

the weights (P = 0.5) are 25 times the weights (P = 0.9).
When y = 10, the weights (P = 0.5) are 9.76 million times
the weights (P = 0.9). The factor (1 — p;)¥ lower the weights
of the distinguishable samples extremely fast, which cause
gradual deterioration of the performance of the distinguishable
samples.

In our AttLoss function, as can be seen from the Table III,
when y 1, the weights of indistinguishable samples
(P = 0.5) are 5 times the weights of distinguishable samples
(P =0.9). When y = 2, the weights (P = 0.5) are 3.95 times
the weights (P = 0.9). When y = 10, the weights (P = 0.5)
are 1.53 times the weights (P = 0.9). In contrast, the factor
1-—- pg/ in the AttLoss decreased the weight of distinguishable
samples at a more reasonable rate than (1—p;)?. The y param-
eters are easier to tune in our experiments. The experiments
demonstrated that our AttLoss function outperforms the focal
loss function in our experiments.

D. FastNet Details

Deep convolutional neural network is trained for classify-
ing patches to normal patch or tumor patch. However, it cost
a large amount of computation to train and identify the tumor
regions due to large-scale gigapixel histopathology image. It
is demonstrated that increasing depth with 3 x 3 convolu-
tion filters has significant improvements on performance [53].
Shortcut connections can solve the degradation problem in
deeper network [54]. Multibranch in the inception module can
obtain different receptive field and extract multiscale features.
It is proved that factoring convolutions and using aggressive
regularization is efficient to improve computational efficiency
and reduce parameter count when scale up the networks [55].
Depthwise separable convolution [56] is confirmed to be
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7 3 *8 5

Fig. 6. Standard convolution illustration. Input shape: 7 x 7 x 3, output
shape: 5 x 5 x 8, parameters: 216, and FLOPs: 10 800.

7 3 5

Fig. 7. Depthwise separable convolution illustration. Input shape: 7 x 7 x 3,
output shape: 5 x 5 x 8, parameters: 51, and FLOPs: 2550.

smaller and faster in MobileNets [16]. Inspired by the for-
mer studies, we proposed a FastNet (fast convolutional neural
network) to train a model for identify tumor region rapidly.
The FastNet was stacked alternately by multiscale blocks
and multibranch blocks. Multiscale block was designed for
different scales features extraction, and multibranch block
was applied to extract more details from the previous layer.
Both multiscale blocks and multibranch blocks added shortcut
connections to solve the degradation problem when stacked
deeper. ReLU6 was used as the nonlinearity activation func-
tion in multiscale blocks and multibranch blocks because of
its robustness. Depthwise separable convolutions were applied
in multiscale blocks and multibranch blocks to reduce parame-
ters and computation cost. It was demonstrated that expanding
the channels before depthwise separable convolutions can
decrease the case where the parameter is zero [33]. The depth-
wise separable convolution, multiscale blocks, multibranch
blocks, and FastNet architecture were described in detail in
the following section.

1) Depthwise Separable Convolution: Depthwise separa-
ble convolution is applied in many well-known neural
network [16], [33], [57] to reduce parameters and computation
cost. Depthwise separable convolution consists of depthwise
convolution and pointwise convolution. Each input channel is
extracted feature by a single filter in depthwise convolution.
Pointwise convolution uses standard 1 x 1 convolution to con-
catenate each channel. The depthwise separable convolutions
has (1/N) + (1 /D%() times less parameters and computation
cost than standard convolution [16]. The depthwise separable
convolutions in Fig. 7 has 51 parameters and 2550 FLOPs,
which is approximately four times less parameters and FLOPs
than the standard convolution of 216 parameters and 10800
FLOPs in Fig. 6. The standard convolution process is shown
in Fig. 6, and the depthwise separable convolution process is
shown in Fig. 7.

2) Multiscale Block: The multiscale block architecture is
shown in Fig. 8(a). First, we used standard 1 x 1 convolu-
tion to expand the input channels from M to M x N. Then,
we used one 1 x 1 depthwise separable convolutions, one
3 x 3 depthwise separable convolutions, and one 5 x 5 depth-
wise separable convolutions (Factorization into two 3 x 3
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depthwise separable convolutions [55]) to extract multiscale
features. Next we concatenated 1 x 1 branch, 3 x 3 branch
and 5 x 5 branch. Finally, we add standard 1 x 1 convolution
to reduce the channels and added residuals on the result. The
output shape was the same as the input shape. W represents
the length and width of the input. M is the input channels, N
is the channel expansion factor, and B is the channels in each
scale branch. Increasing the N and B, the multiscale block has
more robustness and multiscale feature extraction capability
but more parameters and computation cost.

3) Multibranch Block: In the multibranch block architec-
ture is shown in Fig. 8(b). First, we used same standard 1 x 1
convolution to expand the input channels from M to M x N.
Then, B 3 x 3 depthwise separable convolutions branches
are applied to extract more features. Next, we concatenated
B depthwise separable convolutions branches and also added
residuals on the result. The output shape is also the same as
the input shape. W also represents the length and width of
the input. M is also the input channels, N is also the channel
expansion factor, but B is the branch number used in the multi-
branch blocks. Increasing the N and B, the multibranch block
has more robustness and detailed feature extraction capabil-
ity but more parameters and computation cost. We adjust the
channel expansion factor and branch number B to tradeoff the
robustness, efficiency and computation cost.

E. FastNet Architecture

In the previous section, we investigated the effects of dif-
ferent scales and branch on parameters, computation cost and
experimental performance. Then, we build the FastNet after
comprehensively considering the parameters and computation
cost of the multiscale and multibranch blocks. The network
architecture details is presented in Table IV. First, One convo-
lutional layer was used to extract the low-dimensional features
and reduce the size of the original image with 2 x 2 stride.
Second, we stacked convolutional layer, multiscale block and
multibranch block alternately three times to downsample the
feature maps, extract multiscale feature and more details. The
details of convolutional layer, multiscale block and multi-
branch block is shown in Table IV. In the multiscale block, M
represents the input channels, N represents the channel expan-
sion factor, and B represents the channels in each multiscale
branch. In the multibranch block, M is also the input chan-
nels, N is also the channel expansion factor, but B is the
branch number used in each multibranch block. Third, a global
average pooling was used to aggregate spatial dimensions fea-
tures. Finally, the fully connected layer was used to output the
binary classification results. The FastNet architecture is shown
in Fig. 9.

IV. EXPERIMENTS
A. Data Sets and Experimental Environment

We used the CAMELYONI16 challenge data sets as our
experiment data sets. The data sets consisted of two differ-
ent subset data sets from the medical centers of Radboud
University and Utrecht in The Netherlands. There were alto-
gether 400 histopathology images obtained from breast cancer



9886

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

TABLE IV
OVERALL ARCHITECTURE OF FASTNET. M IS THE INPUT CHANNEL NUMBERS OF THE MULTISCALE BLOCKS AND MULTIBRANCH BLOCKS; N IS THE
CHANNEL EXPANSION FACTOR OF THE MULTISCALE BLOCKS AND MULTIBRANCH BLOCKS; IN THE MULTISCALE BLOCKS, B REPRESENTS THE
CHANNEL NUMBER IN EACH SCALE BRANCH; IN MULTIBRANCH BLOCKS, B REPRESENTS BRANCH NUMBER

Layers Operator Input Output Filters  Kernel size  Stride  Padding  Activation M N B
1 Input (256, 256, 3) (256, 256, 3) - - - - - - - -
2 Conv2D (256, 256, 3) (127, 127, 64) 64 3, 3) 2,2 valid relu - - -
3 BatchNormalization (127, 127, 64) (127, 127, 64) - - - - - - - -
4 Conv2D (127, 127, 64) (63, 63, 8) 8 3, 3) 2,2 valid relu - - -
5 BatchNormalization (63, 63, 8) (63, 63, 8) - - - - - - - -
6 Multi-scale block (63, 63, 8) (63, 63, 8) - - - - - 8 1 4
7 Multi-branch block (63, 63, 8) (63, 63, 8) - - - - - 8 1 2
8 Conv2D (63, 63, 8) (31, 31, 16) 16 3, 3) 2,2 valid relu - - -
9 BatchNormalization (31, 31, 16) (31, 31, 16) - - - - - - - -
10 Multi-scale block (31, 31, 16) (31, 31, 16) - - - - - 16 2 8
11 Multi-branch block (31, 31, 16) (31, 31, 16) - - - - - 16 2 4
12 Conv2D (31, 31, 16) (15, 15, 32) 32 3, 3) 2,2 valid relu - - -
13 BatchNormalization (15, 15, 32) (15, 15, 32) - - - - - - - -
14 Multi-scale block (15, 15, 32) (15, 15, 32) - - - - - 32 4 16
15 Multi-branch block (15, 15, 32) (15, 15, 32) - - - - - 32 4 8
16 Global AveragePooling2D (15, 15, 32) (, 32) - - - - - - - -
17 Dense ( 32) G 2) - - - - softmax - - -

Conv (1, 1, MxN)
BN, ReLU6

DS Conv (3, 3, B)
BN, ReLU6

DS Conv (1, 1, B)
BN, ReLU6

DS Conv (3, 3, B)
BN, ReLU6

Conv (1, 1, M)
BN, ReLU6

Fig. 8.
details feature extraction.

patients. The data sets from University Medical Center Utrecht
consisted of 100 healthy histopathology images and 70 lesion
histopathology images. The data sets from Radboud University
Medical Center consisted of 60 healthy histopathology images
and 40 lesion histopathology images. The test data sets, col-
lected from both medical center, consist of 130 histopathology
images.

All experiments were implemented on a workstation with
Intel Core 17-8700k CPU, a GPU of Nvidia GTX 3090 and
64 GB of system RAM. Ubuntu 20.04 LTS was installed on the
workstation. The project was implemented with deep learning
framework Keras. Cross-entropy, focal loss and AttLoss are
compared as the loss function, and Adam was used as the
optimizer for our experiment models.

B. Evaluation Metrics

We used params, FLOPs, recall, precision, F; score, and
accuracy to evaluate our model. Params is the trainable

DS Conv (3, 3, B)
BN, ReLU6

Conv (1, 1, MXN)
BN, ReLU6
DS Conv(3, 3, MXN) DS Conv(3, 3, MXN)
BN, ReLU6 BN, ReLU6

Conv (1, 1, M)
BN, ReLU6

(b)

Multiscale block and Multibranch block architectures. (a) Multiscale block for different scales feature extraction. (b) Multibranch block for more

parameter of model. FLOPs is floating point operations, which
is a measure of algorithm or model complexity and repre-
sents the total number of floating-point computations for the
CPU and GPU. The recall, precision, F; score, and accuracy
are defined as (8)—(11), respectively. The recall is a percent-
age of how many positive samples in the positive samples
are correctly predicted. The precision represents the percent-
age of how many true-positive samples that predicted as
positive sample in the all samples. In our experiments, we
preferred high recall as well as high precision. We introduced
F1 score which is the harmonic mean of precision and recall.
In extremely imbalanced categories classifications, F| score is
more important than accuracy

TP
Recall = —— (8)
TP + FN
.. TP
Precision = ©)]

TP + FP
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Input
(256,256, 3)

Conv (3,3, 64)
BN, ReLU;

Conv (3,3, 8)
BN, ReLU;

Conv (I, 1, 8)

BN, ReLU6!

DS Conv (3, 3, 4)
BN, ReLU6

DS Conv (1, 1, 4)
BN, ReLU6)

DS Conv (3,3, 4)
BN, ReLUG
DS Conv (3. 3, 4)
BN, ReLUG

Conv (I, 1, 8)
BN, ReLU6.

Conv (I, 1, 8)
BN, ReLU6

DS Conv(3, 3, 8) ...
BN, ReLU6) 2

Conv (I, 1, 8)
BN, ReLU6

Conv (3,3, 16)
BN, ReLU;

DS Conv(3, 3, 8)
BN, ReLUG

Conv (1, 1,32)
BN, ReLUG

DS Conv (3, 3, 8)
BN, ReLU6

DS Conv (3, 3, 8)
BN, ReLU6

Conv (1, 1,16)
BN, ReLU6.

Conv (1, 1,32)
BN, ReLU6

DS Conv (1, 1, 8) DS Conv (3, 3, 8)
BN, ReLUG) BN, ReLUG

DS Conv(3, 3, 32) ..
BN, ReLUG) 4

Conv (1, 1, 16)
BN, ReLU6
Conv (3,3,32)
BN, ReLU

Conv (1, 1, 128)
BN, ReLU6

DS Conv(3, 3, 32)
BN, ReLU6

DS Conv (3,3, 16)
BN, ReLUG

DS Conv (1, 1, 16) DS Conv (3, 3, 16)
BN, ReLU6) BN, ReLU6

DS Conv (3, 3, 16)
BN, ReLUG

Concatenate

Conv (1, 1,32)
BN, ReLUG
Conv (1, 1, 128)
BN, ReLUG

DS Conv(3,3, 128) | |
BN, ReLU6

DS Conv(3, 3, 128)

Conv (1, 1,32)
BN, ReLU6.
Global Average
Pooling2D(32
Dense
2
2

Fig. 9. FastNet architecture. Numbers 2, 4, and 8 are the branch numbers
used in each multibranch block.

Precision - Recall
Fr=2. — (10
Precision + Recall
TP + TN
Accuracy = . (11D
TP + TN + FP + FN
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TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT KINDS MULTISCALE NETWORK.
(“ID” MEANS THE NUMBER OF EXPERIMENTS; “FLOPS” IS MEASURED
BY FLOATING POINT OPERATIONS; “TRAINING ACC” IS THE TRAINING
ACCURACY; “VAL ACC” IS THE VALIDATION ACCURACY; AND THE BOLD
FONT INDICATES THE STATE-OF-THE-ART RESULT)

ID FLOPs Params Training Acc  Val Acc

1 13310 6650 0.8978 0.8972

2 13905 6946 0.9294 0.9151

3 14807 7394 0.9344 0.9236

4 16016 7994 0.9412 0.9293
TABLE VI

EXPERIMENTAL RESULTS OF DIFFERENT NUMBER OF MULTIBRANCH
NETWORK. (“BRANCHES” MEANS THE NUMBER OF BRANCHES IN THE
MULTIBRANCH BLOCK; “FLOPS” IS MEASURED BY FLOATING POINT

OPERATIONS; “TRAINING ACC” IS THE TRAINING ACCURACY; “VAL

AcC” IS THE VALIDATION ACCURACY; AND THE BOLD FONT INDICATES
THE STATE-OF-THE-ART RESULT)

Branches FLOPs  Params  Train Acc  Val Acc
1 14478 7234 0.8981 0.8989
2 15793 7890 0.9296 0.9141
4 18423 9202 0.9322 0.9188
8 23683 11826 0.9345 0.9246
16 34203 17074 0.9365 0.9266

C. Experimental Setup

We used weight accumulation method to remove the back-
ground from the training data. Tissue images were split into
256 x 256 patches in two classes at high-resolution level.
The data sets were divided into training data sets and test-
ing data sets randomly. All the experiments are trained on
training data sets and evaluated on testing data sets. First,
we investigate the effect of different scales and branches on
the experimental performance. Considering the parameters and
computation cost, we used the suitable multiple scales and dif-
ferent branches based on the experimental results in FastNet.
Second, we first evaluated the experiment performance per-
formed on depthwise separable convolution and standard con-
volution. Additionally, we investigated the impacts of shortcut
using in the multiscale block and multibranch block on the
network performance. Third, we compared our AttLoss with
cross-entropy loss and focal loss on four popular lightweight
networks, respectively. Finally, we compared our FastNet with
MobileNetV2, ShuffleNet V2, and EfficientNet-BO in three
loss functions, respectively.

D. Performance Comparison of Different Scales and
Different Branches

We designed a network with single multiscale block to
investigate the effects of different scales on experimental
results. In the experiment 1, we used only one 1 x 1 con-
volution branch in the multiscale block as the baseline. In
the experiment 2, 1 x 1 convolution branch, and 3 x 3 con-
volution branch were concatenated in the multiscale block.
1 x 1 convolution branch, 3 x 3 convolution branch, and
5 x 5 convolution branch were concatenated in the experiment
3. In the experiment 4, we concatenated 1 x 1 convolution
branch, 3 x 3 convolution branch, 5 x 5 convolution branch,
and 7 x 7 convolution branch in the multiscale block. The
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TABLE VII
PARAMETERS, FLOPS AND PERFORMANCE COMPARISON-BASED CAMELYON16 OF FASTNET WITH STANDARD CONVOLUTION, DEPTHWISE
SEPARABLE CONVOLUTION AND SHORTCUT, RESPECTIVELY. (INPUT SHAPE IS 256 x 256 x 3; LOSS FUNCTION Is CROSS-ENTROPY LOSS FUNCTION;
“FLOPS” IS MEASURED BY FLOATING POINT OPERATIONS; AND THE BOLD FONT INDICATES THE STATE-OF-THE-ART RESULT)

ID  Methods Convolution Layer  Shortcut  Params FLOPs Accuracy  Recall  Precision  F} Score
1 FastNet Standard no 1.32M  773.64M 0.9533 0.9607 0.9467 0.9536
2 FastNet Standard yes 1.32M  773.75M 0.9715 0.9647 0.9781 0.9713
3 FastNet Depth Separable no 022M  210.31M 0.9628 0.9586 0.9668 0.9627
4 FastNet Depth Separable yes 0.22M  210.42M 0.9721 0.9638 0.9795 0.9716

TABLE VIII

PERFORMANCE COMPARISONS FOR ATTLOSS WITH CROSS-ENTROPY LOSS AND FOCAL LOSS USING SAME MODELS. (INPUT SHAPE IS 256 x 256 x 3;
“ID” MEANS ID-TH GROUP EXPERIMENTS; “FLOPS” IS MEASURED BY FLOATING POINT OPERATIONS;
AND THE BOLD FONT INDICATES THE STATE-OF-THE-ART RESULT)

ID Methods Loss Shortcut  Params  FLOPs  Accuracy  Recall  Precision F1 Score
Cross Entropy 0.9479 0.9362 0.9587 0.9473
1 MobileNet V2 [33] Focal Loss yes 0.69M 251M 0.9311 0.9634 0.9449 0.9541
Attention Loss 0.9587 0.9475 0.9638 0.9556
Cross Entropy 0.9614 0.9457 0.9763 0.9608
2 ShuffleNet V2 [34] Focal Loss yes 1.26M 381M 0.9659 0.9549 0.9763 0.9655
Attention Loss 0.9668 0.9528 0.9788 0.9656
Cross Entropy 0.9574 0.9689 0.9563 0.9626
3 EfficientNet-BO [35] Focal Loss yes 40IM  1027M 0.9606 0.9514 0.9752 0.9632
Attention Loss 0.9631 0.9639 0.9689 0.9664
Cross Entropy 0.9686 0.9531 0.9837 0.9681
4 FastNet (ours) Focal Loss yes 0.22M 210M 0.9695 0.9533 0.9853 0.9690
Attention Loss 0.9734 0.969%4 0.9771 0.9733

experimental results are shown in Table V, which demon-
strate that more multiscale branches in the multiscale block
can significantly improve the network performance but more
parameters and computation cost. Considering model parame-
ters and complexity, we made a tradeoff between performance
and complexity. Finally, we adopted the 1 x 1 convolution
branch, 3 x 3 convolution branch and 5 x 5 convolution
branch to extract multiscale feature in the multiscale block.

Similarly, we also designed a network with single multi-
branch block to investigate the effects of different branches
on experimental results. We conducted five experiments with
1, 2, 4, 8, and 16 branches, respectively. The experimental
results are shown in Table VI, which demonstrate that more
branches can significantly improve network performance but
bring more parameters and computation cost. Consequently,
we appropriately adjust the number of branches in FastNet as
required.

E. Comparison Among Standard Convolution, Depthwise
Separable Convolution and Shortcut

First, we evaluated our FastNet architecture using standard
convolution and depthwise separable convolution, respectively.
As shown in Table VII, comparing experiments 1 with 3
and experiments 2 with 4, the FastNet using depthwise sep-
arable convolution achieve a higher accuracy, precision, F
score, and a competitive recall than FastNet using standard
convolution with extremely few parameters and small com-
putational complexity. Second, we investigated the impacts of
shortcut using in the multiscale block and multibranch block.
Comparing the experiments 1 with 2 and experiments 3 with 4,

we found that FastNet with shortcut outperform the FastNet
without shortcut in accuracy, recall, precision and F; score.
Considering efficiency of depthwise separable convolution and
excellent performance of shortcut, in the next experiments, the
FastNet utilized the depthwise separable convolution instead
of standard convolution and included the shortcut by default.

FE. Performance Comparison for Attention Loss Function
With Cross-Entropy Loss Function and Focal Loss Function

In the tumor detection scene, both recall and precision
are extremely important. F; score is the harmonic mean of
precision and recall, so we considered the F| score as the first
evaluation metrics. Second, we considered the accuracy as the
second evaluation metric. We evaluated the performance of the
AttLoss function and compared it with the cross-entropy loss
function and focal loss function. The loss function comparison
experiments were performed on the MobileNet V2, ShuffleNet
V2, EfficientNet-B0, and FastNet, respectively. Experimental
results are shown in Table VIIIL. In the 4th group experiments,
we can clearly see that the AttLoss function proposed by us
achieved the best accuracy, recall, F| score and competitive
precision. The Ist, 2nd, and 3rd group experiments are the
ablation experiments. In the ablation experiments, our AttLoss
function also achieved the best F score and accuracy at a
competitive recall and precision in different neural networks.

G. Performance Comparison for FastNet With MobileNet
V2, ShuffleNet V2, and EfficientNet-BO

We evaluated and compared the performance of FastNet
with MobileNet V2, ShuffleNet V2, and EfficientNet-BO using
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TABLE IX
PERFORMANCE COMPARISONS FOR FASTNET WITH MOBILENET V2, SHUFFLENET V2, AND EFFICIENTNET-B0O USING SAME LOSS FUNCTION.
(INPUT SHAPE IS 256 x 256 x 3; “ID” MEANS ID-TH GROUP EXPERIMENTS; “FLOPS” IS MEASURED BY FLOATING POINT OPERATIONS;
AND THE BOLD FONT INDICATES THE STATE-OF-THE-ART RESULT)

ID Methods Loss Shortcut  Params  FLOPs  Accuracy  Recall  Precision  F1 Score
MobileNet V2 [33] 0.69M  25IM 09479 09362  0.9587 0.9473
| ShuffleNet V2 [34] o o 126M  381IM 09614 09457  0.9763 0.9608
EfficientNet-B0 [35] Py Y 40IM  1027M 09574  0.9689  0.9563 0.9626
FastNet (ours) 022M 210M 09686 09531  0.9837 0.9681
MobileNet V2 [33] 0.69M  25IM 09311 09634  0.9449 0.9541
,  ShuffleNet V2 [34] Focal Loss o 1.26M  381IM 09659 09549  0.9763 0.9655
EfficientNet-B0 [35] s Y 40IM  1027M 09606 09514  0.9752 0.9632
FastNet (ours) 0.22M 210M 0.9695 0.9533 0.9853 0.9690
MobileNet V2 [33] 0.69M  25IM 09587 09475  0.9638 0.9556
5  ShuffleNet V234 . o 126M  381IM 09668 09528  0.9788 0.9656
EfficientNet-B0 [35] ! s yes 40IM  1027M 09631  0.9639  0.9689 0.9664
FastNet (ours) 022M  210M 09734 09694  0.9771 0.9733

different loss function. The experimental results are shown
in Table IX. In the 1st group experiments, using cross-
entropy loss function, our FastNet achieved the best accuracy,
precision, F score, and suboptimal recall with the least train-
able parameters and smallest computational complexity. In the
2nd group experiments, using focal loss function, our FastNet
achieved the best accuracy, precision, F| score, and compet-
itive recall with the least trainable parameters and smallest
computational complexity. In the 3rd group experiments, using
AttLoss function proposed by us, our FastNet achieved the best
accuracy, recall, F'| score, and suboptimal precision with the
least trainable parameters and smallest computational com-
plexity. Compared with the 1st group and the 2nd group
experiments, the FastNet, with AttLoss function proposed by
us in the 3rd group experiments, achieved the best accu-
racy, recall, and F| score with the least trainable parameters
and smallest computational complexity. Therefore, the exper-
imental results demonstrated that the FastNet proposed by us
outperforms MobileNet V2, ShuffleNet V2, and EfficientNet-
B0 in our medical images classification. The least trainable
parameters and smallest computational complexity make our
FastNet higher efficiency in portable machines.

V. CONCLUSION

In this article, a TFI framework was presented to detect
tumor regions fast. In the TFI framework, a weight accumula-
tion method for histopathology images was designed to greatly
reduce the redundant computation cost. We removed the back-
ground area in the RGB color model and the HSV color model,
respectively. We combined tissue masks from different color
model, which increases the accuracy of tissue mask. A novel
AttLoss function was proposed to increase the weights of pos-
itive samples and the indistinguishable samples. In the AttLoss
function, we added a hyperparameter « based on cross-entropy
loss function to decrease weight from the negative samples
and added a hyperparameter y to pay more attention on the
indistinguishable samples and less attention on the distin-
guishable samples. A lightweight FastNet was proposed for
patch classification in the TFI framework. Compared with
the MobileNetV2, ShuffleNet V2, and EfficientNet-BO, the
FastNet proposed by us achieved the highest recall, accuracy,

and F| score with the least trainable parameters and smallest
computational cost. While there are some drawbacks. It is not
precise enough to regard the whole patch as tumor or normal.
At the edge of tumor regions, the patch contains both tumor
pixels and normal tissue pixels. The future work will focus
on pixel-level tumor segmentation, which will achieve more
precise tumor boundary.
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