
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023 9523

StateOS: A Memory-Efficient Hybrid
Operating System for IoT Devices

Xinyu Tan and Ismo Hakala , Member, IEEE

Abstract—The increasing significance of operating systems
(OSs) in the development of the Internet of Things (IoT) has
emerged in the last decade. An event-driven OS is memory effi-
cient and suitable for resource-constrained IoT devices and wire-
less sensors, although the program’s control flow, which is deter-
mined by events, is not always obvious. A multithreaded OS with
sequential control flow is often considered clearer. However, this
approach is memory consuming. A hybrid OS seeks to combine
the strengths of the event-driven approach with multithreaded
approach. An event-driven cooperative threaded OS represents
a hybrid approach that supports concurrency by explicitly
yielding control to another thread. Although this approach is
memory efficient, as cooperative threads are not preemptive,
it may not provide sufficient real-time performance. This arti-
cle proposes a memory-efficient hybrid OS, called StateOS, for
resource-constrained IoT devices. It is an event-driven cooper-
ative threaded OS with partial real-time performance. StateOS
implements a hybrid task scheduler that combines two coopera-
tive threaded subsystems as kernel processes on a priority-based
preemptive scheduler. This approach provides adequate real-time
performance for IoT devices at a low memory cost.

Index Terms—Cooperative programming, hybrid operating
system (OS), Internet of Things (IoT), IoT OS, wireless sensor
network (WSN) OS.

I. INTRODUCTION

INTERNET of Things (IoT) research has been very active
over the past decade. This technology is expected to change

people’s daily lives by becoming part of the surrounding
ambient objects [1]. In 2020, the number of IoT connections
exceeded that of non-IoT connections for the first time by 12
billion [2].

Most of the deployed IoT devices are based on wire-
less sensors. These devices share similar restrictions as the
nodes of wireless sensor networks (WSNs), such as restricted
resources, distant deployment, unreliable network connections,
and dynamic network topology. Therefore, existing WSN oper-
ating systems (OSs), such as TinyOS [3] and Contiki [4], are
also utilized in IoT devices.

The typical OS for resource-constrained IoT or WSN
devices supports either an event-driven or a thread-based pro-
gramming model. In an event-driven model, programs are

Manuscript received 24 January 2022; revised 14 October 2022 and
22 November 2022; accepted 23 December 2022. Date of publication
5 January 2023; date of current version 23 May 2023. (Corresponding author:
Ismo Hakala.)

The authors are with the Kokkola University Consortium Chydenius,
University of Jyväskylä, Kokkola 67100, Finland (e-mail: xinyu.tan@jyu.fi;
ismo.hakala@jyu.fi).

Digital Object Identifier 10.1109/JIOT.2023.3234106

collections of event handlers, and the execution of an event
handler is triggered by events. This approach is well-suited for
data-centric IoT applications. Event-driven OSs are memory
efficient and, thus, attractive for use in resource-constrained
IoT platforms. However, programming a complex system with
an event-driven model may be challenging because of the man-
ual control of the stack, the lack of blocking functions, and the
events that determine the flow of the program [5], [6], [7], [8].

A thread-based model allows for sequential control flows
of a thread. This model is attractive from a program-
mer’s perspective, as the programming pattern is intuitive
for the human mind. A typical multithreaded OS man-
ages concurrent threads with preemptive task scheduling, in
which the execution of a thread can interleave. Preemptive
task scheduling offers certain advantages, such as auto-
matic task switching and automatic stack management. In a
preemptive multithreaded OS, each thread requires individual
stack memory allocation. This entails a memory consumption
problem in resource-constrained devices that may compromise
their overall performance.

A hybrid model is a compromise solution for a memory-
efficient, multithreaded OS. Many previous proposals merged
event-driven systems and multithreaded systems in different
combinations to obtain a balance between memory consump-
tion and performance. Cooperative threaded programming,
exemplified by Protothreads [5], is a hybrid model that sup-
ports cooperative threads in an event-driven system. These
threads are specifically programmed to voluntarily hand over
processor control to another thread at the yield point to enable
concurrency between the threads. However, an event-driven
cooperative threaded system can have problems with real-
time requirements [7] because a time-sensitive task cannot
obtain processor control until the current task reaches the yield
point.

This study contributes to the literature by proposing a
memory-efficient hybrid OS, StateOS, that offers an ade-
quate real-time performance. StateOS implements macro-
based application interfaces for programming event-driven
WSN applications in a threaded fashion, a hybrid task sched-
uler that supports cooperative and preemptive task man-
agement, a hybrid memory management module that can
alleviate fragmentation problems, semiautomated stack man-
agement interfaces for cooperative task management, and
cross-layer network architecture to reduce communication
overheads. With these features, this approach provides a
memory-efficient OS for resource-constrained wireless devices
to support increasingly complex IoT tasks.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2476-1520
https://orcid.org/0000-0002-0048-3212

9524 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

StateOS is based on a cooperative threaded programming
approach and a hybrid task-scheduling solution. The OS imple-
ments a hybrid task scheduler to support cooperative and
preemptive task scheduling. A priority-based preemptive con-
text switcher manages two kernel processes with different
priorities. This allows the process with higher priority to pre-
empt the other. In both kernel processes, a cooperative task
scheduler is implemented to manage the threads coopera-
tively. As a result, this hybrid approach can provide adequate
real-time performance.

StateOS is oriented toward resource-constrained IoT and
WSN devices. Therefore, it is designed to be a lightweight and
modularized system that utilizes a microkernel architecture. In
addition, the network protocol structure follows a cross-layer
design to reduce the memory cost of network communication.

The remainder of this article is structured as follows.
Related research is reviewed in Section II. The system archi-
tecture and the kernel are proposed in Sections III and IV,
respectively. A code example is shown in Section V, and
the platform implementations are presented in Section VI.
An evaluation of the proposed approach is given in
Section VII. Finally, discussion and conclusion are provided
in Section VIII.

II. RELATED WORK

Existing OSs for resource-restricted systems, such as WSN
and IoT devices, support an event-driven programming model,
a multithreaded programming model, or a hybrid model that
combines event-driven and multithreaded models.

Event-driven OSs, exemplified by TinyOS [3], Contiki [4],
OpenWSN [9], and SOS [10], are preferred over data-centric
IoT/WSN applications for their event-based computational
mechanisms and resource efficiency.

TinyOS was one of the earliest OSs to address the unique
restrictions of WSN devices. It follows monolithic kernel
architecture that is efficient but challenging to understand and
maintain. Contiki applies a modularized design. The kernel
implements an event scheduler that dispatches the event to the
executing task. OpenWSN is an event-driven OS that focuses
on providing network stack services. It retains a simple system
design with a basic monolithic kernel architecture. SOS imple-
ments a modularized system structure using weakly linked
components. The interactions between these components are
accomplished by event-driven messages.

The event-driven programming style can be challenging [7],
[11] due to associated programming difficulties, such as event-
determined control flows and manual stack management. On
the other hand, OSs that support a multithreaded programming
model provide the programmer with a more familiar program-
ming experience for sequential flow control, proactive task
management, and automatic stack management. Typical exam-
ples of multithreaded OSs are MANTIS OS [12], RIOT [13],
FreeRTOS [14], Zephyr [15], and Mbed OS [16].

MANTIS OS is a multithreaded OS designed for WSN
microsensor platforms. It implements a layered architec-
ture based on a lightweight preemptive kernel. RIOT is
a multithreaded OS that aims to provide a Linux-like

programming experience. It has a microkernel architecture
with a preemptive scheduler. FreeRTOS is a popular real-
time OS for small embedded systems and has been ported to
IoT platforms. It supports multithreaded programming using
a preemptive task scheduler. In contrast to the OSs above
that support traditional IoT platforms with 8-bit microcon-
troller units (MCUs), Zephyr and Mbed OS, by default, are
used on platforms with 32-bit MCUs [15], [16]. Zephyr has
two kernel implementations: a microkernel for less-constrained
devices and a nanokernel for resource-limited devices. It sup-
ports multithreaded programming through different strategies,
including priority-based, cooperative, earliest-deadline-first,
preemptive, and nonpreemptive scheduling. Mbed OS is a
preemptive multithreaded OS that supports real-time software
execution. It implements a kernel based on CMSIS-RTOS
RTX [17] which is designed for Cortex-M processor-based
platforms.

For certain resource-constrained devices, multithreaded OSs
are heavyweight. However, complex IoT applications still
prefer a multithreaded OS if the device supports it. Many pro-
grammers find a multithreaded OS to be more familiar and
clearer for programming than an event-driven OS.

A hybrid OS is a compromise approach that combines
event-driven and multithreaded systems. It aims to provide
a memory-efficient OS with a thread-based programming
style. Previous studies have attempted to create a balance
between resource consumption and performance by assem-
bling event-driven and multithreaded systems in different
approaches.

One hybrid approach, exemplified by Protothreads [5] and
TinyThreads [6], implements cooperative threaded APIs in
an event-driven system. Event-driven tasks are explicitly pro-
grammed to perform yield operations as cooperative threads.
Protothreads provide macro-based abstractions and allow a
thread to yield when performing blocking operations. A pro-
tothread is stackless, so it is memory efficient but requires
manual stack management. TinyThreads is a library extension
of TinyOS. It supports cooperative threads by implement-
ing a cooperative scheduler within a TinyOS kernel task.
TinyThreads allocates individual thread stacks, which makes
them heavier than Protothreads. This approach does not sup-
port real-time performance because there is no preemption
between the threads.

The other hybrid approach, exemplified by TinyMOS [18],
TOSThreads [19], SenSpire OS [20], Event-Bus [21], and
OpenSwarm [22], combines event-driven and preemptive
multithreaded systems to provide event-driven and
multithreaded programming models.

TinyMOS implements a TinyOS subsystem in the primary
thread of a MANTIS OS kernel. The subsystem manages
event-driven tasks that can spawn slave threads to perform
long-term operations. TOSThreads is the official designated
multithreaded solution for TinyOS. It has a preemptive thread
scheduler that maintains TinyOS as a subsystem in a high-
priority thread. Long-term tasks are processed by application
threads. SenSpire OS has a preemptive kernel that maintains
two hierarchical event-driven subsystem threads. Including the
interrupt routine, this forms a three-level event-driven system.

TAN AND HAKALA: StateOS: A MEMORY-EFFICIENT HYBRID OPERATING SYSTEM FOR IoT DEVICES 9525

Non-event-driven threads are low-priority threads that pro-
cess long-term application tasks. Event-Bus has event-driven
subsystems based on a preemptive scheduler. A subsys-
tem maintains multiple cooperative subroutines to support
a message-based, event-driven model called the publish-
subscribe model. OpenSwarm1 implements a hybrid kernel
and natively supports preemptive and cooperative scheduling.
The preemptive scheduler manages the thread-based program,
and short reactive tasks are handled by the event handler
functions.

This hybrid approach is flexible because the programmer
can choose a suitable programming model for different tasks.
However, this hybrid system structure inherits problems from
both system models, such as the event-driven task needing to
be run-to-complete and the preemptive threads being memory
consuming.

HybridKernel [23] takes an alternative approach that com-
bines the event-driven cooperative threaded model and the
preemptive multithreaded model. HybridKernel allows the cre-
ation of multiple event-driven Protothreads subsystems as
preemptive threads. This approach solves the lack of the real-
timeness of Protothreads by allowing preemption between the
subsystems. Similar to Protothreads, HybridKernel requires
manual stack management, which is a potential burden for
the programmer. HybridKernel demands a fixed-sized stack
memory allocation for each preemptive thread, which is sim-
ilar to other preemptive multithreaded solutions. The stack
memory allocation is a heuristic and involves stack over-
flow risk. As a result, programmers are inclined to allocate
redundant stack memory, causing memory waste.

StateOS is related to the works above and addresses
the problems revealed by the HybridKernel approach.
StateOS’s hybrid approach combines cooperative threaded and
preemptive systems to provide partial real-time support to
threads, which is similar to that offered by HybridKernel.
Memory efficiency is achieved by introducing a memory-
efficient hybrid task scheduler that consumes only one
additional stack memory. In addition, cooperative stack man-
agement processes are semiautomatized by the task APIs.

III. STATEOS: OVERVIEW

StateOS is intended to provide a cooperative threaded OS
with real-time capability for sensor-based IoT devices and
wireless sensors. This OS implements a microkernel archi-
tecture, cross-layer network protocol design, and hybrid task
scheduler to address resource constraint-related issues.

StateOS supports cooperative threaded programming
through macro-based task APIs. These APIs are mainly
designed for programming system modules and high-
performance applications. This native programming model
is not advocated as novice-friendly because of the system-
specific language and system knowledge requirements.
StateOS extensively supports a state machine-based visual
programming model, statecharts, as a novice-friendly alter-
native approach. Statecharts are supported by statechart

1OpenSwarm is a swarm robotic OS with computational restrictions that
are similar to those of IoT sensor OSs.

Fig. 1. StateOS architecture. The components represented using a dashed
line are the configurable modules.

middleware and action libraries, in addition to StateOS.
Readers are kindly referred to [11] for detailed information.

The StateOS architecture is depicted in Fig. 1. The kernel
implements a microkernel architecture with essential func-
tions, including task APIs, task management services, and
resource management functions.

The cross-layer management entity manages system services
and sensor services as modules. These services are con-
figurable according to the application requirements. The
database maintains the system’s global information, such
as the system’s dynamic parameters and network details. It
is openly accessible to other components for performance
optimization and system diagnosis.

The protocol stack collects the network protocol programs
and provides network communication services. It provides
cross-layer interfaces for efficient network communication.

The diagnosis toolbox is an optional component that col-
lects diagnostic instruments, such as a debug message printer
(via cable or radio), diagnosis shell, radio signal evaluator,
executive time analyzer, and memory logger. These tools are
intended to aid in the debugging process.

Hardware heterogeneity is handled by hardware abstrac-
tion interfaces. The implementation of these interfaces is
platform-dependent. Up to now, we have supported some
MCUs of the ARM M0 series and the Microchip XMEGA
A series. Moreover, hardware implementations include some
useful sensors and radios.

StateOS applies a cross-layer network communication
design, depicted in Fig. 2, for resource efficiency and opti-
mized network performance. This cross-layer design was
proposed by [24], who distinguished intermodule communi-
cations as asynchronous messages and synchronous function
calling.

Asynchronous messages are used to carry primitive data
messages that cross vertically adjacent layers in a request-
response manner. Similar to the traditional open systems
interconnection module, network messages between applica-
tion layers traverse all protocol layers with the necessary over-
head. In contrast, system services, especially network services

9526 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 2. StateOS cross-layer network architecture.

Fig. 3. Kernel structure.

(e.g., clock synchronization and traffic control), can directly
access the lower layers to reduce the overhead problem.

The control and management communications between par-
allel components are handled by horizontally synchronous
function calls. Network services can control protocol layers
for optimized network performance. Furthermore, applica-
tions and protocol programs can also efficiently access system
services and databases.

IV. KERNEL

StateOS implements a lightweight kernel with reduced func-
tionality. The kernel implements essential system functions, as
shown in Fig. 3, including task APIs, suspended task handlers,
a task scheduler, and resource management services.

There are various suspended task handlers, such as mailbox,
delayed task handler, mutex, and generic event handler. The
suspended task is assigned to the corresponding handler based
on the cause of the suspension.

Cooperative threads in the kernel are called tasks, which are
managed by a lifecycle state model, as depicted in Fig. 4. The
state transition is driven by task APIs and the task scheduler.
A task can be created by task-creating functions. This newly
created task is in the state new. Depending on the function,
a new task can be issued to the task scheduler and is queued
for execution in the state ready. Alternatively, a new task can
be sent to a suspended task handler as an event-driven task
and labeled by the state suspended. An event-driven task can
be triggered by events, and its state changes to ready. A task
is in the state running during execution. A running task can

Fig. 4. Task lifecycle state model. A task is created in the state new. The
state ready indicates that a task is scheduled in the task queue and is ready to
be executed. An executing task is in the state running. When the processing
is completed, the task is in the state end. A task in the state suspended is
suspended in the suspended task handlers and can be triggered to resume by
an event.

cooperatively release processor control by performing yield
or suspend operations, which change its state to ready or sus-
pended, respectively. Finally, a finished task is in the state end
before being destroyed.

A. Task APIs

The kernel implements macro-based task APIs that sup-
port the cooperative threaded programming model. Typical
APIs are categorized in Table I to illustrate their related
functionalities.

The implementation of a task starts with the declaration of a
task prototype interface and ends with a particular task return
interface, TASK_END. Altogether, they complete a switch-case
structure as the base of local continuation, whereas a yield
point is implemented by a case statement that is labeled with
the line number of the source code. The other task return
interface, TASK_EXIT, is used to terminate a task in the middle
of the process.

Code 1 primarily expands an example task implementation.
The macro TASK is a basic prototype interface, as expanded
in lines 13–18, which implements a part of the switch-case
primitive structure. The variadic task argument a is auto-
matically initialized when the task begins, as in lines 15.
Between lines 22–27, it expands a basic yield operation YIELD
that contains a local continuation structure as a yield point
(lines 23–26). The macros _VAR_SAVE and _VAR_RESTORE
in the YIELD expansion function preserve the local variable b
across the yield point. In the end, the macro TASK_END, as
expanded in lines 31–34, completes the primitive structure of
the task.

In addition to the macro TASK, task APIs provide interfaces
that extend the macro TASK for particular purposes. The macro
prefixed by STARTUP declares a startup task that is executed
when the system starts. A mail handling task is declared by
the macro MAILBOX_MK, which can automatically respond
to system messages.

Task flow control APIs include task yield operations and
suspend operations. These operations are extensions based
on the YIELD operation (as introduced previously). The
yield operations send a running task back to the scheduler
and repeatedly estimate the condition until it is satisfied.
Alternatively, a task with a suspended operation is dispatched
to the associated suspended handler. For example, the oper-
ation TASK_WAIT_DELAY suspends a task in the delayed
task handler, and a mutex lock failure by the operation
TASK_MUTEX_LOCK suspends the task in the mutex handler.

TAN AND HAKALA: StateOS: A MEMORY-EFFICIENT HYBRID OPERATING SYSTEM FOR IoT DEVICES 9527

TABLE I
TYPICAL TASK APISab

Semiautomatic local variables are preserved by task flow
control APIs. Unlike other stackless approaches, it is safe
to use local variables across the local continuation struc-
ture in StateOS. However, task flow control APIs cannot
detect the presence of local variables. Therefore, they must
be introduced to the corresponding yield/suspend operations
as variadic arguments, as shown in Code 1, line 6.

The APIs provide a synchronized task-calling mechanism
that allows a task to call a subroutine task and wait until it
is completed. This task-calling process is similar to calling a
C function. The macro TASK_CALL creates and introduces a
new task to the kernel and then suspends the running task until
the called task is finished. Two pairs of parentheses follow the
macro TASK_CALL. They are for the variadic task arguments
and local variables because C language does not allow multiple
variadic arguments in one set of parentheses. The subroutine
task issued by TASK_CALL is capable of passing the return
value to the caller. The caller should fetch this return value
through the macro TASK_CALL_RETVAL.

Code 1 Example of the Simplified Primary Expansion of the
Task API. All Irrelevant Details Have Been Omitted

1: // The original macro-based task implement-
ation

2: TASK(void, my_task, int, a)
3: {
4: int b = 0;
5:
6: TASK_YIELD(b);
7: printf(”%d/n”, a+b);
8:
9: TASK_END();

10: }
11:
12: // The primarily expanded implementation
13: task_retval_t my_task(tcb_arg_t *_args)
14: {
15: int a = _tcb_argv(_args);
16: _TCB_PT_->resume = false;
17: switch (_TCB_PT_->line) {
18: case 0:
19: {
20: int b = 0
21:
22: _VAR_SAVE(b);
23: _TCB_PT_ ->resume = true;
24: _TCB_PT_->line = __LINE__; case

__LINE__:;
25: if (_TCB_PT_->resume)
26: return TASK_RETVAL_YIELD;
27: _VAR_RESTORE(b);
28:
29: printf(”%d/n”, a+b);
30:
31: _TASK_RETVAL();
32: }
33: }
34: return TASK_RETVAL_OK;
35: }

A task is typically created and introduced to the kernel
by a task-creating function. The functions os_add_task and
os_add_pree_task can send a task directly to the scheduler as
a regular or a preemptive task, respectively. The other task-
creating functions can dispatch a newly created task to the
relevant suspended handlers as an event-driven task.

Information about a task is maintained in a data structure,
namely, a task control block (TCB). A TCB includes the task
implementation address, state, command, identity, name, pre-
emption, priority, task arguments, etc. Task APIs implement
TCB management functions for more flexible flow control.
For example, the function tcb_add_followup can link multiple
TCBs in a daisy chain. When the previous task in the chain
is completed, the following one is automatically invoked, and
the function tcb_clone clones an existing TCB.

B. Suspended Task Handlers

Suspended tasks are event-driven because they are typ-
ically resumed by a specific event or signal. These tasks
are suspended in the corresponding handlers until they are
reactivated.

9528 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 5. Task scheduler.

The mailbox system provides an interlayer communication
approach between the system services and applications. A
potential mail recipient can register a mail handler (with the
macro MAILBOX_MK) in the mailbox system. Mail delivery
can trigger the handler as a high-priority task. A typical use
of the mailbox is to forward the radio messages received from
the protocol stack to applications.

Delayed tasks are suspended in delayed-task handlers. This
module is associated with a hardware timer that is used to
count down task delays. A delayed-task queue sorts these tasks
by their delay time. A timer event dispatches expired tasks to
the scheduler.

The mutex module implements a locking mechanism for
safe resource access. The failure of a mutex lock attempt
causes task suspension. These suspended tasks are sorted by
their priority in the associated mutex entries and wait for the
required resources. Once the mutex is unlocked, relevant tasks
are resumed.

The event handler manages generic event-suspended tasks.
These tasks are registered in the associated event entries.
Depending on the propriety, an event can trigger all relevant
tasks at once, or it can exclusively trigger the first one.

C. Task Scheduler

The kernel schedules ready tasks using a hybrid strategy.
The task scheduler, as depicted in Fig. 5, comprises two task
queues: 1) pree-queue and 2) coop-queue. A context switcher
empowers the pree-queue to preempt the coop-queue. In each
task queue, a task routine is implemented as a scheduler to
manage the tasks in a priority-based cooperative manner. This
structure achieves hybrid task scheduling through preemptive
task management between the task queues and cooperative
task management between the tasks in the same queue.

Fig. 6 demonstrates the task scheduling implementation in
response to the hardware interrupt. The system interrupt INT0
interrupts task T0 and inserts a preemptive task T1 in the
pree-queue. When INT0 returns, the context switcher issues
a context switch to the pree-queue, and T1 is executed. In this
demonstration, it is presumed that T1 is the only task in the
pree-queue at the moment. Therefore, the completion of task
T1 empties the pree-queue and causes another context switch
that continues task T0.

Task T2 is the subsequent task that is executed when T0
ends. Task T2 invokes preemptive task T3, causing an immedi-
ate context switch. The interrupt INT1 interrupts the execution

Fig. 6. Task-scheduling demonstration, where the label T0 and T2 denote
regular tasks from the coop-queue; T1, T3, and T4 denote the preemptive tasks
from the pree-queue; and INT0 and INT1 denote the hardware interrupts

Fig. 7. Stack memory distribution.

of T3 and inserts another preemptive task, T4 into the pree-
queue. However, task T4 must wait until T3 is finished because
it follows cooperative task management in the same task
queue. Task T2 is resumed once T4 is completed.

Thus, far, this proposed hybrid strategy is naïve because a
blocked pree-queue task can prevent the coop-queue tasks, and
a blocked high-priority task can prevent a lower priority task.
Therefore, a design principle is established that a preemptive
task shall not contain a blocking operation. However, blocking
a preemptive task is not prohibited. In such a case, a blocked
preemptive task waives this privilege by descending to the
coop-queue when it yields. In addition, inside a task queue,
any yield operation downgrades the task to the lowest priority,
and the task is rescheduled at the end of the task queue.

The pree-queue and the coop-queue are, de facto, two
kernel processes scheduled by the context switcher. Thus,
both queues require individual memory stacks. The preemptive
tasks in the pree-queue typically require small memory stacks,
as they are short lived. Therefore, the stack memory assigned
to the pree-queue can be small (e.g., 128 or 256 bytes).
As shown in Fig. 7, the pree-queue stack is allocated to the
RAMEND (the end of random-access memory). In this way,
the wasted memory used to initialize the system is reused as
the pree-queue stack. The coop-queue uses a native memory
stack, and the stack size is dynamic until it overlaps with the
stack .heap.

TAN AND HAKALA: StateOS: A MEMORY-EFFICIENT HYBRID OPERATING SYSTEM FOR IoT DEVICES 9529

Fig. 8. Memory sections.

D. Resource Management

Resource management modules are essential for managing
hardware resources. The power manager controls the system’s
power-saving level based on the kernel status. Primitive
events/signals from hardware are managed/filtered by the
interrupt monitor. The system timer provides system timing
functions, such as the system tick service and the primitive
timer event.

StateOS applies dynamic memory management using a
memory allocator. The memory allocator distinguishes the
memory allocating requests as long-term and short-lived
requests and applies different algorithms to each. This strat-
egy effectively alleviates internal and external fragmentation
problems.

The traditional heap-based malloc algorithm (as imple-
mented in the standard C library) allocates memory in a
dynamically growing data segment. This algorithm is effi-
cient in processing long-term requests. However, frequent
short-lived requests can cause the external fragmentation
problem [25]. In contrast, buddy system [26] divides the
memory pool into fix-sized memory blocks to alleviate the
external fragmentation problem [27]. However, when long-
term memory requests occupy the memory pool, this can lead
to an internal fragmentation problem.

StateOS allocates separate memory sections to fulfill short-
lived and long-term requests. As shown in Fig. 8, the dynami-
cally growing memory pool .heap satisfies long-term requests
using a heap-based malloc algorithm, and the static memory
pool .buddy implements a variant of the buddy system for
short-lived requests. This hybrid strategy improves efficiency
with regard to dynamic memory management by alleviating
fragmentation problems.

The buddy variant maintains a binary tree that monitors the
states of the memory blocks. The operations of the binary
tree have a time complexity O(logN), where N is the number
of memory blocks. The worst-case scenario is allocating/free-
ing memory that is smaller than a memory block because the
operation has to traverse the tree to reach the bottom leaf. It
is inefficient to repeatedly issue small memory requests to a
buddy allocator because the algorithm processing time dimin-
ishes the system’s performance. To alleviate this problem, a
memory recycling system is implemented to temporarily hold
the recently freed small memory chunks without restoring
them to the binary tree. These memory chunks can be quickly
reassigned to new requests. However, holding these memory
spaces in the long term may cause an unbalanced binary tree

Code 2 Radio Initialization Program Example
1: TASK(int, radio_init_task, int, timeout)
2: {
3: time_t ts = os_get_time() + timeout;
4:
5: radio_init();
6:
7: TASK_WAIT_WHILE(
8: (radio_state() != RADIO_READY) &&
9: (ts < os_get_time()),

10: ts);
11:
12: if (radio_state() != RADIO_READY)
13: TASK_EXIT(-1);
14: TASK_END(0);
15: }
16:
17: STARTUP_TASK(start_demo)
18: {
19: TASK_CALL(radio_init_task, 100)();
20: int res = TASK_CALL_RETVAL(int);
21: if (res == 0) dbg_printf(“radio OK/n”);
22:
23: TASK_END();
24: }

and increase internal fragmentation. For this reason, the recy-
cled memory blocks are dumped periodically at the system’s
convenience.

V. CODE EXAMPLE

An example code, shown as Code 2, is a code snippet that
initializes a radio transceiver. It contains the radio-initializing
task radio_init_task and the startup task start_demo.

The task implementation begins with the task proto-
type interface TASK, followed by the return type, task
name, and variadic arguments. The task prototype TASK(int,
radio_init_task, int, timeout), in line 1, contains the return
value type int, the task name radio_init_task, and an argu-
ment int, timeout. The reader may notice that the argument’s
type int and label timeout are separated by a comma. This is
because the type and label of an argument are treated as a pair
of parameters in the prototype.

The task STARTUP_TASK(start_demo), as in line 17, imple-
ments a startup task. This task calls the subroutine task
radio_init_task in line 19 and is blocked until the called task
is completed.

The task radio_init_task contains the local variable ts across
the yield operation TASK_WAIT_WHILE, as in line 10. This
local variable must be introduced to the yield operation for
preservation; otherwise, the value of the variable is no longer
guaranteed when the task resumes.

The task invoked by the synchronized task-calling macro
TASK_CALL can return the result as a return value. In the
example, the task radio_init_task has the return value of an
integer int. There are two return operations in the example, as
can be seen in lines 13 and 14. The return value is read by
the macro TASK_CALL_RETVAL.

This example demonstrates that StateOS’s cooperative task
APIs provide a practical approach to cooperative threaded

9530 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 9. StateOS platform examples include (a) baseboard with sensor
modules, (b) LoRa gateway board, and (c) heavy-duty LoRa gateway board.

programming. It is flexible, memory efficient, and easy
to use.

VI. IMPLEMENTATION

StateOS has been implemented as an IoT solution on dif-
ferent platforms. Fig. 9(a) shows the baseboard and several
sensor modules, including a relay-based magnet sensor, a pres-
sure sensor, and a motion sensor. The baseboard includes an
XMEGA256A3Bu MCU and an AT86RF215M transceiver.
Using this modularized design, an IoT sensor device can be
assembled simply by attaching the sensor module to the base-
board. These sensor modules are supported by the sensor
service modules of StateOS.

Network management is achieved using autonomous
network services, which include a network scheduler and clock
synchronization. The network scheduler synchronizes the radio
activities of all IoT devices on the network. This reduces
a device’s power consumption by minimizing the radio’s
active period. The clock synchronization service fine-tunes the
device’s local clock according to the central clock.

The database of the cross-layer management entity main-
tains a network status list neighbor-table by recording broad-
casts from neighboring devices. The table collects information
about these devices, which includes their battery level, signal
strength, link quality, and traffic throughput. This information
can be used by network services, such as topology manage-
ment and traffic control services. Furthermore, the neighbor-
table is uploaded to the server for network diagnosis.

The LoRa [28] gateway board, shown in Fig. 9(b), is an
extension of the baseboard that supports LoRa communication
using an RN2483 LoRa module. It is mainly used to upload
gateway data to the service. The LoRa protocol has limited
bandwidth, especially over a poor-quality network link. Thus,
StateOS further implements a data aggregation module and a
compression module to reduce LoRa network traffic.

Some applications demand increased bandwidth that can
exceed the LoRa capacity. Therefore, for larger network traffic

TABLE II
SPECIFICATIONS OF THE EVALUATED STATEOS PLATFORM

throughput, we implemented heavy-duty gateway boards, as
shown in Fig. 9(c). This platform is mounted with four LoRa-
E5 modules and an ESP8266 Wi-Fi module. This gateway
has its own MCU (which also runs StateOS), ARM M0+
ATSAML21G18B, for network management.

VII. EVALUATION

In this section, StateOS is evaluated based on its technical
properties, scalability, and performance. The technical proper-
ties of an IoT OS include the kernel architecture, scheduling
strategy, programming paradigm, programming language, and
real-time capability. The scalability of an OS is measured
by comparing the data memory consumption and program
memory engagement. The performance is determined by
calculating the processing time of the kernel operations.

Traditional resource-constrained IoT/WSN platforms are
powered by an 8-bit MCU, and the typical IoT/WSN-oriented
OSs were originally designed under the 8-bit computing
architecture. Therefore, in the scalability and performance sub-
sections, evaluations are performed by comparing OSs that
support 8-bit processor families (e.g., AVR and PIC proces-
sors) with comparable performance metrics. The evaluation
data for StateOS were obtained on the platform specified
in Table II. Evaluation data for other OSs were obtained in
literature research.

A. Technical Properties

Table III lists the technical properties of different IoT OSs.
The kernel architecture choice significantly influences an OS’s
overall architecture and modularity. StateOS applies a micro-
kernel architecture for a small kernel size and a modularized
structure. The system modules are loosely coupled, which
achieves a flexible and robust architecture.

StateOS implements a hybrid task-scheduling strategy to
support cooperative threaded programming at a small memory
cost while maintaining adequate real-time capability. The
cooperative threaded interfaces in StateOS are provided by the
system-specific language. It can be challenging for novice pro-
grammers. Therefore, StateOS extensively supports statecharts
as a state machine-based visual programming model.

B. Scalability

The scalability of an OS is evaluated by memory usage for
handling concurrent tasks/threads. The evaluation is conducted
with a methodology similar to [23]. In the evaluation, we run
16 cooperative tasks on StateOS, which are contained by two
kernel threads (the pree-queue and the coop-queue).

TAN AND HAKALA: StateOS: A MEMORY-EFFICIENT HYBRID OPERATING SYSTEM FOR IoT DEVICES 9531

TABLE III
COMPARISON OF TECHNICAL PROPERTIES

A typical StateOS configuration takes 46 bytes of static data
memory, which is its kernel’s memory footprint that includes
the control blocks of two kernel threads (the pree-queue
and the coop-queue). The task scheduler typically allocates
128 bytes of stack memory for pree-queue context saving.
Additionally, the buddy memory module requires extra man-
agement memory of 19 bytes and binary tree memory of M/B
bytes, where M is the memory pool size, and B is the memory
block size. It is typical to configure a dynamic memory pool
of 1024 bytes with a block size of 8 bytes. Thus, the buddy
module takes 147 (19+1024/8) bytes of heap memory as the
management cost. Furthermore, the memory recycling system
can be optimized to take 20 bytes to implement ten recy-
cling entries. In summary, a functional StateOS requires 341
(46 + 128 + 147 + 20) bytes of data memory (the memory
footprint of the hardware implementation is not counted).

In StateOS, a TCB takes a minimum of 22 bytes of memory.
Therefore, a running StateOS with 16 concurrent tasks con-
sumes 693 (22 ∗ 16 + 341) bytes of memory, which includes
352 bytes of dynamic memory from 16 TCBs and 341 bytes
of system memory consumption. However, this estimation is
based on the minimum task profile, with no arguments nor
local variables, and the results are suggestive of estimating
the system’s memory usage.

StateOS takes a minimum of 13K bytes of flash memory,
which primarily involves kernel implementation. However, a
typical configuration of StateOS consumes more memory to
satisfy the application requirements. For example, the StateOS
implementation in Section VI consumes 59K bytes of flash
memory, which includes the kernel (13K bytes), hardware
implementation (15K bytes), network services (24K bytes),
sensor services (2K bytes), and miscellaneous components (5K
bytes).

In Table IV, we compare the multiple task overhead of
StateOS to a multithreaded solution (MANTIS OS) and three
hybrid solutions (Contiki with Protothreads, TinyOS with
TOSthreads, and HybridKernel). In this evaluation, the hybrid
solutions (including StateOS) are evaluated with 16 cooper-
ative components and two preemptive components, and the
multithreaded solution executes 16 preemptive components.
To distinguish between processes and threads in this evalua-
tion, we define threads as being cooperative and consuming
memory from TCBs, whereas processes are preemptive and
consume memory from process control blocks (PCBs). The
results suggest that StateOS is a memory-efficient approach to
implementing multitask systems.

C. Performance

The performance of StateOS is evaluated based on the pro-
cessing time of the task APIs. Most task operations involve
dynamic memory management. The approximate processing
time for a short-lived and small-sized memory allocation is
40 µs and for memory free is 41 µs. This performance can be
promoted by the memory recycling system to obtain a memory
allocation of 16 µs and a memory free of 30 µs.

When the scheduler dispatches a task, it takes 12 µs to
establish the task. In addition, preparing an 8 or 16-bit task
argument takes less than 1 µs. However, preparing a 32-bit
argument consumes a higher amount of processing time of
3 µs. The task yield operations take an average of 4 µs to
release the processor control. The other task flow control oper-
ations, such as TASK_WAIT_DELAY and TASK_CALL, can
have a processing time of 40–60 µs. Furthermore, if local
variables are saved during the operation, the processing time
increases because of the dynamic memory operations.

9532 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

TABLE IV
MULTITASK HANDLING MEMORY COMPARISONa

The cooperative task-switching procedure includes a flow
control operation, a task establishment operation, and possi-
ble stack management operations. In summary, the processing
time required for a cooperative task-switching operation can be
a minimum2 of 16 µs and a maximum of more than 100 µs.
Cooperative task-switching operations are usually issued by
tasks with low urgency levels. Therefore, its processing speed
is sufficient for such tasks.

Compared to cooperative task switching, preemptive context
switching between the coop-queue and the pree-queue is faster.
It takes about 4 µs to switch between the task queues, which
is quick enough for a time-sensitive task to be executed in
time.

The results for the comparison of the scheduling over-
head of task switch operations in cooperative and preemptive
scheduling are shown in Table V. The overhead values are
platform-dependent. Therefore, the comparison is feasible if
the results are unified with the CPU clock cycles.

Cooperative switch time is the scheduling overhead between
consecutive cooperative tasks. StateOS APIs provide semiau-
tomatic stack management and versatile task controls (e.g.,
task concatenation, task callback, and mutex) that are pro-
cessed between tasks. This user-friendly approach requires
more executive time than simple task switches. However, typ-
ical cooperative tasks can tolerate longer latency in exchange
for flexibility.

Real-time capability can be estimated by the performance
of preemptive task switch operations. This reflects the guar-
anteed maximum time of the system’s responsiveness. Of the
results for the solutions shown in the table, StateOS takes the
least amount of preemptive task-switching time. This shows
that StateOS provides sufficient real-time performance for
IoT/WSN applications.

VIII. DISCUSSION AND CONCLUSION

This article presented an embedded OS targeting IoT and
wireless sensor devices with distinctive features. The kernel
provides a set of macro-based cooperative task APIs that
allows for the modeling of event-driven systems in a threaded

2This includes a basic yield operation (4 µs) and a task establishment
operation (12 µs).

TABLE V
COMPARISON OF SCHEDULER OVERHEAD

paradigm. The hybrid task scheduler supports a mix of vari-
ous scheduling algorithms, such as cooperative, priority-based,
and preemptive scheduling. It allows the programmer to bal-
ance resource usage and real-time performance based on the
application’s specifications. The dynamic memory allocator
in StateOS implements two separate strategies for long- and
short-lived allocation requests. This method can alleviate the
fragmentation problem and improve the robustness of the
system in the long term. Automatic stack management is
typically the privilege of multithreaded OSs. The users of
event-driven and cooperative OSs have to manually pass the
parameters between tasks and protect local variables. StateOS’
APIs provide semiautomatic stack management that autom-
atizes the process of parameter passing and local variable
preservation.

A design principle of StateOS is memory efficiency. To this
end, several technologies are applied, including a cross-layer
communication structure, modularized services, and micro-
kernel architecture. Therefore, the memory occupation of
the system is configurable, depending on the application’s
requirements.

TAN AND HAKALA: StateOS: A MEMORY-EFFICIENT HYBRID OPERATING SYSTEM FOR IoT DEVICES 9533

StateOS works perfectly with a statechart visual pro-
gramming framework [11] that supports modeling and pro-
gramming wireless sensor programs using graphic statechart
diagrams. This combination provides an alternative visual pro-
gramming approach that can aid developers in creating IoT
applications efficiently.

The hybrid approach to kernel design is, in fact, a compro-
mised approach that combines event-driven and multithreaded
systems. The system may consume more memory and exec-
utive time than event-driven solutions. On the other hand,
multithreaded systems need no attention from users for stack
management. Compared to this, StateOS implements a semi-
automatic stack management solution, requiring users to man-
ually identify local variables. Furthermore, StateOS adopts a
dynamic memory management strategy. It has a tradeoff of
the overhead of managing memory spaces.

StateOS was initially designed for WSN-based solutions,
where the gateway handles Internet protocol (IP)-based
network traffics. Our following works include extending the
network stack to support low-power IP protocols such as
6LoWPAN [34], allowing individual access to WSN nodes
through an IP-based IoT network directly. It will enable the
use of IP-based IoT application protocols, such as Thread [35]
and Matter [36], and emerge StateOS as a part of the modern
IoT ecosystem. Moreover, the hardware implementations are
limited to a few MCU models. We will extend the hardware
implementations to other popular IoT MCUs and platforms in
the following works.

In conclusion, we proposed a hybrid approach to pro-
gramming IoT and wireless sensor applications in a threaded
paradigm with less memory consumption. We expect the
proposed solution to be a viable instrument that aids modern
IoT application development.

REFERENCES

[1] Y. Wu, P. Wang, and C. Xu, “Improving visible light backscatter commu-
nication with delayed superimposition modulation,” in Proc. 25th Annu.
Int. Conf. Mobile Comput. Netw., 2019, pp. 1–3.

[2] K. L. Lueth. “State of the IoT 2020: 12 billion IoT connec-
tions, surpassing non-IoT for the first time.” IoT Analytics. 2020.
[Online]. Available: https://iot-analytics.com/state-of-the-iot-2020-12-
billion-iot-connections-surpassing-non-iot-for-the-first-time/

[3] P. Levis et al., “TinyOS: An operating system for sensor
networks,” in Ambient Intelligence. Berlin, Germany: Springer, 2005,
pp. 115–148.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flex-
ible operating system for tiny networked sensors,” in Proc. 29th Annu.
IEEE Int. Conf. Local Comput. Netw., 2004, pp. 455–462.

[5] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained embed-
ded systems,” in Proc. 4th Int. Conf. Embedded Netw. Sens. Syst., 2006,
pp. 29–42.

[6] W. P. McCartney and N. Sridhar, “Abstractions for safe concurrent pro-
gramming in networked embedded systems,” in Proc. 4th Int. Conf.
Embedded Netw. Sens. Syst., 2006, pp. 167–180.

[7] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack management,” in
Proc. USENIX Annu. Tech. Conf. General Track, 2002, pp. 289–302.

[8] O. Kasten and K. Römer, “Beyond event handlers: Programming wire-
less sensors with attributed state machines,” in Proc. 4th Int. Symp. Inf.
Process. Sens. Netw., 2005, p. 7.

[9] T. Watteyne et al., “OpenWSN: A standards-based low-power wire-
less development environment,” Trans. Emerg. Telecommun. Technol.,
vol. 23, no. 5, pp. 480–493, 2012.

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in Proc. 3rd Int. Conf. Mobile Syst.,
Appl., Services, 2005, pp. 163–176.

[11] I. Hakala and X. Tan, “A Statecharts-based approach for WSN appli-
cation development,” J. Sens. Actuat. Netw., vol. 9, no. 4, p. 45,
2020.

[12] H. Abrach et al., “MANTIS: System support for multimodal networks
of in-situ sensors,” in Proc. 2nd ACM Int. Conf. Wireless Sens. Netw.
Appl., 2003, pp. 50–59.

[13] E. Baccelli et al., “RIOT: An open source operating system for low-end
embedded devices in the IoT,” IEEE Internet Things J., vol. 5, no. 6,
pp. 4428–4440, Dec. 2018.

[14] “FreeRTOS.” Accessed: Dec. 1, 2021. [Online]. Available: https://www.
freertos.org/

[15] “Zephyr.” Accessed: Dec. 1, 2021. [Online]. Available: https://
zephyrproject.org/

[16] “Mbed OS.” Accessed: Dec. 1, 2021. [Online]. Available: https://os.
mbed.com/mbed-os/

[17] “Keil RTX5.” Accessed: Dec. 1, 2021. [Online]. Available: https://
www2.keil.com/mdk5/cmsis/rtx/

[18] E. Trumpler and R. Han, “A systematic framework for evolving TinyOS,”
in Proc. IEEE Workshop Embedded Netw. Sens., 2006, pp. 61–65.

[19] K. Klues et al., “TOSThreads: Thread-safe and non-invasive preemption
in TinyOS,” in Proc. SenSys, vol. 9, 2009, pp. 127–140.

[20] W. Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng, “SenSpire
OS: A predictable, flexible, and efficient operating system for wireless
sensor networks,” IEEE Trans. Comput., vol. 60, no. 12, pp. 1788–1801,
Dec. 2011.

[21] Y. Guan, J. Guo, and Q. Li, “Formal verification of a hybrid IoT
operating system model,” IEEE Access, vol. 9, pp. 59171–59183,
2021.

[22] S. M. Trenkwalder, Y. K. Lopes, A. Kolling, A. L. Christensen,
R. Prodan, and R. Groß, “OpenSwarm: An event-driven embedded oper-
ating system for miniature robots,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), 2016, pp. 4483–4490.

[23] T. Laukkarinen, V. A. Kaseva, J. Suhonen, T. D. Hamalainen, and
M. Hannikainen, “HybridKernel: Preemptive kernel with event-driven
extension for resource constrained wireless sensor networks,” in Proc.
IEEE Workshop Signal Process. Syst., 2009, pp. 161–166.

[24] I. Hakala and M. Tikkakoski, “From vertical to horizontal architecture:
A cross-layer implementation in a sensor network node,” in Proc. 1st
Int. Conf. Integr. Internet Ad Hoc Sens. Netw., 2006, p. 6.

[25] A. Bohra and E. Gabber, “Are mallocs free of fragmentation?” in Proc.
USENIX Annu. Tech. Conf. FREENIX Track, 2001, pp. 105–117.

[26] K. C. Knowlton, “A fast storage allocator,” Commun. ACM, vol. 8,
no. 10, pp. 623–624, Oct. 1965. [Online]. Available: http://doi.acm.org/
10.1145/365628.365655

[27] J. L. Peterson and T. A. Norman, “Buddy systems,” Commun. ACM,
vol. 20, no. 6, pp. 421–431, 1977.

[28] “LoRa.” Accessed: Dec. 1, 2021. [Online]. Available: https://www.lora-
alliance.org

[29] “Contiki source code.” Accessed: Dec. 1, 2021. [Online]. Available:
https://github.com/contiki-os/contiki

[30] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM SIGPLAN
Notices, vol. 35, no. 11, pp. 93–104, 2000.

[31] “TinyOS source code.” Accessed: Dec. 1, 2021. [Online]. Available:
https://github.com/tinyos/tinyos-main

[32] S. Bhatti et al., “MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms,” Mobile Netw. Appl., vol. 10,
no. 4, pp. 563–579, 2005.

[33] T. Laukkarinen, “Abstracting application development for resource con-
strained wireless sensor networks,” Ph.D. dissertation, Tampere Univ.
Technol., Tampere, Finland, 2015.

[34] G. Mulligan, “The 6LoWPAN architecture,” in Proc. 4th Workshop
Embedded Netw. Sens., 2007, pp. 78–82.

[35] “Thread.” Accessed: Nov. 17, 2022. [Online]. Available: https://www.
threadgroup.org/

[36] “Matter.” Accessed: Nov. 17, 2022. [Online]. Available: https://github.
com/project-chip/connectedhomeip/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

