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Abstract—We study the joint active/passive beamforming
and channel blocklength (CBL) allocation in a nonideal
reconfigurable intelligent surface (RIS)-aided ultrareliable and
low-latency communication (URLLC) system. The considered
scenario is a finite blocklength (FBL) regime and the problem
is solved by leveraging a deep reinforcement learning (DRL)
algorithm named twin-delayed deep deterministic policy gra-
dient (TD3). First, assuming an industrial automation system,
the signal-to-interference-plus-noise ratio and achievable rate in
the FBL regime are identified for each actuator. Next, the joint
active/passive beamforming and CBL optimization problem (OP)
is formulated where the objective is to maximize the total achiev-
able FBL rate in all actuators, subject to nonlinear amplitude
response at the RIS elements, BS transmit power budget, and
total available CBL. Since the formulated problem is highly non-
convex and nonlinear, we resort to employing an actor–critic
policy gradient DRL algorithm based on TD3. The considered
method relies on interacting RIS with the industrial automation
environment by taking actions which are the phase shifts at the
RIS elements, CBL variables, and BS beamforming to maximize
the expected observed reward, i.e., the total FBL rate. We assess
the performance loss of the system when the RIS is nonideal, i.e.,
with nonlinear amplitude response, and compare it with ideal RIS
without impairments. The numerical results show that optimiz-
ing the RIS phase shifts, BS beamforming, and CBL variables
via the TD3 method with deterministic policy outperforms con-
ventional methods and it is highly beneficial for improving the
network total FBL rate considering finite CBL size.

Index Terms—Block error probability (BLER), deep rein-
forcement learning (DRL), finite blocklength (FBL), industrial
automation, reconfigurable intelligent surface (RIS), ultrareliable
low-latency communications (URLLC).

I. INTRODUCTION

INDUSTRIAL wireless systems involving devices, actu-
ators, and robots that require ultrareliable and low-

latency communications (URLLCs) are anticipated to grow
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in the future sixth generation of wireless communications
(6G) [2], [3]. Industrial Internet of Things (IIoT) is the indus-
trial application of IoT connectivity along with networking and
cloud computing based on data analytics collected from IoT
devices. Industrial environments are diverse and heterogeneous
as they are characterized by a large number of use-cases and
applications [4], [5]. An underlying commonality among these
diverse applications is that the wireless industrial automation
connectivity solutions envisioned in Industry 4.0 (initialized in
5G) [6] will leverage cloud computing and machine learning
throughout the manufacturing process. The expected URLLC
key performance indicators (KPIs) in 6G networks are reli-
ability up to 1 − 10−9, latency around 0.1–1-ms round-trip
time, and jitter in the order of 1 μs for industrial control
networks [3]. There is also high data rate demand due to
the increased number of sensors and their resolution, e.g., for
robots. In URLLC both the data and meta data sizes are small
while both parts need to be very robust and have minimal
error [7]. Thus, joint encoding of data and meta data is ben-
eficial in terms of coding gain [8]. In addition, as the packet
lengths in URLLC are usually small, the finite blocklength
(FBL) theory is leveraged to investigate the achievable rate [9].

Reconfigurable intelligent surface (RIS) has been recog-
nized as a promising technology to enhance the energy
efficiency, and spectral efficiency of wireless communica-
tions [10]. An RIS is composed of metamaterials where the
phase and amplitude of each element can be adjusted. This
allows the reflected signal to have a desired effect, e.g.,
enhance the received signal-to-interference-plus-noise ratio
(SINR) at a given location. Because of this feature, the dis-
tribution of the received signal, in the case of a blocked
transmitter–receiver channel, has very little variation. The
performance of such systems depends on the quantization
levels at each phase-shift element [11], [12] or circuitry impair-
ments [13]. Thus, the application of the RIS technology
in industrial automation in ensuring high reliability is very
promising [11]. Furthermore, since there is no processing over-
head at the RIS and the increase in the delay spread caused
by an RIS is rather small, unlike conventional relays, URLLC
latency requirements can be satisfied as well by a suitable
design in the higher layer. Therefore, the RIS technology has
high potential in URLLC applications [14].

There are a number of challenges when deploying RIS
technology in practical industrial automation use cases. For
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instance, efficient physical-layer design techniques, e.g., chan-
nel estimation, phase shift, and amplitude response con-
trol, and system-level optimizations, are still challenging
and considered active research topics. Toward this goal,
optimization-oriented approaches relying on exhaustive alter-
nating optimization methods have been introduced in the exist-
ing literature. Note that due to the unit modulus phase-shifting
constraint, the associated optimizations in the existing litera-
ture are highly nonconvex and nonlinear [15]. Thus, achieving
a suboptimal phase-shift design is highly complicated and
time-consuming. Additionally, since the radio channel char-
acteristics vary over time or frequency, optimization-based
methods need to be continuously tuned/re-executed to find
the optimized phase-shift values at the RIS which is imprac-
tical in mission-critical and sensitive industrial automation
scenarios. Furthermore, the complexity of phase-shift design
optimizations increases considering the practical RIS in which
the amplitude response changes by the value of phase shift
in a nonlinear manner [13]. This poses new challenges to
the existing optimization-based approaches which are still
sophisticated and hard to solve even for ideal RISs [16].

In recent years, machine learning methods, particularly
deep reinforcement learning (DRL) algorithms, have been
considered a reliable and powerful framework in wireless
communications [16], [17]. The DRL methods rely on tak-
ing action and receiving a certain reward based on the action
and interacting with the environment, which constructs the
agent’s experience. Thus, these methods usually do not require
large training data set, which is highly beneficial in practi-
cal resource allocation problems in wireless communications.
Therefore, the applicability of DRL toward more reliable
and faster solutions in the next generations of URLLC is
highlighted with the advent of efficient new algorithms [17],
[18], [19]. In this article, our aim is to investigate practical
phase-shift design and optimization of a RIS-assisted URLLC
system in industrial automation by employing a novel and
sophisticated DRL algorithm named as twin delayed deep
deterministic policy gradient (TD3) [20].

A. Related Work

Considering total available channel blocklengths (CBLs)
as a constraint in various URLLC systems that incorporate
short packet transmission is an active area of research. For
example, Ranjha and Kaddoum [21] minimized the total trans-
mit power of the IoT devices by assuming a finite available
CBL budget. The resource allocation problems in RIS-assisted
URLLC systems over short packet communications is a rel-
atively new topic and have only been investigated in a few
papers [22], [23], [24], [25], [26]. Ghanem et al. [22] stud-
ied an OP for beamforming and phase-shift control in a
RIS-enabled orthogonal frequency-division multiple access
(OFDMA) URLLC system where the cooperation of a set
of base stations (BSs) to serve the URLLC traffic was
discussed. In [23], the unmanned aerial vehicles (UAVs)
trajectory and CBL allocation in FBL regime as well as phase-
shift optimization in a RIS-aided network to minimize the
total error probability was investigated. In [24] and [25], a

CBL allocation and the RIS reflective phase-shift OP (with
user grouping in [24]) was studied in a URLLC system
where a dedicated RIS assists the BS in transmitting short
packets in FBL scenario. The proposed OPs were tackled
by a semi-definite relaxation method and the user group-
ing problem in [24] was solved by a greedy algorithm.
Almekhlafi et al. [26] studied the applicability of the RIS
in joint multiplexing of enhanced mobile broadband (eMBB)
and URLLC traffic to optimize the admitted URLLC packets
while minimizing the eMBB rate loss to ensure the qual-
ity of service of the two traffic types by designing RIS
phase-shift matrices. It is worth noting that in all of the
aforementioned works, the proposed problems were tackled
by complex optimization-based algorithms as they usually are
based on iterative algorithms. Particularly, even with an appro-
priate method that considers the nonlinear amplitude response
at the RIS elements, the computational complexity of such
algorithms will still be significant. Several existing works such
as [27], [28], [29], [30], [31], [32], [33], [34], and [35] elabo-
rated recent advances in DRL techniques on phase-shift design
at the RIS. In [27], the secrecy rate of a wireless channel
with RIS technology was maximized with quality of service
(QoS) constraints on the secrecy rate and data rate require-
ments of the users. The resulting problem is solved by a
novel DRL algorithm based on post-decision state and prior-
itized experience replay methods. In [28], deep deterministic
policy gradient (DDPG) method was employed to maximize
the received signal-to-noise ratio (SNR) in a downlink (DL)
multiple-input–single-output (MISO) system via adjusting the
phase shifts at the RIS. Huang et al. [29], Zhang et al. [30],
and Zhu et al. [31] studied a RIS-assisted MISO system to
adjust the BS transmit beamforming and the passive beam-
forming at the RIS in order to optimize the total achievable
rate in infinite blocklength regime, i.e., assuming Shannon
capacity, via DDPG [29], [30] or soft actor–critic (SAC) [31]
methods. The half-duplex and full-duplex operating modes
were compared in [32] for a RIS-aided MISO system. Joint
relay selection and RIS reflection coefficient optimization in
cooperative networks were studied in [33]. The work in [34]
considered maximizing the total achievable rate in infinite
blocklength regime over a multihop multiuser RIS-aided wire-
less terahertz communication system. A recent study in [35]
investigated the applicability of distributed proximal policy
optimization (PPO) technique in active/passive beamforming
at the BS/RIS in a multiuser scenario. It is worth noting that
the considered problem was defined in infinite CBL regime
under the Shannon rate formula and the optimization of CBL
was not the topic of interest.

Despite the interesting results in the aforementioned works
on joint active/passive beamforming design in RIS-aided com-
munications, the optimization of the CBL and beamforming
at the BS/RIS while considering the impact of impairments
in practical RIS with nonlinear amplitude response on the
performance of a URLLC system over FBL regime has not
been investigated before. In addition, most of the prior stud-
ies assumed that the RIS is ideal and the scenario is infinite
blocklength regime while the conventional DDPG algorithm
was utilized to solve the proposed resource allocation problem.
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TABLE I
NOTATIONS AND SYMBOLS USED IN THIS ARTICLE

However, several drawbacks are associated with this method,
i.e., overestimation of the action-value function, unexpected
actions, and sudden performance degradation due to frequent
policy network update which are addressed meticulously in
the novel twin-delayed DDPG, i.e., TD3 method. Motivated
by the compelling works on resource allocation via DRL
methods in RIS communications, we aim to extend our prior
work in [1] and elaborate the joint active/passive beam-
forming and CBL allocation problem where the objective is
to maximize the total FBL rate subject to nonlinear equal-
ity constraint for amplitude-phase response at the RIS. The
numerical results demonstrate that while the TD3 algorithm
is well-suited to the proposed problem compared to typical
SAC schemes, optimizing CBLs between actuators and per-
forming active/passive beamforming design in the practical
RIS systems with imperfections improves the network total
FBL rate and reduces the transmission duration significantly.
Furthermore, the performance reduction gap between an ideal
RIS with continuous phase shift and the nonideal RIS consid-
ering nonlinear amplitude response is elaborated. Also, we
show that by optimizing CBLs among actuators the trans-
mission duration reduces by 17% compared with equal CBL
allocation.

B. Notations and Structure of This Article

In this article, h ∼ CN (0N×1, CN×N) denotes an
N-dimensional circularly symmetric (central) complex normal
distribution vector with N-dimensional zero mean vector 0
and covariance matrix C. The operations [ · ]H, [ · ]T denote
the transpose and conjugate transpose of a matrix or vector,
respectively. Also, the operators E[ · ] and V[ · ] denote the
statistical expectation and variance, respectively. A summary
of the notations and symbols used in this article is shown in
Table I.

Fig. 1. Considered system model.

The structure of this article is organized as follows. In
Section II, the system model and the FBL rate is proposed,
then the optimization framework of joint active/passive beam-
forming design and CBL allocation is presented. In Section III
the DRL preliminaries and exploited solution approach are
studied. The numerical results are presented in Section IV.
Finally, Section V concludes this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the DL of an RIS-assisted wireless network
in a factory setting which consists of a BS with M =
Mx × My uniform planar array (UPA) antennas and K sin-
gle antenna actuators as illustrated in Fig. 1. The RIS which
has N = Nx × Ny phase-shift elements constructs a commu-
nication channel between the actuators and multiantenna BS.
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It is assumed that the direct channels between the BS and
actuators are blocked by possible obstacles in the factory and
only reflected channels exist. Thus, the total channel response
between the BS and an actuator is established by the reflected
path from the RIS. The channel matrix H ∈ C

N×M between
BS and the RIS is denoted by

H =
√

ζ

ζ + 1
HLoS +

√
1

ζ + 1
HNLoS =

[
hinc

1 , . . . , hinc
M

]
(1)

with the column vectors hinc
m = √

(ζ/ζ + 1)h
inc
m +√

(1/ζ + 1)h̃
inc
m for ∀m ∈ {1, . . . , M} where each nonline-

of-sight (NLoS) channel vector is distributed as h̃
inc
m ∼

CN (0M×1, β
incIM) in which β inc is the path loss from BS

to the RIS, and IM is an identity matrix of size M. The
proportion of line-of-sight (LoS) to the NLoS channel gain
is defined as the Rician parameter ζ . Additionally, the LoS
channel HLoS = [h

inc
1 , . . . , h

inc
M ] is defined as [36]

HLoS =
√

β incaH(φa
1 , φe

1, Nx, Ny
)× a

(
φa

2 , φe
2, Mx, My

)
(2)

where φ
a/e
1 denotes the azimuth/elevation angle of a

row/column of the UPA at the RIS with respect to the BS
antenna surface. Similarly, φ

a/e
2 is the azimuth/elevation angle

between the direction of a row/column of the UPA at the
BS with respect to the RIS plane. In addition, the vector
a(x, y, N1, N2) is defined by [36]

a(x, y, N1, N2) = rvec(H) (3)

where rvec(·) denotes the row vectorization of a matrix, and

H =
(

ejG(x,y,n1,n2)
)

n1=1,2,...,N1,n2=1,2,...,N2
∈ C

N1×N2 (4)

such that each element row n1 and column n2 are constructed
by means of [36]

G(x, y, n1, n2) = 2π
d
λ

[(n1 − 1) cos x+ (n2 − 1) sin x] sin y (5)

in which λ is the operating wavelength, and d ≤ (λ/2) is the
antenna/element spacing. Similarly, the channel between RIS
and actuator k is

hRIS
k =

√
ζRIS

k

ζRIS
k + 1

h
RIS
k +

√
1

ζRIS
k + 1

h̃
RIS
k (6)

where the Rician parameter ζRIS
k controls the proportion of

LoS to the NLoS channel gain in actuator k. The NLoS channel
is distributed as h̃

RIS
k ∼ CN (0N×1, β

RIS
k IN) such that βRIS

k is
the path-loss coefficient from RIS to actuator k. Furthermore,
the LoS channel h

RIS
k ∈ C

N×1 is modeled by

h
RIS
k =

√
βRIS

k a
(
φ

a,k
3 , φ

e,k
3 , Nx, Ny

)
∀k ∈ K (7)

in which K = {1, 2, . . . , K}, and φ
a,k
3 , φ

e,k
3 are the azimuth

(elevation) angles between RIS and the actuator k assuming
the center of the coordinate system is at the RIS.

We assume that full channel state information (CSI) is avail-
able, i.e., the individual coefficients of the product channel

response hRIS
k

H
�H are obtainable at BS. First, as the location

of BS/RIS is fixed, the BS-RIS channel matrix H remains
approximately unchanged over a long period, hence, it is con-
sidered to be quasi-static by ignoring unlikely perturbations.
Second, the overall channel response hRIS

k
H
�H can be esti-

mated by sending pilot symbols from BS toward actuators.
Given that � nd H are known, a matrix/vector arithmetic
manipulation will result in hRIS

k
H

for each actuator. In this
article, we have ignored the delay/overhead incurred in the
CSI estimation phase at BS though in practice exists as the
CSI acquisition and its challenges have been investigated thor-
oughly, e.g., in [37], [38], [39], and [40]. As an example,
recently, the authors in [37] investigated a thorough compari-
son of algorithms to estimate the composite channels in RIS-
aided systems with various assumptions, e.g., with/without
LoS links and multiple antenna receiver/transmitter set-ups.
Additionally, deep learning has also achieved an exem-
plary performance in reducing the dimension of the CSI
feedback [41].

In this work we assume single-shot transmissions, i.e.,
retransmissions are not considered [42], [43]. Thus, the trans-
mission latency is equal to one transmission time interval,
which can be as low as ∼ 0.1 ms when adopting the flexible
numerology introduced in 5G New Radio [44]. This assump-
tion allows us to investigate the lower bound performance of
the proposed URLLC system as retransmissions improve the
system’s reliability while at the cost of increasing latency [45].
Nevertheless, some studies have compared the retransmission
schemes with single-shot transmission [43], [46]. As an exam-
ple, the study in [46] employed an incremental redundancy
hybrid automatic repeat request (IR-HARQ) and concluded
that the energy saving of the system enhances in comparison
with the single-shot transmission.

For the considered system model, the received signal at the
actuator k in time instance t is

yk[t] =
Actuator k signal︷ ︸︸ ︷(

hRIS
k

H
�H

)
ωkxk[t]

+
(

hRIS
k

H
�H

) K∑
i=1,i �=k

ωixi[t]+ nk[t]

︸ ︷︷ ︸
Interference plus noise

(8)

where ωk ∈ C
N×1 is the beamforming vector applied at the

transmitter to the symbol xk[·] of actuator k with E[|xk|2] = 1.
Also, ‖ωk‖22 = pk in which pk is the transmit power allo-
cated for actuator k such that

∑K
k=1 pk = ptotal is the BS

transmit power, and nk[t] is the additive white Gaussian noise
(AWGN) with E[|nk[t]|2] = N0W = σ 2 where N0 and W are
the noise spectral density and the system bandwidth, respec-
tively. The complex reconfiguration matrix �N×N indicates
the phase-shift setting of the RIS which is defined as

�N×N = diag
(
β1ejθ1 , β2ejθ2 , . . . , βNejθN

)
βn ∈ [0, 1], θn ∈ [−π, π) ∀n ∈ N (9)

where N = {1, 2, . . . , N}. Note that in our model we have
assumed that the RIS elements have no coupling or there is
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no joint processing among elements [10]. However, practical
RIS phase shifters have phase-dependent amplitude response
which is given by [13]

βn(θn) = (1− βmin)

(
sin(θn − φ)+ 1

2

)α

+ βmin (10)

where βmin ≥ 0 (minimum amplitude), α ≥ 0 (the steepness)
and φ ≥ 0 (the horizontal distance between −(π/2) and βmin)

are circuit implementation parameters. Note that, βmin = 1
results in an ideal phase shifter.

Based on the received signal at actuator k in (8), the
corresponding SINR achieved at time instance t is given by

SINRk =
∣∣∣hRIS

k
H
�Hωk

∣∣∣2
∑K

i=1,i �=k

∣∣∣hRIS
k

H
�Hωi

∣∣∣2 + σ 2
(11)

to cast the channel coefficients into one single matrix, and
defining θ = [β1ejθ1 , β2ejθ2 , . . . , βNejθN ]H the SINR expres-
sion in (11) can be rewritten as

SINRk =
∣∣∣θHH̃kωk

∣∣∣2
∑K

i=1,i �=k

∣∣∣θHH̃kωi

∣∣∣2 + σ 2
(12)

where H̃k = diag(hRIS
k

H
)H and diag(·) refers to constructing

a diagonal matrix based on a vector input as the diagonal ele-
ments. Herein, we concatenate the beamforming vectors such
that ω̄ = [ω1,ω2, . . . ,ωK] ∈ C

N×K . According to the FBL
theory, the number of information bits that can be transmitted
through ck channel uses over a quasistatic AWGN channel is
given by [9]

Lk = ckC(SINRk)−Q−1(εk)
√

ckV(SINRk)+ log2(ck) (13)

where C(SINR) = log2(1 + SINR) is the Shannon capac-
ity which is defined in infinite blocklength regime and
εk is the target error probability for actuator k while
Q−1(·) is the inverse of Q-function defined as Q(x) =
(1/
√

2π)
∫∞

x e−ν2/2dν. The channel dispersion is defined as

V(SINRk) = 1

(ln 2)2

(
1− 1

(1+ SINRk)
2

)
. (14)

Solving (13) in order to find the decoding error probability εk

at the actuator k yields

εk = Q(f (SINRk, ck, Lk)) (15)

where

f (SINRk, ck, Lk) =
√

ck

V(SINRk)

(
log2(1+ SINRk)− L

ck

)
.

(16)

Also, note that from (13) when the blocklength ck asymp-
totically goes infinity, the achievable rate simplifies to the
conventional Shannon capacity formula.

B. Problem Formulation

Optimizing the total FBL rate of the actuators while ensur-
ing the transmission target error probability by configuring the
phase matrix of the RIS, beamforming matrix at the BS under
optimized CBL vector c = [c1, c2, . . . , cK] is essential in
factory environments to meet URLLC stringent requirements.
Toward this goal, we formulate the following OP:

P1 max
ω̄,θ ,c

Ltot =
K∑

k=1

[
Vk(ω̄, θ , c)−Q−1

(
εth

k

)
Wk(ω̄, θ , c)

]
s.t. C1: θn ∈ [−π, π) ∀n ∈N

C2: βn = (1− βmin)

(
sin(θn − φ)+ 1

2

)α

+ βmin ∀n ∈N

C3:
K∑

k=1

||ωk||22 ≤ ptotal

C4:
K∑

k=1

ck ≤ C, ck ≥ cmin
k ∀k ∈ K

where Vk(ω̄, θ , c) = ckC(SINRk) + log2(ck), and
Wk(ω̄, θ , c) = √ckV(SINRk). The objective is to maximize
the total number of information bits across all actuators
and the variables are the reflective phase-shift values of
each element in θ at the RIS. The aim of transmission in
the FBL regime is to ensure the block error probability
(BLER) at a target value which is equal to εth

k ∀k ∈ K in
the objective function. Thus, by maximizing the objective
in P1 while transmitting with the specified FBL rate, the
target error probability can be ensured. The constraint C1
denotes that the phase adjustment variable is chosen from
the specified interval. C2 implies the practical phase-shift
model which affects the amplitude response of the RIS. The
maximum transmit power at BS is expressed in C3. Also, C4
is the constraint for total available number of CBLs at each
transmission interval which is limited to maximum value of
C. In addition, the CBL variable for each actuator k must be
at least cmin

k so that the FBL regime rate is valid.
It is observed from P1 that it belongs to a class of nonlinear

OP which is thoroughly challenging to solve due to presence
of equality constraint C2. It is rational to use DRL for such
problems since in DRL, the solution to the problem is the
output of the forward pass to the neural network, which is a
computationally simple process since it is often a set of simple
operations. Further, the training of the neural networks that is
done in different steps is performed in the background. Once
the training is completed, the neural networks are updated.
Therefore, the process to find the optimized variables in our
problems is only an inference of the neural networks [28].
Consequently, we employ a model-free DRL algorithm based
on the TD3 algorithm described in the following section.

III. DRL-BASED FORMULATION

A. Review on the Preliminaries

The goal of the agent in reinforcement learning (RL) is to
learn to find an optimal policy that maps states to actions
based on its interaction with the environment so that the
accumulated discounted reward function over a long time is
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maximized. A state contains all useful information from the
sequence of observations, actions, and rewards. These kinds of
problems are tackled by representing them as a Markov deci-
sion process (MDP) framework. An MDP is characterized by
(S,A,R,Ps→s′) in which S is the set of environment states,
A denotes the set of possible actions, which for this case is
defined in terms of the RIS phase-shift values, R is the reward
function, and Ps→s′ is the transition probabilities from cur-
rent state s to the next state s′, ∀s, s′ ∈ S . Mathematically,
a Markov property means that the probability of the next
state (future state) is independent of the past given the present
state. In RL algorithms, the environment can be fully or par-
tially observable. In a fully observable environment, the agent
directly observes the environment [47]. The aim of the agent
is to find an optimal policy to maximize the accumulated and
discounted reward function over time steps, i.e., to find π∗ in
which the set of states S is mapped into the set of actions
A as π∗ : S → A. The optimal policy π∗ maximizes the
action-value function defined as

Qπ (s, a) = Eπ

[ ∞∑
t=0

γ trt+k+1|St = s, At = a

]
(17)

where the variable 0 ≤ γ ≤ 1 is the discount factor to uncer-
tainty of future rewards, ri is the acquired reward in step i
and Eπ [ · ] denotes the expectation with respect to policy π .
By invoking the Markov property and Bellman equation, (17)
will be reformulated into

Qπ (s, a) = Eπ

[
rt+1 + γ

∑
a′∈A

π
(
a′|s′)Qπ

(
s′, a′

)|St = s, At = a

]

(18)

which π(a′|s′) gives the probability of choosing action a′ given
that the agent is in state s′, the optimal value for the action-
value function can be achieved by [48]

Qπ∗(s, a) =
∑

s′∈S,r∈R
Pr
(
s′|s, a

)(
r + γ max

a′
Qπ∗

(
s′, a′

))
(19)

where Pr(s′|s, a) is the probability of transition to next state
s′ given that the agent is in the current state s and the taken
action is a. In order to find the optimal policy in (19), one
must have knowledge about the transition probabilities that
are usually unknown due to the complicated environment
structure.

One of the efficient model-free and off-policy actor–
critic methods that deals with the continuous action-space is
DDPG [49]. Four deep neural networks (DNNs) are employed
in DDPG, two of them are for actor/critic networks and
the other two are called target networks. The actor network
directly gives the action by giving the states as inputs to
a DNN with parameter set ξ act, i.e., a = μ(s; ξ act) where
μ(·) denotes the deterministic policy meaning that the out-
put is a value instead of a distribution. The critic network
which is usually a DNN with weights ξ crit evaluates the
action-value function based on the action given by the policy
network and the current state. Additionally, the target networks
estimate the target action-values to avoid instabilities when

minimizing the mean-squared Bellman error (MSBE) which is
defined by [47]

L
(
ξ crit,B

)
� E

[(
Q
(

s, a; ξ crit
)
− target

)2
]

target = r + γ Q
(

s′, μ
(
s′; ξ targ-act); ξ targ-crit

)
(20)

where the expectation is performed over (s, a, s′, r) ∼ B in
which B is the experience replay memory which stores the
set of current states, actions, rewards, and the next states
as a tuple (s, a, r, s′) over previous steps. Also, Q(s, a; ξ crit)

represents the action-value function parameterized by neu-
ral network weights ξ crit. From (20) the next target action
a′ = μ(s′; ξ targ-act) is used to calculate the target action-value
Q(s′, a′; ξ targ-crit) with network weights ξ targ-act. Typically,
the two target networks’ weights are copied over from the
main networks every some-fixed-number of steps by polyak
averaging which is

ξ targ-act ← τξ act + (1− τ)ξ targ-act (21)

ξ targ-crit ← τξ crit + (1− τ)ξ targ-crit (22)

where τ << 1 is the hyperparameter used to control the
updating procedure.

B. Twin Delayed DDPG

Before proceeding with the TD3 method, we restate the
following lemma from [20].

Lemma 1: For the true underlying action-value function
which is not known during the learning process, i.e., Qπ (s, a)

and the estimated Q(s, a; ξ crit) the following inequality holds:

E

[
Q
(

s, a = μ
(
s; ξ act); ξ crit

)]
≥ E

[
Qπ

(
s, a = μ

(
s; ξ act))].

(23)

Based on Lemma 1, since the DDPG algorithm leverages the
typical Q-learning methods, it overestimates the Q-values dur-
ing the training which propagates throughout the next states
and episodes. This effect deteriorates the policy network as
it utilizes the Q-values to update its weights and hyperpa-
rameters and results in poor policy updates. The impact of
this overestimation bias is even problematic with the feedback
loop that exists in DRL methods where suboptimal actions
might be highly rated by biased suboptimal critic networks.
Thus, the suboptimal actions will be reinforced in the next
policy updates. The TD3 algorithm introduces the following
assumptions to address the challenges [20].

1) As illustrated in Fig. 2, TD3 recruits two DNNs for
estimating the action-value function in the Bellman
equation, then the minimum value of the output of
Q-values is used in (20).

2) In this method, the target and policy networks are being
updated less frequently than critic networks.

3) A regularization of the actions that can incur high peaks
and failure to the Q-value in DDPG method is leveraged
so that the policy network will not try these actions in the
next states. Therefore, the action will be chosen based
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on adding a small amount of clipped random noise to
the selected action as given by

a′ = clip
(
μ
(
s′; ξ targ-act)+ clip

(
κ ′,−c,+c

)
, aLow, aHigh

)
(24)

where κ ′ ∼ N (0, σ̃ 2
a ) is the added normal Gaussian

noise and aLow and aHigh are the lower and upper limit
values for the selected action that is clipped to ensure
a feasible action which may not be in the determined
interval due to added noise. Also, the constant c trun-
cates the added noise at inner stage to keep the target
action close to the original action.

The detailed description of the TD3 is given in Algorithm 1.
A central controller at the BS is collecting and processing the
required information for the algorithm execution. First, the six
DNNs are initialized by their parameter weights, i.e., the actor
network ξ act, the critic networks ξ crit

i , i ∈ {1, 2} coefficients are
initialized randomly while the target actor and critic networks’
parameters are determined by replicating the primary actor
and critic networks’ coefficients, respectively. Also, the empty
experience replay memory with specified capacity is prepared
and the discount factor γ , learning rates, soft update hyperpa-
rameter τ , maximum step size Nsteps and episodes Nepisode
are determined. In the training stage, the reflective phase
matrix at the RIS is randomly initialized. The current chan-
nel coefficients of the actuators is acquired and the state set
is formed, correspondingly. Next, the action, i.e., the phase-
shift matrix is collected from the output of the actor DNN
with parameter set ξ act by importing the current state vector
as the input. Next, the observed reward, taken action, the cur-
rent state s, and the next state s′, i.e., the modified channels’
coefficients in terms of the phase-shift values given by the
actor network are recorded at the experience replay buffer. To
update the DNNs, a mini-batch of stored experience memory
is randomly selected, then, the target actions are computed via
target actor DNN with weights ξ targ-act and the target values
are evaluated by selecting the minimum value of target critic
DNNs’ output which correspond to minimizing the loss func-
tion by performing gradient descent method. In addition, when
it is time to update the actor and target networks, e.g., out of
t′ steps where typically t′ = 2 (once in every two steps), the
gradient ascent is employed to compute the new coefficients
of DNNs, i.e., renewal of ξ targ-act, ξ targ-crit, and ξ act.

C. Applying TD3 to Solve P1

A preliminary step to solve the problem P1 with TD3 is to
map the components and properly define the algorithm states,
actions and the reward function. In this section, we investigate
them in detail as follows.

1) States: The agent interacts with the environment to
optimize the FBL rate performance while ensuring a target
BLER. Hence, the agent only has knowledge about the local
information about actuators, e.g., the channel coefficients.
Consequently, the DRL agent state space is defined as the
aggregation of the angle and magnitude components of the
composite channel coefficients, previous step beamforming
vectors, and interference terms. First, it is useful to denote

Algorithm 1: Twin-Delayed DDPG Algorithm
Input: The number of actuators, the RIS amplitude-phase

response model, position of the BS and actuators in
2D-plane.

Output: Trained agent with DNNs’ weight coefficients.
1 Initialization: Initial values for weights ξact, ξcrit

1 and ξcrit
2 ,

empty replay memory B. Let ξ targ-act ← ξact, ξ
targ-crit
1 ← ξcrit

1
and ξ

targ-crit
2 ← ξcrit

2 , soft update coefficient τ , the discount
factor γ , the learning rates, the maximum steps Nsteps, and
maximum episodes Nepisode;

2 for e = 1, 2, ..., Nepisode do
3 Randomly initiate CBLs, and beamforming at RIS/BS;

4 Collect current channel coefficients
{

H, hRIS
k , ∀k

}
;

5 for t = 1, 2, ..., Nsteps do
6 Select action a = clip(μ(s; ξact)+ κ, aLow, aHigh),

where κ ∼ N (0, σ 2
a );

7 Perform the action a selected above;
8 Observe next state s′ and the reward value r;
9 Store the tuple (s, a, s′, r) in the replay memory B;

10 Sample a batch of tuple B ⊂ B from experience replay
memory;

11 Compute target actions given as
a′ = clip(μ(s′; ξ targ-act)+clip(κ ′,−c,+c), aLow, aHigh)

where κ ′ ∼ N (0, σ̃ 2
a );

12 Compute the target value

target(r, s′) = r + γ mini∈{1,2} Q(s′, a′; ξ targ-crit
i );

13 Update the critic networks by performing gradient
descent for i ∈ {1, 2} using

1

|B|∇ξ crit
i

∑
(s,a,s′,r)∈B

(
Q(s, a; ξcrit

i )− target(r, s′)
)2

,

14 if time to update policy network (t mod t′) then
15 Update the policy network by performing gradient

ascent with

1

|B|
∑
s∈B
∇aQ(s, a = μ(s; ξact); ξcrit

1 )∇ξ actμ(s; ξact),

16 Update the target networks with

ξ targ-act ← τξact + (1− τ)ξ targ-act,

ξ
targ-crit
i ← τξcrit

i + (1− τ)ξ
targ-crit
i , for i ∈ {1, 2}.17

18 end
19 end
20 end

the interference and the inner terms as

ϒk
t = θH(t − 1)H̃k (25)

ϒkk′
t = θH(t − 1)H̃kωk′(t − 1) (26)

where ϒk
t ∈ C

1×M and ϒkk′
t ∈ C. The current state st is

constructed as follows:

st = s1
t ∪ s2

t ∪ s3
t ∪ s4

t

s1
t =

{∣∣∣ϒkk′
t

∣∣∣,∠ϒkk′
t | ∀k, k′ ∈ K

}
s2

t =
{
‖ϒk

t ‖2, ‖ωk(t − 1)‖2,∠ϒk
t ,∠H̃k,∠ωk(t − 1) | ∀k ∈ K

}
s3

t = {θn(t − 1) | ∀n ∈ N }
s4

t = rt−1 (27)
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Fig. 2. Agent diagram of the TD3 method.

where K = {1, 2, . . . , K} and N = {1, 2, . . . , N}. Note that
the operators ∠X and |X| denote the angle and magnitude of
each complex element in X, respectively. The size of state
space in (27) is determined based on 2K2 interference terms
in s1

t , KM(N + 2) + 2K active beamforming coefficients and
composite channel response from BS to the actuators in s2

t , and
N RIS reflection variables in s3

t . Also, the previous reward
achieved in the last step is considered as s4

t which will be
defined in subsequent sections. Thus, the total size of the state
space is given by |st| = 2K(K+ 1)+ (N+ 1)(KM+ 1)+KM.

2) Actions: The action is determined as the value of phase
shift at each element (θn(t), ∀n) and the action set in time t
is given by

at = {ck(t), |ωk(t)|,∠ωk(t) | ∀k ∈ K}
⋃
{θn(t) | ∀n ∈ N }

(28)

such that each phase-shift element value is chosen from the
interval θn(t) ∈ [−π, π) ∀n by multiplying the correspond-
ing outputs of tanh(·) layer by π . Also, each beamforming
vector is generated by producing complex numbers with sepa-
rate magnitude values and angle components, then scaling the
resultant vectors such that the total transmit power at the BS
is satisfied, i.e.,

∑K
k=1‖ωk‖22 = ptotal. To construct the actions

corresponding to the CBLs, K elements of tanh(·) output layer
in actor network are selected as

ac
t =

{
ac

1, ac
2, . . . , ac

K

}
(29)

where −1 ≤ ac
k ≤ 1 ∀k. Considering cmin =

[cmin
1 , cmin

2 , . . . , cmin
K ] as the minimum CBL vector, the actions

in (29) are scaled as follows to construct c(t):

ãc
t ←

ac
t + 1.0

2

c(t)← C − cmin∑K
k=1 ãc

k + ζ
ãc

t + cmin (30)

where ζ << 1 is a small value to avoid possible division
by zero as 0 ≤ ãc

k ≤ 1.0 ∀k. Consequently, from (30) and
the procedure to generate beamforming vectors, we can easily
confirm that C1–C4 are satisfied. Finally, given (28), the output
size of the actor network will be K + 2KM + N.

3) Reward Function: The objective function in P1 has to be
maximized over time steps t, i.e., Ltot. In addition, as explained
in the previous section, by scaling the procedure of the raw
actions, the constraints in P1 can be met to produce feasi-
ble actions without reflecting their violation penalty into the
reward function. Thus, the agent’s reward function at each time
step t is designed to be

rt =
K∑

k=1

[
Vk(ω̄(t), θ(t), c(t))

−Q−1
(
εth

k

)
Wk(ω̄(t), θ(t), c(t))

]
. (31)

In the following, we discuss the convergence proof for the
TD3 algorithm in a finite MDP setting with discrete action-
space referred to as clipped double Q-learning. It is worth
noting that generalization to continuous action and actor–
critic networks is straightforward. First, given Q1 and Q2

as the action-value estimator functions, the best action is
determined based on a∗ = arg maxaQ1(s′, a). Also, the tar-
get value is found by the Bellman equation as y = r +
γ min{Q1(s′, a∗), Q2(s′, a∗)}. In double Q-learning, the action-
value tables are updated as Qi(s, a) = Qi(s, a) + αt(y −
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Qi(s, a)), i ∈ {1, 2}. Given this knowledge, the following theo-
rem investigates the conditions for the convergence of clipped
double Q-learning [20].

Theorem 1: The clipped double Q-learning will theoreti-
cally converge to the optimal action-value function Q∗ with
probability 1 if the following assumptions hold.

1) The MDP is of finite size and the action space is sampled
infinite number of times.

2) The discount factor should be γ ∈ [0, 1) and the
Q-values are stored in a look-up table.

3) The learning rate should meet αt ∈ [0, 1],
∑

t αt = ∞,∑
t α

2
t <∞.

4) Q1 and Q2 receive an infinite number of updates and
V[r(s, a)] <∞ ∀s, a.

Consequently, from the conditions in Theorem 1, we can
ensure that to solve P1 by utilizing the TD3 method, with
proper selection of the learning rates, discount factor, and finite
variance of the reward function the algorithm will converge
to the optimized policy π∗. Since the reward function is the
objective in P1, it is needed to verify that V[rt(st, at)] < ∞,
therefore, we have

V

[ A︷ ︸︸ ︷
K∑

k=1

Vk(ω̄(t), θ(t), c(t)) (32)

−
( B︷ ︸︸ ︷

K∑
k=1

Q−1
(
εth

k

)
Wk(ω̄(t), θ(t), c(t))

)]

= V[A− B] = V[A]+ V[B]− COV[A, B]. (33)

Given that the number of RIS elements is finite N < ∞,
the BS has finite transmit power, and the CBL variables ck

∀k are bounded, then, the SINR values will have finite vari-
ance V[SINR] <∞ [11]. Thus, the reward function has finite
variance V[A− B] <∞.

D. Complexity Analysis

In this section, we discuss the computational complexity
of the TD3 to solve the P1. Let nL be the number of layers
in each DNN and zl be the number of neurons in layer l.
Then, in the training mode, the evaluation and update in one
time step is O(|B| ×∑nL−1

l=1 zlzl+1) [27] where |B| denotes
the size of the batch tuple. Since the TD3 algorithm has a
finite number of DNNs and it takes Nepisode×Nsteps iterations
to complete the training phase in which Nsteps is the number
of steps in each episode and Nepisode is the total number of
episodes. Therefore, the total computational complexity will
be O(|B|NepisodeNsteps

∑nL−1
l=1 zlzl+1).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the considered joint
active/passive beamforming and CBL allocation optimization
via the TD3 method. A generic channel model is chosen to
obtain insights about the proposed approach’s performance
trends independent of the operating frequency and employed
channel model. Evaluations under specific channel models,

TABLE II
SIMULATION PARAMETERS

including indoor factory scenarios and millimeter-wave chan-
nels, are left for future studies. Since the components and
robots in industrial automation are usually stationary or have
low mobility, we have considered four actuators in a fac-
tory environment located in 2-D plane coordinates at [16, 40]
m, [32, 40] m, [48, 40] m, and [64, 40] m where a BS is
positioned at [0, 0] m and the RIS is located at [40, 0] m.
The large-scale path-loss fading is modeled as PL(dB) =
PL0 − 10ν log10(D[m]) where PL0 = −30 dB, ν = 2.2
is the path-loss coefficient and D is the distance between
the transmitter and the receiver [28]. For the sake of train-
ing tractability, the default number of RIS elements is set to
N = 16 similar to other works in [28] and [32] in which
by considering the number of users K = 4 and BS antennas
M = 4 the total size of the output action in policy DNN will be
K+ 2KM+N = 52. Additionally, we have studied the impact
of increasing RIS elements in the next figures for complete-
ness. Table II shows the summary of the selected parameters
for the network components during simulations.

The learning rate in actor and critic networks of the TD3
agent is set to αt = 10−4. The actor network DNN has three
hidden dense layers with [800, 400, 200] neurons. The activa-
tion functions in all hidden layers are considered as rectified
linear unit ReLU(·) except for the last layer in which the actor
network is assumed to be tanh(·) to provide a better gradient.
Since the output of tanh(·) is limited to the interval [−1, 1],
it might get saturated for large inputs in most of the time.
To avoid such saturation of the actions in the output of the
actor network, the input state and action in the architecture
of the critic networks are first processed by two dense lay-
ers with 800 neurons, separately. The implication behind this
is that the actor network is being updated in the direction
suggested by the critic, thus, proper estimation of Q-values
is of paramount importance to avoid such occurrence. Next,
the resultant outputs are added and are given to dense lay-
ers with size [600, 400] to estimate the current Q-value at
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(a) (b)

Fig. 3. (a) Comparison between SAC and TD3 with Gaussian/Deterministic policies. (b) FBL rate behavior versus episode for a different number of elements
at the RIS and BS transmit power budget.

final stage. Also, extensive simulations revealed that employ-
ing Layer Normalization [50] helps to prevent the action value
saturation, thus, we used this normalization technique before
activation functions in dense layers.

The experience replay buffer capacity is 10 000 with batch
size 64 such that the samples are uniformly selected from the
buffer data. Furthermore, the exploration noises κ, κ ′ in TD3
actor networks are zero-mean normal random variables with
variance σ 2

a = 0.1, σ̃ 2
a = 0.1. The target actor/critic networks’

soft update coefficient is τ = 0.005. During the updating pro-
cedure, the policy network is updated every t′ = 4 step. In
all of the episodic illustrations, the agent is being evaluated
over 100 independent realizations of the network channels to
assess its performance, i.e., the illustrations are generalized
results over 100 realizations.

In Fig. 3(a), the TD3 method is compared with the SAC
algorithm with different entropy regularization coefficients
(T = 0.1, 0.2) and DDPG. As observed, the DDPG has
higher fluctuations in the curve of episodic average reward
value compared to the TD3 algorithm. The fluctuations in
the DDPG method occurred due to frequent policy network
updates and the overestimation bias which are eliminated in
TD3. In addition, TD3 outperforms the DDPG method in
both final performance and learning speed in phase control.
It can be observed that the SAC with higher regularization
value cannot learn the optimal policy corresponding to too
much exploration, however, for lower values of the coefficient,
the agent started learning in around 3000 episodes, then the
reward drops in around 5000 episodes. Also, the performance
of employing Gaussian policy randomization at the output of
the actor network is illustrated as well as utilizing deterministic
policy. Basically, in deterministic sampling, the agent uses the
mean action instead of a sample from fitting a Gaussian distri-
bution with mean and variance dense layers. From illustrated
curves, it is perceived that deterministic policy outperforms
randomized policy as the agent has reached a higher reward
value in the deterministic policy method. In addition, employ-
ing the Gaussian policy leads to some sudden drops in the

Fig. 4. Impact of increasing the BS transmit power on the converged average
rate in FBL and Shannon regimes.

reward function even in higher episodes and after training.
This can be a harmful effect in our specific application sce-
nario in factory automation where ensuring high reliability is
of paramount importance. Also, Fig. 3(b) shows the conver-
gence of the TD3 method with deterministic policy in terms
of a different number of RIS elements and BS transmit power.
It is observed that for either a higher number of RIS elements
or a higher BS transmit power budget, the agent needs more
episodes to learn the optimized policy.

Fig. 4 shows the impact of increasing the BS transmit power
on the average achievable rates in the Shannon/FBL regime.
As it is demonstrated, the uppermost red curve shows the
case that the RIS is ideal and the Shannon capacity expres-
sion is leveraged illustrating the upperbound performance of
the network in the infinite CBL regime. It is also observed
that increasing the transmit power budget at the BS leads to
a higher total rate in all scenarios. On the other side, the
performance of the system in the FBL regime with/without
nonideal RIS is illustrated in the lower curves. The achievable
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Fig. 5. Impact of increasing the total available CBL on the achievable FBL
rate.

FBL rate by employing zero-forcing (ZF) precoding at the
BS and uniformly distributed random phase shift at the RIS
is also shown in the lowermost curve for comparison. The
optimized CBLs are obtained by training an agent with sig-
nificantly reduced action dimension, i.e., only K = 4 actions
are generated while considering only constraint C4 which is
met by scaling of outputs as in (30). It is worth noting that
the suggested optimized CBL vector via this agent is the same
as employing the difference of concave optimization method
as studied in [25]. Note that the ZF performs better in higher
SNR regimes as the gap between curves reduces, i.e., the ZF
precoder and optimized CBL and active/passive beamformers
curves get closer as the total transmit power ptotal increases.
This highlights the applicability of our resource allocation
framework in system-level design considerations to establish
reliable communications in industrial environments.

Fig. 5 shows the achievable rate performance comparison in
terms of the total available CBL. Since achievable rate expres-
sion in the Shannon regime is independent of varying total
CBL, the uppermost curve has no variations versus chang-
ing C. The performance gap between working in the FBL
regime and Shannon with either ideal or nonideal RIS is also
highlighted. There is a 21% gap in the ideal RIS case and a
14% extra penalty due to having nonideal RIS. In addition,
we have shown the case where the CBL variables are equally
assigned between actuators, however, the active and passive
beamforming vectors are being optimized. There is around a
17% gap between CBL optimization and equal CBL alloca-
tion. From another perspective, the CBL can be expressed in
terms of transmission duration T and available bandwidth W
as c = TW. Thus, utilizing fewer CBLs results in decreasing
the transmission duration. This shows the importance of opti-
mizing the CBL to preserve the possible FBL rate loss and
reduce the transmission time to meet URLLC KPIs. Note that
when C = 40, the optimized and nonoptimized curves over-
lap as the considered minimum CBL during simulations are
cmin

k = 10 ∀k,
∑4

k=1 cmin
k = 40.

Similarly, in Fig. 6, the network sum rate is assessed in
terms of increasing the total number of reflective elements at

Fig. 6. Effect of increasing the number of the RIS elements on the total
achievable rate of the system.

Fig. 7. FBL rate in terms of βmin.

the RIS. A gap is also observed between the Shannon achiev-
able rate and FBL rate with either ideal or nonideal RIS. The
Shannon and FBL regimes with nonideal RIS curves demon-
strate that the system’s actual performance will lie between
these two curves. The performance of the TD3 method is
compared with state-of-the-art linear minimum mean square
error (MMSE) precoding at the BS. The optimized CBLs are
obtained by applying a similar approach as in Fig. 4. The
total achievable rate in all cases increases with the number of
RIS elements, i.e., with/without ideal/nonideal RIS. A similar
performance is also shown in FBL and Shannon rates. On the
other hand, the slope of the curves is quite similar when the
number of RIS elements starts to increase which additionally
shows the practicality of the TD3 algorithm in ideal/nonideal
reflective phase-shift design problems.

Finally, Fig. 7 shows the effect of βmin on the learning
behavior of the TD3 agent. As can be seen from the curves, the
agent reward function has converged in around 4000 episodes
for all scenarios. In addition, there is a performance gap
between βmin = 0.2 and βmin = 1.0 where the latter corre-
sponds to the ideal RIS without amplitude attenuation. More
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precisely, the achievable FBL rate has increased from 5 bps/Hz
(βmin = 0.2) to 6.2 bps/Hz (βmin = 1) which is a 20%
improvement.

V. CONCLUSION

We have studied the reflective phase-shift design, BS beam-
forming and CBL allocation problem in practical RIS-aided
URLLC systems over short packet communications. The
RIS impairments are modeled as the nonlinear amplitude
response in terms of the phase-shift values, and the consid-
ered problem has been solved by utilizing a DRL algorithm,
i.e., TD3 method. Since the proposed problem has highly
nonlinear constraints due to considering practical phase-shift
response, it is challenging to solve via optimization-based
algorithms that are usually computationally inefficient even
in ideal scenarios. Thus, we have employed a policy gradient
DRL algorithm based on unsupervised actor–critic methods
to optimize the active/passive beamforming and CBL alloca-
tion which concurrently learns a Q-function and a policy. The
numerical results have demonstrated the applicability of the
used DRL method in practical RIS phase-shift design prob-
lems in time-sensitive applications that exploit short packets in
URLLC systems. Moreover, the TD3 method with determin-
istic policy outperformed other considered DRL algorithms
such as SAC and Gaussian policy randomization in terms of
final reward values and generalization of the policy network
for different channel coefficients. In addition, we investigated
the importance of optimizing the CBL in short packet commu-
nications and showed that the system total FBL can increase
by 17% when the CBL variables are optimized for each actu-
ator. As interesting future research, the formulated problem
in this article can be studied under generalized assumptions,
e.g., considering either uncertainties in channel coefficients
and/or adaptability to change in actuators’ positions by train-
ing an agent such that different network configurations are also
reinforced.
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