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Abstract—In this work, we present a cloud-based system for
noncontact, real-time recognition, and monitoring of physical
activities and walking periods within a domestic environment.
The proposed system employs standalone Internet of Things
(IoT)-based millimeter wave radar devices and deep learning
models to enable autonomous, free-living activity recognition, and
gait analysis. To train deep learning models, we utilize range-
Doppler maps generated from a data set of real-life in-home
activities. The performance of several deep learning models is
evaluated based on accuracy and prediction time, with the gated
recurrent network [gated recurrent unit (GRU)] model selected
for real-time deployment due to its balance of speed and accuracy
compared to 2-D convolutional neural network long short-term
memory (2D-CNNLSTM) and long short-term memory (LSTM)
models. The overall accuracy of the GRU model for classifying
in-home physical activities of trained subjects is 93%, with 86%
accuracy for a new subject. In addition to recognizing and dif-
ferentiating various activities and walking periods, the system
also records the subject’s activity level over time, washroom use
frequency, sleep/sedentary/active/out-of-home durations, current
state, and gait parameters. Importantly, the system maintains pri-
vacy by not requiring the subject to wear or carry any additional
devices.

Index Terms—Activity recognition, autonomous systems, gait
monitoring, mm-wave radar, sequential deep learning.

I. INTRODUCTION

FEATURES related to gait are fundamental metrics of
human motion and human health [1]. Human gait is a

valuable and feasible clinical marker to determine the risk of
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functional decline—both mental and physical [2], [3]. Changes
in gait parameters from a person’s normal values often indicate
deteriorating changes in health [4]. Technologies that detect
changes in people’s gait patterns, especially older adults, could
support the detection, evaluation, and monitoring of parame-
ters related to changes in mobility, cognition, and frailty [5].
Gait assessments could be leveraged as a clinical measure-
ment as they are not limited to a specific healthcare discipline
and are consistent and sensitive tests [2]. Numerous stud-
ies have been conducted to identify the relative association
between walking and functional decline in people, especially
older adults (e.g., [6], [7], [8], and [9]). While gait parameters
have been assessed and used as a clinical indicator for health
status in various studies, there is no consensus for a standard
measurement methodology for walking tests [2]. Moreover,
most of the measurements are conducted during clinical vis-
its [6]. However, variations in gait characteristics as a result
of cognitive or other conditions may go undetected as the
effect can be gradual and often goes unnoticed by the indi-
vidual and/or during clinical visits [10]. Another issue related
to assessing gait is that the unfamiliar setting of a clinic often
causes people to (intentionally or unintentionally) change their
gait patterns during clinical assessments. While systems, such
as GaitRite [11] and Vicon [12] are currently available and pro-
vide precise measurements of gait, such systems are expensive
and difficult to operate, making them impractical for a clinic
and not suitable for in-home monitoring. Therefore, there is
a pressing need for affordable technology that can measure
human gait parameters continuously, unobtrusively, and reli-
ably if we are to get a better understanding of people’s true
gait and how their gait may change over time. A system is
needed to measure and analyze people’s gait in their living
environment, namely, at home, in hospitals or long-term care
facilities.

A wearable device could be a possible solution for frequent
in-home gait assessments [13], [14] but using them requires
people to want and remember to use and recharge them.
Moreover, wearable devices might cause feelings of burden
and discomfort. On the other hand, optics-based systems, such
as computer vision and infrared, have line-of-sight detection
problems (i.e., they cannot detect people behind obstacles), as
well as privacy-related issues and overhead costs [12], [15].
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A wireless technology that uses electromagnetic waves (i.e.,
radar) to continually measure gait parameters at home, in long-
term care or in a hospital, without a clinician’s involvement has
been proposed as a suitable solution for many of the issues dis-
cussed above [10], [16], [17], [18], [19], [20], [21], [22], [23].
The use of a radar system is appealing due to its reliable
functionality in different lighting levels, protection of privacy,
penetration through obstacles, and long-range detection capa-
bilities [23]. Radar sensors could make it possible to monitor
and analyze gait outside the laboratory and capture information
about human gait and activity levels during the person’s every-
day activities [24], [25], [26]. It should be mentioned that
there is little research about radar’s accuracy and applicabil-
ity, and people may not feel comfortable installing radars in
their homes (since it is new and not a common technology).
However, there is growing interest in the use of radar systems
in everyday life [15], [27].

Studies on the application of radar technologies in human
gait assessment have been conducted to: 1) analyze and
obtain gait parameters [10], [16], [17], [18], [19], [20], [21]
and 2) recognize humans from their gait patterns cite-
bib28, [29], [30], [31], [32], [33]. For the first one, various
radar signal processing methods have been proposed to extract
gait characteristics such as speed, cadence, stride length, etc.
Machine learning and artificial intelligence (AI) have been
deployed for the latter. However, the focus of this article is to
integrate machine learning algorithms with radar signal pro-
cessing to identify the type of in-home activity performed by
a subject and to detect in-home walking periods to distinguish
them from other in-home activities.

II. STATE OF THE ART AND PROPOSED IMPROVEMENTS

Most of the current gait analysis systems are based
on continuous-wave (CW) radars; such systems enable
Doppler/micro-Doppler measurement but prevent range esti-
mates [29], [34], [35], [36], [37]. As shown in [38], one of the
main drawbacks of CW radars is the effects of the approach
angles of motion on the micro-Doppler patterns. For instance, a
micro-Doppler signature of a person walking toward the radar
at a relative 90◦ angle is different from that at 0◦ angle [19],
[20], [28]. Previous works on developing radar-based gait detec-
tion systems have primarily focused on straight-line walking
periods to tackle the dependency of micro-Doppler patterns
on the angle of motion [19], [20], [26], [28]. However, the
chance of in-home straight-line walking is very low as people
walk randomly in their living environment. To overcome the
dependency of the relative angle, one possible solution is to
obtain the walking speed through the changes in a subject’s
position over time (i.e., velocity = position/time). A multiple
inputs multiple outputs (MIMOs) frequency modulated con-
tinuous wave (FMCW) radar [23], [33], [39], [40], [41], [42]
can provide the position of targets in addition to the micro-
Doppler information, which makes it a good candidate for
in-home gait monitoring assessment and activity recognition
application [10].

Although the speed of random walking could be extracted
using an MIMO FMCW radar, the position of a subject

performing other in-home nonwalking activities, such as clean-
ing or working out also changes over time. Therefore, we
need an algorithm to distinguish walking periods from other
in-home activities and movements for an in-home gait mon-
itoring assessment and activity recognition system. In this
article, we propose a novel cloud-based in-home free-living
activity recognition and gait monitoring system that integrates
radar-based signal processing methods with a sequential deep
learning algorithm to create an autonomous in-home gait mon-
itoring and activity recognition (AI-GM&AR) system. Our
proposed AI-GM&AR system uses a sequential deep learning
model to recognize the type of in-home activity, detect walking
periods, and distinguish them from other in-home activities.

The primary purpose of our research is to perform in-home
typical daily activity recognition and gait period detection
using radar to have a record of the subject’s activity level
and gait patterns during daily life activities. We perform gait
and activity recognition studies in a familiar and commonly
used environment, such as one’s home.

Most of the research on human gait analysis and activity
recognition has been done in a simple, large, and low-
clutter environment with a constrained range and limited
activity (mainly in a straight line) [20], [23], [28], [39],
[43], [44], [45], [46]. However, when someone walks randomly
or performs in-home activities in a cluttered environment such
as a typical home, their patterns are different from that of
straight-line activity in a large area [20], [23], [28], [39], [43].
As will be shown in this article, identifying walking periods
and recognizing the type of activity a person performs is com-
plicated in such an environment using radar signal processing
methods.

Moreover, short-time Fourier transform (STFT) has been
widely used to train machine learning algorithms in many
cases [44], [45]. STFT is a good solution for such a straight-
line activity where it captures all micro-doppler which depends
on relative angle. The reason is that, for a straight-line
movement, the relative angle between the radar and the
subject is constant, thus, the direction will not impact the
extracted micro-Doppler. However, when it comes to random
and nonstraight-line in-home activities at various angles, STFT
patterns are not easily distinguishable. Since people have dif-
ferent patterns of walking and other in-home activities, as will
be shown in this article, if we train a model with STFT, it will
not produce the best results. Furthermore, since STFT ignores
the spatial information of subjects (e.g., range information),
it does not have enough information to distinguish various
in-home activities.

Moreover, unlike the work reported in [21] that used a
complex radar system including four AWR1243 chips to cre-
ate 192 channels to provide human point cloud information
for 2D-CNN, we used only one AWR1443Boost radar sensor.
Note that for a real-time everyday application, we need a fast
and simple algorithm, whereas an expensive high-resolution
radar and complex signal processing are required to prepare
accurate point cloud information, as shown in [21]. Moreover,
to make the system affordable, it is preferred to have fewer
and less expensive radar sensors. In this article, we show
that, without the need for an expensive high-resolution radar
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Fig. 1. Diagram of the proposed AI-GM&AR system. Three standalone units are installed in the subject’s living environment collecting stream data and
sending it to the cloud. In addition to gait parameters and the subject’s current status, the subject’s daily activity reports are recorded and shown using three
different platforms: mobile, Web, and desktop apps.

leading to complicated and computational-costly algorithms
for detection, clustering, and associations to extract point cloud
information (x–y–z) [21]. A range-Doppler map (RDM) of a
human body obtained from a low-cost radar is reliable and
provides enough features for our purposes. RDMs are deliv-
ered to a sequential deep-learning algorithm to be trained and
predict in-home activities. In addition to the simplicity, com-
pared to the point cloud method, another advantage of RDM is
that only one single transmitter and a receiver can provide both
the occupied position and all created micro-Doppler, leading
to a less expensive system. Another advantage of using RDMs
is that, compared to SFTF patterns, the RDM has both spatial
and temporal features of subjects.

Furthermore, assessing various deep learning models, we
show that gated recurrent unit (GRU) [47] can extract temporal
characteristics of the radar data and thus achieve sufficient
recognition accuracy with relatively low complexity compared
to the existing 2D-CNN and 2-D convolutional neural network
long short-term memory (2D-CNNLSTM) methods [48]. Since
RDM preprocessing is simple and fast, all signal processing
pipelines are performed in a low-cost standalone Internet of
Things (IoT) Edge device without allocating an extra laptop or
PC for signal processing. In this article, we utilize a Raspberry
Pi to process radar raw data and perform all signal processing
to be delivered to the GRU network. With simple and fast
preprocessing to create RDMs performed by a Raspberry Pi,
streamed data is sent to the cloud (Microsoft Azure), and the
GRU network is applied to the streamed data to identify the
type of activity a subject is performing in real time.

Our proposed cloud-based AI-GM&AR system not only
detects walking periods and captures gait values but also
contains rich information about a person’s daily activity
level, such as the time the person started and stopped
walking, the distance of walking, how long the subject
was stationary, how long the subject was active during a
day (all other movements in addition to walking), if the

target left home, etc. Additionally, the proposed standalone
AI-GM&AR system provides a record of the subject’s activ-
ity level over time, washroom frequency and duration, and
sleep/sedentary/active/out-of-home durations accessible in the
designed business intelligence dashboard developed in Azure.
These daily reports provide the level of activities of daily liv-
ing used as an indicator of a person’s functional status [49].
The reports also could be used to collectively describe that the
person has the fundamental skills required to independently
care for oneself [50].

III. AI-GM&AR SYSTEM DESIGN

The diagram of our proposed AI-GM&AR system is
presented in Fig. 1. The system’s main components include
the Client Side, Cloud, and User Interface. To provide a
detailed representation of the subject’s daily activity, we focus
our attention on the living room in this article as this is the
central area of the house where the subjects spend most of
their time and perform most of their activities, followed by
the bedroom (to record sleeping time and duration) and the
washroom (to record washroom frequency, enter, exit, and
duration). Therefore, to enable tracking a subject in the three
main living areas, we installed a standalone system (a radar
integrated with a single board) in the subject’s bedroom, living
room, and washroom. Each system sends the radar configura-
tion commands to run the radar, stores received raw signals,
preprocess the raw data, and then transfers it to the cloud.
Each system in each room performs a signal processing chain
to detect the presence or absence of the subject. To identify
which space is currently occupied, a presence-absence detec-
tion (PAD) algorithm is applied to the radar raw data [51].
We refer interested readers for more detail on the PAD algo-
rithm to our previous papers published in [49] and [51]. The
PAD algorithm identifies the rooms as occupied or vacant.
The data from the room occupied by the subject is sent to the
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Fig. 2. Flowchart of the IoT-based AI-GM&AR system showing the prerun time and run-time processes in the cloud.

cloud through the IoT Edge. Since our focus is on activity
recognition and gait period identification in the living room in
this article, if the living room is occupied, then the RDM will
be sent to the cloud for further analysis. The pseudo-code of
our proposed AI-GM&AR system is provided in Algorithm 1.
The radar real-time raw data captured in each room is the
system’s input to generate the subject’s activity report output.
If the PAD algorithm identifies the presence of a subject in the
bed (occupied bed), the time duration of in-bed status will be
stored in the cloud database to record the sleep or in-bed time.
On the other hand, if the presence of the subject is identified
by the PAD algorithm in the washroom, the entrance/exit time
and the time duration the subject spends in the washroom
will be recorded. Deploying deep learning in the cloud, the
type of activity performed by the subject will be predicted. If
the PAD algorithm identifies the absence of the subject in all
three areas, the status of the out-of-home will be determined
(a vacant room). The time duration the subject spends out of
home would also be recorded.

A. Deploying Machine Learning in the Cloud

There are two main steps in cloud computing to deploy
real-time machine learning [52]: 1) preruntime and 2) run-
time processes. As shown in Fig. 2, in the preruntime step,
we collect data from the IoT device (the radar sensor) to train
a deep learning network. The model is trained and optimized in
a local machine. The model is then deployed into the cloud to
be used in the run-time section. In the run-time step, radar sen-
sors paired with Raspberry Pis (standalone sensors) are used
to capture and preprocess streamed data from the environment
and then send it to the cloud for further analysis. If the occu-
pied room is the living room, the stream data is then transferred

Algorithm 1 In-Home Status Recognition Algorithm
Input: Radars Raw Data from each Single Board
Output: Activity Reports
while True:

chirp=capture_raw_data ()
room=PAD (chirp)
if room == “in_bed”

save_in_bed_date_and_time ()
else if room=“in_washroom”

save_in_washroom_date_and_time ()
else if room=“out_of_home”

save_out_of_home_date_time ()
else if room== “Livingroom”

status=check_status_of_livingroom (chirp)
save_status_of_livingroom (status, date, time)

to the cloud and fed into the deep learning network to iden-
tify the type of in-home activity and gait periods [52]. More
details are provided in Section IV.

IV. PROPOSED AI-GM&AR ALGORITHM

The block diagram of our AI-GM&AR algorithm flowchart
is illustrated in Fig. 3. The proposed algorithm consists of
two processes: 1) walking period identification and activity
recognition and 2) gait parameter extraction. This article cov-
ers the method of in-home walking period identification and
activity recognition. For gait parameter extraction, we refer
interested readers to our previous work done for gait analysis
in a cluttered environment [26].

In our proposed system, radar raw data is collected from a
MIMO FMCW radar. As shown in Fig. 3 and Algorithm 2,
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Fig. 3. AI-GM&AR System Flowchart. First, features for sequential deep
learning will be provided and delivered to the network. If walking periods are
identified, a gait extraction algorithm will be applied.

Algorithm 2 In-Home Activity Recognition Algorithm
check_status_of_livingroom (chirp):
Input: Radar Raw Data in Livingroom (Radar Unit #1)
Output: Type of Activity in the Living Room

chirp=capture_radar_raw_data_from_livingroom ()
fft=fast_fourier_transform (chirp)
complex=fft [0:int (fft.size/2)]
mcr=mutual_coupling_reduction(complex)
cr=clutter_removal (mcr)
R_P=save_in_database (cr)
RDM=fft (R_P)
result=GRU (RDM)
if result== “empty”

return “empty”
if result== “sedentary”

return “sedentary”
if result== “washing”

return “washing”
if result== “vacuuming”

return “vacuuming”
if result==“in_place_movement”

return “in_place_movement”
if result== “walking”

return gate_extraction (data)

range-FFT is applied to the received chirp samples from the
FMCW radar to obtain the range information [51]. Mutual
coupling reduction is applied to remove leakage from the
transmitter antennas to the receiver antennas.

In received signals, there are two types of clutter effects:
1) stationary clutter and 2) time-varying clutter (ghosts) [26].
The direct reflection from stationary or unanimated objects
is called stationary clutter. A stationary clutter removal algo-
rithm is applied to the range profile to remove signals reflected

from stationary clutter [26]. The average value of the sig-
nal is computed and subtracted from the aggregated signals;
removing the average is equivalent to eliminating the station-
ary scatters. However, the interaction between a subject and
stationary objects creates multipath or ghosting effects [26].
Multipath occurs when a signal takes two or more paths from
the transmitting antenna to the receiving antenna. The num-
ber and particular behavior of the multiple paths depends
on the room structure and the presence of moving subjects.
The multipath issue is more significant when people move in
the space occupied by reflective objects since moving even
a small object in such an environment causes changes in
multipath reflections [26]. Therefore, after performing the sta-
tionary clutter removal algorithm, the remaining signals in the
range profile are direct signals from the subject, caused by
chest motions (breathing) and other motions created by per-
forming in-home activities, and multipath effects [26]. In this
article, it will be demonstrated that deep learning can classify
in-home activities despite the existence of multipath effects or
ghosts. Since the human body is nonrigid, reflections from
a human body occupy multiple cells of range bins in the
range profile. Also, human locomotion, including walking, is
a complex motion and the velocity of each segment of the
human body performing different tasks varies over time [29],
[34], [35], [36], [37], producing various micro-Doppler shifts
in scattered signals. Applying the second FFT on a series of
radar chirps (i.e., frame), an RDM is obtained. Therefore,
using an FMCE radar, we simultaneously provide an RDM
at each frame containing range and micro-Doppler signatures
of a subject’s in-home activities. As shown in [26], azimuth
information is also needed to extract gait parameters that are
out of this article’s scope.

In this article, given that our target is a single subject, we
use the entire RDM to train the model. This simplicity helps
us avoid other signal processing such as detection (to capture
occupied bins), clustering methods to cluster the detected bins,
and then association algorithms to associate new bins to the
previously occupied bins. We consider only one subject in this
article because the main application of the AI-GM&AR system
is in long-term care facilities or retirement homes, where only
one subject is monitored.

Any in-home gait extraction method is prone to failure if
the system is not intelligent enough to identify a human’s in-
home activities and differentiate between them. The system
should provide precise and accurate gait data and be able
to track a person’s in-home activities over long periods. The
system should be able to identify the type of in-home activi-
ties a subject performs. Six classes are defined in this article:
1) “Empty;” 2) “Sedentary;” 3) “Washing;” 4) “Vacuuming;”
5) “In-Place Movement;” and 6) “Walking.” These are some
of the activities a person performs during a typical day.
Algorithm 2 shows the pseudo-code of the proposed activity
recognition algorithm. As shown, the deep learning network
would predict the type of activity a person is performing
and send out the result as the current status. For the case
of detected walking periods, a gait extraction algorithm [26]
will be applied to the stored RDM samples to obtain gait
values.
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A. Deep Learning for the AI-GM&AR System

Due to the complexity of human motion, complex signal
processing is required to map the RDM patterns to a human’s
specific activity, which is mathematically not feasible [53].
For this reason, we have chosen to adopt machine learning as
an effective tool for our AI-GM&AR system. Our previous
work [22] used a Random Forest classifier to identify walking
periods from other in-place movements. However, conven-
tional machine learning algorithms are limited in their capacity
to fully capture the rich information contained in complex data,
particularly time-varying samples [53]. Our proposed system
in this article leverages deep learning approaches [54] to use
the resulting time-varying signatures of the subject being mon-
itored. Using multiple deep layers in a single network enables
the efficient extraction of a subject’s features and the building
of a classification boundary [53].

Many deep learning models have shown exceptional
promise in radar-based human activity recognition
systems [28], [29], [30], [31], [32], [33]. The raw data
is commonly converted into a 2-D spectrogram using the
STFT method while being treated as an optical image. The
corresponding architectures, such as 2-D convolutional neural
networks (2D-CNNs), are used in these systems. However,
since a human body motion consists of a series of associated
postures through time, as will be shown in this article,
ignorance of temporal characteristics leads to a complex
network with a huge number of parameters but limited
recognition accuracy. For this reason, CNNs are not a good
algorithm for such time-varying data.

On the other hand, deep recurrent neural networks (DRNNs)
have successfully addressed classification problems that fea-
ture temporal sequences [54]. DRNNs use a hidden node as
memory, passing previous information to the next state for pro-
cessing sequential inputs. Through this process, a DRNN can
extract the temporal features of data. Long short-term memory
(LSTM) and GRU are the two common models for sequen-
tial learning [53]. Due to the complex structure of a single
LSTM unit, the LSTM network contains many parameters and
so requires a larger sample size. LSTM contains three gates:
1) the forget gate; 2) the input gate; and 3) the output gate.

On the contrary, a GRU network has a simpler structure
and fewer parameters. A GRU network includes only the reset
gate and the update gate. From a spatial complexity perspec-
tive, LSTM has more parameters than GRU, therefore GRU
has fewer computation costs than LSTM [47]. In this article,
we show that the RDM has enough features for a single sub-
ject in-home monitoring, and the GRU network is a promising
model to be used for time-varying RDMs of human activity
classification. We demonstrate that GRU achieves sufficient
recognition accuracy with relatively low complexity without
the need for the subject’s point cloud information [48]. The
advantages of RDM, compared to point cloud information, are
that such a system can provide valuable information using only
one single transmitter and a receiver. Additionally, preprocess-
ing is faster and simpler. An alternative approach using point
cloud information would require an expensive high-resolution
radar and complex signal processing.

Fig. 4. AWR1443Boost PCB antenna.

V. EXPERIMENTAL RESULTS

A. Our Devices

Our radar sensors are mm-wave FMCW radar systems (from
TI Co. Ltd) [55]. Our system uses only one AWR1443Boost
radar for each room. As shown in Fig. 4, the radar system
has three transmitters (Tx1, Tx2, and Tx3) and four receivers
(Rx1, Rx2, Rx3, and Rx4), allowing the construction of an 8
and 4 virtual receiver array in azimuth and elevation, respec-
tively. Note that we use the virtual receiver array to provide
azimuth information of a subject to find the subject’s posi-
tion for extracting gait parameters [26]. We selected this
MIMO radar in this article, although a single transmitter
and receiver are enough for in-home activity recognition and
walking period identification. This is because after detect-
ing in-home random nonstraight-line walking periods, azimuth
information of the subject is required in addition to the sub-
ject’s range to get the subject’s accurate position over time
(velocity = position/time) [26]. We refer interested readers for
more detail of obtaining azimuth information on a subject to
our previous publications, where we used a Capon algorithm
[41], [42].

To install the radar and find an appropriate location for the
radar, we first analyzed the radar antenna radiation pattern.
We simulated the radar antennas in a high-frequency structure
simulator (HFSS) [56] and measured the radiation patterns.
Interested readers can refer to our previous works [24], [25]
that analyzed measured and simulated patterns of the radar
antennas in detail. In this article, for simplicity, we just pro-
vided the simulated 3-D radiation patterns of the radar antenna
in Fig. 5 to show the wide beam of the radar antennas.
As Fig. 5(a) shows, the radar antennas provide a very wide
beamwidth with more than 10-dBi gain. This wide beamwidth
ensures wide coverage of the room. Fig. 5(b) shows the ori-
entation of the radiation pattern and the antenna structure on
the radar board, simulated in HFSS. Therefore, we chose to
mount our devices on the wall that could cover the entire envi-
ronment. The devices continuously emit and detect low-power
wireless signals that reflect off nearby individuals. All signal
processing pipelines are performed by a low-cost IoT Edge
device without allocating an extra laptop or PC to run the
signal processing.
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Fig. 5. HFSS simulation results of AWR1443Boost radar antenna (a) simu-
lated 3-D radiation pattern (transmitting with Tx1) and (b) photograph of the
simulated antenna structure along with its radiation pattern.

B. Radar Configuration

In this experiment, we use the following parameters for radar
configuring: chirp duration: 380 µs, chirp slope: 43.03 MHz/µs,
chirps per frame: 256, frame period: 98 ms, frequency band-
width: 3602 MHz, operating frequency: 77 GHz, and A/D
sampling rate: 4400 ksps. Using this configuration, the following
parameters are obtained: maximum detachable range: 8.24 m,
range resolution: 6.49 cm, velocity resolution: 0.02 m/s, and
maximum velocity: 2.54 m/s.

C. Data Set Construction

As stated earlier, data sets collected by other researchers
in this field were collected in controlled situations in a large
environment with almost no clutter [20], [23], [28], [39], [43].
While this type of initial research is critical in developing
practical systems, there needs to be research exploring how to
computationally deal with subjects behaving naturally among
everyday objects typically found in one’s homes, as they would
in a real home uncontrolled environment. Previous research
reported in [21] explored a highly cluttered environment but
in controlled scenarios using an expensive and complex high-
resolution radar to create human point cloud information.
However, no research has been reported on a single-sensor
radar dealing with in-home gait and activity monitoring using
RDMs. Since our goal is to provide an in-home activity
recognition system, we collected data in a typical cluttered
apartment. Fig. 6 depicts the living room area of the apartment

where we conducted our experiment and collected our in-home
data sets. This apartment is located in the research area of the
Schlegel-University of Waterloo Research Institute for Aging
(Schlegel-UW RIA). The living room has a typical highly clut-
tered environment with many reflective objects, similar to what
would be found in a living room in any modern apartment
building, including a TV, a fridge, metal window frames, and
concrete floors and ceilings.

To compile this data set, we invited seven subjects to randomly
walk in the apartment at their selected speed and perform various
in-home activities without any predefined path to follow. If we
walk or move in a highly cluttered environment, we create
various multipath effects that should be removed from the
actual signals from the subject [26], [57]. This effect adds
more complexity to the signal processing chain in addition
to the required high-resolution and complex radar sensors. To
compile data sets in a typical home, we installed the radar
sensor in a living room of an apartment, shown in Fig. 6.
We defined six classes: 1) empty; 2) sedentary; 3) washing;
4) vacuuming; 5) in-place movement; and 6) walking. Our
purpose for the “Empty” class was to identify the presence
or absence of the subject in a living room. The result of the
PAD algorithm and the deep learning will be combined to
provide the final presence/absence status. The purpose of the
sedentary class was to know how long the subject was sedentary
(not active) during the day. This information could help the
subject keep track of his/her daily activity and modify his/her
future activities. Moreover, since most of the available vital
signs detection algorithms are effective for a stationary subject,
knowing whether a subject is stationary gives insight into the
efficacy and confidence of breathing rate and heart rate algorithm
outputs [58]. For instance, if it is determined that a subject is
moving, it may be best to withhold these estimates until the
subject is stationary to avoid giving erroneous results [58].

The washing, vacuuming, and in-place movement classes
were defined in order to differentiate these activities from peri-
ods of walking and to track the subject’s daily activities that
involve movement other than walking. It is important to iden-
tify periods of walking, as defined by the walking class, to
apply gait extraction algorithms accurately. Failure to prop-
erly identify walking periods can result in errors in gait data
over time when applying gait extraction algorithms to non-
walking activities. Any small error in gait parameters would
cause misleading information in prediction and any subsequent
proactive attempts (i.e., fall prevention) [11], [59], [60].

For data set construction, seven young and healthy subjects
(three females and four males with heights ranging from 156
to 187 cm) performed their normal and natural daily life in the
apartment. These are the protocols we followed for in-home
data set construction.

1) For the empty class:
a) no subject was in front of the radar, and no live

body occupied the room.
2) For the sedentary class:

a) a subject was sitting still at different places on
sofas/chairs;

b) a subject was sitting at various locations on sofas
while working with a cell phone;
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Fig. 6. In-home environment experiment conducted in Schlegel-UW RIA. The radar is used to collect data for the local system to train and validate deep
learning networks.

c) a subject was sitting at various locations on sofas
while working with a laptop;

d) a subject was sitting at various locations on sofas
in the usual way (i.e., talking, moving his body,
leg displacement, etc.);

e) a subject was sitting at various locations on sofas
facing back and toward the radar.

3) For the washing class:
a) a subject was washing dishes in the kitchen;
b) a subject was drying the dishes;
c) a subject was putting the dried dishes into the

cabinets;
d) a subject was cleaning the cabinets/ sink areas.

4) For the vacuuming class:
a) a subject was vacuuming the entire living room,

even behind desks and coffee tables, in a typical
way.

5) For the in-place movement class:
a) a subject was working out;
b) a subject was squatting;
c) a subject was picking objects from tables/floors;
d) a subject was sitting and standing from a chair.

6) For the walking class:
a) a subject was randomly walking in different direc-

tions in the entire living room, even behind desks
and coffee tables, at his own selected speed.

In this study, data sets were collected with subjects moving
naturally without being asked to move to a specific location.
Therefore, it can be concluded that the data is not dependent
on the radar’s relative position. However, it is possible that the
washing class may be dependent on the radar position due to
the static nature of the activity in close proximity to the sink.
A total of 310357 RDMs were generated from data collected
from seven participants, who each completed five different
in-home activities for a total of 50 min of data. Each partici-
pant completed each task for approximately 10 min, resulting
in approximately 7400 frames of data per class per subject.
The labeling of the data is based on the order in which the
tasks were completed, with some potential for minor labeling

errors due to the subjects not perfectly following the requested
activity for the full 10 min. These errors may include devia-
tions from the requested activity, such as temporary pauses or
walking while holding equipment. While efforts were made to
minimize these errors, they were hard to control. For exam-
ple, participants might have stopped vacuuming intermittently
or walked while holding the vacuum instead of consistently
vacuuming the floor. These flaws were simply very difficult
to control.

D. Results

In this section, we provide samples of RDMs and STFT
patterns of in-home activities. We then provide and compare
the results of various deep learning networks fed by RDMs
and STFT.

1) Range-Doppler Maps: An example of the RDM of each
in-home activity is provided in Fig. 7. Each RDM is a matrix
of 128 rows and 256 columns, normalized to its maximum.
All RDMs shown here are the result of frame #100. Note
that frame #100 in Fig. 7 is just an example of each activ-
ity in this article, while other frames also show the details
of each activity. The horizontal and vertical axes represent
the subject’s range (radial distance) and velocity, respectively.
The RDM in Fig. 7(a) is for the empty room (when no sub-
ject was in the room). As shown in Fig. 6, although there are
several objects in the living room, the RDM of the empty
room shows some random noise after performing the clutter
removal algorithm. Fig. 7(b) is the RDM of the environment
when a subject was sitting on the sofa. The velocity shown
is around −0.02 to 0.02 m/s (mainly from the chest motion),
with the occupied range bins from R = 3.11 m to R = 3.24 m.
Comparing Fig. 7(a) and (b), the effectiveness of our station-
ary clutter removal algorithms are shown. It is demonstrated
that subtracting the average signal value from the integrated
signals eliminates the direct effects of the stationary objects
(i.e., stationary clutter).

Fig. 7(c) shows the RDM when the subject was standing
by the sink washing dishes at an approximate R = 6.5 m.
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Fig. 7. RDMs of (a) an empty room (frame #100), (b) a subject sitting on a sofa (frame #100), (c) a subject washing dishes (frame #100), (d) a subject
picking up an object (frame #100), (e) a subject vacuuming (frame #100) (f) a subject vacuuming (frame 105) (g) a subject walking (frame #100) (h) a subject
walking (frame #105).

As shown, since the subject was at a close distance from
a metallic object (the fridge in the kitchen), the interaction
of the reflected signals from his body and the fridge created
multipath effects (ghosts or time-varying clutter) [26], [57]

observed at R = 6.5 m extended to R = 8 m. The multipath
effect is more significant when the subject moves, particularly
near reflective materials such as metal [26], [57]. Ghosts are
visible for the case of vacuuming in Fig. 7(e) and (h) when
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the subject was at an approximate range of R = 4.5 m away
from the radar, while ghosts are visible at R = 7 m and
further. Interested readers can refer to our previous works
that detailed multipath effects in a cluttered environment pub-
lished in [26]. One of the drawbacks of using point cloud
information [21] to train machine learning is that ghosts’ sig-
nals will be detected as a point cloud. Therefore, an even more
sophisticated technique is needed to deal with ghosts and dis-
tinguish ghosts from the subject’s direct reflections to be fed to
machine learning. However, since the entire RDM is fed to our
deep learning model without any handcrafted feature extrac-
tion method, the deep learning model handles ghost signals
and predicts the classes based on what has been trained. The
RDM of the environment with a subject picking up an object
from the floor is provided in Fig. 7(d). The subject’s body cre-
ated velocity (micro-Doppler in radar received signals) ranging
from −0.08 to 0.02 m/s while range bins were occupied from
R = 4.34 m to R = 4.67 m. For the case of vacuuming and
walking [Fig. 7(e)–(h)], since the subject had movement and
the RDMs changed significantly frame by frame, we provided
the RDMs at two different frames (#100 and #105) to provide
more details. The subjects occupied multiple velocities and
range bins for these two activities. For each of these activ-
ities, the RDMs are slightly different, so the deep learning
model can extract sufficient features to distinguish them and
identify the type of activity a subject is performing.

2) Deep Learning Results: To train and test machine
learning algorithms, we followed two different validation
approaches: 1) a K-fold validation method and 2) a new per-
son. For the first one, we used a 5-fold validation method,
80% of the whole data is used for training, and 20% for test-
ing [21]. Moreover, to assess our deep learning network, it is
essential to have a completely unseen subject for the test set
to validate the network architecture and ensure the generality
of the network in a real-life application. Although with the
K-fold validation method, the samples are unseen in testing,
the subjects are seen. With the second method, we intend to
generalize our trained model to be functioning for any new
person. With the K-fold method, the activity patterns of all
subjects are seen, while with the second method, the activity
patterns of a new person are unseen for the network.

To show the robustness and effectiveness of our proposed
method for human activity recognition and gait period identi-
fication, we provided the outcomes of three procedures.

1) Train set based on RDM samples collected from six
subjects performing various in-home activities at the
apartment (living room), and the test set on samples
collected from the seventh subject (Scenario #1).

2) The K-fold method using RDM samples collected from
all seven subjects performing various activities at the
apartment (Scenario #2).

3) Train set based on STFT patterns collected from six
subjects performing various in-home activities at the
apartment (living room), and the test set on samples
collected from the seventh subject (Scenario #3).

Since the performance of deep learning networks highly
depends on their hyper-parameters to control how it learns the
training data set, optimizing the hyper-parameters utilized by

TABLE I
COMPARISON OF THE RESULT OF DIFFERENT DEEP LEARNING

MODELS (TEST DATA: A NEW PARTICIPANT)

each network is necessary. To find the best hyper-parameters
for deep learning networks, a range of values was specified
for five crucial hyper-parameters: 1) learning rate; 2) batch
size; 3) activation function; 4) optimization algorithm; and
5) the number of layers. Several deep learning models were
implemented to find the best model for our in-home activ-
ity recognition system. For all local processing in this article
(to train deep learning models), we used a computer system
with Windows 10 64 bits operating system and an Intel Xeon
CPU E5-1603 v4 @ 2.4-GHz 128-GB RAM processor. We
implemented deep learning networks in TensorFlow (Keras)
with a cross-entropy loss function in 50 epochs. Our cri-
teria for choosing the best model were the performance in
terms of accuracy and execution prediction time. The motiva-
tion to use accuracy as the performance metric in this work
is that we have balanced data sets, so the models are not
biased. Confusion matrices of four different deep learning
models fed by RDMs, including 2D-CNN, 2D-CNNLSTM,
LSTM, and GRU are provided in Fig. 8 for scenario #1.
A summary of the performance of all four models is listed
in Table I.

LSTM is the most accurate network in identifying the six in-
home classes, while 2-DCNN is the least precise model. The
total accuracy of 2-DCNN, 2-DCNNLSTM, LSTM, and GRU
models is 84%, 85%, 87%, and 86%, respectively. All models
identify the empty room 100% accurately, meaning that an
occupied/ vacant room will be recognized without any error.

2-DCNNLSTM and LSTM models classify the sedentary,
in-place movement, and washing classes with less than 6%
error. 2-DCNNLSTM, GRU and LSTM models can recog-
nize walking periods and distinguish them from other activities
with more than 70% accuracy. However, the CNN model per-
forms poorly in identifying the walking periods. As seen, all
recurrent neural networks performed better in predicting in-
home activities, particularly walking. This is because these
networks exhibit temporal dynamic human behavior, whereas
CNN mainly extracts spatial features without considering the
timing effect of in-home activity patterns. The most challeng-
ing class for all four networks is vacuuming which is confused
with walking and in-place movement. The reason for this
poor performance will be further analyzed in this article. In
addition to the accuracy, as shown in Table I, the execution
prediction time of CNN and 2-DCNNLSTM is much longer
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Fig. 8. Confusion matrix yielded by the different networks, fed by RDMs, applied to test data sets (data collected from a complete new subject, Scenario #1)
in a living room environment: (a) 2-DCNN, (b) 2-DCNNLSTM, (c) LSTM, and (d) GRU. Note that “E,” “S,” “I,” “V,” “G,” and “W” stand for empty,
sedentary, in-place movement, vacuuming, walking, and washing, respectively.

than the other networks because of the complexity of the
convolution-based neural networks. LSTM and GRU networks
are more accurate and faster for in-home activity recognition.
We deploy the GRU network for our real-time processing since
it is faster in predicting a new class which is almost as accu-
rate as the LSTM network in predicting the in-home activities
of a new subject. Graphs of the performance of the accu-
racy and the loss function of the GRU network are plotted
in Fig. 9.

The GRU network performance in predicting in-home activ-
ities of an unseen subject (Scenario #1) ensures the generality.

However, it is common to train a model based on a known
subject to classify and monitor his future activities. Therefore,
for Scenario #2, we analyze the GRU network in predicting
new activities while the patterns of subject’s activities were
previously trained. It should be pointed out that other networks
were assessed for Scenario #2. We provide the outcome
of GRU as it yields the best performance. The confusion



9476 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 9. Graphs of the performance of (a) accuracy and (b) loss function of the GRU network in each epoch.

matrix of the GRU network for Scenario #2 is provided in
Fig. 10. The overall accuracy of this case is 93%. The network
performance improved significantly because the network was
trained based on all subjects’ activity patterns. In this case,
the GRU model predicts sedentary, washing, and in-place
movement with more than 97% accuracy. The model can iden-
tify walking periods with 87% accuracy, while vacuuming is
still the least accurate class (75%). As seen in Figs. 8 and 10,
some of the RDMs of vacuuming were misclassified in the
walking class, leading to less accuracy in the vacuuming class.

Although the model was tuned and various variables were
assessed, the reason for this lower accuracy should be ana-
lyzed. Since the model was carefully analyzed and tuned, we
referred to the data sets. We found that some participants did
not follow our order for vacuuming perfectly. Instead of clean-
ing the floor, some of our participants were walking while
holding the vacuum cleaner. This sanity check was done based
on the result of all RDMs over the entire data and STFT
patterns. Participants also confirmed this. Since our labeling
method was to ask each participant to do each task for 10 min
consistently and we were not allowed to have a video record-
ing, we stuck with this labeling method even though we found
this flow in a small portion of our samples. To show the
details of this flow, we provided the STFT patterns of two
subjects in Fig. 11. Although nonstraight-line STFT patterns
might not be easily distinguishable, we provided the STFT
results because it clearly shows the variation over time in
one plot. RDMs are much clearer and more informative, but
a series of frames that take up a huge space in this article
should be shown. As shown, since subject “A” followed what
he was asked to do perfectly, the STFT pattern of him vac-
uuming [Fig. 11(a)] is completely different from his walking
pattern [Fig. 11(b)]. However, subject “B” was not following
our request and was not performing the actual vacuuming, and
she was holding the vacuum cleaner while walking. The STFT
pattern of her vacuuming [Fig. 11(c)] is very close to walking
[Fig. 11(d)]. Therefore, we can conclude that the low accu-
racy of the vacuuming class is because of the data sets, not

Fig. 10. Confusion matrix yielded by the GRU network, fed by RDMs,
applied to test data sets (Scenario #2) in a living room environment.

the model. The model identifies some as walking because the
participants walked instead of vacuuming.

Since many studies used STFT patterns as inputs for
machine learning and deep learning models, we also train our
deep learning models with STFT patterns. The purpose is to
compare the results of deep learning networks fed by RDMs
with the case of STFT inputs. To generate the STFT signature
of each activity, we choose a small Hamming window for time-
frequency analysis of the real-time radar human activities/gait
signals. The length of the Hamming window is 128 samples.

As shown in Fig. 11, STFT patterns show the time-varying
velocity created by each subject without considering the occu-
pied range bins. Fig. 12 shows the network STFT inputs in
detail. After optimizing the network parameters, the input
is a vector of 1 × 256 consisting 25 ms of a subject’s
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Fig. 11. STFT patterns of (a) subject “A” vacuuming, (b) subject “A” walking, (c) subject “B” vacuuming, and (d) subject “B” walking.

micro-Doppler signature. The total number of time steps is
set to 50. Note that for the time steps, we observed that
when it is greater or less than 50, the performance of the
networks degrades. Therefore, the dimension of the input of
the networks is (1, 50, 256). In total, t = 25 × 50 = 1250 ms
of the subject’s spectrogram is fed to networks. Table I shows
the summarized output of four networks fed by STFT patterns
of Scenario #3.

As shown, GRU is the most accurate network in classifying
activity patterns of a new subject. Comparing the performance
of all four networks fed by RDMs, the network fed by STFT is
less accurate. To detail the results, Fig. 13 shows the confusion
matrix yielded by the GRU network fed by STFT patterns.

As seen, occupied versus empty rooms could be identi-
fied with 100% accuracy in this case as well. However, other
classes are not predicted as accurately as the networks fed by
the RDMs. For example, considering the RDMs as inputs for
GRU, the sedentary class was identified 96% accurately, while
it is 83% accurate in this case. The pattern of washing is also
much less accurate in this case.

This is because the network has not received enough
information to distinguish several classes. To show the detail,
Fig. 14(a) and (b) show the STFT pattern of sitting on the
sofa while working with a cell phone and washing dishes
in the kitchen, respectively. The two patterns are not as
distinguishable as the RDMs are in Fig. 7(b) and (c).

3) Output of the Proposed AI-GM&AR System: As men-
tioned, the GRU network is trained and optimized in a local
machine. The tuned and optimized model with the parameters

Fig. 12. STFT patterns as inputs for deep learning networks.

listed in Table II is then deployed into the cloud to be used in
the run-time section. The network consists of multiple hidden
layers, including the inputs, GRU cell layers, fully connected
layers that combine all the features learned by GRU layers for
classification, and the output layer. Therefore, the output size
is equal to the number of classes. The SoftMax layer normal-
izes the output of the former layer to be used as classification
probabilities.

Preprocessing is performed in the Raspberry Pi to prepare
inputs for the PAD algorithm and the GRU network. Then,
the real-time preprocessed data is sent to the Azure IoT Hub
using Azure IoT Edge Runtime modules [49]. In Azure, data
is collected and stored in the Azure SQL Database [50].



9478 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

TABLE II
GRU NETWORKS HYPER-PARAMETERS

Fig. 13. Confusion matrix yielded by the GRU network, fed by STFT
patterns, applied to test data sets (Scenario #3) in a living room environment.

Ultimately, the status of the subject in each room is kept in
storage for the real-time BI (Business Intelligence) dashboard,
as shown in Fig. 15. As shown, the BI dashboard consists of
four sections: 1) a daily activity report depicted as a bar chart;
2) a gait speed report shown as a line chart; 3) current status
illustrated as a predefined icon; and 4) extracted gait param-
eters. Therefore, the proposed cloud-based system provides a
report of the subject’s daily activity, tracks the current status,
and captures and records gait parameters over time. Note that
the gait extraction algorithms are beyond the scope of this
article.

VI. DISCUSSION

Our findings suggest that continuous passive monitoring
of activity within a home is feasible and has the poten-
tial to improve clinical practice for all individuals, not just
older adults. The proposed monitoring system operates in the
background, analyzing reflections of radio signals to record
activity levels, daily variations, and changes over time with-
out requiring intervention from the person being monitored.
This information can be remotely transmitted to a healthcare
provider in a timely manner, enabling safe and frequent health
monitoring without requiring the subject to leave their home

Fig. 14. Time series inputs: STFT patterns of a subject (a) sitting on the
sofa and (b) washing dishes.

or actively self-report their measurements. This has significant
implications, particularly in the context of COVID-19 social
distancing measures and the increasing population of older
adults and individuals with chronic illnesses. The findings
of this study suggest that the in-home natural characteristics
captured by the technology may have broader applications,
including the potential to assess behavioral symptoms and
predict the risk of hospitalization. This technology may also
have clinical utility for the assessment of individuals with
Parkinson’s Disease, who may be underserved due to factors,
such as living in rural areas or having limited mobility or
cognitive impairment that make it difficult to leave home [15].

In this article, we used FMCW radars to provide RDMs.
We considered RDMs as inputs for deep learning networks
that resulted in more accurate outcomes compared with
STFT inputs. This is because RDMs consist of time-varying
information of both range and micro-Doppler, while STFT
patterns only represent micro-Doppler features. Although the
radar used in this study provides azimuth of the subject, we
did not include azimuth information as inputs for deep learn-
ing models. There were three reasons behind this: 1) the RDM
method is fast and easy-to-implement that a Raspberry Pi can
handle and generate. However, to calculate azimuth, a eam-
forming algorithm [41], [42] is a time-consuming process that
is not fast enough for real-time application; 2) adding more
features would lead to more complex models; the execution
prediction time of a complex model is longer than a sim-
pler model; and 3) RDMs provide enough features for our
models to accurately predict new classes without needing more
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Fig. 15. Prototype of the output of our BI dashboard of the proposed AI-GM&AR system. The BI dashboard consists of four sections: a daily activity report,
a gait speed, the current status of the subject, and extracted gait parameters.

information. For real-time applications, we should consider
simplicity and speed of processing as decisive and key factors.
We used the MIMO system because the azimuth information
of a subject is needed to calculate speed of nonstraight-line
walking periods (velocity = position/time). Analyzing differ-
ent deep learning models, we found the GRU networks faster
while obtaining a similar accuracy as other more complex
networks. Because of the complex structure of the LSTM and
CNNLSTM networks, they contain many parameters and are
slower comparatively.

In the more complex and comprehensive scenarios, the
system demonstrated a slight decrease in accuracy when
applied to new subjects but only misidentified a small number
of nonwalking samples as walking. Despite the dependence of
micro-Doppler patterns on the relative angle between the radar
sensor and the subject, the GRU network was able to overcome
this issue. We demonstrated that when the network is trained
on a range of RDMs representing various activities, it is able
to accurately predict new scenarios, regardless of the direction
of walking or the type of activity being performed. As such,
the proposed system could handle new subjects without any
restrictions.

There are several limitations to this study. First, the partic-
ipants were only monitored within our living-space research
apartment and within the range of the radio devices. Second,
the evaluation of the system is limited by the accuracy of
the subjects’ adherence to the requested tasks and the self-
reported labels. The labeling process can be challenging when
camera recordings are not allowed. The labels for each class
may be affected by the subjects’ activities at each frame,
resulting in potential flaws in the data sets. Third, this study

was designed for a single subject, and future research will
be needed to accommodate multiple residents within a single
home. Fourth, various causes for gait impairments were not
studied in this article [49]. Some impairments, such as falls
and gait freezing, can be captured by our system and provide a
natural topic for future work. Despite the aforementioned lim-
itations, we believe that the study provides important insights
and addresses key unmet needs in independent living.

VII. CONCLUSION

In this work, we present a cloud-based in-home activity
recognition and walking period identification system that uti-
lizes IoT-based millimeter-wave FMCW radar sensors and
sequential deep learning to generate data streams of natu-
rally occurring human activities within the home environment.
By leveraging the abundance of continuous data, the proposed
system is capable of accurately identifying the type of activ-
ity being performed by a subject. This system represents a
significant advancement in the development of autonomous
continuous human monitoring systems as it not only detects
walking periods and recognizes the type of activity but also
has the potential to report on the activity level of the subject
(e.g., sedentary versus active) and various other parameters,
such as washroom usage frequency and sleep duration.

To evaluate the performance of the proposed system, we
compiled a data set of millimeter-wave data collected from
subjects performing various activities within their own homes,
representing a unique and first-of-its-kind resource for this
purpose. In contrast to existing data sets for human activ-
ity recognition and gait analysis that have been collected
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in constrained, artificially controlled environments and have
focused on simple yet-realistic activities and straight-line
walking periods, our data set captures naturally occurring
human activities in a familiar and commonly used living-space
environment. Utilizing RDMs of a single subject perform-
ing various activities in their living environment as input, we
trained a deep GRU network to classify in-home activities in
the cloud. We performed two methods of network evaluation:
1) a K-fold validation, where the network assessment was done
with newly collected samples, but the subjects were previously
seen and 2) an assessment based on a new subject. Our results
demonstrate that the deep GRU network is able to achieve an
accuracy of 93% for known subjects and 87% for a new sub-
ject performing select in-home activities. In future work, we
plan to further investigate the capabilities of millimetre-wave-
based human activity recognition and gait monitoring in more
dynamic scenarios.
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