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HALE-IoT: Hardening Legacy Internet of Things
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Abstract—Internet of Things (IoT) devices and their firmware
are notorious for their lifelong vulnerabilities. As device infec-
tion increases, vendors also fail to release patches at a competitive
pace. Despite security in IoT being an active area of research,
prior work has mainly focused on vulnerability detection and
exploitation, threat modeling, and protocol security. However,
these methods are ineffective in preventing attacks against legacy
and End-Of-Life devices that are already vulnerable. Current
research mainly focuses on implementing and demonstrating
the potential of malicious modifications. Hardening emerges as
an effective solution to provide IoT devices with an additional
layer of defense. In this article, we bridge these gaps through
the design of HALE-IoT, a generically applicable systematic
approach to HArdening LEgacy IoT non-low-end devices by
retrofitting defensive firmware modifications without access to
the original source code. HALE-IoT approaches this nontriv-
ial task via binary firmware reversing and modification while
being underpinned by a semiautomated toolset that aims to keep
cybersecurity of such devices in a hale state. Our focus is on
both modern and, especially, legacy or obsolete IoT devices as
they become increasingly prevalent. To evaluate the effective-
ness and efficiency of HALE-IoT, we apply it to a wide range of
IoT devices by retrofitting 395 firmware images with defensive
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implants containing an intrusion prevention system in the form
of a Web Application Firewall (for prevention of Web-attack
vectors), and an HTTPS-proxy (for latest and full end-to-end
HTTPS support) using emulation. We also test our approach on
four physical devices, where we show that HALE-IoT successfully
runs on protected and quite constrained devices with as low as
32 MB of RAM and 8 MB of storage. Overall, in our evaluation,
we achieve good performance and reliability with a remarkably
accurate detection and prevention rate for attacks coming from
both real CVEs and synthetic exploits.

Index Terms—Cybersecurity, defensive techniques, devices,
end-of-life (EOL), firmware, firmware modification, HTTPS,
Internet of Things (IoT), legacy, retrofit security, secure socket
layer (SSL)-proxy, Web application firewall (WAF).

I. INTRODUCTION

INTERNET of Things (IoT) devices have notoriously
vulnerable firmware [1], [2], [3]. Exploiting these vul-

nerabilities is often trivial, an example being the case of
the infamous Mirai botnet [4]. Unfortunately, keeping the
firmware of these devices updated is challenging. First, in
many cases, a firmware update or a patch is simply not
available. This is a prevalent problem due to the number of
legacy devices connected to the Internet [4], [5], [6], [7],
[8], [9]. Second, firmware is built-in to the devices, while
automated—Over-The-Air (OTA)—firmware updates are gen-
erally not implemented or still have limited adoption [10].
Updating IoT devices, when and if available, may require
fairly technical manual intervention, including having admin
access and reflashing the device, and can prove challenging
and error prone even for experienced users. These difficulties
foster a culture of bad security hygiene around IoT. As a result,
many IoT devices are left vulnerable, with dire and long-
lasting consequences [11]. For instance, researchers recorded
over 1.5 billion attacks against IoT devices in the first half of
2021 [12]. In this context, just one single vulnerability (CVE-
2021-28372) [13] affected around 83 million devices, while
some others (e.g., CVE-2013-7471) have been active for years
and are still seen in the wild.1

In the absence of regular updates, bastioning IoT devices
and hardening potentially vulnerable services emerge as first-
line defense strategies. The Center for Internet Security (CIS)
offers prehardened images and hardening checklists that have

1See timeline in: https://vuldb.com/?id.136365.
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been adopted by the research community, which includes
mechanisms to disable nonessential services [14]. While
this reduces the attack surface, essential services may still
suffer vulnerabilities [15]. Furthermore, existing approaches
like [14], [16] do not address the constraints and the hetero-
geneity of modern IoT devices. Thus, applying off-the-land
defenses at the network level, like third-party firewalls, has
already been the subject of research [17], [18], [19]. The
next line of defense includes retrofitting active [20], [21], and
retroactive defenses [4], [22]. Retrofitting defenses into IoT
devices offers the same advantages as general-purpose harden-
ing, while enhancing their security mechanisms even without
the support of the manufacturer.

Retrofitting security to legacy IoT devices faces many chal-
lenges. First, the firmware stock is large and heterogeneous,
so nongeneric solutions hinder the adoption of this defense.
Second, injecting externally compiled code and then expect-
ing it to tightly co-exist with the firmware is a challenging
and error prone process. Third, IoT devices generally have
constrained resources and I/O interfaces, so they cannot eas-
ily accommodate arbitrary defensive solutions (e.g., intrusion
detection system (IDS), antivirus) that are useful good defend-
ing traditional computing devices (e.g., PCs, laptops, and
servers). Constrained by such challenges, existing approaches
are limited in the scope of their implementation. For instance,
Cui and Stolfo [20] presented a binary-patching tool called
Doppelgänger that only offers in-practice protection against
rootkits. Doppelgänger is essentially a memory integrity mon-
itor that computes hashes of memory regions where “critical
system processes” are mapped. The system then monitors
changes in the hashes as a way to detect function hook-
ing and other types of code injection. While Doppelgänger
can compute and monitor hashes for any arbitrary memory
region, identifying and understanding those regions requires
considerable human expertise. Thus, approaches, such as
Doppelgänger [20], do not scale in practice, and cannot be
deployed systematically. Other works focus on hardening par-
ticular types of Web applications against cross-site scripting
(XSS) and structured query language injection (SQLi) [15]
attacks. However, these approaches rely on modifying the
Web interpreters, which requires: 1) deep software modifi-
cations; 2) intimate knowledge of the targeted technology
(e.g., PHP); 3) tedious preautomation taint annotations (e.g.,
sensitive sinks); and 4) access to source code.

To address existing shortcomings, we use a concept similar
(yet somewhat distinctive) to symbiotic embedded machines
(SEMs) [20] to design a systematic approach to hardening
legacy non-low-end IoT devices. For clarity, we try to out-
line HALE-IoT’s encompassing definition of non-low-end IoT
device. In the most general sense, at present HALE-IoT targets
the Type-I: General purpose OS-based devices (e.g., Linksys
EA6300v1 with Cortex A-9) as defined by Muench et al. [23]
in their state-of-the-art work. Our distinction between non-
low-end versus low-end devices is also generally in line with
that in [23]. In other words, from a HALE-IoT perspec-
tive, Type-II: Embedded OS-based devices mapping to MCUs
such as ARM7TDMI-S with flash memory in the range of
512-1024 kB and RAM memory 58–98 kB (e.g., Foscam
FI8918W), and Type-III: Devices without an OS-Abstraction

mapping to MCUs such as Cortex M-3 with flash memory in
the range of 16–1024 kB and RAM memory 80–256 kB (e.g.,
STM Nucleo-L152RE), would qualify as low-end devices, and
are therefore unsupported in present iteration of HALE-IoT .
Certainly, the taxonomy of device types defined in [23] is one
of many possible, and taxonomy definition is strongly influ-
enced by the problem space at hand. However, to date, that
of Muench et al. [23] best reflects the research perspective to
which HALE-IoT applies. In addition, due to the binary and
configuration sizes of HALE-IoT (Sections IV-C and V-E), we
do not aim for devices with less than 32-MB RAM and less
than 8-MB storage. A direct consequence of this is that micro-
controller/MCU-based IoT devices (such as MSP430, ARM
Cortex-M0, and similar ARM MCU families) are exclued at
this stage of HALE-IoT development owing to their total/free
RAM and storage limitations. Moreover, HALE-IoT currently
works for Linux-derived or BusyBox-based systems, which
almost by default excludes MCU-based IoT devices, as Linux
is particularly challenging to scalably run on MCU devices,
though an exception exists for MCUs running uClinux [23].
As we demonstrate later in this article, HALE-IoT success-
fully supports not only powerful boards such as Raspberry Pi,
but an additional wide range of such “Type I” [23] devices,
as depicted in Table IV. We show that HALE-IoT success-
fully runs on quite constrained devices with as low as 32 MB
of RAM and 8 MB of storage, parameters that in our view
absolutely qualify HALE-IoT to support a wide-range and
large-numbers of commercial off the shelf (COTS) devices.

With HALE-IoT , we essentially retrofit complex
defense systems into raw firmware binaries via
systematic yet minimally intrusive low-level mod-
ifications that do not require access to the original
source code. Our approach differs from the state-
of-the-art in several ways. First and foremost, we
design a generically applicable framework to provide
reliable security and protective standards to legacy
firmware. Second, we develop a systematic testing
methodology that constitutes the first benchmark
to assess the effectiveness of retrofitting defensive
firmware modifications.

We developed a cross-platform system, called HALE-
IoT , that at the time of writing successfully runs on at
least MIPSeb, MIPSel, ARMel, and Intel 80386 architec-
tures. HALE-IoT incorporates several industry-standard secu-
rity tools. We devised a battery of tests using real-world
attacks, particularly focusing its evaluation on fuzzing the Web
interface, for two main reasons. One is that the Web-interfaces
are well known to be exposed and lacking security in many
aspects [24], [25], while IoT devices are often proven to have
their Web-interfaces highly vulnerable and exposed [2], [3].
Another reason is that, as several studies have reported,
(I)IoT devices are much more often run missing, lax, or inse-
cure secure socket layer (SSL)/transport layer security (TLS)
implementations [26], [27], [28], [29], and make insignificant
contributions to secure TLS [26].

We note that while our evaluation reports detection rates,
its main focus is not to assess how well HALE-IoT detects
and prevents real-world attacks. In essence, HALE-IoT embeds
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industry-standard protection mechanisms such as have been
widely tested before, e.g., Web application firewall (WAF)
such as Raptor [30]. Our aim is to assess whether the retrofitted
defensive mechanism can effectively (i.e., detect and protect)
and correctly co-exist within the retrofitted firmware without
preventing normal use of the system (e.g., not crashing it).
This is important, as software projects such as full-fledged
WAFs are fairly sophisticated. To the best of our knowledge,
no prior work has attempted and assessed the feasibility of
implanting sophisticated frameworks2 into IoT firmware.

We evaluated the effectiveness of our methodology using
395 different firmware images from a wide range of ven-
dors, including D-Link, Netgear, Linksys, TRENDnet, and
OpenWrt. We emulate those 395 firmwares using a similar
procedure as in the state-of-the-art works [2], [3]. Due to the
difficulty of acquiring hardware for all vendors, we restrict
our bare-metal evaluation to four physical devices (Table IV)
featuring 32–1024 MB of RAM and 8–4096 MB of storage,
while representing both ARM and MIPS architectures as well
as open-source and proprietary hardware and firmware. At the
same time, we note that our current efforts do not attempt to
test HALE-IoT in the “long trail” of architectures (e.g., niche
architectures and targets not supported by GCC,3 nor on archi-
tectures that are supported but are not widespread, the same
way we do not claim that HALE-IoT works on low-end and
very constrained targets such as MSP430). A more extensive
evaluation is part of future work.

Our main contributions are summarized as follows.
1) We develop a generic methodology supported by a

system architecture and a reference implementation for
hardening legacy IoT devices via defensive firmware
retrofitting and implants. To the best of our knowledge,
this is the first of its kind.

2) We evaluate the effectiveness of our methodology by
testing it on potentially vulnerable and insecure Web-
interfaces of a large and diverse set of IoT vendors and
devices.

3) We identify and derive several core challenges of this
problem space that require further attention and research.

The remainder of this article is organized as follows. We
first present the overall applicable threat model in Section II.
Then, we introduce and detail the HALE-IoT architecture and
methodology in Section III. In Section IV, we detail the experi-
mental setup, the data sets. We present the testing methodology
and the results in Section V. We then discuss challenges and
future improvements in Section VII. We present and discuss
related work in Section VIII. Finally, we conclude this article
with Section IX.

II. THREAT OVERVIEW

There are millions of devices connected to the Internet
that shape the way users interact with technology. These
devices have many attractive features that make them popular.

2For instance, at the time of writing, Raptor has an estimated 22700 LoC,
and SSL-proxy with Golang has an estimated 8600 LoC. Raptor and Golang
are two of the frameworks we systematically retrofit.

3https://blog.yossarian.net/2021/02/28/Weird-architectures-werent-
supported-to-begin-with

Unfortunately, many of these devices lack basic security and
privacy protections. This leaves IoT devices exposed to major
security issues ranging from insecure configurations and proto-
cols (i.e., Telnet and HTTP) to outdated software with known
vulnerabilities and public exploits.

From an attacker’s point of view, IoT devices are very attrac-
tive due to the weaknesses they present and the absence of
IoT-centered defensive tools (e.g., Antivirus, IDS. Mirai is a
proof of this. Mirai, the first malware specifically designed
to infect IoT managed to infect around 600 000 devices [4].
Unlike the early versions of Mirai, which used only a set of
usernames and passwords to gain access to IoT devices via
insecure Telnet and SSH configurations, IoT malware currently
incorporates a wide portfolio of exploits for N-days vulnera-
bilities in order to gain access and install and spread their
malware [31]. In particular, in a large number of cases they
(ab)use CVEs for Web-interfaces [32], [33], [34].

IoT devices often require network management interfaces
for their configuration and maintenance (i.e., Telnet, SSH, and
HTTP), due to the lack of interactive interfaces like the ones
offered in desktop computers (i.e., mouse, keyboard, video).
Consequently, these network services are exposed to attack-
ers, causing well-known security issues, as shown in [2], [3],
and [35]. Costin et al. [2] performed a large-scale analysis
of Web services provided by different IoT devices, discover-
ing 225 high-impact vulnerabilities (i.e., Command execution,
XSS) verified through dynamic analysis, and around 9000 pos-
sible vulnerabilities reported through static analysis in 185
firmware images that were analyzed. These security issues,
coupled with shortage of security updates or patches, make
IoT devices an attractive target for attackers, allowing them to
create large botnets or to mine cryptocurrency [11], [36].

A. Threat Model

Because of HALE-IoT’s architecture and the evaluations
performed (i.e., HTTP and WAF), when building our threat
model we reference the generalized threat model for WAFs,
based on the extensive state-of-the-art survey by Li and Xue [37]:
1) the Web application itself is benign (i.e., not hosted or owned
for malicious purposes) and hosted on a trusted and hardened
infrastructure (i.e., a trusted computing base, including OS,
Web server, interpreter, etc.) and 2) the attacker is able to
manipulate either the contents or the sequence of Web requests
sent to the Web application but cannot directly compromise the
infrastructure or the application code.

Therefore, the overall threat model of HALE-IoT could be
seen as a generalized form of the threat model by Li and Xue [37],
and could be summarized as follows.

1) The entire firmware and underlying OS is benign (i.e., not
hosted or owned for malicious purposes) and hosted on
an original, trusted, or hardened device or infrastructure
(i.e., a trusted computing base, including OS, Web server,
interpreter, etc.).

2) The attacker is able to manipulate either the contents or
the sequence of network requests (e.g., HTTP requests,
FTP and Telnet commands, lower-level network packets)
sent to the device firmwares but cannot or did not directly
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Fig. 1. IoT firmware system diagram after hardening with HALE-IoT (shows also long-term vision for additional hardening at layers L3–L4, L7).

compromise the infrastructure or the application/firmware
code prior to connecting the device to the Internet or
infrastructure (namely, supply chain attacks).

Focusing on the threat model in more detail, we consider a
legacy device with Linux-derived or BusyBox-based firmware
with network services (e.g., HTTP, FTP) that are vulnerable to
known attacks publicly available on the Internet. We consider
N-day vulnerabilities because they are the ones that primar-
ily endanger the security of IoT devices [38] and the ones
that are easily exploitable with the help of IoT device scan-
ners [35]. Our threat model can also consider zero-day attacks,
as long as they only target hardened services that no longer
become exposed to the Internet after applying HALE-IoT’s
methodology (e.g., Telnet). Our work is focused on hardening
legacy systems for which there are no security updates from
the manufacturer.

To harden IoT devices via defensive firmware retrofitting,
we proceed with the following assumptions. First, we have
access to the firmware image of the device (e.g., downloaded
from Internet [1], extracted from device [39]). This allows
us to modify the file system and update the device with the
hardened-modified firmware version, though there are excep-
tions when we do not even require access to the firmware nor
firmware’s modification (Section VI-E). Second, there is stor-
age on the device to add new binaries that will take care of
listening on the service’s original interface and port, so that it
wraps everything around a WAF to its original service. This
allows the original functionality of the device to remain unaf-
fected. The security of the WAF is out of the scope of this
article, as it is both research-wide and industry-wide accepted
methods for securing Web-apps [37]. Therefore, we assume
that adding a WAF as part of the HALE-IoT methodology
increases device security. (We discuss the limitations of WAFs
in Section VIII-D.) Third, it is possible to reconfigure the orig-
inal Web server through configuration files or scripts, that is,

we can change the interface and port in which the original
service is bound. Fourth, we consider vulnerabilities that can
be triggered through a Web request. The type of vulnerability
exploited will belong to the category of errors in user input
validation [37], to which correspond vulnerabilities involving
SQL injection, CIs and path traversal, among others. Finally,
we assume that new vulnerabilities will appear in the future
and that the rules or software will need to be updated.

With these assumptions in mind, the next section introduces
HALE-IoT , a methodology designed to offer an extra layer of
security to IoT devices, focusing on the protection of the core
and the most vulnerable services exposed to the Internet by
IoT devices.

III. HALE-IOT

This section introduces the main components of our system.

A. Methodology & System Overview

HALE-IoT is a system designed to harden IoT devices. With
the wide spread network of obsolete IoT devices in mind, our
system focuses on legacy and end-of-life (EOL) firmware for
the following reasons: devices with legacy firmware: 1) are
prone to be vulnerable; 2) are extremely likely to expose
exploitable services leading directly to breaches; and 3) will
almost certainly never get a security patch. In Fig. 1, we depict
a high-level view of a hardened IoT firmware/device. From
the point of view of firmware’s “inner components,” the dia-
gram captures two dimensions: 1) “vulnerable services”—the
services that will eventually be spawned when loading the
firmware (e.g., a Web HTTP server, Telnet, and FTP) and
2) “file system”—the original file system itself, where the
binaries and the configuration of such potentially vulnerable
services reside. The diagram also represents the entry point of
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these services, typically a network interface. A service can lis-
ten to different interfaces at the same time (e.g., Wireless or
Wide/Local Area Network, WLAN and WAN/LAN, respec-
tively). We represent as 0.0.0.0 a generic network interface
that is very likely to be attacker-accessible.

Methodology: We follow three core principles that underpin
the development methodology of HALE-IoT . First, the hard-
ening process has to be generic and flexible to accommodate
the most popular services available in IoT devices. We also
require that the system can accept the integration of generic
protection mechanisms that match in complexity the type of
attacks that generally target IoT devices. Second, we follow
the fail-safe minimization principle [40] by which the mod-
ifications we introduce during the hardening process should
be as unintrusive as possible, always preserving the normal
operation of the device. In other words, HALE-IoT will make
minimal changes to the firmware, having its main focus first
hardening the system via reconfiguration, then patching exist-
ing configuration files, only proceeding to make code-level
modifications (namely, binary patching) as a last resort. Only
in situations when binary patching is necessary, we apply a
twofold strategy: the analysis phase—a human-guided semi-
automatic process that produces a proof-of-concept; and the
deployment phase—which can reproduce the patching and
retrofitting at scale in a fully automated fashion.

System design: HALE-IoT leverages the methodology above
to design a practical system that addresses the challenge of
hardening heterogeneous devices from the following angles.

1) Secure Frontend: This step aims to harden insecure
services through the deployment of wrapper(s) designed
to turn a possibly vulnerable service into a secure one.
HALE-IoT will expose a secure interface of the ser-
vice and will act as a proxy of the actual service while
offering certain guarantees, such as confidentiality and
secured access control. Central to this step is the retrofit
of an SSL, or TLS, proxy that will: a) offer a cryp-
tographic upgrade if the device lacks it, including the
use of HTTPS instead of HTTP, SFTP instead of FTP,
or SSH instead of Telnet and b) offer protection against
SSL/TLS attacks (e.g., downgrade, MITM—Man In The
Middle), and patch weak SSL/TLS configurations (e.g.,
hardcoded self-signed certificates).

2) Proactive Attack Detection: This steps aims to offer
a proactive protection against application-layer attacks
through the retrofit of a domain-specific firewall. For
instance, HALE-IoT will implant a WAF when an IoT
device processes Web HTTP connections either directly
from the user through a Web browser or a RESTful
client.

3) Advanced-Level Access: This step aims to harden a criti-
cal component of IoT devices, their admin interface. IoT
devices do not generally have a graphical user interface,
and their administration is generally done remotely.

The result of applying our methodology to hardening a
generic IoT device is presented in Fig. 1. In this article,
we offer an implementation of HALE-IoT that can scale
the deployment of prehardened images for vulnerable legacy
firmware that can benefit from a secure front end. We assume
that these IoT devices expose services through the network

while listening to a port through a socket. Our system per-
forms best when there is a configuration file that specifies
the network settings, and we restrict binary patching only to
changes in the interface or the port number when these are
hard-coded into the binary (Section VII-F). Note that more
intrusive modifications are subject to less automation, thus
making the solution less scalable and cost-effective. Also,
more-intrusive modifications are highly likely to interfere with
the normal intended operation of the given service, or even
the entire device. While our methodology supports any type
of binary patching, assessment of the impact they have on the
fail-safe minimization principle is in the scope of our future
work. We next describe in detail each of the three layers that
constitute HALE-IoT .

B. Secure Front-End: SSL/TLS Hardening

An SSL/TLS Proxy is a specific type of proxy server
designed to add a layer of SSL/TLS to protocols that lack
this feature. For example, it is commonly used for adding
HTTPS encryption to plain-text HTTP services without native
HTTPS support. It is mainly responsible for the encryption
and decryption of SSL traffic between the client and the server,
and redirecting the packets, once decrypted, to the HTTP Web
server. As mentioned, the rationale behind adding an SSL/TLS
proxy is driven by the prevalence of IoT devices running inse-
cure or weakly secured HTTP implementations [27], [28], [29]
that give a false sense of security.

In our implementation, we used two approaches to SSL/TLS
proxying: 1) SSL-proxy [41] as the main approach and
2) lighttpd [42] as an alternative approach. SSL-proxy is a
project written in the Golang programming language. SSL-
proxy features a high portability to other systems, making it
a good candidate for systems that require multiple architec-
tures. SSL-proxy allows self-signed certificates to be generated
as well as working with existing certificates and full cer-
tificate chains, that are stored locally or generated through
Let’s Encrypt [43], [44]. For SSL-proxy cases, our toolsets
generate Go binaries for the different architectures HALE-
IoT supports, and then use the same SSL-proxy code in
corresponding interpreted environments. As an alternative to
SSL-proxy, we cross-compiled a statically linked version of
lighttpd with SSL/TLS and proxy support, which, similarly to
SSL-proxy, supports self-signed certificates or certificates gen-
erated through Let’s Encrypt. In practice, it was only necessary
to use lighttpd-based TLS proxy for the real device presented
in Section VI-D; however, this lighttpd-based setup was also
successfully tested on several other devices. For the purpose
of our experiments, we used self-signed certificates, but we
later discuss deployment issues in Section VII-G. However,
the main idea of adding SSL-proxy is to provide any IoT
device a guaranteed and uniform HTTPS support (e.g., lat-
est TLS protocols) that can also operate proper full certificate
chains [27], [28], [29].

C. Proactive Detection: Application-Layer
Firewall Hardening

A generic application-layer firewall (xAF) is a type of fire-
wall that can potentially detect and prevent malicious inputs
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designed to exploit specific application protocols. Our archi-
tecture allows the retrofit of multiple xAFs, one for every
potentially vulnerable network service. Therefore, HALE-IoT
can both isolate local networks (from 0.0.0.0 to 127.0.0.1),
and harden traditionally vulnerable services, such as Telnet
(secured with SSH), FTP (secured with SFTP), UPnP, and
MQTT. This architectural vision is presented in Fig. 1.

Our current implementation of HALE-IoT methodology pri-
marily offers support for hardening Web services at the appli-
cation level. A Web application firewall (WAF) is an additional
security layer that inspects Web requests before redirecting
them to their destination, allowing it to detect potentially mali-
cious requests and avoid redirecting them to the Web server or
to the Web application. When a malicious request is detected,
the WAF is supposed to prevent the request from reaching the
Web server, being able to detect the most common attacks
at the Web application level, such as SQLi, remote com-
mand execution injections, XSS, or cross-site request forgery
(CSRF) attacks. In particular, we use Raptor [30], which is a
lightweight open-source WAF written in the C programming
language. It has very few dependencies, making it a good can-
didate for use in embedded systems. Raptor adds an additional
security layer that protects Web applications by comparing the
content of HTTP requests with common signatures using a
deterministic finite automata (DFA) algorithm. Additionally,
its functionality can be extended with rules and other match-
ing strings algorithms, such as Karpe Rabin, Boyer Moore
Horspool, or perl-compatible regular expressions (PCRE). We
cross-compile Raptor for the MIPSeb, MIPSel, ARMel, and
Intel 80386 architectures, which are the ones currently sup-
ported by HALE-IoT . However, there is virtually no limitation
to which CPU platforms Raptor (or any other WAF) can
be cross-compiled for. At the same time, HALE-IoT could
implant any other WAF as long as it can be either cross-
compiled to native binary format for a device’s CPU, or can
run in a cross-compiled runtime environment (e.g., Python
and Go). The only unavoidable limitation our system inher-
its stems from the constraints of the actual devices in terms
of obsolescence of runtime, RAM memory, and flash storage
(Section VII-E and VII-H).

D. Administration of HALE-IoT

HALE-IoT is composed of third-party components (e.g.,
WAF, xAF, and HTTPS proxy) that may require bug-fixes,
improvements, and configuration updates over time. For exam-
ple, there is also a constant evolution of the threat landscape
(e.g., applicable vulnerabilities, working exploits) against
which HALE-IoT offers protection to (legacy) IoT devices,
and as such requires updates to the rules-sets of WAF and
xAF. These and similar related factors dictate the need for
a way to administer HALE-IoT in an easy, secure, universal,
and low-footprint manner. A classical way would be to use a
Web-interface to administer HALE-IoT , but here we opt for
an SSH-based administration.

There are several reasons why we chose the use of an SSH-
based interface for HALE-IoT administration instead of, for
example, a Web-based administration interface. First, SSH

by default has a proven and strong built-in authentication
and authorization mechanism and protocol based on public-
private key infrastructure (PKI). In the case of Web servers,
it would require adding HTTP and/or HTML authentication
models, which would add to the complexity of implementation
and maintenance as well as potentially expose its own set of
authentication/authorization vulnerabilities. Second, compared
to a Web-interface, SSH does not require additional third-party
dependencies and interpreters (e.g., PHP, Python) to pro-
vide full-fledged server-side functionality. With an SSH-based
approach, the overall “application attacks surface” scheme
remains generally the same even after adding the new SSH
dependency. The Web-interface option, on the other hand,
would increase the attack surface through addition of the Web
server and the admin Web pages themselves. Third, SSH pro-
vides a simple yet powerful interface for performing additional
system-administration tasks should the need arise (e.g., reboot,
power-off, filesystem access). In the case of a Web-interface,
there may be certain limitations to the administrative actions
that would be available to the Web server or the Web pages.
Last, but not least, efficient SSH implementations can be stat-
ically built with much lower footprint and overhead (e.g.,
Dropbear SSH at 100–200 kB). Such footprints are consid-
erably lower than most Web servers coupled with runtime
interpreters (e.g., lighttpd + PHP).

E. Other Types of Hardening

The simplicity and flexibility of the HALE-IoT approach is
one of its core design principles (as stated in Section III-A),
which is one of its strengths compared to the current state-
of-the-art. An additional improvement by HALE-IoT would
be the addition of hardening at networking layers L3–4 and
L7. In essence, it would mean protecting all the interfaces
and all the services in a generic whole-system manner against
network layer attacks (L3–4), as well as against application
layer brute-force attacks (L7). For layers L3–4, HALE-IoT’s
architecture can integrate industry-standard tools like iptables,
Snort, Suricata, Bro, and fail2ban for layer L7.

There are several adoption challenges that need to be consid-
ered. First, some IoT devices may not expose direct or stan-
dard access to various interfaces, thus requiring more intru-
sive reconfiguration, binary patching, or OS/kernel “hacks.”
Second, since some IoT devices may use less common OS
flavors (i.e., other than Linux-derivatives), rebinding and con-
figuration of network interfaces may be different and may
require certain HALE-IoT implementation adaptations. We
thus leave the implementation and evaluation of additional
L3–L4 and L7 retrofits as immediate future work.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness and efficiency of the HALE-
IoT method, we applied it to Web services of a wide-range of
IoT devices. We chose to harden and evaluate Web services
as the immediate focus, because these are the most com-
monly present services on most IoT devices. For this, we
retrofitted and emulated 395 firmware packages with defen-
sive implants containing a WAF (for prevention of Web-attack
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TABLE I
OUR INITIAL FIRMWARE DATA SET (BY VENDOR AND ARCHITECTURE)

vectors), and an HTTPS-proxy (for proper end-to-end HTTPS
support).

In order to implant HALE-IoT , we identified the Web server
configuration files and reconfigured them for hardening as
follows. First, taking into consideration the firmware’s CPU
architecture, we copy corresponding cross-compiled files to
the firmware filesystem as the implants needed by HALE-IoT .
This includes executable and other files for the hardening ele-
ments (Raptor, SSL-proxy, and Dropbear), configuration and
rules-set files, and authentication keys for the HALE-IoT SSH
sysadmin interface. Then, we add the initialization scripts of
the tools to the set of scripts that will be executed once the
booting process finishes (e.g., init.d, rc.d, and registration.d).
Finally, we reconfigure the Web server configuration files or
Web server initialization scripts to isolate the interface and lis-
tening port of the service (e.g., original Web server rebind to
127.0.0.1:81), and then we start full-system firmware emula-
tion [2], [3]. This process was fully automated, and was carried
out for each test of the evaluation.

A. Data Set

Our initial data set consists of 4809 real-world firmware
images extracted from FIRMADYNE [3]. Note that the original
FIRMADYNE data set is larger, but 4809 images are avail-
able to download at the time of writing. We then retain only
the images in the architectures that HALE-IoT currently sup-
ports (i.e., ARMel, MIPSel, MIPSeb, and Intel 80386, cf.
Section III), making a total of 1328. From these, we discard 43
images that have a custom format compression algorithm and,
thus, cannot be systematically unpacked with Binwalk [45]
(which comes as part of the FIRMADYNE setup). After pro-
cessing all remaining images, we managed to extract the root
filesystem from 13 device vendors (ranging from Asus to
Ubiquity) for 1285 images overall. Overall, these firmware
root filesystems are associated with devices of the following
type: Ethernet routers, WiFi routers, xDSL modems, and IP
cameras. Table I shows the distribution of vendors in our data
set, per CPU architecture.

It is important to note that when trying to address such
an immense and heterogeneous experimental population and
space, for practical and resource reasons we are bound within
magnitudes that are feasible for handling such experiments.
At the same time, our work exceeds comparable experimen-
tal state-of-the-art works such as Firmalice [46] (data set

TABLE II
DISTRIBUTION OF THE INITIAL FIRMWARE DATA SET

(BY WEB SERVER AND CONFIGURATION FILES)

size: N = 3 samples), and generally positions our experi-
ments within the magnitude range of similar recent works,
such as FIRMADYNE [3] and Costin et al. [2] (data set size:
N = K × 102, i.e., hundreds of samples).

B. Emulation

To evaluate HALE-IoT , we emulate a device that runs the
firmware images in our data set. Since we are mainly interested
in systems that have a Web interface to administrate the device,
we next describe the steps we take to select those images. We
first scrape the file system of the image to look for binaries
that are core components of a Web server (e.g., uhttpd). We
then identify the configuration files that inform settings to the
Web server (e.g., boa.conf and lighttpd.conf). Table II shows
the different types of Web servers together with the number
of firmware images (marked as “FWs”). As expected, a large
subset of images have a Web server configuration file together
with the server binary, an exception being uhttpd. Images with
a binary and without a configuration file have the server set-
tings embedded in the binary itself. To scale our evaluation,
we focus primarily on the 484 images that have an explicit
and nonembedded configuration file.

We note that from architecture and design perspectives,
HALE-IoT can run virtually on any type of firmware as long as
the user(s) can change the binding network interface and port
of the service that we aim to harden. However, in certain cases
(e.g., service uses custom or binary-hardcoded configuration),
changing the network interface and the port may require more
manual effort, and we discuss such challenges in Section VII.
In the end, out of all 484 images that have a Web server
configuration file, we managed to successfully emulate and
implant HALE-IoT to 395 firmware images. The emulation
and HALE-IoT implant covers the following five vendors: D-
Link, Netgear, TRENDnet, Linksys, and OpenWrt (Table I)
and the following four Web servers: lighttpd, httpd,4 boa, and
uhttpd (Table II). Once the emulation started, we were able to
successfully communicate with all 395 Web server processes
and, more importantly, we were able to retrofit the HALE-
IoT security hardening measures in all of these firmware
images.

4In most IoT devices we encounter, “httpd” is just a generic placeholder
name for the Web-server, and should not be assumed to be Apache’s HTTP
server.
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C. Toolsets

One key aspect of HALE-IoT is that it supports different
out-of-the-box CPU architectures and is flexible enough to
keep adding more architectures and defenses in the future. In
particular, we compile our framework for ARMel, MIPSel,
MIPSeb, and Intel 80386, as previously discussed. While it
is possible to use QEMU to emulate each operating system
used by the different vendors, we opt to perform a system-
atic cross-compilation through a toolchain. There are different
toolchains available, including Linaro [47], or Linux MIPS
Toolchain [48]. For the purpose of this article, we created
our own customized toolchain using Buildroot [49]. Our
toolchain uses musl [50], which implements the standard C
library with some improvements, such as enhanced support
for static linking. When cross-compiling the different bina-
ries using our toolchain, we strip the binary of all symbols
to optimize size. At present, we automatically cross-compile
Raptor (for WAF), and Dropbear (for HALE-IoT SSH-based
administration) for all the supported architectures. We do not
cross-compile SSL-proxy, as it is written in the Go program-
ming language and the binaries for the different architectures
can be generated directly without using a specific toolchain.
Final builds of the toolsets resulted in the following foot-
prints: Raptor 275.8–346.6 kB, SSL-proxy 5053.5–6244.3 kB,
Dropbear SSH 179.8–228 kB, and lighttpd 2381–3018 kB.
For additional resource overheads incurred from HALE-IoT
implant, see Section V-E.

It is important to note that our experimental setup is system-
atic and easily extensible to other architectures and defensive
toolsets, which is precisely the scope of our future work, as
discussed in Section IX.

V. TEST METHODOLOGY AND RESULTS

A. Test Methodology

We run two tests for each QEMU-emulated firmware fol-
lowing a DevOps methodology [51], [52]. This methodology
evaluates changes into a system in an incremental fashion so
that failure causality can be properly attributed. One test con-
tains a hundred common (i.e., nonexploiting) Web requests,
while the other test has a hundred Web requests with some
type of Web-attack payload (e.g., XSS, SQLi, CI).

Our DevOps-style testing methodology has the following
steps. First, we emulate the firmware without any kind of
modification and run the tests as a control measure to evalu-
ate the differences. We also check how many firmware images
accept connections through the HTTPS. Then, we retrofit the
firmware with the Raptor WAF and launch both tests again.
We do the same again but only after implanting the SQL-proxy
in the firmware. Finally, we launch both tests on the firmware
emulated with both protection measures retrofitted, that is, the
Raptor WAF and the SQL-proxy working together. We also
ensured that random nonmalicious requests return exactly the
same result in both tests (i.e., with and without HALE-IoT). By
comparing the HTTP headers and the content returned in both
test setups (normal versus nonmalicious) requests. To assess
the performance of the devices after retrofitting the WAF in a

TABLE III
CORRECTNESS AND EFFECTIVENESS OF THE RETROFIT

395 EMULATED WEB SERVERS

realistic setting, we use Raptor’s DFA algorithm and 55 regular
PCREs we gathered from the community [53], [54].

We apply our test methodology to answer the following
questions.
Q1) Is HALE-IoT able to retrofit defensive firmware mod-

ifications and implants without disrupting the normal
operation intended for the firmware?

Q2) Can HALE-IoT effectively deploy a secure front-end in
legacy devices?

Q3) Can HALE-IoT effectively deter known attacks and
known vulnerabilities against legacy devices?

Q4) Can HALE-IoT effectively cover multidimensional het-
erogeneity (e.g., physical versus emulation, ARM versus
MIPS versus x86, real CVEs versus synthetic vectors,
open-source versus proprietary, cross-vendor)?

Q5) What is the potential performance overhead incurred by
HALE-IoT?

Q6) Can HALE-IoT actually work with services that appar-
ently cannot run on 127.0.0.1:<port> via configuration
file?

Q7) Finally, does HALE-IoT actually work on physical
devices, rather than just emulated environments?

We evaluate Q5 using emulation only, Q7 using bare-metal
hardware only, and Q1–Q4 and Q6 using both bare-metal and
emulation.

B. Correctness and Effectiveness of the Retrofit (Q1)

To test how well HALE-IoT retrofits defensive firmware
modifications, we deploy all hardened images in our own
emulator environment resembling the one in [2] and borrow-
ing additions from FIRMADYNE (e.g., NVRAM) [3]. Table III
shows a summary of our results. We see that all 395 images
remain functional, i.e., the hardening process does not dis-
rupt the normal operation intended for the firmware. However,
some cases underperform in terms of isolation. In particular,
we see that in 8% of the images we continue to see the Web
server listening in the external interface (0.0.0.0), and, thus,
potentially exploitable connections to the original Web server
are possible without going through our hardening proxy chain.
We also see that 78% of the emulated firmwares do not use
HTTPS by default before the retrofit. We next explore in detail
the performance of HALE-IoT when looking at the first layer
of its architecture (cf. Section III-B).

During our HALE-IoT experiments, neither our
human experts nor our automated tools have encoun-
tered any functional abnormality, and the emulated-
and-hardened Web services, along with the entire
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system emulation, performed normally and as
expected.

C. Secure Front-End in Legacy Devices (Q2)

One of the main hardening goals of HALE-IoT is to iso-
late the vulnerable services from attacker-accessible interfaces
(e.g., WAN, LAN), while at the same time keeping the origi-
nal services running on 127.0.0.1 to satisfy Q1. Our evaluation
shows that HALE-IoT successfully reconfigures original Web-
servers from 0.0.0.0:80 into 127.0.0.1:81, replacing the former
address with the service running our WAF implant while relay-
ing only safe HTTP Web requests to the original Web server
now residing in the latter address.5

Further analyzing the results shown in Table III, we make
two key observations. First, 100% of the original Web-servers
(from the successfully emulated 395) rebind well to port 81
as instructed by HALE-IoT’s reconfiguration routines. Second,
despite being explicitly instructed to change binding from
0.0.0.0 to 127.0.0.1, there are 32 firmware images that remain
bound to 0.0.0.0 (in addition to the new address). This can
expose a potentially vulnerable service to attacker-accessible
interfaces, thus rendering our hardening ineffective. We posit
that this is due to vendors’ (un)intentional implementation and
coding choices or errors, where only some values from the
configuration file(s) are taken into consideration while the rest
of the parameters are either hardcoded into the binary exe-
cutable or taken from other nonobvious configuration files. We
evaluate HALE-IoT for this case in Section VI-A, and discuss
this challenge in more detail in Section VII, but we emphasize
that this happens in only 8% of our images.

Another of our aims is to use SSL-proxy to add secure
tunnel wrappers around services. Our rationale is that these
services either have weak secure tunnels, or are just plain-text
altogether (i.e., adding HTTPS support to IoT devices that
quite commonly lack it). As discussed, in certain instances,
the IoT device may provide an HTTPS server by default.
In 84 emulated firmware images, the original Web servers
also start a “default HTTPS server.” However, besides car-
rying a self-signed certificate, the default HTTPS server also
featured an outdated SSL/TLS version (e.g., TLSv1), hence
very likely exposing the Web interface to various HTTPS
and MITM attacks. On the other hand, with HALE-IoT (e.g.,
with SSL-proxy) we are able to provide the hardened IoT
devices with the latest and most secure TLS implementa-
tions, along with the proper support for full certificate chains
(see also discussion in Section VII-G). This, in turn, provides
real increased security rather than merely a “sense of secu-
rity” provided by most default HTTPS servers when these are
implemented in IoT devices and working with self-signed or
expired certificates.

Overall, HALE-IoT automatically manages to fully
isolate 92% of the potentially vulnerable Web
services, while correctly providing a secured SSL
tunnel in 100% of the tested cases.

5When WAF is chained with SSL-proxy, the WAF is further isolated
to 127.0.0.1:80, and Web service is exposed by SSL-proxy binding to
0.0.0.0:443.

D. Detection and Prevention of Attacks and Exploits
(Q1, Q3)

To evaluate the performance of HALE-IoT in regard to its
second architectural layer (Section III-C), we perform two
experiments.

Automated-Attacks: We leverage a battery of 200 Web
requests, of which half are common requests and the other
half are known Web attacks. The attacks include known XSS,
SQLi, and CI attacks coming from both actionable CVEs and
synthetic input. Our results show that HALE-IoT can detect all
known attacks when configuring the vanilla WAF community
detection rules. The detection rate itself is not at all surprising,
but this experiment reports a valuable finding: HALE-IoT can
reliably retrofit complex defense mechanisms into the firmware
of IoT devices through binary retrofits while keeping the orig-
inal firmware functional (Q1), and offering the full-fledged
level of protection of the retrofitted secure mechanism (Q3).

Targeted-Evaluation: We also evaluate the effectiveness of
HALE-IoT by targeting some firmware images with CVE-
2016-1555 (also known as ACSA-2015-001). The CVE-2016-
1555 was independently discovered by Chen et al. [3] and
Costin et al. [2]. This known vulnerability covers a series
of preauthentication XSS and RCE in several devices from
Netgear (many of which are already EOL, and therefore will
remain unprotected indefinitely unless it gets hardened with
HALE-IoT or similar). First, we exploit the vulnerabilities
in the emulated environment and confirm that the original
firmware is vulnerable and exploitable. Then, we apply HALE-
IoT to the emulated firmware and see that all attacks are
efficiently stopped. This further proves the effectiveness of
our approach, but this time with an attack that targets EOL
devices. We refer the reader to Appendix-A for visual rep-
resentation of the success of our proof-of-concept attack and
defense.

Takeaway: HALE-IoT can effectively deter known attacks
against legacy devices. Naturally, our system inherits the lim-
itations of the defense mechanism we implant. In particular,
Raptor is mainly effective at detecting known attacks and can
miss connections that include zero-day Web attacks. We dis-
cuss this limitation in detail in Section VII through different
axes, including the WAF’s inherent limitations (Section VII),
and limitations in the data sets (Section VII-C). However, we
also note that the overall effectiveness of HALE-IoT when
it comes to the detection of attacks has to be seen from an
holistic perspective. In Section V-C, we report the effective-
ness of our system at hardening insecure (superfluous) services
other than HTTP. When putting together the secure front-
end and the proactive detection layers (Fig. 1), HALE-IoT
can offer a system resilience to both known attacks against
Web services, and against unknown attacks targeting all other
hardened services.

With HALE-IoT implanted, we achieve a 100% detection
and prevention rate of known attacks in both emulated and
real-devices, while effectively hardening other services that
are often target of unknown (zero-day) attacks. This 100%
detection ratio is taken as a unit test rather than a detec-
tion ratio. This provides assurances that the WAF we retrofit
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Fig. 2. Average time to complete the HTTP request for each test run.

works as expected under active attacks. We are aware that
WAF systems detect attacks for which there is a known rule,
and they are unquestionably subject to evasion, just like any
other rule-based detection system—whether the WAF is on
a high-end production system, VPN appliance, or a HALE-
IoT retrofitted router/camera. However, they provide an extra
layer of security that protects against known exploits targeting
the firmware’s Web interface, and they prevent most auto-
mated attacks (i.e., via bots looking for vulnerable devices)
that target vulnerabilities in the exposed Web servers of IoT
devices [5], [35].

E. Functional, Performance, Overheads Evaluation (Q4, Q5)

We have collected measurements of the performance over-
heads introduced by various components of the HALE-IoT
implant. Since HALE-IoT is highly flexible and configurable,
we use a modular analysis to assess our performance. That is,
we measure the performance of the WAF alone, the SSL-proxy
alone, and the SSL-proxy chained with WAF. For each test
we collect benchmarks for the CPU and memory consump-
tion, as well as the response time of the Web requests. The
performance evaluation in the emulation provides an approxi-
mation of the memory and CPU consumption as the difference
between runs with and without any type of retrofitted tool.

In Figs. 2–4, the references to “WAF,” “SSL-proxy,” and
“WAF + SSL-proxy” represent the use of HALE-IoT with a
particular self-descriptive configuration, while “Control” rep-
resents firmware emulation without any added components.
As we discussed in Section V, each test is made up of one
hundred common Web requests represented as “Normal,” and
one hundred requests that contain some type of attack repre-
sented as “Crafted.” We carry out all tests in each firmware
that we emulate and implant HALE-IoT into. In total, our eval-
uation scripts made 316 000 Web requests. Figs. 2–4 represent
the average of the results over the entire set of emulated and
tested firmware images. The data was collected using common
Linux tools (e.g., mpstat or vmstat) from the host side.

We also provide an interpretation of the performance over-
head graphs. In Fig. 2, we see that the response time for
Normal requests increases proportionally to the number of

Fig. 3. Average CPU consumption for each test run.

Fig. 4. Average RAM memory consumption for each test run.

chained components for the particular hardened service. For
example, “WAF + SSL-proxy” request time takes longer
than “WAF” or “SSL-proxy” separately. This is more or
less expected, as in the case of WAF + SSL-proxy, the
request is forwarded back and forth via multiple connections
and software modules that have their own context-switching
delays, etc. At the same time, Fig. 2 shows that in the case
of “Crafted” requests, whenever the “WAF” component is
present, the complete request time is significantly lower than
Normal. This is both expected and direct evidence that the
WAF effectively detects and blocks attack attempts, and as
such protectively terminates HTTP communications carrying
potentially malicious payloads at much earlier stages. A sim-
ilar pattern can be seen in Fig. 3. In the case of Crafted
requests, whenever the WAF component is present (e.g., when
only WAF is present without SSL-proxy), the average CPU
usage is lower than Normal. Once again, this is both expected
and direct evidence that the WAF effectively detects and
blocks attack attempts, as WAF does not continue any further
computations and processing (e.g., relaying it to the original
Web service) once it has detected and prevented potentially
malicious payloads.
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Fig. 5. Size of the FWs along with the size of the retrofitted binaries.

Moreover, the average memory consumption increase shown
in Fig. 4 is also expected, as the additional components require
memory for operation and for storing their data, such as
WAF rules-sets and SSL/TLS certificate chains. However,
the memory consumption is harder to fully interpret than
CPU usage and processing time of requests, as the coding
practices can vary greatly across the applications. Also, as
opposed to CPU usage, which stops when a particular func-
tion flow stops (e.g., HTTP request blocked and terminated),
the memory is often not immediately freed (or not made vis-
ibly available to OS, even if freed by the application) when
the program reach certain states such as when a Crafted packet
is detected and blocked. In terms of storage overhead intro-
duced by HALE-IoT , Fig. 5 shows the distribution of sizes
for all firmware images along with the retrofitted binaries.
Specifically, as detailed in Section IV-C, the increase by each
components is as follows: Raptor 275.8–346.6 kB, SSL-proxy
5053.5–6244.3 kB, and Dropbear SSH 179.8–228 kB.

During the evaluations presented in this work, we did not
perform an exhaustive regression testing on the Web interface
(nor on other functions and services) operating within the eval-
uated devices and emulated firmware. Because such exhaustive
complete system regression testing would be a nontrivial
experiment in itself, we leave as future work the large-scale
evaluation of the functional impacts induced by retrofit defense
systems such as HALE-IoT . However, we performed an evalu-
ation of the retrofitted software. We apply fuzzing by creating
a harness for the core component of HALE-IoT (i.e., the func-
tion to which any data received through the socket is passed)
and use american fuzzy lop (AFL) as a fuzzing tool. We see
that the routines added as part of HALE-IoT are safe and do
not produce any crashes (100% success for all tests). However,
we found some memory-related bugs and several crashes asso-
ciated with an old and vulnerable version of the WAF we used
in our initial experiments. We report this finding next to show
the importance of performing black-box testing using fuzzers,
but we note that our final implementation of HALE-IoT uses
a WAF that was not vulnerable to this bug and did not report
any crashes at the time we tested it with the fuzzer.

The crashes in the old version of the WAF occurred in waf-
mode four (one of the command line options). This parameter
has four levels of protection, number four being the highest,
and defines the mode of the DFA algorithm to detect common

TABLE IV
SUMMARY OF REAL DEVICES PERFORMING

SUCCESSFULLY IN OUR EVALUATION

attacks. With the rest of the modes, and with DFA disabled
using only regular expressions as rules, the application did
not produce any crashes with the same test cases. After fur-
ther inspection and debugging, crash occurred when trying to
read a value beyond the stack limit, which causes a segfault.
This error is caused by the use-after-return memory error, and
since this memory area belongs to a function that has already
terminated, it can cause undesirable—yet not exploitable—
behavior. WAFs are both research-wide and industry-wide
accepted methods for securing Web-apps (including legacy
Web-apps) [37]. We discuss the bugs found, as well as the
security limitations that any retrofitted piece of software may
place on a system in Section VII-I.

A differentiating end goal of HALE-IoT with respect to
related work (e.g., ABSR and Symbiotes [55]) is that we aim
to be as unintrusive as possible, and to ensure that legitimate
requests do not have in important impact on the performance
of the device. Our results strongly support this goal.

We see that the use of HALE-IoT introduces some
interesting tradeoffs. When attacks are blocked, we
effectively reduce the overhead. Judging by the
performance of the hardened device when process-
ing legitimate requests alone, we see that HALE-IoT
does not introduce an important overhead.

VI. CASE STUDIES

We next present a number of case studies that aim at a bet-
ter understanding of the performance of HALE-IoT in detail.
In particular, we look at firmwares image from Linksys and
Asus. We conclude our case study with the deployment of
a hardened version of Asus RT-N12+ B1, RPi3 OpenWrt,
Netgear R6220, and Linksys EA4500 over four different hard-
ware devices. Table IV summarizes the technical specifications
of the actual physical devices used in our evaluation.

A. Reverse-Engineered Hardcoded Binary for Linksys
wrtsl54gs (Emulation) (Q6)

As presented in Section V-C, there were 32 emulated
firmware that failed to isolate webserver via binding to
127.0.0.1. For unknown reasons, the firmware kept the Web
service binding to 0.0.0.0. In order to demonstrate that HALE-
IoT is also feasible, practical, and effective even when the
reconfiguration retrofitting fails, we attempted a minimal-effort
manual reverse-engineering of one such Web-server binary.

For this, we chose the httpd BusyBox Web server binary
from OpenWrt firmware built for wrtsl54gs device by Linksys.
Even though httpd BusyBox is known to support the “−p”
option to change the binding interface and port (e.g., “−p
127.0.0.1:81”), in this particular case it was not supported or
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it did not work. We then investigated the potential reasons
behind this failure. The wrtsl54gs firmware image has a non-
stripped BusyBox binary that is dynamically linked, so our
first approach was to look for HTTP functions to recognize the
httpd BusyBox applet. Then, we identified the call to the bind
function and checked the parameters backward. We found the
inet_aton function that converts a string IP address into
binary form and that uses the variable assigned from the “−l”
command-line argument as a parameter. Though this argument
does not appear in the help menu of the httpd command, it
allows the listening interface of that specific httpd binary to
be changed. We leverage the hidden -l option to successfully
run HALE-IoT in the wrtsl54gs firmware.

We can further generalize this one-time manual effort into
HALE-IoT’s automation as follows. We can identify similar
service-exposing binaries using, for example, Yara rules [56],
or heuristics and matching based on the op-code level or
semantic code-similarity [57]. Similar binaries could relate to:
1) the same device (but different firmware version); 2) the
similar device models (from the same vendor); or even 3) dis-
tinct devices across vendors (e.g., “white label” products).
The takeaway from this case study is that manual efforts
can sometimes provide “intelligence” that can help to scale
the hardening of images over a very large number of similar
firmware environments.

B. Evaluation on RaspberryPi With OpenWrt (Device) (Q7)

To evaluate HALE-IoT over a bare-metal device, we deploy
an OpenWrt (LEDE 2017 build) into a RaspberryPi 3 device.
OpenWrt is the most popular vendor in our data set that has
firmware images for all our architectures. The LEDE 2017
build version of OpenWrt has a known XSS in its LuCI Web
interface.6 Therefore, we first run a nonhardened OpenWrt
firmware and we see that the vulnerability can be exploited
in practice (see Fig. 8 in Appendix-A). We then harden the
same OpenWrt firmware with HALE-IoT and see that with the
WAF + SSL-proxy configuration we can completely prevent
the XSS attack, in addition to being able to add full HTTPS
support (see Fig. 9 in Appendix-A). This case study indicates
that HALE-IoT works as expected on bare-metal devices. Our
next case study explores this further.

C. Evaluation on Asus RT-N12+ B1 (Device) (Q6, Q7)

We evaluate HALE-IoT on another bare-metal device we
had access to; Asus RT-N12+ B1. This device runs MIPS32
binaries, and, in particular, uses a custom httpd as its Web
server. This image requires a retrofit at the binary level, as the
configuration parameters of the Web server are hardcoded into
the binary and can not be identified by HALE-IoT automati-
cally. After reversing it, we see that the binary accepts three
arguments: 1) the name of the interface whose IP address will
be obtained through SIOCGIFADDR ioctl; 2) the port; and
3) a way to enable SSL connections. The device also runs
and exposes Telnet and SSH services that we used for “live
implanting” (Section VII-A).

6More details here: https://github.com/openwrt/luci/issues/1731.

As a result of our implant, we see how HALE-IoT
spawns the WAF into the device, and how the Web ser-
vice is secured behind HTTPS while hardening all other
services. We see that Raptor works as expected, detecting and
preventing potentially malicious input test-vectors. However,
we notice that the device periodically faced some resource
limitations manifested as unavailability of RAM memory.
Nondeterministically, when insufficient RAM is available for
handling HTTPS/HTTP/network requests via the HALE-IoT
processing chain, the spawned process/thread (e.g., WAF,
SSL-proxy) is killed by the OS/Kernel due to lack of suf-
ficient memory blocks to allocate. This is a limitation rooted
in a combination of technical factors such as the hardware
runtime environment (i.e., device with very limited RAM),
and the implementation choices (i.e., SSL-proxy executable
size). However, this case study shows how our methodology
can harden Asus RT-N12+ B1. In practice, for this type of
device, a more lightweight defensive mechanism would have
to be deployed in order to make the added defenses effec-
tive and usable. We further discuss the implications that drive
the choices of the implants in Section VII-H. This case study
shows that our generic methodology lets us work with hetero-
geneous firmware images, and also on bare-metal devices and
firmware.

D. Evaluation on Netgear R6220 (Device) (Q6, Q7)

Next, we evaluate HALE-IoT on Netgear R6220. This
device runs MIPS32 little-endian binaries, and uses the
mini_httpd Web server. The Web server does not contain
any configuration files, and the server options are config-
ured through the command line. Therefore, we can change
the listening port and interface via the server’s arguments.
We retrofitted Raptor and SSL-proxy on the device through
a Telnet server that can be enabled in debug mode. Raptor
worked as expected, but SSL-proxy did not work due to
Golang incompatibilities with older MIPS kernel versions.7

As an alternative to SSL-proxy, we use a statically linked
cross-compiled lighttpd server with support for SSL/TLS and
reverse proxy. We use a configuration that listens on port 443
with SSL enabled and redirects incoming requests to the WAF.
As a result of using lighttpd as an alternative, we can see
that the extra security layers added by HALE-IoT are working
correctly. This case study shows us that our methodology is
functional, flexible, and independent of the type of tools used.

E. Evaluation on Linksys EA4500 (Device) (Q6, Q7)

Finally, we evaluate HALE-IoT on the Linksys EA4500
device. This device runs ARMv5 and lighttpd binaries as
a Web server. The default firmware does not present any
access to the command line, which poses a challenge to
HALE-IoT . However, we found a workaround that shows how
our system can be deployed through unconventional means.
Linksys EA4500 allows a user to connect universal serial bus
(USB) devices to the router to share files over the network.
When a USB is plugged in, it is mounted in the /tmp folder

7https://github.com/golang/go/wiki/MinimumRequirements
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of the device. If a folder named packages exists, it is sym-
linked directly to the /opt directory. Finally, whatever file is
present in /opt/etc/registration.d/, it will be exe-
cuted by the shell.8 Therefore, we use this hack/vulnerability
to add a statically linked version of dropbear and HALE-
IoT into the device’s running firmware. As a result of this
implant, Raptor WAF and SSL-proxy work properly together
with access to the device via SSH to update or modify its
configuration.

VII. CHALLENGES AND DISCUSSIONS

A. Delivery of the Retrofitted Implants

Modifying an existing firmware is the first step in the deliv-
ery of an implant, and it can be done by leveraging tools
like firmware-mod-kit (FMK) [58]. However, in certain cases,
implants are not easy to realize in practice. This happens, for
instance, when the firmware update needs a digital signature,
or there is a cryptographic protection (e.g., strong and secured
private key, correct implementation of validation). However,
there are also vulnerabilities that allow flashing a noncerti-
fied or modified firmware into a device with these restrictions.
Some of these vulnerabilities relate to forging digital signa-
tures or bypassing digital signature verification. Giese [59]
exploits a domain name system (DNS) redirect to trick Xiaomi
Cloud to download modified firmware from a local server.
Another example is when there is no firmware update avail-
able, except the original firmware running on the device.
Finally, low-level frameworks like Firmware-Mod-Kit may be
unable to support the specific firmware format that requires
hardening. We next discuss alternative methods that HALE-
IoT could deploy to circumvent this limitation. These methods
revolve around the idea of making the implant directly into the
device in runtime.

The first option is the use of network or serial interfaces
(e.g., Joint Test Action Group: JTAG, Universal Asynchronous
Receiver-Transmitter: UART) to access the built-in Telnet and
SSH services via the bootloader or the OS prompt. Then, we
can implant HALE-IoT using automation scripts over tradi-
tional OS sysadmin techniques, as shown in the case study
in Section VI-C. The second option is to exploit a known
vulnerability in the running device, such as remote code exe-
cution (RCE) or command injection (CI), to inject benign code
and implant the HALE-IoT , for example, as demonstrated for
Linksys EA4500 (Section VI-E). Naturally, HALE-IoT can
then also patch those particular vulnerabilities so that they
cannot be further abused. Note that similar techniques have
been used by both highly competitive malicious botnets and
vigilante IoT malware [60]. While this section discusses the
challenges of modifying firmware (software), we next look at
the issues behind dealing with the actual devices (hardware).

B. Persistence of the Retrofitting Implants

The IoT realm is heterogeneous, and the process of
retrofitting additional security into these devices is a highly

8Dan Walters: https://web.archive.org/web/20120914060622/http://blog.
danwalters.net/.

technical task. One task that remains particularly challenging
is keeping these retrofits persistent across reboots and power-
offs. HALE-IoT is stored at the filesystem level (e.g., flash
storage) to maintain persistence. However, several factors can
prevent HALE-IoT from being persistent, including factory
resets, firmware upgrades, forceful flash storage cleanup (e.g.,
SPI communication with flash chipset), or even protections
from manufacturers (e.g., restricting partitions to read-only).
In many cases, the implants (both benign and malicious) can
survive such “cleanup” scenarios by installing an implant com-
ponent at the bootloader level, thus essentially acting as a
boot-time rootkit. However, this is a challenging research area
that requires further explorations and ethical considerations.
Other specific protections from manufacturers can be over-
come with case-by-case-basis techniques, for example, the
restriction of partitions to read-only could be overcome by
repacking or reflashing the firmware (Section VII-A).

C. Data Set Size and Representativeness

In order to analyze, harden, and test our HALE-IoT system,
a firmware data set is required. The vendor’s website is
the first choice for gathering firmware, but third-party web-
sites also host firmware images. The most convenient way to
acquire firmware online is via Web-crawlers [1], [3]. However,
harvesting a data set through Web-crawling has its limita-
tions. For example, firmware that was once available online
is often pulled offline by the vendor. This can threaten the
reproduciblility of the evaluation. For example, state-of-the-
art projects, such as FIRMADYNE [3], face this problem and
we see a gap from the time of their release to the time of our
experiments, such that many URLs and firmware are not avail-
able online anymore [1], thus limiting the experimental data
sets from the start. Even if the crawlers can be updated to work
with a redesigned website (which is tedious and does not scale
in effort), they cannot fundamentally be fixed to download a
firmware file taken offline by the vendor.

Also, some devices do not have firmware images available
online. This could be due to the nature of the product or
the age of the device. Pulling the firmware out of a device
through Telnet or secure shell (SSH) connections is possible in
some scenarios [61]. However, in many cases, memory dumps
through hardware hacking is the only viable option [39], [62].
IoT devices often accommodate low-level hardware interfaces,
such as UART or JTAG, through which it is possible to con-
nect directly to the device’s bootloader or to its root shell [39],
and then take a storage and memory snapshot, or just per-
form a live-implant. This approach requires extensive human
expertise and interventions, and also does not scale well.

A fundamental challenge to all research targeting IoT
devices and firmware is the lack of a highly representative
baseline of IoT firmware data set. Building a data set is chal-
lenging and tricky from multiple perspectives. On the one
hand, collected firmware can face copyright scrutiny from
vendors if it includes proprietary firmware. Also, it is highly
unlikely that many relevant and omnipresent vendors will sign-
off releases of their firmware into such a data set. On the
other hand, ignoring proprietary images and including only
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open-source firmware would be easier to accomplish, but this
would bias the data set and make it unrepresentative of the
myriad of COTS devices running proprietary firmware. Our
evaluation uses the FIRMADYNE data set [3], which is con-
sidered state-of-the-art. We were able to successfully process
395 images from it, which is comparable in size to the data
sets used in prior works [2]. However, given the large number
of IoT vendors, this data set can be seen as limited. Future
work is needed to create a data set that is:

1) a highly representative baseline of IoT firmwares
(i.e., multidimensional representativeness: CPU architec-
ture, OS, device type, core services and functionality,
networking interfaces and stacks, and firmware packag-
ing formats);

2) not facing licensing issues (i.e., firmware that is propri-
etary, nondistributable, etc.);

3) stable and always available for download, duplication,
and improvement (i.e., never lost, either partially or
totally).

D. Firmware Obfuscation

Firmware images are often packaged and compiled, thus,
requiring preparation before analysis [1]. Specialized software,
such as Binwalk [45] and binary analysis-NG (BANG) [63],
is used to unpack the firmware, revealing the file system and
other information, thus enabling further analysis. However, as
there is no standardization, some manufacturers try to obfus-
cate and complicate unpacking and reversing their firmware,
for example, by adding custom format compression [1]. Due
to memory and other resource constraints, IoT devices often
ship with file systems designed for constrained devices, such as
squash file system (SquashFS) or Journaling Flash File System
(JFFS, JFFS2) [64]. These file systems are often read-only
and have file system compression enabled. Additionally, soft-
ware such as Firmware-Mod-Kit (FMK) [58] is one of the
few available and one of the most popular tools to perform
firmware modifications on a relatively wide range of formats
and devices.

When not performing a live implant, HALE-IoT focuses
on retrofitting legacy binary firmware via firmware modifi-
cations. Thus, it requires and performs: 1) the unpacking,
and modification steps (if emulation is involved) and 2) the
unpacking, modification, and also repacking (if a physical
device is required to force a firmware upgrade for the implant
to work). In these cases (especially when a physical device
with a firmware upgrade is involved), in the end must pro-
duce a firmware that is accepted by the device and is fully
functional. However, even though both firmware unpack-
ing as well as modification-and-repacking are represented by
existing toolsets to some extent, the current state-of-the-art
does not addresses the fundamental challenges of unpack-
ing and modification-and-repacking of nontrivially obfuscated
or encrypted/signed firmware. In this sense, the HALE-IoT
system inherits all the limitation of the existing tools (e.g.,
Binwalk, BANG, and FMK), which however is not a limi-
tations of the HALE-IoT methodology itself. In our current
evaluation, the physical devices and the emulated firmwares

were representative of the IoT device populations that allow
relatively easy live-implanting as well as unpacking, modifi-
cation, and repacking. We posit that more work is required
to overcome the analysis of obfuscated or encrypted firmware
packages.

E. Runtime Environments Being Obsolete

Runtime challenges became obvious when we started exper-
imenting with pushing implants into random COTS IoT
devices for the purpose of our case study. We next dis-
cuss some of those challenges to illustrate the complexity
of the problem space and elicit research efforts toward better
instrumenting obsolete runtime environments.

In one instance, the router undergoing hardening had
the vendor’s original firmware, and was running BusyBox,
Linux kernel, and other executable files compiled for MIPS-I.
However, the Buildroot environment we use (including many
of its prior versions), while producing MIPS32 builds, does
not produce MIPS-I cross-compilations anymore.9 For exam-
ple, even though we tried to run on the router our toolsets
precompiled by Buildroot for MIPS target, certain binaries
returned errors such as Illegal instruction. This is the most
tangible confirmation of a mismatch between the hardware
CPU instruction set architecture (ISA) and the ISA generated
into the executable by the cross-compilation.

Addressing the “obsolete firmware environment” challenge
is important for several reasons. Any system, whether offen-
sive [55] or defensive such as HALE-IoT , will most likely face
either exactly the same or very similar challenge on a constant
and increasing basis. Some reasons for this are that devices
become obsolete/EOL faster, and the technology and software
development life-cycle is constantly accelerating. The above,
in turn, implies several more things. First, supporting many
legacy IoT devices will require an ever growing toolbox of
cross-compilation environments. Such a backward compatibil-
ity toolbox should provide as complete coverage as possible
in terms of combinations for CPU ISA, OS/kernel, application
binary interface (ABI), and runtime environments (includ-
ing all different versions and intercompatibility). Second, it
will require human expertise and manual intervention to gen-
erate and maintain such cross-compilation environments, as
well as to ensure that the target-specific builds of systems
such as HALE-IoT actually work without errors (e.g., Illegal
instruction).

F. Runtime Services Hardcoded to 0.0.0.0: <port>

Sometimes network services (e.g., Web-servers) have the
port and the network interface binding hardcoded instead of
being read from a configuration file (whether standard or pro-
prietary). This is problematic, as it exposes the original built-in
network server to potential attacks coming from attacker-
accessible interfaces. In fact, for the 32 firmware in our data
set that expose Web services, the interface and/or port was
hardcoded directly into the binary. With HALE-IoT (cf. Fig. 1)
the aim is ideally to isolate (inherently) vulnerable services to

9https://github.com/buildroot/buildroot/blob/master/CHANGES
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127.0.0.1:<port>, and to expose only the hardened services
via HALE-IoT .

One possible workaround to this challenge is to manu-
ally reverse-engineer and binary-patch the executable files of
interest and, ideally, force them to bind to 127.0.0.1:<port>.
While this approach will most likely work in most cases, it still
cannot scale similarly to the automated configuration change
approach we presented above. Another possible workaround
is to force-start a dummy TCP/UDP server on 0.0.0.0:<port>
before the built-in network service (e.g., Web-server on port
80) has a chance to bind to it, and then observe how the
original service behaves for rebinding (e.g., moves to another
port, moves to another interface, fails to start altogether).
Implementing and testing these adjustments is the scope of
our future work.

G. From Self-Signed HTTPS Certificates to Full CA Chains

One of the core aims of HALE-IoT is to generically harden
IoT devices with proper HTTPS, including support for full-
chain certificates. For this, the HALE-IoT approach uses the
concept of HTTPS-proxying that creates a proper HTTPS ser-
vice point that is relayed to the built-in webserver. Our current
implementation choice is to use SSL-proxy, which provides
the latest and most secure TLS implementations, and sup-
ports full chain certificates. However, in order to simplify our
experiments, and for several practical reasons, we used self-
signed certificates generated by the SSL-proxy itself. Should
we deploy and evaluate HALE-IoT on real-world Internet-
facing IoT devices in the future, the following minimal steps
would ensure an example implementation when using proper
PKI full certificate chains.

1) Configure and connect the device to a public DNS
subdomain name under the user’s control (e.g., using
DDNS services or otherwise), for example https://
device-X.fleet-Y.service-provider.c0m.10

2) Have a full certificate chain issued by a trusted
CA (e.g., Let’s Encrypt) and covering https://*.fleet-
Y.service-provider.c0m or https://device-X.fleet-
Y.service-provider.c0m (depending on the desired
granularity of “device identity management” versus
“PKI/certificate/key control”).

3) Use the corresponding full certificate chain and its pri-
vate key(s) to configure the SSL-proxy implant that goes
into a corresponding device. This can be done before
implanting HALE-IoT , or while the hardened device
is already running by using HALE-IoT’s SSH-based
administrative interface.

The above is an example of the improvements needed to ensure
secure management of DNS, PKI, certificates, private-keys,
and device identities.

Moreover, effective and efficient PKI implementations rep-
resent an ongoing area of research on its own [65], [66], espe-
cially when considering deployment of PKI for IoT [67], [68].
Therefore, we leave research, experimentation, and validation
of full-blown PKI support for HALE-IoT as future work.

10A full first-level DNS domain name would also work for a single device,
but is suboptimal and hardly practical for managing larger fleets of devices.

H. Resource Constraints: Static Linking Versus
Dynamic Loading

We present two approaches to deal with constraint in physi-
cal devices. On the one hand, static linking allows the toolsets
within HALE-IoT to be self-contained, and not depending
on the existence of particular libraries within the target
retrofitted firmwares. This makes the approach highly scalable:
cross-compile once, run everywhere. However, this approach
considerably increases the size of the binaries included with
the implant. This is problematic from a storage perspective
and from a memory perspective, as there is essentially a pos-
sible duplication of library code loaded into RAM due to static
linking. Flash storage and RAM memory are quite constrained
and minimal in many devices. For instance, Asus RT-N12+
features a 32-MB RAM chipset, where 28 MB is allocated
for userland applications, from which less than 2.5 MB was
available for the entire HALE-IoT .

On the other hand, dynamic loading allows the toolsets to
be built with minimal binary size and runtime RAM memory
consumption, as there is no code duplication and the hardening
toolsets can rely on the libraries already present on the device’s
storage and RAM. However, this approach is highly nonscal-
able. For example, it means that the toolsets would have to be
linked with dynamic loading to a myriad of library versions
present in each different firmware version. Even if that could
be automated somehow, it does not guarantee that the library
exposes the correct and expected interface and functions (e.g.,
if the library is vendor-customized or missing headers).

This challenge is not easy to solve systematically. Our
experience suggests that the best approach is to write highly
optimized toolsets designed to fit highly constrained devices.
If this is not feasible, then the newly developed hardening
toolsets, especially those that are tailored specifically for IoT
devices, should incorporate these design principles.

I. Inherent Limitations of WAFs and xAFs

Like any piece of software, WAFs and xAFs or, in gen-
eral, any implant that can be retrofitted into a system may be
subject to limitations that can range from its own implemen-
tation errors (e.g., WordPress WAF plugin recently vulnerable
to SQLi itself,)11 or new vulnerabilities and zero-days to out-
dated software configurations that may arise in the future. Such
fundamental limitations would also be inherited by HALE-IoT .

One limitation is that most WAFs can detect and prevent
input-driven exploits, but very often they are unable to detect
and prevent other attacks such as “stored XSS.” Another lim-
itation is that WAFs are mostly rule-based, so the presence or
absence of specific rules may determine the success or fail-
ure of detection/prevention. Also, keeping such rules up to
date is another factor that may affect or limit the effective-
ness of any given WAF. We have designed HALE-IoT with an
administrative interface in mind. This feature, if used often and
correctly, may help overcome the limitations of outdated rule-
sets and components. Though technically possible, we leave

11https://portswigger.net/daily-swig/wordpress-security-plugin-hide-my-
wp-addresses-sql-injection-deactivation-flaws
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full automation of updating HALE-IoT rule-sets (and other
components) as future work.

As a result of our work, we have fixed several bugs in Raptor
that have improved the overall reliability of the WAF. The dis-
covery of the bugs and the development of their patches are
a relatively modest contribution in itself. However, their dis-
covery underpins the importance and the need for experiments
such as ours to expose well-known and widely used software
to even more scenarios.

Bugs in Raptor WAF—HTTPS: During the course of the
experiments, we detected certain bugs in the way the WAF
should work [69]. First, the communication lasted longer than
expected even when all the responses had been received, caus-
ing, for example, the browser to appear to still be loading the
Web page. Inspection of the source code revealed that the
socket descriptor was not closing, which caused the connec-
tion to remain established. Second, we encountered strange
behavior when the WAF was running alongside the SSL-proxy.
In this case, when we made POST-type HTTP requests that
included some payload, Raptor did not detect them correctly.
When instead only the WAF was running instead, it worked
as expected with the same request. After closer inspection,
we found that the WAF checks whether a request is a Web
HTTP request, and if so then the Raptor analyzes it. Generally,
most Web clients (e.g., curl or Web browsers) send the head-
ers and the data in the same packet (large chunks of data
will be divided into multiple different TCP packets). However,
the HTTP libraries of the Go programming language split the
request: first send the headers, and then the data itself. Hence,
Raptor WAF fails to analyze the data from the subsequent
GET/POST request(s). We patched Raptor’s code to check the
data size of the headers, and then to reassemble the packets
before analyzing and proxying the traffic to the destination
(i.e., firmware native) Web server.

Bugs in Raptor WAF—Memory Leaks: We found sev-
eral memory-related problems in Raptor WAF [70], [71].
First, we encountered a use-after-return error, that are
many times exploitable [72]. This error occurs when a func-
tion returns the memory address of a local variable, which
is “destroyed” when the function terminates. Therefore, the
returned pointer references to an area of the stack that could be
used for another function, and could cause unwanted behavior
or exploitation of the program [73]. Finally, we found sev-
eral cases where dynamically allocated memory areas are not
properly released, which caused memory leaks. Not freeing up
memory causes the program to eventually store more memory
than it needs, which is a major issue with memory-constrained
devices (see also Section VII-H). This can be an overall lim-
iting factor to the usability of the retrofitting implants, and
can also lead to general instability and crashes systems on
which Raptor WAF is installed, meaning it can very well affect
high-end servers and not just constrained IoT devices. Finally,
there is inherent risk in the uninitialized memory created by
the dynamic allocation algorithm. This is not a security bug
per-se (rather a feature of many programming languages), but
certain functions such as malloc return a pointer to a block
of memory that has uninitialized values and can be poten-
tially exploited [74], [75]. However, the shortcoming of having

uninitialized memory areas can be effectively remedied by
making use of the calloc function, which fills the dynam-
ically allocated memory block with zeros as a deterministic
initial value, at the expense of minor performance overheads.

VIII. RELATED WORK

Hardening legacy IoT devices has been a subject of sev-
eral research papers over the years [14], [20], [22], [77], [80],
[105], [106]. At the same time, hardening systems and applica-
tions (which also could be extended to IoT at least) have seen
a massive body of work on two separate directions, namely,
WAF [37], [90], [91], [92], [93], [94], [95] and IDS [83], [84],
[85], [86], [87], [88], [89]. Related works, which we showcase
here, follow different strategies and we group them into the
following categories.

1) Embedding defensive software or retrofitting security
measures.

2) Securing firmware from malicious modifications.
3) Securing access control and communications.
4) Web and application firewalls.
5) IDSs.

Table V summarizes the massive body of related works.

A. Retrofitting, Patching, and Hardening for Security

Enhancing the security of a single IoT device is a defensive
strategy that works best when the devices are not part of a
large centralized network of IoT devices. Cui and Stolfo [20]
introduced the notion of SEM, a software design to embed
defensive software into an existing installation. The authors
embedded an IDS and showed how these strategies can lead to
the detection of stealthy malware (i.e., a rootkit) into a Cisco
router. Choi et al. [14] followed a similar approach in their
research. They developed a scheme to deploy security features
in poorly secured IoT devices through the deployment of a
monitoring Web service that manages multiple IoT devices
in a network. Recently, Maroof et al. [76] presented iRE-
COVer, a holistic solution for the security management of IoT
devices. It aims to replace “vulnerable modules” with “secure
modules” and offers “secure channels” for communicating
devices, without specifically addressing backward compatibil-
ity and intended equivalent functionality of secured modules.
The authors demonstrated iRECOVer on a single Raspberry-
Pi 4 Model B device running customized open-source Linux
distribution. The authors were unable to demonstrate iRE-
COVer on real-world IoT devices, as they acknowledge that
programming a commodity IoT device is difficult. HALE-
IoT is fundamentally different, as it is demonstrated to work
on a large number of heterogeneous and original-commodity
IoT devices/firmware, and does not replace original modules,
but rather wraps them in added-security layers. These works
showed that retrofitting security measures is a process agnostic
to the platform (hardware and software), and it does not need
to be attuned to any executable format. Similarly to approaches
based on SEM, HALE-IoT is installed alongside the original
operating system and injects protecting payloads into the tar-
get. However, prior works propose hardening solutions that are
tailored to specific attacks and are limited by scale and lack
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TABLE V
SUMMARY RELATED WORK

of automation. HALE-IoT is designed as a generic method to
deploy universal and hardening solutions with proven effec-
tiveness, while at the same time minimizing intrusion and
reconfigurations to the original firmware.

Not every hardening tool is universal, as some are designed
to secure a more specific section of IoT devices. For example,
Christensen et al. [77] introduced DECAF, a unified extensi-
ble firmware interface (UEFI) firmware code pruning system
to reduce redundant and possibly vulnerable code in firmware

while increasing system performance and security. This
firmware commonly exists in motherboards. The DECAF plat-
form does this “debloating” by performing “dynamic iterative
surgery” and utilizing existing knowledge of the firmware to
remove known possible issues. The authors conclude that in
some cases, DECAF reduces the UEFI firmware code by over
70%, thus, notably reducing the attack surface of the firmware.
The authors claim that DECAF could potentially be extended
to prune any type of firmware. Similarly, Cui et al. [55]
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proposed ABSR as an early conceptual ideal firmware code-
debloating technique achieved via binary-patching and binary-
rewriting. Recently, Zhang et al. [78] presented µTrimmer,
a system to identify and remove unused basic blocks from
binary code of shared libraries and tools. The authors imple-
mented µTrimmer for the MIPS architecture (a very common
one for IoT devices), and tested its effectiveness on SPEC
CPU2017 benchmarks, popular firmware applications (e.g.,
OpenSSL), and a single real-world wireless router firmware
image. µTrimmer demonstrated that the challenge of static
library debloating on stripped binaries, while being enor-
mous, is not insurmountable for MIPS-based firmware; their
system produced functional programs while reducing unnec-
essary exposed code surface and eliminating various reusable
code gadgets. However, debloating itself is ineffective at hard-
ening core services in the firmware (e.g., fragments of the
firmware that cannot, or should not, be pruned). Additionally,
debloating in principle is a high-risk technique, as it may prune
code segments that are instrumental for the normal intended
operation of the system/device as a whole. Our system
avoids debloating altogether and hardens the potentially vul-
nerable services with securing wrappers that bring proven
effectiveness (e.g., Raptor WAF) and security guarantees
(e.g., SSL-proxy).

Standalone IoT devices often interface with the user via
built-in Web servers due to its wide and cost-effective adop-
tion. However, Web services often introduce vulnerabilities
to the system. Gourdin et al. [79] tackled this issue by
developing WebDroid, an IoT focused Android OS Web
interface development framework with security as a prior-
ity. WebDroid enables developers to easily create more-secure
Web interfaces for their Android-based IoT devices. The
framework takes into account many important security issues,
such as bad authentication practices, XSS, and CSRF. These
frameworks are an interesting first step toward securing
devices for vendors that lack the means to produce secure
environments [107]. However, these types of frameworks are
meant to be integrated into the source-code and develop-
ment life-cycle, and can not be easily adopted to secure
firmware already deployed. Our work, on the other hand,
practically demonstrates a systematic approach to integrating
defensive measures post-deployment and without access to the
source-code.

B. Malicious Firmware Modifications

Other related works perform firmware modification to attack
devices [80], such as malware targeting USB devices [108]
or printers [55], as well as attacks to critical infrastruc-
tures [81] (including smart grids [82]). These works are
certainly a strong testament that firmware modifications
have important real-world implications. However, modify-
ing the firmware to embed defensive and protective mech-
anisms (as we do with HALE-IoT) requires an entire
methodological consideration and evaluation to both pre-
serve the correct functioning of the device (Section V-E) and
assess the real effectiveness of the multidimensional defenses
(Section V-D).

C. Intrusion Detection Systems

IDS have been a subject of research over the last few
years. Thakkar and Lohiya [83] conducted a survey on IDS
in IoT environments distinguishing between strategies for
placing an IDS and for analysis. The most recent related
work focuses on building IDSs based on machine learning
(ML) [84], [85], [86] and deep learning (DL) [87], [88], [89]
models. However, most of them do not take the limitations
of legacy IoT devices into account in terms of storage and
computing capacity to run the trained models, using at best
the Raspberry Pi to evaluate the model in IoT. HALE-IoT is a
methodology to retrofit security measures in IoT devices, and
it is not limited to any tool, allowing the implementation of
ML or DL algorithms instead of the WAF used. However, for
the implementation of such measures, it is necessary that they
adhere to certain assumptions regarding the footprint of the
application, dependencies, and architecture of the device.

D. Application Firewalls and WAFs

The security of server-side applications and the main vul-
nerabilities that affect this type of application has been a
subject of research in recent decades [37]. With the growth
of the Internet and the services offered through the network,
Web applications have become one of the main services
attacked. One of the main protections for this type of attack
is WAFs, which have been the subject of research in the last
decade [90], [91], [92] and are widely used in the industry.
WAFs are responsible for monitoring HTTP traffic between
users and Web applications, being able to effectively iden-
tify known attacks. However, because they are not able to
identify zero-day attacks, their signatures need to be updated
periodically [37]. Although, there are ways to overcome WAFs
(e.g., loopholes in the WAF rules [93], [94]), WAFs can also,
in some cases, formally show/guarantee absence of certain
bugs. Thus, we assume adding WAF as part of HALE-IoT
methodology is sound, sane, and increases cybersecurity [95]
by protecting device Web interfaces from known attacks that
are being exploited automatically on a large scale.

E. Authentication and Encryption of IoT Communications

Perhaps weak authentication, lack of encryption, and vul-
nerable Web services are altogether one of the largest
attack surfaces in IoT devices to date [7], [27], [28], [29],
[96], [97], [98]. There is a significant number of previous
works that:

1) measures and points out crypto-security deficiencies in
the IoT realm as a whole [7];

2) identify the use of weak cryptography in constrained
devices [28], [29]; or

3) discover weaknesses in the way TLS or PKI is deployed
over the IoT [27], [97].

However, none of the existing works in the literature manage to
effectively harden these services due to its intrinsic complex-
ity: “the HTTPS deployment process is far too complex even
for people with proficient knowledge in the field” [99], not to
mention when such deployment is rooted into an obscure com-
ponent such as the firmware of a legacy IoT device. It is also
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well known that the Web is “large and complicated enough to
make even conceptually simple security upgrades challenging
to deploy in practice” [100]. The Web of IoTs of all networks
is perhaps one of the hardest to harden. Still, our work presents
a practical, sound, and actionable contribution to addressing
these nontrivial challenges.

F. Over-the-Air Firmware and Software Updates

Kolehmainen [101] performed a survey of secure firmware
updates for IoT. The author concluded that there are almost as
many firmware and software update procedures as there are
manufacturers, and proposed a common four-element update
model: 1) packing; 2) delivery; 3) authentication; and 4) attes-
tation. Bauwens et al. [102] summarized and outlined key OTA
principles for IoT devices and deployments.

Regarding (secure) OTA and Firmware OTA (FOTA) imple-
mentations, the automotive industry is perhaps the forerunner
and trend-setter in the research literature. Idrees et al. [103]
showcased a model for manufacturers, workshops, and vehi-
cles to establish a secure end-to-end link using a trusted
platform model and secure communication. The model can
be used to secure FOTA updates. Chowdhury et al. [104]
proposed an ISO 26262 and SAE J3061 utilizing an assurance
case template for OTA updates. If used properly, the template
is a valuable tool for manufacturers to root out security issues
in their automotive OTA implementation in the development
phase.

Halder et al. [10] conducted a survey in regard to OTA
updates of network-connected vehicles. They identified some
challenges that the industry has yet to fully solve. For example,
the software distribution needs to protect privacy as well as
be secure. Latency of the software installation can also be an
issue, especially for autonomous vehicles. Furthermore, since
key management is generally based on the trust of preinstalled
keys, key refresh may be in order considering the lifetime of
a car.

However, our present work has a different and comple-
mentary focus, in that HALE-IoT does not propose to solve
any challenges faced by (secure) OTA/FOTA software updates.
In fact, HALE-IoT itself could be delivered/deployed by any
OTA/FOTA system that is running (or supported) by the
particular device(s). We leave the exploration of integrating
HALE-IoT into OTA/FOTA workflows as promising future
work.

IX. CONCLUSION

The Internet and private networks are littered with millions
of vulnerable IoT devices. A large number of these devices
are effectively abandoned by manufacturers, who do not issue
patches to fix known issues. This prevents users and network
administrators from keeping their devices up to date and, thus,
poses an endemic risk to the security of the Internet, as well
as of the enterprise and private/home networks. Hardening IoT
devices allows the attack surface to be reduced, which emerges
as a promising countermeasure. However, prior work has lim-
ited scope, and clearly fails to deal with the heterogeneity and

Fig. 6. Screenshot depicting emulated TRENDnet TV-IP121WN IPcam’s
Web-interface along with the generated HTTPS certificate as part of the
SSL/TLS hardening by HALE-IoT (emulation).

the many technological constraints of both modern and legacy
IoT devices.

In this article, we presented a systematic methodology
designed to retrofit sophisticated state-of-the-art defensive
mechanisms into IoT firmware, with particular focus on legacy
and obsolete firmware. We tested our framework with a
wide-range of firmware images from different vendors and het-
erogeneous architectures, totaling 395 emulated firmware and
four physical devices. Our results demonstrated that HALE-IoT
successfully retrofits defensive implants in a scalable and safe
manner (i.e., without breaking the firmware). We also evalu-
ated the performance of our approach under a battery of one
hundred attacks, showing it is feasible to deploy HALE-IoT in
the wild.

We discussed our findings and identified a number of lim-
itations that showed the challenges and the idiosyncrasies
of hardening IoT devices. Our discussion also elicited a
number of future promising directions. First, an interesting
avenue of research is to explore the use of defense-in-depth
strategies as a mechanism to harden IoT devices. This intro-
duces non-negligible tradeoffs between the complexity of the
method (e.g., iptables, Snort, and fail2ban) and the overall
gain. Second, we identify the need to automate the cross-
compilation of the implants to more CPU architectures (e.g.,
RISC-V and Xtensa) and to a more diverse set of obsolete
environments (e.g., MIPS-I), while minimizing the overall
footprints at build and runtime (e.g., storage, RAM, and CPU).
Finally, we would like to encourage researcher and industry
practitioners having access to large sets of physical devices to
enlarge evaluation and support in HALE-IoT .

APPENDIX

A. Supporting Materials—Screenshots

1) Screenshots for Evaluation on IPTV Camera
(Emulation): Fig. 6 shows the TRENDnet TV-IP121WN IP
camera Web interface running with HALE-IoT via firmware
emulation.
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Fig. 7. Evaluation on CVE-2016-1555 (emulation): Screenshot depicting
successful detection and prevention of both XSS and CI attacks attempting to
exploit CVE-2016-1555 on an emulated firmware hardened with HALE-IoT .

Fig. 8. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
XSS in OpenWrt’s LuCI Web interface running on RPi3 without HALE-IoT .

Fig. 9. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
successful prevention of XSS and addition of HTTPS after RPi3 running the
same originally vulnerable OpenWrt was hardened with HALE-IoT .

2) Screenshots for Evaluation on CVE-2016-1555
(Emulation): Fig. 7 shows the successful detection of
the attempted exploitation of CVE-2016-1555 (XSS and CI)
on an emulated firmware that is hardened by HALE-IoT .

3) Screenshots for Evaluation on RPi3 With OpenWrt
(Device): Figs. 8 and 9 show how HALE-IoT works on a
RaspberryPi 3 running OpenWrt (Section VI-B). Fig. 8 shows
the successful exploitation of an XSS in the LuCI Web
interface without HALE-IoT , while Fig. 9 shows that the attack
is detected and prevented when the device is hardened by
HALE-IoT .

4) Screenshots for Evaluation on Several Devices (Device):
Figs. 10–12 show the successful installation of HALE-IoT
on the physical devices Asus RT-N12+ B1 (Section VI-C),
Netgear R6220 (Section VI-D), and Linksys EA4500
(Section VI-E), respectively.

Fig. 10. Evaluation on Asus RT-N12+ (device): Screenshot depicting HALE-
IoT implant successfully running on Asus RT-N12+ B1 device.

Fig. 11. Screenshot depicting Netgear R6220’s Web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .

Fig. 12. Screenshot depicting Linksys EA4500’s Web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .

5) Screenshots for Evaluation on Linksys wrtsl54gs
Hardcoded Binary (Emulation): Fig. 13 shows the Ghidra
decompiled code of the BusyBox httpd applet showing that
it accepts an option to change the IP address to bind the Web
server. On the other hand, Fig. 14 shows that this option is not
available in the help menu of the httpd applet. Finally, Fig. 15
shows that by using this hidden “−l” option it is possible to
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Fig. 13. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting the presence of a hidden “−l” option used for binding network
interface.

Fig. 14. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot depict-
ing that the builtin httpd server’s help menu does not normally show the hidden
“−l” option.

Fig. 15. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot depict-
ing that builtin httpd server did a successful rebind to 127.0.0.1 by forcing
this via the hidden “−l” option.

isolate from 0.0.0.0 the (potentially vulnerable) Web server
when it is working with HALE-IoT (Section VI-A).

LIST OF ACRONYMS

ABI Application Binary Interface.
ABSR Autotomic Binary Structure Randomization.

AFL American Fuzzy Lop.
BANG BinaryAnalysis-NG.
CA Certificate Authority.
CI Command Injection.
CIS Center for Internet Security.
CPU Central Processing Unit.
CSRF Cross-Site Request Forgery.
CVE Common Vulnerabilities and Exposures.
DDNS Dynamic Domain Name System.
DFA Deterministic Finite Automata.
DL Deep Learning.
DNS Domain Name System.
EOL End-Of-Life.
FMK Firmware-Mod-Kit.
FOTA Firmware Over-The-Air.
FTP File Transfer Protocol.
HSTS HTTP Strict-Transport-Security.
HTTP HyperText Transfer Protocol.
HTTPS HyperText Transfer Protocol Secure.
IDS Intrusion Detection System.
IoT Internet-of-Things.
IP Internet Protocol.
ISA Instruction Set Architecture.
ISO International Organization for Standardization.
JFFS Journaling Flash File System.
LAN Local Area Network.
MCU MicroController Unit.
MITM Man In The Middle.
ML Machine Learning.
MQTT Message Queue Telemetry Transport.
OS Operative System.
OTA Over-The-Air.
PC Personal Computer.
PCRE Perl-Compatible Regular Expressions.
PKI Public key infrastructure.
QEMU Quick EMUlator.
RAM Random Access Memory.
RCE Remote Code Execution.
SAE Society of Automotive Engineers.
SEM symbiotic embedded machine.
SFTP Secure File Transfer Protocol.
SPI Serial Peripheral Interface.
SQLi Structured Query Language injection.
SquashFS Squash File System.
SSH Secure Shell.
SSL Secure Socket Layer.
TCP Transmission Control Protocol.
Telnet Teletype Network.
TLS Transport Layer Security.
UDP User Datagram Protocol.
UEFI Unified Extensible Firmware Interface.
UPnP Universal Plug and Play.
USB Universal Serial Bus.
VPN Virtual Private Network.
WAF Web Application Firewall.
WAN Wide Area Network.
WLAN wireless Local Area Network.
XSS Cross-Site Scripting.
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